
Libero SoC v11.0
User’s Guide

NOTE: PDF files are intended to be viewed on the printed page; links and cross-references in this PDF file
may point to external files and generate an error when clicked. View the online help included with
software to enable all linked content.

Libero User's Guide

Libero User's Guide 2

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Table of Contents

Supported Families.. 10
Firmware Cores Frequently Asked Questions ... 15
General Questions ... 23
Instantiating into your SmartDesign ... 24
Working with Processor-Based Designs in SmartDesign .. 25
Making your Design Look Nice .. 26
Generating your Design ... 27
General Questions ... 28
Instantiating Into Your SmartDesign .. 29
Working with Processor-Based Designs in SmartDesign .. 31
Making your Design Look Nice .. 32

Getting Started with SmartDesign .. 33

Canvas View ... 37

Creating a SmartDesign .. 46

Connecting Instances .. 48

Bus Interfaces .. 52

Incremental Design .. 60

Reference ... 64

Designing with Designer Block Components ... 79

Creating a Designer Block Component in Libero SoC 82
Creating a Designer Block Component in Libero SoC ... 83

Place and Route ... 101

Device Programming ... 108

Generating Programming Files .. 133

TCL Command Reference ... 168
Introduction to Tcl Scripting ... 169

Project Manager Tcl Commands .. 189
set_root .. 230

Designer in Libero SoC ... 407

Table of Contents

Libero User's Guide 3

Preferences .. 421

Product Support .. 437

Libero User's Guide 5

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Welcome to Microsemi's Libero® SoC v11.0
Libero SoC is the most comprehensive and powerful FPGA design and development software available,
providing start-to-finish design flow guidance and support for novice and experienced users alike. Libero
SoC combines Microsemi SoC Products Group (formerly Actel) tools with such EDA powerhouses as
Synplify®, ModelSim®, and ViewDraw®.

What's New in Libero SoC v11.0
Support for SmartFusion2 devices - SmartFusion2 integrates an inherently reliable flash-based FPGA
fabric, a 166 megahertz (MHz) ARM® Cortex™-M3 processor, advanced security processing accelerators,
DSP blocks, SRAM, eNVM, and industry-required high-performance communication interfaces all on a
single chip.
Libero SoC v11.0 includes new Pin Report options.
New for SmartFusion2-only updates to the:

• Design Flow, including I/O and Floorplan constraints
• SmartTime and batch mode Timing Verification
• I/O Constraints Editor
• Floorplanner
• System Builder
• Programming Connectivity and Interface
• Security Policy Manager (SPM)
• SmartDebug

Updated Family Support
Libero SoC v11.0 supports the following families and their derivatives:
• SmartFusion2
• SmartFusion
• Fusion
• IGLOO®
• ProASIC3

Design Flow - Libero SoC
See the Libero SoC SmartFusion2 Design Flow topic for more information on designing for that device.

The Libero SoC Build button enables you to proceed from synthesis to programming in one click.
Once you create your design (configure your MSS; create SmartDesign; Create HDL) and click the Build
button the software automatically executes the following operations with default settings (if it encounters no
errors):

• Synthesis
• Compile
• Place and Route
• Verify Timing
• Generate Programming Data

You can also import constraint files, organize and associate them for use during synthesis and compile.
In the event of an error the operation is halted and an explanatory error message appears in the Log
window.

http://www.actel.com/FPGA/SmartFusion2/

6 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

To change the default settings for any of the operations, right-click and choose Open Interactively to open
the tool associated with the operation.
For example, to change the Compile settings, expand Implement Design, right-click Compile and choose
Open Interactively. This displays the Compile options for your design.

Design Flow Window Updates for SmartFusion2 Only
The Design Flow window for the SmartFusion2 family has been changed in v11.0. Some functions, such as
running SmartTime and the I/O Editor, no longer require that you open Designer.
When you move through the steps in the Design Flow window, only the steps in bold are required to
complete and program your design. The bold steps are completed automatically if you use the Build button.
The table below summarizes the new or updated functions in the Design Flow window for the SmartFusion2
family.

Value Function

Create Design >
System Builder

System Builder creates your design based on high level design
specifications by walking you through a set of high-level
questions that will define your intended system.

Create Constraints I/O Constraints - Import or edit I/O Constraint PDC files

Timing Constraints- Import or edit Timing Constraint SDC files

Floorplan Constraints - Import or edit Floorplan Constraint
PDC files

Note that I/O Constraint and Floorplan Constraint PDC files are
handled separately in v11.0; if you have a PDC file that contains
both I/O Constraints and FloorPlan Constraints then it will error
out.

Configure
Flash*Feeze

Enables you to configure your Flash*Freeze hardware settings

Edit Constraints I/O Constraints - Opens the Post-Compile I/O Editor, enables
you to edit the I/O Constraints PDC file you imported or created
in Create Constraints (above).

Timing Constraints - Opens SmartTime for SmartFusion2;
enables you to create/edit your timing constraints (SDC files)

Floorplan Constraints - Opens ChipPlanner for SmartFusion2;
enables you to edit your Floorplan PDC files.

Generate Back
Annotated Files

Similar to Export Back Annotated Files for other families,
enables you to generate your Back Annotated files and/or set
your options without opening Designer.

Generate Fabric
Programming Data

Generates programming data for your design; this operation is
completed automatically as the last step if you use the Build
button.

Edit Design
Hardware
Configuration

Configures your Programing Connectivity, Programmer Settings
and Device I/O States During Programming. These functions
were previously available in FlashPro but are now managed
from within Libero SoC.

Libero SoC Design Flow - SmartFusion2 ONLY

Libero User's Guide 7

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Value Function

Configure Security
and Programming
Options

Security Policy Manager - Sets the options for your Secured
Programming Use Model, User Key Entry and Security Policies
(Update Policy, Protocol Policy and Operational Integrity Policy)

Programming Features - Enables you to select which features
you wish to program.

Update eNVM Memory Content - Enables you to change your
eNVM content for programming without having to rerun Compile
and Place and Route.

The figure below shows a SmartFusion Design Flow window on the left and a SmartFusion2 Design Flow
window on the right.

Figure 1 · SmartFusion (left) and SmartFusion2 (right) Design Flow Windows

Libero SoC Design Flow - SmartFusion2 ONLY
The Libero SoC v11.0 release incorporates several new features that are unique to SmartFusion2.

The Libero SoC Build button still enables you to proceed from synthesis to programming in one click
(using default settings).
The basic design flow is shown in the figure below.

8 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 2 · Design Flow for SmartFusion2

Create Design
Once you create your design (using System Builder; using the MSS builder - the flow for which is similar to
the MSS flow for SmartFusion; create SmartDesign; Create HDL; SmartDesign Testbench) and click the
Build button the software automatically executes the operations below with default settings (if it encounters
no errors).

Create Constraints - Pre-Compile
SmartFusion2 I/O constraint PDC files are separate from Floorplan constraint PDC files; if you have a PDC
file that contains both I/O and Floorplan constraints then Libero SoC errors out with an invalid constraint
error.
• I/O Constraints - Created with the I/O Editor or text editor (pre-Compile). To add an I/O constraint, in

the Design Flow window expand Create Constraints, right-click I/O Constraints and choose Import
Files.

• Timing Constraints - Enables you to import SDC files pre-Compile.

Libero SoC Design Flow - SmartFusion2 ONLY

Libero User's Guide 9

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

• Floorplan Constraints - Created with the Floorplanner or a text editor; to add a Floorplan constraint, in
the Design Flow window expand Create Constraints, right-click Floorplan Constraints and choose
Import Files.

Synthesis
Double-click Synthesize to run synthesis on your design automatically; automatic synthesis uses the default
settings in your synthesis tool.

Compile
To compile your design with custom settings, right-click Compile in the Design Flow window and choose
Configure Options.

Place and Route - Post-Compile
Place and Route runs automatically with default settings as part of the push-button design flow in Libero
SoC.
• I/O Editor - The Post-Compile I/O Editor displays all assigned and unassigned I/O macros and their

attributes in a spreadsheet format; use this editor to view, sort, select, edit, lock and unlock assigned
attributes.

The post compile editor ensures that the Compile/Place and Route state is maintained (you do not
have to rerun Compile or Place and Route), if you make changes to the attributes that do not require it.

However, if you modify the I/O's in the Pre-Compile editor, it is equivalent to modifying the source file
of the design, which means the tools starting from Compile will become out of date because one of the
source files was modified.

• Timing Constraints - Run SmartTime to perform Min/Max analysis and manage timing constraints.
• Floorplan Constraints - Use to create and edit regions on your chip and assign logic to these regions.

Generate Fabric Programming Data
Generates programming data for your design. This operation is completed automatically as the last step if
you use the Build button

Programming
You do not have to open FlashPro or FlashPoint to program your SmartFusion2 device. All programming
functionality is available from within the Design Flow window, including:
Programming Connectivity and Interface - Organizes your programmer(s) and devices.
Programmer Settings - Opens your programmer settings; use if you wish to program using settings other
than default.
Device I/O States During Programming - Sets your device I/O states during programming; use if your
design requires that you change the default I/O states.
Security Policy Manager - Enables you to set your Secured Programming Use Model, User Key Entry and
Security Policies for your design.

10 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Supported Families

Microsemi's Libero SoC software supports the following families of devices:

• SmartFusion2
• SmartFusion
• Fusion
• IGLOO®
• ProASIC3

When we specify a family name, we refer to the device family and all its derivatives, unless otherwise
specified. See the table below for a list of supported device families and their derivatives:

Table 1 · Product Families and Derivatives

Device
Family

Family
Derivatives

Description

SmartFusion2 SmartFusion2 Address fundamental requirements for advanced
security, high reliability and low power in critical
industrial, military, aviation, communications and
medical applications.

SmartFusion SmartFusion SmartFusion intelligent mixed-signal FPGAs are the
only devices that integrate an FPGA, ARM Cortex-
M3, and programmable analog, offering full
customization and IP protection.

Fusion Fusion Mixed-signal FPGA integrating ProASIC3 FPGA
fabric, programmable analog block, support for
ARM® CortexTM-M1 soft processors, and flash
memory into a monolithic device.

IGLOO IGLOO The ultra-low-power, programmable solution

IGLOOe Higher density IGLOO FPGAs with six PLLs and
additional I/O standards

IGLOO nano The industry’s lowest power, smallest size solution

IGLOO PLUS The low-power FPGA with enhanced I/O capabilities

ProASIC3 ProASIC3 The low-power, low-cost, FPGA solution

ProASIC3E Higher density ProASIC3 FPGAs with six PLLs and
additional I/O standards

ProASIC3 nano Lowest cost solution with enhanced I/O capabilities

ProASIC3L The FPGA that balances low power, performance,
and low cost

Automotive
ProASIC3

ProASIC3 FPGAs qualified for automotive
applications

http://www.actel.com/products/smartfusion2/default.aspx
http://www.actel.com/products/smartfusion/default.aspx
http://actel.com/products/fusion/default.aspx
http://actel.com/products/iglooseries/default.aspx
http://actel.com/products/pa3series/default.aspx

File Types in Libero SoC

Libero User's Guide 11

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Device
Family

Family
Derivatives

Description

Military
ProASIC3/EL

Military temperature A3PE600L, A3P1000, and
A3PE3000L

RT ProASIC3 Radiation-tolerant RT3PE600L and RT3PE3000L

File Types in Libero SoC
When you create a new project in the Libero SoC it automatically creates new directories and project files.
Your project directory contains all of your local project files. If you import files from outside your current
project, the files must be copied into your local project folder. (The Project Manager enables you to manage
your files as you import them.)
Depending on your project preferences and the version of Libero SoC you installed, the software creates
directories for your project.
The top level directory (<project_name>) contains your PRJ file; only one PRJ file is enabled for each Libero
SoC project.
component directory - Stores your SmartDesign components (SDB and CXF files) for your Libero SoC
project.
constraint directory - All your constraint files (SDC, PDC, GCF, DCF, etc.)
designer directory - ADB files (Microsemi Designer project files), -_ba.SDF, _ba.v(hd), STP, PRB (for
Silicon Explorer), TCL (used to run designer), impl.prj_des (local project file relative to revision), designer.log
(logfile)
Note: Note: The Microsemi ADB file memory requirement is equivalent to 2x the size of the ADB file. If your

computer does not have 2x the size of your ADB file's memory available, please make memory
available on your hard drive.

hdl directory - all hdl sources. *.vhd if VHDL, *.v and *.h if Verilog
phy_synthesis directory - _palace.edn, _palace.gcf, palace_top.rpt (palace logfile) and other files
generated by PALACE
simulation directory - meminit.dat, modelsim.ini files
smartgen directory - GEN files and LOG files from generated cores
stimulus directory - BTIM and VHD stimulus files
synthesis directory - *.edn, *_syn.prj (Synplify log file), *.psp (Precision project file), *.srr (Synplify logfile),
precision.log (Precision logfile), *.tcl (used to run synthesis) and many other files generated by the tools (not
managed by Libero SoC)
viewdraw directory - viewdraw.ini files

Software Tools - Libero SoC
The Libero SoC integrates design tools, streamlines your design flow, manages design and log files, and
passes design data between tools.
For more information on Libero SoC tools, please visit: http://www.actel.com/products/software/libero/

Function Tool Company

Project Manager, HDL Editor, Core Generation Libero SoC Microsemi
SoC

Schematic Capture ViewDraw®
ME

Mentor
Graphics

http://www.actel.com/products/software/libero

12 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Function Tool Company

Synthesis Synplify® Pro
ME

Synopsys

Simulation ModelSim®
ME

Mentor
Graphics

Timing/Constraints, Power Analysis, NetlistViewer,
Floorplanning, Package Editing, Place-and-Route,
Debugging

Libero SoC Microsemi
SoC

Programming Software FlashPro Microsemi
SoC

Project Manager, HDL Editor targets the creation of HDL code. HDL Editor supports VHDL and Verilog
with color, highlighting keywords for both HDL languages.
Synplify Pro AE from Synopsys is integrated as part of the design package, enabling designers to target
HDL code to specific devices.
Microsemi SoC software package includes:
• ChipPlanner displays I/O and logic macros in your design
• NetlistViewer design schematic viewer
• SmartPower power analysis tool
• SmartTime static timing analysis and constraints editor

ModelSim AE from Mentor Graphics enables source level verification so designers can verify HDL code line
by line. Designers can perform simulation at all levels: behavioral (or pre-synthesis), structural (or post-
synthesis), and back-annotated, dynamic simulation. (ModelSim is supported in Libero Gold, Platinum, and
Platinum Eval only.)

Frequently Asked Questions - Libero SoC
The collection of Frequently Asked Questions are useful for anyone that is new to Libero SoC. All the
information listed below is explained in detail in other sections of the help, but the information is summarized
here for easy reference. Click any question to go to the corresponding explanation.

Libero SoC Frequently Asked Questions
1. How do I set my Multi-Pass place and route options?
2. How do I set FlashPro security options?
3. How do I instantiate my HDL in SmartDesign?
4. How do I add a bus interface to my HDL code and then add it to SmartDesign?
5. I don't see any DirectCore IP's in the Catalog but I have both Libero IDE 9.1 and Libero SoC 10.0

installed. Where are the DirectCore IP's?
6. How do I assign I/O/s in Libero SoC?
7. How do I make sure that my design is using the latest driver(s)?
8. How do I improve the timing of my design?
9. How do I manage clocks?

10. How do I write a testbench?

Frequently Asked Questions - Libero SoC

Libero User's Guide 13

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Firmware Cores Frequently Asked Questions
1. Where are the firmware files generated?
2. Why are some firmware in italics?
3. Why am I getting the following error on generation? "Error: 'Missing Core Definition': Core

'Actel:Firmware:MSS_SPI_Driver:2.0.101 ' is missing from the vault."?
4. Why is my firmware view empty?
5. Why are there multiple firmware instances of the same type?

Libero SoC Frequently Asked Questions
How do I set my Multi-Pass place and route options?

In the Design Flow window, expand Implement Design, right-click Place and Route and choose Open
Interactively. Designer opens. Click Layout to open the Layout Options dialog box and choose your place
and route options. Once Layout is complete, save your ADB to retain your custom place and route options.

How do I set FlashPro security options?

In the Libero SoC Design Flow window, expand Program Design, right-click Program Device and choose
Open Interactively. FlashPro opens and enables you to set/change your security options. See the FlashPro
help for more information.

How do I instantiate my HDL in SmartDesign?

Import your HDL file into the Libero SoC (File > Import Files). After you do this, your HDL module appears in
the Project Manager Hierarchy. Then, drag-and-drop it from the Hierarchy onto your SmartDesign Canvas.

How do I add a bus interface to my HDL code and then add it to SmartDesign?

If you want to add a bus interface to your HDL code and then add it to SmartDesign, see the Adding or
Modifying Bus Interfaces in SmartDesign topic.

I don't see any DirectCore IP's in the Catalog but I have both Libero IDE 9.1 and Libero SoC 10.0 installed. Where are
the DirectCore IP's?

Make sure the vault location is correct. Click the Catalog Options button to open the Catalog Options dialog
box. Then check and, if necessary, update your vault location.

How do I assign I/O's in Libero SoC?

In the Design Flow window, expand Implement Design, then expand Constrain Place and Route. Right-
click Edit I/O Attributes and choose Open Interactively to open the I/O Attribute Editor.

How do I make sure that my design is using the latest driver(s)?

 In the Design Flow tab, expand Create Design and double-click View/Configure Firmware Cores to view
the DESIGN_FIRMWARE tab. The Firmware table lists the compatible firmware and drivers based on the
hardware peripherals that you have used in your design. Use the Version drop down menus to check for the
latest firmware and firmware drivers.

How do I improve the timing of my design?

 The SmartTime tool enables you to set clock constraints, analyze timing, identify critical paths, and find the
minimum cycle time that does not result in a timing violation.
To improve the timing of your design:

1. Run timing analysis to identify timing violations.
2. View the paths with timing violations.
3. Modify timing constraints on the critical path(s) in order to meet your timing requirements.
4. Run Timing-Driven Place and Route.

For more information on improving timing, see the Analysis and Optimization application notes. The
Designing for Performance on Flash-Based FPGAs application note is a good starting point.

http://www.actel.com/techdocs/appnotes/analysis_optimization.aspx
http://www.actel.com/documents/Design_Performance_AN.pdf

14 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

How do I manage clocks?

Specify clock constraints in your design. See the sections on explicit clocks, potential clocks and clock
networks for more information on clocks in Libero SoC.

How do I write a testbench?

You can write or edit a testbench manually using the HDL editor, or you can create a new HDL testbench
and automatically populate it with all your design information with Create New HDL Testbench in Libero
SoC. Create New HDL Testbench is in the Design Flow window under Create Design.
Testbench file are generated automatically when you generate a SmartDesign. You can find them in your
Files window in Libero SoC (View > Window > Files).

Software IDE Integration

Libero User's Guide 15

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Firmware Cores Frequently Asked Questions
Where are the firmware files generated?

The firmware files are generated to the firmware working directory <project>\firmware. Your software IDE
workspace is generated to <project>\<software IDE tool chain>.

Why are some firmware in italics?

This indicates the firmware is in the IP repository but not in your local IP vault. You must download it to your
local IP vault so that the Libero SoC will generate the firmware files.

Why am I getting the following error on generation? "Error: 'Missing Core Definition': Core
'Actel:Firmware:MSS_SPI_Driver:2.0.101 ' is missing from the vault."?

This happens when a firmware that is in your design but the VLNV definition could not be found in your IP
vault. This can happen if you:

• Changed your vault settings to point to another vault
• Opened a project that was created on another machine

Why is my firmware view empty?

Check that you are pointing to the proper firmware repository:
www.actel-ip.com/repositories/Firmware
Check with your network administrator to make sure you can communicate with Microsemi's IP repository
URL.

Why are there multiple firmware instances of the same type?

Some firmware cores have configurable options, and in certain cases you will have two peripherals of the
same firmware VLNV. In this situation, you may want to configure each peripheral driver separately.

Software IDE Integration
Libero SoC simplifies the task of transitioning between designing your FPGA to developing your embedded
firmware.
Libero SoC manages the firmware for your FPGA hardware design, including:

• Firmware hardware abstraction layers required for your processor
• Firmware drivers for the processor peripherals that you use in your FPGA design.
• Sample application projects are available for drivers that illustrate the proper usage of the APIs

You can see which firmware drivers Libero SoC has found to be compatible with your design by opening the
Firmware View. From this view, you can change the configuration of your firmware, change to a different
version, read driver documentation, and generate any sample projects for each driver.
Libero SoC manages the integration of your firmware with your preferred Software Development
Environment, including SoftConsole, Keil, and IAR Embedded Workbench. The projects and workspaces for
your selected development environment are automatically generated with the proper settings and flags so
that you can immediately begin writing your application.

See Also

Develop Firmware - Write Application Code
Libero SoC Frequently Asked Questions
Running Libero SoC from your Software Tool Chain
View/Configure Firmware Cores

16 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

System Builder
System Builder is a graphical design wizard designed specifically for SmartFusion2 based systems. System
Builder walks you through the following steps:
• Asks basic questions about your system architecture
• Adds any additional needed peripherals in the fabric
• Sets required configuration options for each selected feature
• Builds a correct-by-design complete system

The SmartFusion2 System Builder wizard creates your design based on high level design specifications by
walking you through a set of high-level questions that will define your intended system. System Builder
enables you to focus on your design specializations instead of on the specific silicon requirements of a
SmartFusion2 based design.
This simplifies the design creation process. The built-in design rule check feature prevents you from moving
forward if there are mistakes or conflicts. The design that is produced by the System Builder follows all the
SmartFusion2 silicon design rules.
You can also extend the System Builder generated design with your own custom peripherals and logic by
specifying your options and then using SmartDesign to connect up your custom peripherals.
System Builder supports the SmartFusion2 family
See the System Builder documentation for a complete explanation of the tool.

SmartFusion Design Flow Overview
SmartFusion designs can be implemented from within the Libero SoC using the Microcontroller Subsystem
(MSS) configurator or can be configured in your software IDE, such as Keil or IAR.
The Microcontroller Subsystem (MSS) Configurator (as shown in the figure below) is a specialized
SmartDesign that enables you to configure and implement a SmartFusion design. The SmartDesign MSS
Configurator enables you to configure your SmartFusion microcontroller hardware as well as produces the
necessary firmware drivers for your design.

http://coredocs.s3.amazonaws.com/Actel/Tool/SysBuilder/sf2_system_builder_ug_1.pdf
http://www.actel.com/products/smartfusion/default.aspx

SmartFusion Design Flow Overview

Libero User's Guide 17

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 3 · Microcontroller Subsystem Configurator

The following is a high level overview of the SmartFusion design flow. Further details can be found directly
inside the SmartDesign MSS Configurator tool. See the Additional User Support section (below) for
information on where you can access additional resources.

SmartFusion in the Libero SoC: Design Flow
1. Create a SmartFusion project
2. Configure SmartFusion MSS peripherals
3. Generate SmartFusion files
4. Complete your design (simulation, synthesis, compile, place-and-route, and programming)

Additional User Support
Information regarding the MSS such as tutorials, simple how-to descriptions, design flows, Frequently Asked
Questions, and videos can be accessed from the SmartDesign MSS Configurator Help menu under the sub-
menu Microcontroller Subsystem (as shown in the figure below).

Figure 4 · Microcontroller Subsystem Help

http://www.actel.com/products/software/smartdesign/docs_mss.aspx

18 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Specific information regarding the MSS peripherals and their use is available inside the configurator of each
peripheral. To access these resources, double-click the configurator to open it, then click the Help button (as
shown in the figure below).

Figure 5 · Peripheral Help Button

Create a SmartFusion Project
Creating a SmartFusion design using the Microcontroller Subsystem (MSS) is similar to creating any other
project in the Libero SoC:

1. In the Project Manager, create a new project.
2. Enter your Project Name and Location and select your Preferred HDL type.
3. Choose SmartFusion as the family and select your Device settings: Family, Die, Package, Speed, Die

Voltage, and Operating Conditions (as shown in the figure below).

Configure SmartFusion Microcontroller Subsystem (MSS) Peripherals

Libero User's Guide 19

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 6 · New Project: SmartFusion

4. Configure the MSS, firmware and I/Os according to your design specification.

Note: Note: If you opt not to use a Design Template and create the MSS, expand Create Design in the
Design Flow tab and double-click Configure MSS to create an MSS at any time. If you already have
an MSS in your project, then this button opens your existing MSS component.

Configure SmartFusion Microcontroller Subsystem (MSS)
Peripherals

The SmartDesign MSS Configurator enables you to configure your microcontroller peripherals, such as the
ACE, GPIO, and External Memory Controller.
Peripherals that have configurable options are shown with a wrench icon on the instance (as shown in the
figure below). Clicking the wrench icon opens the configuration dialog box for the peripheral.

Figure 7 · Fabric Interface Peripheral in the MSS

20 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

For more details on the configuration options of each peripheral, click the Help button in the peripheral
configuration dialog box (as shown in the figure below).

Figure 8 · Help Button in Fabric Interface Peripheral

Generate SmartFusion Files
See the MSS Configurator help for more information on generating SmartFusion files.

Click the Generate Component button to create your SmartFusion files.
The MSS Configurator generates the following files:
• HDL files for the MSS design and its sub-components: MSS CCC, etc. HDL files are automatically

managed by the Libero SoC and passed to the Synthesis and Simulation point tools.
• EFC File. MSS hardware configuration that is loaded into eNVM. FlashPro automatically detects this

file and includes it in your final programming file.
• UFC file. This file contains the Embedded FlashROM configuration and data: FlashPro automatically

detects this file and includes it in your final programming file.
• Firmware drivers and memory maps are exported into the <project>\firmware\ directory. These files

can be imported into your software IDE to begin the software part of your design.
• Testbench HDL and BFM script for the MSS design: These files are also managed by Libero SoC and

automatically passed to the Simulation point tool.
• PDC files for the MSS and the top-level design: These files are managed by Libero SoC and

automatically integrated during Compile and Layout.

Completing a Design Using the Libero SoC Tool Suite
After the MSS design has been successfully generated, you can complete your design using the Libero SoC
design tools.
Synthesis, Compile, Place and Route and Generate Programming Files all run automatically with default
settings as part of the Libero SoC push-button design flow. If you wish to run any of these operations with
different settings, view them in the Design Hierarchy window, right-click and choose Open Interactively.
The tool opens and enables you to change the settings before you simulate / compile / place-and-route.
For example, you can set timing constraints in Implement Design > Constraint Place and Route > Edit
Timing Constraints (double-click to open SmartTime).

Create ViewDraw Schematic

Libero User's Guide 21

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Programming
FlashPro automatically detects the presence of the FlashPro data (FDB) file and the MSS Hardware Files
(EFC and UFC) produced by the SmartDesign MSS Configurator.
Once you open FlashPro, you can view the input files that will be used to create the programming data file
(PDB), by clicking the Modify button in the Programming file panel. The Modify button starts the FlashPoint
dialog box.
The FlashPoint dialog box enables you to modify the content of the FlashROM (UFC), FPGA Array (FDB)
and Embedded Flash Memory (EFC) directly from FlashPro. For example, you may wish to update an NVM
data storage client that has been set up to load the MSS application data. See the FlashPro help for a
tutorial on programming SmartFusion.

Create ViewDraw Schematic
You must enable ViewDraw in your Project Settings to create a schematic source file in Libero SoC.

To create a schematic source file:
1. In the Design Flow window, double-click Create ViewDraw Schematic.
2. Type a name for your schematic file in the Name field. Click OK. ViewDraw AE starts.
3. Using ViewDraw AE, create your schematic.
4. When you are done, click Save+Check in ViewDraw. The Save+Check command creates your WIR

file. When Save and Check is complete, the message Check complete, 0 errors and 0 warnings in
project <name> appears in the status bar.

You must select Save & Check. Selecting Save will not generate the needed WIR file for that block.

5. (Optional) Right-click the schematic file in the Files tab and choose Check Schematic. The
connectivity checker checks the connectivity of the WIR file. Errors and warnings appear in the log
window.

6. From the File menu, choose Exit. The schematic is saved to your project in Libero SoC and appears
in both the File Manager and the Design Hierarchy tabs.

About SmartDesign
SmartDesign enables you to take configured cores, IP cores, macros from a Catalog, and user-created HDL
source files and instantiate them into your design.
You can drag configured cores onto a Canvas where they are viewed as blocks in a functional block
diagram. From the Canvas you can:
• Make connections between your blocks
• View individual connection details
• Show or hide individual nets
• Set or clear attributes (such as Invert, Tie Low, Tie High, or Tie Open)
• Add slices
• Move, duplicate, or delete blocks
• Add notations such as labels, shapes, lines, or arrows to document your design
• Auto-stitch interfaces and other connections (such as AMBA)
• View a Memory Map / Datasheet - The datasheet reports the memory map of the different subsystems

of your design, where a subsystem is any independent bus structure with a Master and Slave
peripheral attached.

SmartDesign supports all Microsemi SoC product families.

22 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

SmartDesign Design Flow
SmartDesign enables you to stitch together design blocks of different types (HDL, IP, etc) and generate a
top-level design. The Files tab lists your SmartDesign files in alphabetical order.
You can build your design using SmartDesign with the following steps:
Step One – Instantiating components: In this step you add one or more building blocks, HDL modules,
components, and schematic modules from the project manager to your design. The components can be
blocks, cores generated from the core Catalog, and IP cores.
Step Two – Connecting bus interfaces: In this step, you can add connectivity via standard bus interfaces
to your design. This step is optional and can be skipped if you prefer manual connections. Components
generated from the Catalog may include pre-defined interfaces that allow for automatic connectivity and
design rule checking when used in a design.
Step Three – Connecting instances: The Canvas enables you to create manual connections between
ports of the instances in your design. Unused ports can be tied off to GND or VCC (disabled); input buses
can be tied to a constant, and you can leave an output open by marking it as unused.
Step Four – Generating the SmartDesign component: In this step, you generate a top-level (Top)
component and its corresponding HDL file. This component can be used by downstream processes, such as
synthesis and simulation, or you can add your SmartDesign HDL into another SmartDesign.
When you generate your SmartDesign the Design Rules Check verifies the connectivity of your design; this
feature adds information to your report; design errors and warnings are organized by type and message and
displayed in your Datasheet / Report.
You can save your SmartDesign at any time.

Using Existing Projects with SmartDesign
You can use existing Libero SoC projects with available building blocks in the project to assemble a new
SmartDesign design component. You do not have to migrate existing top-level designs to SmartDesign and
there is no automatic conversion of the existing design blocks to the SmartDesign format.

SmartDesign Frequently Asked Questions
The collection of SmartDesign Frequently Asked Questions are useful for anyone that is new to
SmartDesign. All the information listed below is explained in detail in other sections of the help, but the
information is summarized here for easy reference. Click any question to go to the corresponding
explanation.

SmartDesign Frequently Asked Questions

Libero User's Guide 23

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

General Questions
1. What is SmartDesign?
2. How do I create my first SmartDesign?

24 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Instantiating into your SmartDesign
1. Where is the list of cores that I can instantiate into my SmartDesign?
2. How do I instantiate cores into my SmartDesign?
3. I have a block that I wrote in VHDL (or Verilog), can I use that in my SmartDesign?
4. My HDL module has Verilog parameters or VHDL generics declared; how can I configure those in

SmartDesign?

Working in SmartDesign
1. How do I make connections?
2. Auto Connect didn’t connect everything for me; how do I make manual connections?
3. How do I connect a pin to the top level?
4. Oops, I just made a connection mistake. How do I disconnect two pins?
5. I need to apply some simple ‘glue’ logic between my cores. How do I do that?
6. My logic is a bit more complex than inversion and tie offs - what else can I do?
7. How do I create a new top level port for my design?
8. How do I rename one of my instances?
9. How do I rename my top level port?

10. How do I rename my group pins?
11. I need to reconfigure one of my Cores, can I just double click the instance?
12. I want more Canvas space to work with!

Working in SmartDesign

Libero User's Guide 25

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Working with Processor-Based Designs in SmartDesign
1. How do I connect my peripherals to the bus?
2. How do I view the Memory Map of my design?
3. How do I simulate my processor design?
4. I have my own HDL block that I want to connect as a peripheral on the AMBA bus. How can I do that?
5. How do I generate the firmware drivers for my design?
6. How do I start writing my application code for my design?

26 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Making your Design Look Nice
1. Can the tool automatically place my instances on the Canvas to make it look nice?
2. My design has a lot of connections, and the nets are making my design hard to read. What do I do?
3. My instance has too many pins on it, how can I minimize that?
4. Oops, I missed one pin that needs to be part of that group? How do I add a pin after I already have the

group?
5. I have a pin that I don’t want inside the group, how do I remove it?
6. How can I better see my design on the Canvas?

Working in SmartDesign

Libero User's Guide 27

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Generating your Design
1. Ok, I’m done connecting my design, how do I ‘finish’ it so that I can proceed to synthesis?
2. I get a message saying it’s unable to generate my SmartDesign due to errors, what do I do? What is

the Design Rules Check?
3. How do I generate my firmware? Software IDE?

28 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

General Questions
What is SmartDesign?

SmartDesign is a design entry tool. It’s the first tool in the industry that can be used for designing System on
a Chip designs, custom FPGA designs or a mixture of both types in the same design. A SmartDesign can be
the entire FPGA design, part of a larger SmartDesign, or a user created IP that can be stored and reused
multiple times. It’s a simple, intuitive tool with powerful features that enables you to work at the abstraction
level at which you are most comfortable.
It can connect blocks together from a variety of sources, verify your design for errors, manage your memory
map, and generate all the necessary files to allow you to simulate, synthesize, and compile your design.

How do I create my first SmartDesign?

In the Libero SoC Project Manager Design Flow window, under Create Design, double-click Create
SmartDesign.

Working in SmartDesign

Libero User's Guide 29

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Instantiating Into Your SmartDesign
Where is the list of Cores that I can instantiate into my SmartDesign?

The list of available cores is displayed in the Project Manager Catalog. This catalog contains all DirectCore
IP, Design Block cores, and macros.

How do I instantiate cores into my SmartDesign?

Drag and drop the core from the Catalog onto your SmartDesign Canvas. An instance of your Core appears
on the Canvas; double-click to configure it.

I have a block that I wrote in VHDL (or Verilog), can I use that in my SmartDesign?

Yes! Import your HDL file into the Project Manager (File > Import Files). After you do this, your HDL module
will appear in the Project Manager Hierarchy. Then, drag-and-drop it from the Hierarchy onto your
SmartDesign Canvas.

My HDL module has Verilog parameters or VHDL generics declared, how can I configure those in SmartDesign?

If your HDL module contains configurable parameters, you must create a ‘core’ from your HDL before using
it in SmartDesign. Once your HDL module is in the Project Manager Design Hierarchy, right-click it and
choose Create Core from HDL. You will then be allowed to add bus interfaces to your module if necessary.
Once this is complete, you can drag your new HDL+ into the SmartDesign Canvas and configure your
parameters by double-clicking it.

Working in SmartDesign
How do I make connections?

Let SmartDesign do it for you. Right-click the Canvas and choose Auto Connect.
Auto Connect didn’t connect everything for me, how do I make manual connections?

Enter Connection Mode and click and drag from one pin to another. Click the Connection Mode button in
the Canvas to enter Connection Mode.
Alternatively:

1. Select the pins you want connected by using the mouse and the CTRL key.
2. Right-click one of the selected pins and choose Connect.

How do I connect a pin to the top level?

Right-click the pin and choose Promote to Top Level. You can even do this for multiple pins at a time, just
select all the pins you want to promote, right-click one of the pins and choose Promote to Top Level. All
your selected pins will be promoted to the top level.

Oops, I just made a connection mistake. How do I disconnect two pins?

Use CTRL+Z to undo your last action. If you want to undo your ‘undo’, hit redo (CTRL+Y).
To disconnect pins you can:
• Right-click the pin you want to disconnect and choose Disconnect
• Select the net and hit the delete key

I need to apply some simple ‘glue’ logic between my cores. How do I do that?

For basic inversion of pins, you can right-click a pin and choose Invert. An inverter will be placed at this pin
when the design is generated. You can also right-click a pin and choose Tie Low or Tie High if you want to
connect the pin to either GND or VCC.
To tie an input bus to a constant, right-click the bus and choose Tie to Constant. To mark an output pin as
unused, right-click the pin and choose Mark as Unused.
To clear these, just right-click on the pin again and choose Clear Attribute.

30 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

My logic is a bit more complex than inversion and tie offs - what else can I do?

You have full access to the library macros, including AND, OR, and XOR logic functions. These are located
in the Project Manager Catalog, listed under Actel Macros. Drag the logic function you want onto your
SmartDesign Canvas.

How do I create a new top level port for my design?

Click the Add Port button in the Canvas toolbar
How do I rename one of my instances?

Double-click the instance name on the Canvas and it will become editable. The instance name is located
directly above the instance on the Canvas.

How do I rename my top level port?

Right-click the port you want to rename and choose Modify Port.
How do I rename my group pins?

Right-click the group pin you want to rename and choose Rename Group.
I need to reconfigure one of my Cores, can I just double-click the instance?

Yes.
I want more Canvas space to work with!

Maximize your workspace (CTRL-W), and your Canvas will maximize within the Project Manager. Hit CTRL-
W again if you need to see your Hierarchy or Catalog.

Working in SmartDesign

Libero User's Guide 31

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Working with Processor-Based Designs in SmartDesign
How do I connect my peripherals to the bus?

Click Auto Connect and it will help you build your bus structure based on the processor and peripherals that
you have instantiated.

But I need my peripheral at a specific address or slot.

Right-click the Canvas and choose Modify Memory Map to invoke the Modify Memory Map dialog that
enables you to set a peripheral to a specific address on the bus.
The bus core will show the slot numbers on the bus interface pins. These slot numbers correspond to a
memory address on the bus.
Verify that your peripheral is mapped to the right bus address by viewing your design’s Memory Map.

How do I view the Memory Map of my design?

Generate your project and open datasheet in the Report View.
The memory map section will also show the memory details of each peripheral, including any memory
mapped registers.

How do I simulate my processor design?

SmartDesign automatically generates the necessary Bus Functional Model (BFM) scripts required to
simulate your processor based design. A top level testbench for your SmartDesign is generated
automatically as well.
Create your processor design, generate it, and you will be able to simulate it in ModelSim.

I have my own HDL block that I want to connect as a peripheral on the AMBA bus. How can I do that?

SmartDesign supports automatic creation of data driven configurators based on HDL generics/parameters.
If your block has all the necessary signals to interface with the AMBA bus protocol (ex: address, data,
control signals):

1. Right-click your custom HDL block and choose Create Core from HDL. The Libero SoC creates your
core and asks if you want to add bus interfaces.

2. Click Yes to open the Edit Core Definition dialog box and add bus interfaces. Add the bus interfaces as
necessary.

3. Click OK to continue.

Now your instance has a proper AMBA bus interface on it. You can manually connect it to the bus or let Auto
Connect find a compatible connection. See the DirectCore Advanced Microcontroller Bus Architecture - Bus
Functional Model User's Guide for more information on CoreAMBA BFM commands.

How do I generate the firmware drivers for my design?

SmartDesign automatically finds all the compatible firmware drivers based on your peripherals and
processor. You can view the list of firmware drivers that the design found by going to the design flow and
choosing View/Configure Firmware Cores.

How do I start writing my application code for my design?

Libero SoC simplifies the embedded development process by automatically creating the workspace and
project files for the Software IDE that you specify in the Tools profile.
Once you have generated your design, the firmware and workspace files will automatically be created. Click
Write Application Code in the Design Flow tab and the Software IDE tool will open your design’s
workspace files.

http://www.actel.com/ipdocs/CoreAMBA_BFM_UG.pdf
http://www.actel.com/ipdocs/CoreAMBA_BFM_UG.pdf

32 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Making your Design Look Nice
Can the tool automatically place my instances on the Canvas to make it look nice?

Yes. Right-click the Canvas white space and choose Auto Arrange Instances.
My design has a lot of connections, and the nets are making my design hard to read. What do I do?

You can disable the display of the nets in the menu bar (Canvas > Nets). This automatically hides all the
nets in your design.
You can still see how pins are connected by selecting a connected pin, the net will automatically be visible
again.
You can also selectively show certain nets, so that they are always displayed, just right click on a connected
pin and choose Show Net.

My instance has too many pins on it; how can I minimize that?

Try grouping functional or unused pins together. For example, on the CoreInterrupt there are 8 FIQSource*
and 32 IRQSource* pins, group these together since they are similar in functionality.
To group pins: Select all the pins you want to group, then right-click one of the pins and choose Add pins to
group.
If a pin is in a group, you are still able to use it and form connections with it. Expand the group to gain
access to the pin.

Oops, I missed one pin that needs to be part of that group? How do I add a pin after I already have the group?

Select the pin you want to add and the group pin, right-click and choose Add pins to <name> group.
I have a pin that I don’t want inside the group, how do I remove it?

Right-click the pin and choose Ungroup selected pins.
How can I better see my design on the Canvas?

 There are zoom icons in the Canvas toolbar. Use them to Zoom in, Zoom out, Zoom to fit, and Zoom
selection. You can also maximize your workspace with CTRL-W.

Generating your Design
Ok, I’m done connecting my design, how do I ‘finish’ it so that I can proceed to synthesis?

In the Canvas toolbar, click the Generate Project icon .
I get a message saying it’s unable to generate my SmartDesign due to errors, what do I do? What is the Design Rules
Check?

The Design Rules Check is included in your Report View. It lists all the errors and warnings in your design,
including unconnected input pins, required pin connections, configuration incompatibilities between cores,
etc.
Errors are shown with a small red stop sign and must be corrected before you can generate; warnings may
be ignored.

What does this error mean? How do I fix it?

Review the Design Rules Check topic for an explanation of errors in the Design Rules Check and steps to
resolve them.

How do I generate my firmware? Software IDE?

In the Design Flow window, expand Create Design and double-click View/Configure Firmware Cores.
The Software IDE workspace is produced if have selected a Software IDE in your Tools Profile. Once this
has been set you will be able to click Develop Firmware – Write Application Code.

Creating a New SmartDesign Component

Libero User's Guide 33

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Getting Started with SmartDesign

Creating a New SmartDesign Component
1. From the File menu, choose New > SmartDesign or in the Design Flow window double-click Create

SmartDesign. The Create New SmartDesign dialog box opens (see figure below).

Figure 9 · Create New SmartDesign Dialog Box

2. Enter a component name and click OK. The component appears in the Hierarchy tab of the Design
Explorer. Also, the main window displays the design Canvas.

Note: Note: The component name must be unique in your project.

Opening an Existing SmartDesign Component
To open an existing component do one of the following:
Click the Design Hierarchy tab and double-click the component you want to open.
The main window displays the SmartDesign Canvas for the SmartDesign component.

Saving/Closing a SmartDesign Component
To save the current SmartDesign design component, from the File menu, choose Save
<component_name>. Saving a SmartDesign component only saves the current state of the design; to
generate the HDL for the design refer to Generating a SmartDesign component.
To close the current SmartDesign component without saving, from the File menu, choose Close. Select NO
when prompted to save.
To save the active SmartDesign component with a different name use Save As. From the File menu choose
Save SD_<filename> As. Enter a new name for your component and click OK.

Generating a SmartDesign Component
Before your SmartDesign component can be used by downstream processes, such as synthesis and
simulation, you must generate it.

Click the Generate button to generate a SmartDesign component.
This will generate a HDL file in the directory <libero_project>/components/<library>/<yourdesign>.
Note: Note: The generated HDL file will be deleted when your SmartDesign design is modified and saved to

ensure synchronization between your SmartDesign component and its generated HDL file.
Generating a SmartDesign component may fail if there are any DRC errors. DRC errors must be corrected
before you generate your SmartDesign design.

34 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Generating a Datasheet
If your SmartDesign is the root design in your project, then a Memory Map / Datasheet is produced that
contains the information for your design.

Generating Firmware and Software IDE Workspace
If your SmartDesign is the root design in your project, then any compatible firmware drivers for your
peripherals are generated to <project>/firmware. Furthermore, if you have specified a Software IDE tool in
your profile, then the workspace and projects for that Software IDE are generated into
<project>/<SoftwareIDE>.
The datasheet provides all the specifics of the generated firmware drivers and Software IDE workspaces.

Importing a SmartDesign Component
From the File menu, choose Import and select the CXF file type.
Importing an existing SmartDesign component into a SmartDesign project will not automatically import the
sub-components of that imported SmartDesign component.
You must import each sub-component separately.
After importing the sub-components, you must open the SmartDesign component and replace each sub-
component so that it references the correct component in your project. .

Deleting a SmartDesign Component from the Libero SoC Project
To delete a SmartDesign component from the project:

1. In the Design Hierarchy tab, select the SmartDesign component that you want to delete.
2. Right-click the component name and select Delete from Project or Delete from Disk and Project, or

click the Delete key to delete from project.

Memory Maps / Data Sheet
If your design contains standard Bus Instances such as the DirectCore AMBA bus cores, CoreAPB or
CoreAHB, then you can view the Memory Map Configuration of your design in the Report View. To do so,
generate your top level design and click the Reports button in the toolbar.
The design’s memory map is determined by the connections made to the bus component. A bus component
is divided into multiple slots for slave peripherals or instances to plug into. Each slot represents a different
address location and range to the Master of the bus component.
The datasheet reports the memory map of the different subsystems of your design, where a subsystem is
any independent bus structure with a Master and Slave peripheral attached.
Connecting peripherals to busses can be accomplished using the normal SmartDesign connectivity options:
• Auto-Connect - the system creates a bus structure based on the peripherals that you have

instantiated and finds compatible bus interfaces and connects them together
• The Modify Memory Map dialog box
• Canvas - Make connections between your blocks.

Your application and design requirements dictate which address location (or slots) is most suitable for your
bus peripherals. For example, the memory controller should be connected to Slot0 of the CoreAHB bus
because on Reset, the processor will begin code execution from the bottom of the memory map.
 An example of the datasheet is shown in the figure below.

Modify Memory Map Dialog Box

Libero User's Guide 35

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 10 · Example Memory Map

Modify Memory Map Dialog Box
The Modify Memory Map dialog box (shown in the figure below) enables you to connect peripherals to buses
via a drop-down menu. To open the dialog box, right-click the bus instance and choose Modify Memory
Map.
This dialog simplifies connecting peripherals to specific base addresses on the bus. The dialog shows all the
busses in the design; select a bus in the left pane to assign or view the peripherals on a bus. Busses that
are bridged to other busses are shown beneath the bus in the hierarchy.

36 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 11 · Modify Memory Map Dialog Box

Click the Peripheral drop-down menu to select the peripheral you wish to assign to each address. To
remove (unassign) a peripheral from an address, click the drop-down and select the empty element.
Click OK to create the connections between the busses and peripherals in the design.

Canvas Overview

Libero User's Guide 37

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Canvas View

Canvas Overview
The SmartDesign Canvas is like a whiteboard where functional blocks from various sources can be
assembled and connected; interconnections between the blocks represent nets and busses in your design.
You can use the Canvas to manage connections, set attributes, add or remove components, etc. The
Canvas displays all the pins for each instance (as shown in the figure below).
The Canvas enables you to drag a component from the Design Hierarchy or a core from the Catalog and
add an instance of that component or core in the design. Some blocks (such as Basic Blocks) must be
configured and generated before they are added to your Canvas. When you add/generate a new component
it is automatically added to your Design Hierarchy.
To connect two pins on the Canvas, click the Connection Mode button to enable it and click and drag
between the two pins you want to connect. The Connection Mode button is disabled if you attempt to illegally
connect two pins.
Click the Maximize Work Area button to hide the other windows and show more of the Canvas. Click the
button again to return the work area to the original size.
The Canvas displays bus pins with a + sign (click to expand the list) or - (click to hide list). If you add a slice
on a bus the Canvas adds a + to the bus pin.
Components can be reconfigured any time by double-clicking the instance on the Canvas. You can also add
bus interfaces to instances using this view. In the Canvas view, you can add graphic objects and text to your
design.
Inputs and bi-directional pins are shown on the left of components, and output pins are shown on the right.

Figure 12 · SmartDesign Canvas

38 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

See Also
Canvas Icons

Displaying Connections on the Canvas
The Canvas shows the instances and pins in your design (as shown in the figure below). Right-click the
Canvas and choose Show Nets to display nets.

Figure 13 · Components in SmartDesign

Pin and Attribute Icons
Unconnected pins that do not require a connection are gray.
Unconnected pins that require a connection are red.
Unconnected pins that have a default tie-off are pale green.

Connected pins are green.
Right-click a pin to assign an attribute.
Pins assigned attributes are shown with an icon, as shown in the table below.

Table 2 · Pin Attribute Icons

Attribute Icon

Tie Low

Tie High

Making Connections Using the Canvas

Libero User's Guide 39

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Attribute Icon

Invert

Mark as Unused

Tie to Constant

See the Canvas Icons reference page for definitions for each element on the Canvas.
Each connection made using a bus interface is shown in a separate connection known as a bus-interface
net.
Move the mouse over a bus interface to display its details (as shown below).

Hover over a bus interface net to see details (as shown below).

Making Connections Using the Canvas
Use the Canvas or Connectivity dialog box to make connections between instances.
You can use Connection Mode on the Canvas to quickly connect pins. Click the Connection Mode button to
start, then click and drag between any two pins to connect them. Illegal connections are disabled. Click the
Connection Mode button again to exit Connection Mode.
To connect two pins on the Canvas, select any two (Ctrl + click to select a pin), right-click one of the pins
you selected and choose Connect. Illegal connections are disabled; the Connect menu option is
unavailable.

40 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Promoting Ports to Top Level
To automatically promote a port to top level, select the port, right-click, and choose Promote To Top Level.
This automatically creates top-level ports of that name and connects the selected ports to them. If a port
name already exists, a choice is given to either connect to the existing ports or to create a new port with a
name <port name>_<i> where i = 1…n.
Double-click a top-level port to rename it.
Bus slices cannot be automatically promoted to top level. You must create a top level port of the bus slice
width and then manually connect the bus slice to the newly created top level port.

Tying Off Input Pins
To tie off ports, select the port, right-click and choose Tie High or Tie Low.

Tying to Constant
To tie off bus ports to a constant value, select the port, right-click and choose Tie to a Constant. A dialog
appears (as shown in the figure below) and enables you to specify a hex value for the bus.
To remove the constant, right-click the pin and choose Clear Attribute or Disconnect.

Figure 14 · Tie to Constant Dialog Box

Making Driver and Bus Interface Pins Unused
Driver or bus interface pins can be marked unused (floating/dangling) if you do not intend to use them as a
driver in the design. If you mark a pin as unused the Design Rules Check does not return Floating Driver or
Unconnected Bus Interface messages on the pin.
Once a pin is explicitly marked as unused it cannot be used to drive any inputs. The unused attribute must
be explicitly removed from the pin in order to connect it later. To mark a driver or bus interface pin as
unused, right-click the driver or bus interface pin and choose Mark as Unused.

See Also
Show/Hide Bus Interface Pins

Simplifying the Display of Pins on an Instance using Pin Groups
The Canvas enables you to group and ungroup pins on a single instance to simplify the display. This feature
is useful when you have many pins in an instance, or if you want to group pins at the top level. Pin groups
are cosmetic and affect only the Canvas view; other SmartDesign views and the underlying design are not
affected by the pin groups.
Grouping pins enables you to:
• Hide pins that you have already connected
• Hide pins that you intend to work on later
• Group pins with similar functionality
• Group unused pins
• Promote several pins to Top Level at once

Bus Instances

Libero User's Guide 41

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

To group pins:
1. Ctrl + click to select the pins you wish to group. If you try to click-and-drag inside the instance you will

move the instance on the Canvas instead of selecting pins.
2. Right-click and choose Add pins to group to create a group. Click + to expand a group. The icon

associated with the group indicates if the pins are connected, partially connected, or unconnected (as
shown in the figure below).

Figure 15 · Groups in an Instance on the Canvas

To add a pin to a group, Ctrl + click to select both the pin and the group, right-click and choose Add pin to
group.

To name a group:
To name a group, right-click the port name and choose Rename Group.

To ungroup pins:
1. Click + to expand the group.
2. Right-click the pin you wish to remove from the group and choose Ungroup selected pins. Ctrl + click

to select and remove more than one pin in a group.

A group remains in your instance after you remove all the pins. It has no effect on the instance; you can
leave it if you wish to add pins to the group later, or you can right-click the group and choose Delete Group
to remove it from your instance.
If you delete a group from your instance any pins still in the group are unaffected.

To promote a group to Top level:
1. Create a group of pins.
2. Right-click the group and choose Promote to Top Level.

Bus Instances
Bus Components in the Core Catalog, such as CoreAHB or CoreAPB, implement an on-chip bus fabric.
When these components are instantiated into your canvas they are displayed as horizontal or vertical lines.
Double-click the bus interfaces of your component to edit the connections.

42 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 16 · Bus Instance in SmartDesign

Adding Graphic Objects
You can document your design by adding comments and notations directly on the Canvas.
The Canvas toolbar enables you to add and modify decorative graphic objects, such as shapes, labels and
lines on the Canvas.

Adding and Deleting Lines and Shapes
To add a line or a shape:

1. Select the line or shape button.
2. Click, drag and release on the Canvas. The table below provides a description of each button.

Button Description

Line

Rectangle

Note: Hold the Shift key to constrain line and arrow to 45 degree increments or constrain the proportions of
the rectangle (square).

To change the line and fill properties:
1. Select the element(s), right-click it, and choose Properties.

• Select Line to modify the color, style and width of the line.
• Select Fill to modify the crosshatch and the foreground and background colors.

2. Click OK.

To delete a line or shape, select the object and press Delete.

Adding Text
To add text, select the text tool and click the Canvas to create a text box. To modify the text, double-click the
text box and then type.

To modify the text box properties:
1. Select the text box, right-click it, and choose Properties.

• Select Text to modify the text alignment.
• Select Line to modify the color, style and width of the line.
• Select Fill to modify the crosshatch and the foreground and background colors.
• Select Font to modify the font properties.

2. Click OK.

Auto-Arranging Instances

Libero User's Guide 43

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Editing Properties for Graphic Objects on the Canvas
Right-click any graphic object to update properties, such as Fill, and Line properties for shapes and lines, or
Font options for text properties.

Auto-Arranging Instances
 Right-click the Canvas and choose Auto Arrange Instances from the right-click menu to auto-arrange the
instances on the Canvas.

Locking Instance and Top Level Port Positions
You can lock the placement of instances on the Canvas. Right-click the instance or Top-level port and
choose Lock to lock the placement. When you lock placement you can click and drag to move the instance
manually but the Auto Arrange Instances menu option has no effect on the instance.
To unlock an instance, right-click the instance and choose Unlock.
Right-click a top level port and choose Unlock Position to return it to its default position.

See Also
Bus Instances
Simplifying the Display of Pins on an Instance using Pin Groups

Replace Component for Instance
You can use the Replace Component for Instance dialog box (shown in the figure below) to restore or
update version instances on your Canvas without creating a new instance and losing your connections.

Figure 17 · Replace Component for Instance Dialog Box

To change the version of an instance:
1. From the right-click menu choose Replace Component for Instance. The Replace Component for

Instance dialog box appears.
2. Select a component and choose a new version from the list. Click OK.

Replace Instance Version
The Replace Instance Version dialog box enables you to replace an IP instance with another version. You
can restore or replace your IP instance without creating a new instance or losing your connections.

44 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 18 · Replace Instance Version Dialog Box

To replace an instance version:
1. Right click any IP instance and choose Replace Instance Version. The dialog box appears.
2. Choose the version you wish to use from the Change to Version dropdown menu (as shown in the

figure above) and click OK to continue.

Slicing
Bus ports can be sliced or split using Slicing. Once a slice is created, other bus ports or slices of compatible
size can be connected to it.
The Edit Slices dialog box enables you to automatically create bus slices of a specified width.

To create a slice:
1. Select a bus port, right-click, and choose Edit Slice. This brings up the Edit Slices dialog box (see

figure below).

Figure 19 · Edit Slices Dialog Box

2. Enter the parameters for the slice and click Add Slices. You can also create individual slices and
specify their bus dimensions manually.

3. Click OK to continue.

Note: Note: Overlapping slices cannot be created for IN and INOUT ports on instances or top-level OUT
ports.

To remove a slice, select the slice, right-click, and choose Delete Slice.

Rename Net

Libero User's Guide 45

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Rename Net
To rename a net:

1. Right-click the net on the Canvas and choose Rename Net. This opens the Rename Net dialog box.
2. Type in a new name for the net.

Note: Note: The system automatically assigns net names to nets if they are not explicitly specified. Once
you have specified a name for a net, that name will not be over-written by the system.

Automatic Names of Nets
Nets are automatically assigned names by the tool according to the following rules:
In order of priority

1. If user named then name = user name
2. If net is connected to top-level port then name = port name; if connected to multiple ports then pick first

port
3. If the net has no driver, then name = net_[i]
4. If the net has a driver, name = instanceName_driverpinName

Slices
For slices, name = instanceName_driverpinName_sliceRange; for example
u0_out1_4to6.
GND and VCC Nets
The default name for GND/VCC nets is net_GND and net_VCC.
Expanded Nets for Bus Interface Connections
Expanded nets for bus interface connections are named busInterfaceNetName_<i>_driverPinName.

Organizing Your Design on the Canvas
You may find it easier to create and navigate your SmartDesign if you organize and label the instances and
busses on the Canvas.
You can show and hide nets, lock instances, rotate busses, group and ungroup pins, rename instances /
groups / pins, and auto-arrange instances.

To organize your design:
1. Right-click the Canvas and choose Auto Arrange Instances from to automatically arrange instances.

SmartDesign's auto-arrange feature optimizes instance location according to connections and instance
size.

2. Right-click any instance and choose Lock Location to fix the placement. Auto-Arrange will not move
any instances that are locked.

3. Click Auto-Arrange again to further organize any unlocked instances. Continue arranging and locking
your instances until you are satisfied with the layout on the Canvas.

If your design becomes cluttered, group your pins. It may help to group pins that are functionally similar, or
to group pins that are already connected or will be unused in your design.

To further customize your design's appearance:
Double-click the names of instances to add custom names. For example, it may be useful to rename an
instance based on a value you have set in the instance: the purpose of an instance named
'array_adder_bus_width_5' is easier to remember than 'array_adder_0'.

46 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Creating a SmartDesign

Adding Components and Modules (Instantiating)
SmartDesign components, Design Block cores, IP cores, and HDL modules are displayed in the Design
Hierarchy and Files tabs.

To add a component, do either of the following:
• Select the component in the Design Hierarchy tab or Catalog and drag it to the Canvas.
• Right-click a component in the Design Hierarchy tab or Catalog and choose Instantiate in

<SmartDesign name>.
The component is instantiated in the design.
SmartDesign creates a default instance name. To rename the instance, double-click the instance name in
the Canvas.

Adding a SmartDesign Component
SmartDesign components can be instantiated into another SmartDesign component.
Once a SmartDesign is generated, the exported netlist can be instantiated into HDL like any other HDL
module.
Note: Note: HDL modules with syntax errors cannot be instantiated in SmartDesign. However, since

SmartDesign requires only the port definitions, the logic causing syntax errors can be temporarily
commented out to allow instantiation of the component.

Adding or Modifying Top Level Ports
You can add ports to, and/or rename ports in your SmartDesign.

Add Prefixes to Bus Interface / Group Names on Top-level Ports:
Bus Interfaces and Groups are composed of other ports. On the top level, you can add prefixes to the group
or bus interface port name to the sub-port names. To do so, right-click the group or bus interface port and
choose Prefix <name> to Port Names.

Adding/Renaming Ports
To add ports:

1. From the SmartDesign menu, choose Add port. The Add Port dialog box appears (as shown below).

Adding or Modifying Top Level Ports

Libero User's Guide 47

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 20 · Add New Port Dialog Box

2. Specify the name of the port you wish to add. You can specify a bus port by indicating the bus width
directly into the name using brackets [], such as mybus[3:0].

3. Select the direction of the port.
To remove a port from the top level, right-click the port and choose Delete Top Level Port.

Modify Port
To rename a top-level port, right-click the top-level port and choose Modify Top Level Port. You can
rename the port, change the bus width (if the port is a bus), and change the port direction.
Right-click a top-level port and choose Modify Port to change the name and/or direction (if available).

See Also
Top Level Connections

48 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Connecting Instances

Automatic Connections
Using automatic connections (as shown in the figure below) enables the software to connect your design
efficiently, reducing time required for manual connections and the possibility of introducing errors.
Auto Connect also constructs your bus structure if you have a processor with peripherals instantiated. Based
on the type of processor and peripherals, the proper busses and bridges are added to your design.
To auto connect the bus interfaces in your design, right-click the design Canvas and select Auto Connect,
or from the SmartDesign menu, choose Auto Connect.
SmartDesign searches your design and connects all compatible bus interfaces.
SmartDesign will also form known connections for any SoC systems such as the processor CLK and RESET
signals.
If there are multiple potential interfaces for a particular bus interface, Auto Connect will not attempt to make
a connection; you must connect manually. You can use the Canvas to make the manual connections.

Figure 21 · Auto-Connected Cores

QuickConnect
The QuickConnect dialog box enables you to make connections in your design without using the Canvas. It
is useful if you have a large design and know the names of the pins you wish to connect. Connections are
reflected in the Canvas as you make them in the dialog box; error messages appear in the Log window
immediately. It may be useful to resize the QuickConnect dialog box so that you can view the Log window or
Canvas while you make connections.

QuickConnect

Libero User's Guide 49

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

To connect pins using QuickConnect:
1. Find the Instance Pin you want to connect and click to select it.
2. In Pins to Connect, find the pin you wish to connect, right-click and choose Connect. If necessary,

use the Search field to narrow down the list of pins displayed in Pins to Connect.

Note that if the connection is invalid then Connect is grayed out.

If you wish to invert or tie a pin high, low or Mark Unused:
1. Find the Instance Pin you want to invert or tie high/low
2. Right-click Connection and choose Invert, Tie High, Tie Low or Mark Unused.

If you wish to promote a pin to the top level of your design:

1. Find the Instance Pin you want to promote.
2. Right-click the pin and choose Promote to Top.

You can perform all connectivity actions that are available in the Canvas, including: slicing bus pins, tying
bus pins to a constant value, exposing pins from a bus interface pins and disconnecting pins. All actions are
accessible from the right-click context menu on the pin.
Instance Pins lists all the available instance pins in your design and their connection (if any). Use the drop-
down list to view only unconnected pins, or to view the pins and connections for specific elements in your
design.
Pins to Connect lists the instances and pins in your design. Use the Search field to find a specific instance
or pin. The default wildcard search is '*.*'. Wildcard searches for CLK pins (*.*C*L*K) and RESET pins
(*.*R*S*T) are also included.
Here are some of the sample searches that you may find useful:

• *UART*.*: show all pins of any instances that contain UART in the name
• MyUART_0.*: only show the pins of the “MyUART_0” instance
• *.p: show all pins in the design that contain the letter ‘p’

Double-click an instance in Pins to Connect to expand or collapse it.
The pin letters and icons in the QuickConnect dialog box are the same as the Canvas icons and
communicate information about the pin. Inputs, Outputs and I/Os are indicted by I, O, and I/O, respectively.
Additional information is communicated by the color:
• Red - Mandatory connection, unconnected
• Green - Connected
• Grey - Optional, unconnected pin
• Brown - Pad
• Light Green - Connected to a default connection on generation
• Blue - Driver pin

50 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 22 ·

QuickConnect Dialog Box

Manual Connections
You can use Connection Mode to click and drag and connect pins. Click the Connection Mode button to
toggle it, and click and drag between any two pins to connect them. Illegal connections will not be allowed.
To make manual connections between to pins on the Canvas, select both pins (use CTRL + click), right-click
either pin and choose Connect. If the pins cannot be legally connected the connection will fail.

Deleting Connections
To delete a net connection on the Canvas, click to select the net and press the Delete key, or right-click and
choose Delete.
To remove all connections from one or more instances on the Canvas, select the instances on the Canvas,
right-click and choose Clear all Connections. This disconnects all connections that can be disconnected
legally.
Certain connections to ports with PAD properties cannot be disconnected. PAD ports must be connected to
a design’s top level port. PAD ports will eventually be assigned to a package pin. In SmartDesign, these
ports are automatically promoted to the top level and cannot be modified or disconnected.

Top-Level Connections

Libero User's Guide 51

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Top-Level Connections
Connections between instances of your design normally require an OUTPUT (Driver Pin) on one instance to
one or more INPUT(s) on other instances. This is the basic connection rule that is applied when connecting.
However, directions of ports at the top level are specified from an external viewpoint of that module. For
example, an INPUT on the top level is actually sending (‘driving’) signals to instances of components in your
design. An OUTPUT on the top level is receiving (‘sinking’) data from a Driver Pin on an internal component
instance in your SmartDesign design.
The implied direction is essentially reversed at the top-level. Making connections from an OUTPUT of a
component instance to an OUTPUT of top-level is legal.
This same concept applies for bus interfaces; with normal instance to instance connections, a MASTER
drives a SLAVE interface. However, they go through a similar reversal on the top-level.

52 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Bus Interfaces

About Bus Interfaces
A bus interface is a standard mechanism for specifying the interconnect rules between components or
instances in a design. A bus definition consists of the roles, signals, and rules that define that bus type. A
bus interface is the instantiation of that bus definition onto a component or instance.
The available roles of a bus definition are master, slave, and system.
A master is the bus interface that initiates a transaction (such as read or write) on a bus.
A slave is the bus interface that terminates/consumes a transaction initiated by a master interface.
A system is the bus interface that does not have a simple input/output relationship on both master/slave.
This could include signals that only drive the master interface, or only drive the slave interface, or drive both
the master and slave interfaces. A bus definition can have zero or more system roles. Each system role is
further defined by a group name. For example, you may have a system role for your arbitration logic, and
another for your clock and reset signals.
Mirror roles are for bus interfaces that are on a bus core, such as CoreAHB or CoreAPB. They are
equivalent in signal definition to their respective non-mirror version except that the signal directions are
reversed.
The diagram below is a conceptual view of a bus definition.

Using Bus Interfaces in SmartDesign

Libero User's Guide 53

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 23 · Bus Definition

See Also:
Using bus interfaces in SmartDesign

Using Bus Interfaces in SmartDesign
Adding bus interfaces to your design enables SmartDesign to do the following:

• Auto connect compatible interfaces

• Enforce DRC rules between instances in your design

• Search for compatible components in the project

The Catalog in the Project Manager contains a list of Microsemi SoC-specific and industry standard bus
definitions, such as AMBA.
You can add bus interfaces to your design by dragging the bus definitions from the Bus Interfaces tab in the
Catalog onto your instances inside SmartDesign.
SmartDesign supports automatic creation of data driven configurators based on HDL generics/parameters.
If your block has all the necessary signals to interface with the AMBA bus protocol (ex: address, data,
control signals):

54 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

1. Right-click your custom HDL block and choose Create Core from HDL. The Libero SoC creates your
core and asks if you want to add bus interfaces.

2. Click Yes to open the Edit Core Definition dialog box and add bus interfaces. Add the bus interfaces as
necessary.

3. Click OK to continue.

Now your instance has a proper AMBA bus interface on it. You can manually connect it to the bus or let Auto
Connect find a compatible connection.
Some cores have bus interfaces that are instantiated during generation.
Certain bus definitions cannot be instantiated by a user. Typically these are the bus definitions that define a
hardwired connection and are specifically tied to a core/macro. They are still available in the catalog for you
to view their properties, but you will not be able to add them onto your own instances or components. These
bus definitions are grayed out in the Catalog.
A hardwired connection is a required silicon interconnect that must be present and specifically tied to a
core/macro. For example, when using the Real Time Counter in a Fusion design you must also connect it to
a Crystal Oscillator core.
Maximum masters allowed - Indicates how many masters are allowed on the bus.
Maximum slaves allowed - Indicates how many slaves are allowed on the bus.
Default value - indicates the value that the input signal will be tied to if unused. See Default tie-offs with bus
interfaces.
Required connection - Indicates if this bus interface must be connected for a legal design.

Adding or Modifying Bus Interfaces in SmartDesign
SmartDesign supports automatic creation of data driven configurators based on HDL generics/parameters.
You can add a bus interface from your HDL module or you can add it from the Catalog.

To add a bus interface using your custom HDL block:
If your block has all the necessary signals to interface with the AMBA bus protocol (such as address, data,
and control signals):

1. Right-click your custom HDL block and choose Create Core from HDL. The Libero SoC creates your
core and asks if you want to add bus interfaces.

2. Click Yes to open the Edit Core Definition dialog box and add bus interfaces. Add the bus interfaces as
necessary.

3. Click OK to continue.

Now your instance has a proper AMBA bus interface on it. You can manually connect it to the bus or let Auto
Connect find a compatible connection.

To add (or modify) a bus interface to your Component:
1. Right-click your Component and choose Edit Core Definition. The Edit Core Definition dialog box

opens, as shown in the figure below.

Adding or Modifying Bus Interfaces in SmartDesign

Libero User's Guide 55

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 24 · Edit Core Definition Dialog Box

2. Click Add Bus Interface. Select the bus interface you wish to add and click OK.
3. If necessary, edit the bus interface details.
4. Click Map by Name to map the signals automatically. Map By Name attempts to map any similar

signal names between the bus definition and pin names on the instance.
5. Click OK to continue.

Bus Interface Details
Bus Interface: Name of bus interface. Edit as necessary.
Bus Definition: Specifies the name of the bus interface.
Role: Identifies the bus role (master or slave).
Vendor: Identifies the vendor for the bus interface.
Version: Identifies the version for the bus interface.

Configuration Parameters
Certain bus definitions contain user configurable parameters.
Parameter: Specifies the parameter name.
Value: Specifies the value you define for the parameter.
Consistent: Specifies whether a compatible bus interface must have the same value for this bus parameter.
If the bus interface has a different value for any parameters that are marked with consistent set to yes, this
bus interface will not be connectable.

56 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Signal Map Definition
The signal map of the bus interface specifies the pins on the instance that correspond to the bus definition
signals. The bus definition signals are shown on the left, under the Bus Interface Definition. This
information includes the name, direction and required properties of the signal.
The pins for your instance are shown in the columns under the Component Instance. The signal element is a
drop-down list of the pins that can be mapped for that definition signal. .
If the Req field of the signal definition is Yes, you must map it to a pin on your instance for this bus interface
to be considered legal. If it is No, you can leave it unmapped.

Bus Interfaces
When you add a bus interface the Edit Core Definition dialog box provides the following Microsemi SoC-
specific bus interfaces:

ExtSeqCtrl
This bus interface defines the set of signals required to interface to the Analog System External Sequence
Control. If the Analog System is configured with more than a single procedure, it will export this bus
interface. Your own logic would need to connect to this bus interface to properly communicate and control
the sequencer.

RTCXTL
This bus interface represents the hardwired connection needed between the Real Time Counter and the
Crystal Oscillator.

RTCVR
This bus interface represents the hardwired connection needed between the Real Time Counter and the
Voltage Regulator Power Supply Monitor.

InitCfg
This is the initialization and configuration interface that is generated as part of the Flash Memory Builder.
Any clients can be initialized from the Flash Memory as long as it can connect to this bus interface. This is
for pure initialization clients that do not require save-back to the Flash Memory.

InitCfgSave
This is the initialization and configuration interface that is generated as part of the Flash Memory Builder.
Any client can be initialized or saved-back to the Flash Memory as long as it can connect to this bus
interface. This is for clients that require initialization and save-back capabilities to the Flash Memory.

InitCfgCtrl
This interface is used to initiate the save-back procedure of the Flash Memory.

InitCfgAnalog
This interface is required between the Flash Memory System and the Analog System core.

FlashDirect
This bus interface defines the set of signals that are required to interface directly to the Flash Memory. From
the Flash Memory, if you add a data storage client, this interface will be exported. Interfacing to this interface
enables direct access to the Flash Memory.

DirectCore Bus Interfaces

Libero User's Guide 57

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

XTLOscClk
This interface represents the Crystal Oscillator clock.

RCOscClk
This interface represents the RC Oscillator clock.

DirectCore Bus Interfaces
When you add a bus interface the Edit Core Definition dialog box provides the following DirectCore bus
interfaces.

AHB
The AMBA AHB defines the set of signals for a component to connect to an AMBA AHB or AHBLite bus.
The bus interface that is defined in the system is a superset of the signals in the AHB and AHBLite protocol.
You can use the AHB bus interface in the bus definition catalog to connect your module to an AHB or
AHBLite bus.

APB
The AMBA APB defines the set of signals for a component to connect to an AMBA APB or APB3 bus. The
bus interface that is defined in the system is a superset of the signals in the APB and APB3 protocol. You
can use the APB bus interface in the bus definition catalog to connect your module to an APB or APB3 bus.

SysInterface
The SysInterface is the interface used between the CoreMP7 and CoreMP7Bridge cores.

DBGInterface
This is the set of debug ports on the CoreMP7 core.

CPInterface
This is the co-processor interface on the CoreMP7 core.

Show/Hide Bus Interface Pins
Pins that are contained as part of a bus interface will automatically be filtered out of the display. These ports
are considered to be connected and used as part of a bus interface.
However, there are situations where you may wish to use the ports that are part of the bus interface as an
individual port, in this situation you can choose to expose the pin from the bus interface.

To Show/Hide pins in a Bus Interface:
1. Select a bus interface port, right-click, and choose Show/Hide BIF Pins. The Show/Hide Pins to

Expose dialog box appears (as shown below).

58 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 25 · Expose Driver Pin Dialog Box

2. Click the checkbox associated with the driver pin you want to show. Once the port is shown it appears
on the Canvas and is available for individual connection.

Note: Note: If you have already connected the bus interface pin, then you will not be able to expose the
non-driver pins. They will be shown grayed out in the dialog. This is to prevent the pin from being
driven by two different sources.

To un-expose a driver pin, right-click the exposed port and choose Show/Hide BIF Pins and de-select the
pin.

Default Tie-offs with Bus Interfaces
Bus definitions can contain default values for each of the defined signals. These default values specify what
the signal should be tied to if it is mapped to an unconnected input pin on the instance.
Bus definitions are specified as required connection vs optional connection that defines the behavior of tie-
offs during SmartDesign generation.
Required bus interfaces - The signals that are not required to be mapped will be tied off if they are mapped
to an unconnected input pin.
Optional bus interfaces - All signals will be tied off if they are mapped to an unconnected input pin.

Tying Off (Disabling) Unused Bus Interfaces
Tying off (disabling) a bus interface sets all the input signals of the bus interface to the default value.
To tie off a bus interface, right-click the bus interface and select Tie Off.
This is useful if your core includes a bus interface you plan to use at a later time. You can tie off the bus
interface and it will be disabled in your design until you manually set one of the inputs.
Some bus interfaces are required; you cannot tie off a bus interface that is required. For example, the
Crystal Oscillator to RTC (RTCXTL) bus interface is a silicon interface and must be connected.
To enable your pin, right-click the pin and choose Clear Attribute.

Required vs. Optional Bus Interfaces
A required bus interface means that it must be connected for the design to be considered legal. These are
typically used to designate the silicon interconnects that must be present between certain cores. For

Promoting Bus Interfaces to Top-level

Libero User's Guide 59

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

example, when using the Real Time Counter in a Fusion design you must also connect it up to a Crystal
Oscillator core.
An optional bus interface means that your design is still considered legal if it is left unconnected. However, it
may not functionally behave correctly.

Figure 26 · Required Unconnected, Optional Unconnected, and Connected Bus Interfaces

See Also
Canvas icons

Promoting Bus Interfaces to Top-level
To automatically connect a bus interface to a top-level port, select the bus interface, right-click, and choose
Promote To Top Level.
This automatically creates a top-level bus interface port of that name and connects the selected port to it. If
a bus interface port name already exists, a choice is given to either connect to the existing bus interface port
or to create a new bus interface port with a name <port name>_<i> where i = 1...n.
The signals that comprise the bus interface are also promoted.
Promoting a bus interface is a shortcut for creating a top-level port and connecting it to an instance pin.

60 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Incremental Design

Reconfiguring a Component
To reconfigure a component used in a SmartDesign:
• In the Canvas, select the instance and double-click the instance to bring up the appropriate configurator, or the

HDL editor; or select the instance, right-click it, and choose Configure Component.

• Select the component in the Design Hierarchy tab and from the right-click menu select Open Component.

When the configurator is launched from the canvas, you cannot change the name of the component.

See Also
Design state management
Replacing components

Fixing an Out-of-Date Instance
Any changes made to the component will be reflected in the instance with an exclamation mark when you
update the definition for the instance. An instance may be out-of-date with respect to its component for the
following reasons:
• If the component interface (ports) is different – after reconfiguration - from that of the instance
• If the component has been removed from the project
• If the component has been moved to a different VHDL library
• If the SmartDesign has just been imported

You can fix an out-of-date instance by:
• Replacing the component with a new component (as shown in the figure below)
• Updating with the latest component

Figure 27 · Right-Click Menu - Replace Component for this Instance

See Also
Design state management
Reconfiguring components

Replacing Component Version

Libero User's Guide 61

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Replacing components

Replacing Component Version
Components of an instance on the Canvas can be replaced with another component and maintain
connections to all ports with the same name.

To replace a component in your design:
1. Select the component in the Design Hierarchy, right-click, and choose Replace Component Version.

The Replace Component for Instance dialog box appears (see figure below).

Figure 28 · Replace Component Version Dialog Box

2. Select the version you want to replace it with and click OK.

Design State Management
When any component with instances in a SmartDesign design is changed, all instances of that component
detect the change.
If the change only affects the memory content, then your changes do not affect the component's behavior or
port interface and your SmartDesign design does not need to be updated.
If the change affects the behavior of the instantiated component, but the change does not affect the
component's port interface, then your design must be resynthesized, but the SmartDesign design does not
need to be updated.
If the port interface of the instantiated component is changed, then you must reconcile the new definition for
all instances of the component and resolve any mismatches. If a port is deleted, SmartDesign will remove
that port and clear all the connections to that port when you reconcile all instances. If a new port is added to
the component, instances of that component will contain the new port when you reconcile all instances.
The affected instances are identified in your SmartDesign design in the Grid and the Canvas with an
exclamation point. Right-click the instance and choose Update With Latest Component.
Note: Note: For HDL modules that are instantiated into a SmartDesign design, if the modification causes

syntax errors, SmartDesign does not detect the port changes. The changes will be recognized when
the syntax errors are resolved.

Changing memory content
For certain cores such as Analog System Builder, Flash Memory, or FlexRAM it is possible to change the
configuration such that only the memory content used for programming is altered. In this case Project
Manager (SoC) will only invalidate your programming file, but your synthesis, compile, and place-and-route
results will remain valid.
When you modify the memory content of a core such as Analog System Builder or RAM with Initialization
that is used by a Flash Memory core, the Flash Memory core indicates that one of its dependent
components has changed and that it needs to be regenerated. This indication will be shown in the Hierarchy

or Files Tab .
RAM with Initialization core - You can modify the memory content without invalidating synthesis.
Analog System Builder core - You can modify the following without invalidating synthesis:

• Existing flag settings: threshold levels, assertion/de-assertion counts, OVER/UNDER type
• Modifying sequence order or adding sequence operations

62 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

• Changing acquisition times
• Resistor Value for the Current Monitor
• RTC time settings
• Gate Driver source current

Flash Memory System Builder core - You can modify the following without invalidating synthesis:

• Modifying memory file or memory content for clients
• JTAG protection for Init Clients

Design Rules Check
The Design Rules Check runs automatically when you generate your SmartDesign; the results appear in the
Reports tab. To view the results, from the Design menu, choose Reports.
• Status displays an icon to indicate if the message is an error or a warning (as shown in the figure

below). Error messages are shown with a small red sign and warning messages with a yellow
exclamation point.

• Message identifies the specific error/warning (see list below); click any message to see where it
appears on the Canvas

• Details provides information related to the Message

Figure 29 · Design Rules Check Results

Message Types:
Unused Instance - You must remove this instance or connect at least one output pin to the rest of the
design.
Out-of-date Instance - You must update the instance to reflect a change in the component referenced by
this instance; see Fixing an out-of-date instance.
Undriven Pin - To correct the error you must connect the pin to a driver or change the state, i.e. tie low
(GND) or tie high (VCC).
Floating Driver - You can mark the pin unused if it is not going to be used in the current design. Pins
marked unused are ignored by the Design Rules Check.

Generating a SmartDesign Component

Libero User's Guide 63

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Unconnected Bus Interface - You must connect this bus interface to a compatible port because it is
required connection.
Required Bus Interface Connection – You must connect this bus interface before you can generate the
design. These are typically silicon connection rules.
Exceeded Allowable Instances for Core – Some IP cores can only be instantiated a certain number of
times for legal design. For example, there can only be one CortexM1 or CoreMP7 in a design because of
silicon rules. You must remove the extra instances.
Incompatible Family Configuration – The instance is not configured to work with this project’s Family
setting. Either it is not supported by this family or you need to re-instantiate the core.
Incompatible Die Configuration – The instance is not configured to work with this project’s Die setting.
Either it is not supported or you need to reconfigure the Die configuration.
Incompatible ‘Debug’ Configuration – You must ensure your CoreMP7 and CoreMP7Bridge have the
same ‘Debug’ configuration. Reconfigure your instances so they are the same.
No RTL License, No Obfuscated License, No Evaluation License – You do not have the proper license
to generate this core. Contact Microsemi SoC to obtain the necessary license.
No Top level Ports - There are no ports on the top level. To auto-connect top-level ports, right-click the
Canvas and choose Auto-connect

Generating a SmartDesign Component
Before your SmartDesign component can be used by downstream processes, such as synthesis and
simulation, you must generate it.

Click the Generate button to generate a SmartDesign component.
This will generate a HDL file in the directory <libero_project>/components/<library>/<yourdesign>.
Note: Note: The generated HDL file will be deleted when your SmartDesign design is modified and saved to

ensure synchronization between your SmartDesign component and its generated HDL file.
Generating a SmartDesign component may fail if there are any DRC errors. DRC errors must be corrected
before you generate your SmartDesign design.

Generating a Datasheet
If your SmartDesign is the root design in your project, then a Memory Map / Datasheet is produced that
contains the information for your design.

Generating Firmware and Software IDE Workspace
If your SmartDesign is the root design in your project, then any compatible firmware drivers for your
peripherals are generated to <project>/firmware. Furthermore, if you have specified a Software IDE tool in
your profile, then the workspace and projects for that Software IDE are generated into
<project>/<SoftwareIDE>.
The datasheet provides all the specifics of the generated firmware drivers and Software IDE workspaces.

http://www.actel.com/products/ip/order.aspx

64 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Reference

SmartDesign Menu

Command Icon Function

Generate
Component

Generates the SmartDesign component

Auto Connect

Auto-connects instances

Connection Mode

Toggles connection mode on or off

Add Port

Opens the Add Port dialog box, adds a port to the top
SmartDesign component

QuickConnect

Opens the QuickConnect dialog box, enables you to
view, find and connect pins

Auto-Arrange
Instances

Adds a port to the top of the SmartDesign component

Route All Nets

Re-routes your nets; useful if you are unsatisfied with
the default display

Show/Hide Nets

Enables you to show or hide nets on the Canvas

Zoom In

Zooms in on the Canvas

Zoom Out

Zooms out on the Canvas

Zoom to Fit

Zooms in or out to include all the elements on the
Canvas in the view

Zoom Box

Zooms in on the selected area

Add Note

Adds text to your Canvas

Add Line

Enables you to add a line to the Canvas

Add Rectangle

Enables you to add a rectangle to the Canvas

SmartDesign Glossary

Libero User's Guide 65

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

SmartDesign Glossary

Term Description

BIF Abbreviation for bus interface.

bus An array of scalar ports or pins, where all scalars have a common base
name and have unique indexes in the bus.

Bus
Definition

Defines the signals that comprise a bus interface. Includes which signals
are present on a master, slave, or system interface, signal direction,
width, default value, etc. A bus definition is not specific to a logic or
design component but is a type or protocol.

Bus Interface Logical grouping of ports or pins that represent a single functional
purpose. May contain both input and output, scalars or busses. A bus
interface is a specific mapping of a bus definition onto a component
instance.

Bus Interface
Net

A connection between 2 or more compatible bus interfaces.

Canvas Block diagram, connections represent data flow; enables you to connect
instances of components in your design.

Component Design element with a specific functionality that is used as a building
block to create a SmartDesign core.

A component can be an HDL module, non-IP core generated from the
Catalog, SmartDesign core, Designer Block, or IP core. When you add a
component to your design, SmartDesign creates a specific instance of
that component.

Component
Declaration

VHDL construct that refers to a specific component.

Component
Port

An individual port on a component definition.

Driver A driver is the origin of a signal on a net. The input and slave BIF ports
of the top-level or the output and Master BIF ports from instances are
drivers.

Instance A specific reference to a component/module that you have added to
your design.

You may have multiple instances of a single component in your design.
For each specific instance, you usually will have custom connections
that differ from other instances of the same component.

Master Bus
Interface

The bus interface that initiates a transaction (such as a read or write) on
a bus.

66 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Term Description

Net Connection between individual pins. Each net contains a single output
pin and one or more input pins, or one or more bi-directional pins. Pins
on the net must have the same width.

PAD The property of a port that must be connected to a design’s top level
port. PAD ports will eventually be assigned to a package pin. In
SmartDesign, these ports are automatically promoted to the top-level
and cannot be modified.

Pin An individual port on a specific instance of a component.

Port An individual connection point on a component or instance that allows
for an electrical signal to be received or sent. A port has a direction
(input, output, bi-directional) and may be referred to as a ‘scalar port’ to
indicate that only a single unit-level signal is involved. In contrast, a bus
interface on an instance may be considered as a non-scalar, composite
port.

A component port is defined on a component and an instance port (also
known as a ‘pin’) is part of a component instance.

Signal A net or the electrical message carried on a net.

Slave Bus
Interface

Bus interface that terminates a transaction initiated by a master
interface.

System Bus
Interface

Interface that is neither master nor slave; enables specialized
connections to a bus.

Top Level
Port

An external interface connection to a component/module. Scalar if a 1-
bit port, bus if a multiple-bit port.

Canvas Icons
Hover your pointer over any icon in the SmartDesign Canvas view to display details.

Icon Description

Representation of an
instance in your design. An
instance is a component
that has been added to your
SmartDesign component.
The name of the instance
appears at the top and the
name of the generic
component at the bottom.

The instance type is
indicated by an icon inside
the instance. There are
specific icons for instances
from SmartDesign, HDL,

Canvas Icons

Libero User's Guide 67

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Icon Description

and ViewDraw. The
instance icon at left
indicates a Microsemi SoC
core.

Bus instance; you can click
and drag the end of a bus
instance to resize it; also,
the bus instance will resize
based on the number of
instances that you connect
to it.

 Optional unconnected pin.
Required pins are red.

Connected pin

 Pin with default Tie Off

Pin tied low

Pin tied high

Pin inverted

Pin marked as unused

Pin tied to constant

68 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Icon Description

Instance details. If there are
less than twenty ports, they
are listed in the details.

Bus Net details.

Master bus interface icon. A
master is a bus interface
that initiates a transaction
on a bus interface net.

An unconnected master BIF
with REQUIRED connection
is red (shown at left).

A master BIF with
unconnected OPTIONAL
connection is gray.

Canvas Icons

Libero User's Guide 69

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Icon Description

Master BIF details, showing
name, role, and state.

The Pin Map shows the
Formal name of the pin
assigned by the component
(in this example,
RCCLKOUT) and the
Actual, or representative
name assigned by the user
(CLKOUT).

Slave BIF (shown at left).

Unconnected slave icons
with REQUIRED
connections are red.

Unconnected slave icons
with OPTIONAL
connections are gray.

Slave BIF details, showing
name, role, and state.

The Pin Map shows the
Formal name of the pin
assigned by the component
(in this example,
RCCLKOUT) and the
Actual, or representative
name assigned by the user
(CLKA).

Master-slave bus interface
connection

70 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Icon Description

Master-slave bus interface
connection details.

Groups of pins in an
instance.

Fully connected groups are
solid green.

Partially connected groups
are gray with a green
outline.

Unconnected groups (no
connections) are gray with a
black outline.

A system BIF is the bus
interface that does not have
a simple input/output
relationship on both
master/slave.

This could include signals
that only drive the master
interface, or only drive the
slave interface, or drive both
the master and slave
interfaces.

System BIF details, showing
name, role, and state.

The Pin Map shows the
Formal name of the pin
assigned by the component
(in this example,
CLIENTAVAILx0), and the
Actual name assigned by
the user (in this example:

Create Core from HDL

Libero User's Guide 71

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Icon Description

ramrd).

Pad port icon; indicates a
hardwired chip-level pin

Create Core from HDL
You can instantiate any HDL module and connect it to other blocks inside SmartDesign. However, there are
situations where you may want to extend your HDL module with more information before using it inside
SmartDesign.

• If you have an HDL module that contains configurable parameters or generics.
• If your HDL module is intended to connect to a processor subsystem and has implemented the

appropriate bus protocol, then you can add a bus interface to your HDL module so that it can easily
connect to the bus inside of SmartDesign.

To create a core from your HDL:
1. Import or create a new HDL source file; the HDL file appears in the Design Hierarchy.
2. Select the HDL file in the Design Hierarchy and click the HDL+ icon or right-click the HDL file and

choose Create Core from HDL.

The Edit Core Definition – Ports and Parameters dialog appears. It shows you which ports and parameters were extracted from
your HDL module.

3. Remove parameters that are not intended to be configurable by selecting them from the list and
clicking the X icon. Remove parameters that are used for internal variables, such as state machine
enumerations.

If you removed a parameter by accident, click Re-extract ports and parameters from HDL file to reset the list so it matches your
HDL module.

Figure 30 · Edit Core Definition - Ports and Parameters Dialog Box

4. (Optional) Click Add/Edit Bus Interfaces to add bus interfaces to your core.

72 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

After you have specified the information, your HDL turns into an HDL+ icon in the Design Hierarchy. Click
and drag your HDL+ module from the Design Hierarchy to the Canvas.
If you added bus interfaces to your HDL+ core, then it will show up in your SmartDesign with a bus interface
pin that can be used to easily connect to the appropriate bus IP core.
If your HDL+ has configurable parameters then double-clicking the object on the Canvas invokes a
configuration dialog that enables you to set these values. On generation, the specific configuration values
per instance are written out to the SmartDesign netlist.

Figure 31 · HDL+ Instance and Configuration Dialog Box

You can right-click the instance and choose Modify HDL to open the HDL file inside the text editor.

Edit Core Definition
You can edit your core definition after you created it by selecting your HDL+ module in the design hierarchy
and clicking the HDL+ icon.

Remove Core Definition
You may decide that you do not want or need the extended information on your HDL module. You can
convert it back to a regular HDL module. To do so, right-click the HDL+ in the Design Hierarchy and choose
Remove Core Definition. After removing your definition, your instances in your SmartDesign that were
referencing this core must be updated. Right-click the instance and choose Replace Component for
Instance.

Create HDL and Create HDL Stimulus
You can use HDL (hardware description language) files to simulate and model your device.

To create an HDL file:
1. Open your project.
2. In the Design Flow window, double-click Create HDL or Create HDL Stimulus. The Create new

Verilog (or VHDL) file dialog box opens.
3. Enter a Name and click OK. (Do not enter a file extension; Libero SoC adds one for you.) The HDL

Editor workspace opens.
4. After creating your HDL file, click the Save button to save your file to the project . Your HDL file is

saved to your project in the Files window /hdl directory.

Using the HDL Editor
The HDL Editor is a text editor designed for editing HDL source files. In addition to regular editing features,
the editor provides a syntax checker.
You can have multiple files open at one time in the HDL Editor workspace. Click the tabs to move between
files.

Importing HDL Source Files

Libero User's Guide 73

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Editing
Editing functions are available in the Edit menu. Available functions include cut, copy, paste, find, and
replace. These features are also available in the toolbar.
Saving
You must save your file to add it to your Libero SoC project. Select Save in the File menu, or click the Save
icon in the toolbar.
Printing
Print is available from the File menu and the toolbar.
Note: Note: To avoid conflicts between changes made in your HDL files, Microsemi recommends that you

use one editor for all of your HDL edits.

HDL Syntax Checker
To run the syntax checker:
In the Files list, double-click the HDL file to open it. Right-click in the body of the HDL editor and choose
Check HDL File.
The syntax checker parses the selected HDL file and looks for typographical mistakes and syntactical errors.
Warning and error messages for the HDL file appear in the Libero SoC Log Window.

Commenting Text
You can comment text as you type in the HDL Editor, or you can comment out blocks of text by selecting a
group of text and applying the Comment command.

To comment or uncomment out text:
1. Type your text.
2. Select the text.
3. Right-click inside the editor and choose Comment Out or Uncomment.

Importing HDL Source Files
To import an HDL source file:

1. In the Design Flow window, right-click Create HDL and choose Import Files.
2. In Look in, navigate to the drive/folder that contains the file.
3. Select the file to import and click Open.

Mixed-HDL Support in Libero SoC
You must have ModelSim PE or SE to use mixed HDL in the Libero SoC. Also, you must have Synplify Pro
to synthesize a mixed-HDL design.
When you create a project, you must select a preferred language. The HDL files generated in the flow (such
as the post-layout netlist for simulation) are created in the preferred language.
The language used for simulation is the same language as the last compiled testbench. (E.g. if tb_top is in
verilog, <fam>.v is compiled.)
If your preferred language is Verilog, the post-synthesis and post-layout netlists are in Verilog 2001.

SmartDesign Testbench
 Use a SmartDesign to instantiate and connect stimulus cores or modules to drive your Root design. Double-
click Create SmartDesign Testbench in the Design Flow window to add a new SmartDesign testbench to
your project.
New testbench files appear in the Stimulus Hierarchy.

74 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

The SmartDesign Testbench automatically instantiates your root design into the Canvas.
You can also instantiate your own stimulus HDL or simulation models into the SmartDesign Testbench
Canvas and connect it to your DUT (design under test), or instantiate Simulation Cores from the Catalog.
Simulation cores are basic cores that are useful for stimulus, such as driving clocks, resets, and pulses.
Click the Simulation Mode checkbox in the Catalog to instantiate simulation cores.

HDL Testbench
Double-click Create HDL Testbench to open the Create New HDL Testbench dialog box. The dialog box
enables you to create a new testbench file and gives you the option to include standard testbench content
and your design data.
Set your HDL Type, specify a name, select the data options and click OK to create a new testbench.
Initialize file with standard template populates the new HDL file with basic headers and Clock/Reset
driver, as in the header of the example file below.
Instantiate Root Design includes your root design information in the new file. It includes architectural,
constant, signal, component, clock, and port information.

Figure 32 · Create HDL Testbench Dialog Box

View/Configure Firmware Cores

Libero User's Guide 75

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 33 · HDL Testbench Example - Standard Template and Root Design Enabled

View/Configure Firmware Cores
The Design Firmware tab lists the compatible firmware for the hardware that you have in your design. In the
Design Flow tab, expand Create Design and double-click View/Configure Firmware Cores to view the
DESIGN_FIRMWARE tab.
The Firmware table lists the compatible firmware and drivers based on the hardware peripherals that you
have used in your design. Each row represents a compatible firmware core. The columns are:
• Generate - Allows you to choose whether you want the files for this firmware core to be generated on

disk. You may decide to use your own firmware rather than Microsemi's provided firmware cores.
• Instance Name - This is the name of the firmware instance. This maybe helpful in distinguishing

firmware cores when you have multiple firmware of the same Vendor:Library:Name:Version (VLNV) in
your design.

76 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

• Core Type - Firmware Core Type is the Name from the VLNV id of the core.
• Version - Firmware Core Version
• Compatible Hardware Instance - The hardware instance that is compatible with this firmware core.

Generating Firmware
Click the Generate icon to export the Firmware and Software workspace for your project. The firmware is
generated into <project>\firmware and the software workspace is exported to <project>\<toolchain>.
The firmware drivers are also copied into the <toolchain> folder so that each workspace is self-contained.

Configuring Firmware
Firmware that have configurable options will have a wrench icon in the row. Click the wrench icon or double-
click the row to configure the firmware.
It is important that you check the configuration of your firmware if they have configurable options. They may
have options that target your toolchain (Keil, IAR), or your processor that are vital configuration options to
getting your system to work properly.

Downloading Firmware
The MSS Configurator attempts to find compatible firmware located in the IP Vault located on your disk, as
well as firmware in the IP Repository via the Internet.
If compatible firmware is found in the IP repository, the row will be italicized, indicating that it needs to be
downloaded. To download all your firmware click the Download All Firmware icon in the vertical toolbar

Changing Versions
There will often be multiple versions of a firmware available for a particular firmware core. For a new design,
the MSS Configurator will pick the latest compatible version.
However, once the firmware has been added to your design, the tool will not automatically change to the
latest version if one becomes available. You can manually change to the latest version by selecting the drop
down in the Version column.
Note: Note: If the latest version is italicized, you will need to download the firmware after selecting it.

Generating Sample Projects
Firmware cores are packaged with sample projects that demonstrate their usage. They are packaged for
specific tool chains, such as Keil and IAR.
To generate a sample project, click the sample project icon in the row and choose Generate Sample Project
followed by the tool chain you are targeting. You will be prompted to select the destination folder for the
sample project.
Once this project is generated you can use it as a starting point in your Software IDE tool or use the
example project as a basis on how to use the firmware driver.

Peripherals in the Fabric
Libero SoC also attempts to find compatible firmware for soft peripherals that you have added in your top-
level SmartDesign.
To enable this, you must set the top level SmartDesign as root in Libero SoC. Right-click your top level
design in the Design Hierarchy and choose Set as Root. The root component will have its name bolded if it
is root.

Project Sources

Libero User's Guide 77

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 34 · Firmware Cores Tab (DESIGN_FIRMWARE)

See Also

Develop Firmware - Write Application Code
Libero SoC Frequently Asked Questions
Running Libero SoC from your Software Tool Chain
Software IDE Integration

Project Sources
Project sources are any design files that make up your design. These can include schematics, HDL files,
simulation files, testbenches, etc. Anything that describes your design or is needed to program the device is
a project source.
Source files appear in the Project Flow window. The Design Hierarchy tab displays the structure of the
design modules as they relate to each other, while the Files tab displays all the files that make up the
project.
The design description for a project is contained within the following types of sources:
• Schematics
• HDL Files (VHDL or Verilog)
• SmartDesign components

One source file in the project is the top-level source for the design. The top-level source defines the inputs
and outputs that will be mapped into the devices, and references the logic descriptions contained in lower-
level sources. The referencing of another source is called an instantiation. Lower-level sources can also
instantiate sources to build as many levels of logic as necessary to describe your design.

File Linking
The Project Manager enables you to link to files not managed in your Libero project. Linked files are useful if
you want to preserve a file in an archive, or if more than one person is using a file and it is impractical to
store it on your local machine. If you link to external files and rename your project, the Project Manager asks
if you want to copy the external files into your project or continue using the link. Note that some files (such
as schematics) cannot be linked.
Some project sources can be imported.
Sources for your project can include:

Source File Extension

Schematic *.1-9

78 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Source File Extension

Verilog Module *.v

VHDL Entity *.vhd

SmartDesign Component *.vhd

Testbench *.vhd

Stimulus *.tim

Programming Files *.afm; *.prb

See Also
Creating HDL Sources
Generating a Bitstream file
Generating Programming files

Designer Blocks and Synthesis

Libero User's Guide 79

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Designing with Designer Block Components

Designer Blocks (also generically called "components") enable you to partition a design and optimize critical
sections. You can reuse them later in new applications, ensuring consistent performance. Designing with
blocks enables multiple designers to work independently on parts of a single design.

Designer Block Advantages
• You can focus on the timing of critical blocks and ensure the timing across the blocks meets

requirements before proceeding to the top-level flow.
• Changes in other blocks have no impact on your own block, you can re-use your block without re-

calculating the timing.
• The block can be re-used in multiple designs
• Shorter verification time. You need to re-verify only the portion of the design that has changed.

Designer Block Features
• You can create a Designer Block with or without I/Os.
• A Designer Block can be synthesized, simulated, and placed-and-routed the same way as a regular

design.
• You can lock the place-and-route of the Designer Block to ensure performance does not change.
• Performance and place-and-route can be fixed absolutely; however these rules can be relaxed

gradually, if necessary, to ensure that you can integrate the Designer Block into your <top> project.
• You can use all the features in Designer Blocks in SmartDesign.

Use Designer Blocks When
• The design is congested (uses 90% of the resources on a given die).
• You have difficulty meeting timing by doing the design in its entirety. Blocks enable you to

compartmentalize the design and optimize sections before you optimize the entire design.
• You want to re-use some elements of your design.
• You want to use the identical elements multiple times in a single design.

You cannot use Designer Blocks with all families, they are family and die specific; if your Designer Block has
I/Os it is also package specific.

 Supported families
IGLOO, ProASIC3, SmartFusion2, SmartFusion, Fusion

Designer Blocks and Synthesis
You must run the synthesis tool in No I/O mode when you create your component. The Designer Block is not
a full design; Libero SoC sets this option for Synplify if you Enable Designer Block creation.
When you Publish a Designer Block, the Project Manager creates a timing shell that enables the synthesis
tool to better synthesize the <top> project. The timing shell is named <blockname>_syn.v(.vhd) if you are
using Synplify or <blockname>_pre.v(.vhd) if you are using Precision.
When you are working in your <top> project, the synthesis tool does not know how many globals you have
in your Designer Block, or if there will be clock sharing. The synthesis tool promotes as many globals as it
can and if you have globals in the Designer Block you will exceed the total number of globals allowed in your
device.

80 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

In this case, you must limit the number of globals added by the synthesis tool so that the total number
(Designer Block plus <top> project) does not exceed the number available on your device.
To add an internal global, you can use either the Synplify constraints editor (SCOPE) or an SDC file.
For example, to add a CLKINT after a CLK port, the command is:
define_attribute {n:CLK} syn_insert_buffer {CLKINT}

See Also
Creating a component in Designer
Creating a component in Libero SoC

Managing I/Os in a Designer Block Component
If you use I/Os in your Designer Block, use the following rules:

• If the I/O is placed in the block, placement and VCCI of the I/O cannot be changed in the <top> design.
• The register combining option cannot be changed in the <top> design.
• Attributes and Vref pins can be changed if the values are legal (the I/O will not be unplaced).

Globals and Designer Block Components
You must manage your globals when creating a Designer Block to ensure that you have some available
after you import the Block into your <top> project.
There is no limit to the number of globals you can use in a Designer Block.

Global Sharing
You can share a global between the Designer Block and the <top> project. You must:
• Use an internal global in the Designer Block.
• Drive the global port in the <top> project with a global net.

Libero SoC removes the internal global and re-routes the entire net.
You can use other global macros in the Designer Block, but you cannot share them with the <top> project.
Global Sharing with SmartFusion, IGLOO, ProASIC3 and Fusion - Use CLKINT in the Designer Block to
share the global in the component with the <top> project.
See the list of Physical Design Constraint (PDC) files for more information on how to assign constraints.

Local Clock
You can use local clocks in your component to save on globals, but you may need to do some floorplanning
in your <top> project.

Limitations
When you create your block, you cannot assign a port-connected net to a local clock.
The routing for local clocks from the blocks cannot always be preserved.
For all other families, local clocks are rerouted only if they are used in more than one block. The local clock
constraint is preserved and the only difference in the routing is from the driver to the entry point of the clock
network (when it gets to the clock network you end up with the same routing since the macros are locked in
the same location).

Designer Block Compile Report
If you instantiate Designer Blocks in your design, the Compile report includes a description of the blocks you
used. The report appears in the Log window after Compile is complete.

Designer Block Component Limitations

Libero User's Guide 81

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

The report lists the name of the module, the name of the instance, the number of macros and nets used in
the blocks, and information on how conflicts between blocks were resolved by the Compile options or PDC
commands (if any). For example:
Block Information Report :

==========================

Conflict resolution from Compile options :

==

Placement : Resolve conflict/Keep and Lock non conflicting placement

 Routing : Resolve conflict/Keep and Lock non conflicting routing

 Block Name : core1

Instance Name : core1_inst

| Locked | Total

 Instances | 4 | 4 (100.00%)

 Nets | 3 | 3 (100.00%)

Block Name : core1

Instance Name : core11_inst

PDC Constraints :

 =================

 Move : move_block -inst_name {core11_inst} -left 10 -up 0 -non_logic UNPLACE

| Locked | Total

 Instances | 4 | 4 (100.00%)

Nets | 0 | 3 (0.00%)

Designer Block Component Limitations
If you instantiate the same Designer Block many times in the <top> design, only the first instance retains the
place-and-route information (if it has any); the others do not. Only the netlist is preserved.
To preserve the relative placement and routing of other blocks you must move the blocks using a PDC
command. This PDC file must be imported as a source file along with the netlist(s) and CDB files. If
possible, routing is preserved when you move the blocks with a PDC command.
See the move_block PDC command for more information.

82 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Creating a Designer Block Component in
Libero SoC

Instantiating a Designer Block in Libero SoC

Libero User's Guide 83

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Creating a Designer Block Component in Libero SoC
You must create two Libero SoC projects in order to instantiate your Designer Block in Libero SoC: one to
create and publish your Designer Block, and another in which to instantiate your Designer Block. This
section describes how to create your Designer Block.
See Instantiating a Designer Block in Libero SoC for more information.
The general design flow for creating a Designer Block in Libero SoC is shown in the figure below.

Figure 35 · Create a Designer Block Flow in Libero SoC

To create a Designer Block in Libero SoC with a new design:
1. Start a new project. You must select a family that supports Block designs (IGLOO, ProASIC3,

SmartFusion2, SmartFusion, Fusion). After your project opens, from the Project menu, choose
Settings > Flow, and click the Enable Designer Block creation checkbox.

2. Create a design in Libero SoC (standard design flow - create RTL, synthesize, run place-and-route
and generate the block using Designer).

To create a Designer Block in the Libero SoC with an existing design, open your design and from the
Project menu, choose Setting > Flow, and click the Enable Designer Block creation checkbox. Note that
your design must use a device family that supports Designer Blocks (IGLOO, ProASIC3, SmartFusion2,
SmartFusion, Fusion).

Instantiating a Designer Block in Libero SoC
You must have two projects in order to instantiate your Designer Block in Libero SoC: one to create and
publish your Designer Blocks, and another in which to instantiate your Designer Block. This topic and the
flow shown in the figure below describe how to instantiate your Designer Block in the Libero SoC.

84 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

See Creating a Designer Block in Libero SoC for information on how to create a Designer Block. You can
also import your Designer Blocks into SmartDesign.

Figure 36 · Libero SoC Designer Block Instantiation Flow

To instantiate (import) a Designer Block in Libero SoC, import your design netlist and CXF file(s). The CXF
file imports all the files you need for your Designer Block. After you import your files, the design flow is the
same as regular Libero SoC designs. There is no limit to the number of CXF files you can import, but you
cannot import the same Designer Block more than once, and the family and device for your imported block
must match your project.
After you import the CXF file, the Project Manager displays the imported files in the Design Hierarchy tab.
The Designer Block(s) you instantiate must have the same family and die (and package, if it contains I/Os)
as your current <top> project. If the family, die, and package do not match, Libero SoC asks if you want to
change the current setting to match the one from the Designer Block.
The Project Manager passes all the Designer Block files to Designer automatically.
Note: Note

RTL Simulation

Libero User's Guide 85

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

• Disable Designer Block creation when you import a component into your <top> project. If you are using
a Designer Block component to create another Designer Block, leave it enabled.

• If you already have an HDL component with the same name as the one you imported, the new
Designer Block component is not be used by default. You must and right-click the Designer Block
component in the Project Manager and choose Use this file to make it use your Designer Block.

RTL Simulation
If you wish to perform pre-layout simulation, in the Design Flow Window, under Verify Pre-Synthesized
design, double-click Simulate.
The default tool for RTL simulation in Libero SoC is ModelSim AE.
ModelSimTM AE is a custom edition of ModelSim PE that is integrated into Libero SoC's design
environment. ModelSim for Microsemi is an OEM edition of Model Technology Incorporated’s (MTI) tools.
ModelSim for Microsemi supports VHDL or Verilog. It only works with Microsemi libraries and is supported
by Microsemi.
Other editions of ModelSim are supported by Libero SoC. To use other editions of ModelSim , simply do not
install ModelSim AE from the Libero SoC CD.
Note: Note: ModelSim for Microsemi comes with its own online help and documentation. After starting

ModelSim, click the Help menu.
See the following topics for more information on simulation in Libero SoC:

• Simulation Options
• Selecting a Stimulus File for Simulation
• Selecting additional modules for simulation
• Performing Functional Simulation

Simulation Options
You can set a variety of simulation options for your project.

To set your simulation options:
1. From the Project menu, choose Project Settings.
2. Click the simulation option you wish to edit: DO file, Waveforms, or Vsim commands.
3. Click Close to save your settings.

DO File
• Use automatic Do file - Select to execute the wave.do or other specified Do file. Use the wave.do file

to customize the ModelSim Waveform window display settings.
• Simulation Run Time - Specify how long the simulation should run in nanoseconds. If the value is 0,

or if the field is empty, there will not be a run command included in the run.do file.
• Testbench module name - Specify the name of your testbench entity name. Default is “testbench,”

the value used by WaveFormer Pro.
• Top Level instance name - Default is <top_0>, the value used by WaveFormer Pro. The Libero SoC

replaces <top> with the actual top level macro when you run ModelSim.
• Generate VCD file - Select this checkbox to have ModelSim automatically generate a VCD file based

on the current simulation. VCD files can be used in SmartPower. For best results, we recommend that
a postlayout simulation be used to generate the VCD.

• VCD filename - Specify the name of the VCD file that will be automatically generated by ModelSim
• User defined DO file - Available if you opt not to use the automatic DO file. Input the path or browse

to your user-defined DO file.
• DO Command parameters - Text in this field is added to the DO command.

86 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Waveforms
• Include DO file - Including a DO file enables you to customize the set of signal waveforms that will be

displayed in ModelSim.
• Display waveforms for - You can display signal waveforms for either the top-level testbench or for the

design under test. If you select top-level testbench then Libero SoC outputs the line 'add wave
/testbench/*' in the DO file run.do. If you select DUT then Libero SoC outputs the line 'add wave
/testbench/*' in the run.do file.

• Log all signals in the design - Saves and logs all signals during simulation.

Vsim Commands
• SDF timing delays - Select Minimum, Typical, or Maximum timing delays in the back-annotated SDF

file.
• Resolution: The default is family-specific, but you can customize it to fit your needs.

Some custom simulation resolutions may not work with your simulation library. For example,
simulation resolutions above 1 ps will cause errors if you are using ProASIC3 devices (the simulation
errors out because of an infinite zero-delay loop). Consult your simulation help for more information on
how to work with your simulation library and detect infinite zero-delay loops caused by high resolution
values.

Family Default Resolution

ProASIC3 1 ps

IGLOO 1 ps

SmartFusion and Fusion 1 ps

• Additional options: Text entered in this field is added to the vsim command.

Simulation Libraries
• Verilog (or VhDL) library path - Enables you to choose the default library for your device, or to

specify your own library. Enter the full pathname of your own library to use it for simulation.
• Restore Defaults: Restores factory settings.

Selecting a Stimulus File for Simulation
Before running simulation, you must associate a testbench. If you attempt to run simulation without an
associated testbench, the Libero SoC Project Manager asks you to associate a testbench or open ModelSim
without a testbench.

To associate a stimulus:
1. Run simulation or in the Design Flow window under Verify Pre-Synthesized Design right-click

Simulate and choose Organize Input Files > Organize Stimulus Files. The Organize Stimulus Files
dialog box appears.

2. Associate your testbench(es):

In the Organize Stimulus Files dialog box, all the stimulus files in the current project appear in the Source Files in the Project list
box. Files already associated with the block appear in the Associated Source Files list box.

In most cases you will only have one testbench associated with your block. However, if you want simultaneous association of
multiple testbench files for one simulation session, as in the case of PCI cores, add multiple files to the Associated Source Files list.

Selecting Additional Modules for Simulation

Libero User's Guide 87

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

To add a testbench: Select the testbench you want to associate with the block in the Source Files in the Project list box and click
Add to add it to the Associated Source Files list.

To remove a testbench: To remove or change the file(s) in the Associated Source Files list box, select the file(s) and click Remove.

To order testbenches: Use the up and down arrows to define the order you want the testbenches compiled. The top level-entity
should be at the bottom of the list.

3. When you are satisfied with the Associated Source Files list, click OK.

Selecting Additional Modules for Simulation
Libero SoC passes all the source files related to the top-level module to simulation .
If you need additional modules in simulation, in the Design Flow window right-click Simulate and choose
Organize Input Files > Organize Source Files. The Organize Files for Simulation dialog box appears.
Select the HDL modules you wish to add from the Simulation Files in the Project list and click Add to add
them to the Associated Stimulus Files list

Performing Functional Simulation
To perform functional simulation:

1. Create your testbench.
2. Right-click Simulate (in Design Flow window, Implement Design > Verify Post-Synthesis

Implementation > Simulate) and choose Organize Input Files > Organize Source Files from the
right-click menu.

In the Organize Files for Source dialog box, all the stimulus files in the current project appear in the Source Files in the Project list
box. Files already associated with the block appear in the Associated Source Files list box.

In most cases you will only have one testbench associated with your block. However, if you want simultaneous association of
multiple testbench files for one simulation session, as in the case of PCI cores, add multiple files to the Associated Source Files list.

To add a testbench: Select the testbench you want to associate with the block in the Source Files in the Project list box and click
Add to add it to the Associated Source Files list.

To remove a testbench: To remove or change the file(s) in the Associated Source Files list box, select the file(s) and click Remove.

3. When you are satisfied with the Associated Simulation Files list, click OK.
4. To start ModelSim AE, right-click Simulate in the Design Hierarchy window and choose Open

Interactively.

ModelSim starts and compiles the appropriate source files. When the compilation completes, the simulator runs for 1 µs and the
Wave window opens to display the simulation results.

5. Scroll in the Wave window to verify that the logic of your design functions as intended. Use the zoom
buttons to zoom in and out as necessary.

6. From the File menu, select Quit.

Performing DirectCore Functional Simulation
Libero SoC overwrites all the existing files of the Core when you import a DirectCore project (including
testbenches). Save copies of your project stimulus files with new names if you wish to keep them.
You must import a DirectCore BFM file into the Libero SoC in order to complete functional simulation (the
BFM is a stimulus file that you can edit to extend the testbench). VEC files are generated automatically from
the BFM when you run ModelSim.

88 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

The SoC Project Manager overwrites your BFM file if you re-import your project. Edit and save your BFM
outside the Libero SoC project to prevent losing your changes. After you re-import your DirectCore project,
you can import your modified BFM again.

To perform functional simulation of a DirectCore project:
1. Right-click a stitched module of the DirectCore project and select Set as root.
2. To start ModelSim AE, right-click Simulate in the Design Hierarchy window and choose Open

Interactively.

ModelSim starts and compiles the appropriate source files. When the compilation completes, the simulator runs for 1 µs and the
Wave window opens to display the simulation results.

3. Scroll in the Wave window to verify that the logic of your design functions as intended. Use the zoom
buttons to zoom in and out as necessary.

4. From the File menu, select Quit.

I/O Constraints - SmartFusion2
SmartFusion2 I/O constraints are PDC files. Note that for SmartFusion2 I/O constraint PDC files are
separate from Floorplan constraint PDC files; if you have a PDC file that contains both I/O and Floorplan
constraints then Libero SoC errors out with an invalid constraint error.
Libero SoC generates an I/O PDC file automatically if you explicitly add/modify your I/O Constraints in the
post-Compile I/O Editor. Your new I/O PDC file is added to the project and marked as Used.
I/O Constraints enables you to:
Import Files - If you do not have a compiled project, double-click I/O Constraints to open the Import Files
dialog box and import I/O constraint files (*.pdc files).
Create a New Constraint from Your Root Module - Double-click to create a new constraint if you already
have a compiled project.
Link Files - Right-click I/O Constraints and choose Link Files to link PDC constraint files from other
projects. Linked files are not copied into your local project directory; instead the path is stored in your
project, enabling you (or others) to update the file separately from Libero SoC. If your linked file is updated
then the Project Manager indicates that the file has been changed and asks you if you wish to recompile, as
appropriate.
Linked files appear in your Files window (View > Windows > Files), where they can be opened, deleted
from the project, updated, or unlinked and copied to your local project.
Once you import or generate an I/O Constraint file you can double-click the file in the Design Flow window
(Create Constraints > I/O Constraints > <filename>) to open it in the I/O Constraint Editor, or right-click
the file to:
Use for Compile - Includes the constraint file when you run Compile.
Open in I/O Editor - Opens the file in the I/O Editor.
Open in the Text Editor - Opens the file in the Text Editor so that you can update the code manually.
Delete from Project - Removes the file from the project.
Delete from Disk and Project - Removes the file from the project and deletes it from the disk.

Timing Constraints
Timing Constraints enables you to:
Import Files - Double-click Timing Constraints to open the Import Files dialog box and import timing
constraint files (*.sdc files).
Link Files - Right-click Timing Constraints and choose Link Files to link SDC constraint files from other
projects. Linked files are not copied into your local project directory; instead the path is stored in your
project, enabling you (or others) to update the file separately from Libero SoC. If your linked file is updated
then the Project Manager indicates that the file has been changed and asks you if you wish to recompile, as
appropriate.

Floorplan Constraints - SmartFusion2

Libero User's Guide 89

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Linked files appear in your Files window (View > Windows > Files), where they can be opened, deleted
from the project, updated, or unlinked and copied to your local project.
Once you import or generate a Timing Constraint file, you can double-click the file in the Design Flow
window (Create Constraints > Timing Constraints > <filename>) to open it in the Text Editor, right-click
the file to:
Use for Synthesis - Uses the file for synthesis.
Use for Compile - Includes the file during Compile.
Open in Text Editor - Opens the file in the Project Manager Text Editor.
Save as - Opens the Save As dialog box, enables you to save the constraint in a different location and/or
filename. This is useful if you want to preserve the settings of a particular constraint, or to save it outside
your project.
Delete from Project - Removes the file from the project.
Delete from Disk and Project - Removes the file from the project and deletes it from the disk.

Floorplan Constraints - SmartFusion2
SmartFusion2 Floorplan constraints are PDC files. Note that for SmartFusion2 Floorplan constraint PDC
files are separate from I/O constraint PDC files; if you have a PDC file that contains both Floorplan and I/O
constraints then Libero SoC errors out with an invalid constraint error.
Floorplan Constraints enables you to:
Import Files - Double-click Floorplan Constraints to open the Import Files dialog box and import Floorplan
constraint files (*.pdc files).
Link Files - Right-click I/O Constraints and choose Link Files to link PDC constraint files from other
projects. Linked files are not copied into your local project directory; instead the path is stored in your
project, enabling you (or others) to update the file separately from Libero SoC. If your linked file is updated
then the Project Manager indicates that the file has been changed and asks you if you wish to recompile, as
appropriate.
Linked files appear in your Files window (View > Windows > Files), where they can be opened, deleted
from the project, updated, or unlinked and copied to your local project.
Once you import Floorplan Constraint file you can double-click the file in the Design Flow window (Create
Constraints > Floorplan Constraints > <filename>) to open it in the Text Editor, or right-click the file to:
Use for Compile - Includes the constraint file when you run Compile.
Open in Text Editor - Opens the file in the Project Manager Text Editor.
Save as - Opens the Save As dialog box, enables you to save the constraint in a different location and/or
filename. This is useful if you want to preserve the settings of a particular constraint, or to save it outside
your project.
Delete from Project - Removes the file from the project.
Delete from Disk and Project - Removes the file from the project and deletes it from the disk.

Constrain Design - Import I/O Constraints and Import Timing
Constraints

Import I/O Constraints and Import Timing Constraints opens the Import Files dialog box to import PDC or
SDC files, respectively.
Right-click Import I/O Constraints and choose Import Files to open the Import Files dialog box and import
PDC files.
Right-click Import Timing Constraints and choose Import Files to open the Import Files dialog box and
import SDC files.

90 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

I/O Constraints (PDC Files)
The software enables you to specify the physical constraints to define the size, shape, utilization, and
pin/pad placement of a design. You can specify these constraints based on the utilization, aspect ratio, and
dimensions of the die. The pin/pad placement depends on the external physical environment of the design,
such as the placement of the device on the board.

Timing Constraints (SDC Files)
Timing constraints represent the performance goals for your designs. Software uses timing constraints to
guide the timing-driven optimization tools in order to meet these goals.
You can set timing constraints either globally or to a specific set of paths in your design.
You can apply timing constraints to:
• Specify the required minimum speed of a clock domain
• Set the input and output port timing information
• Define the maximum delay for a specific path
• Identify paths that are considered false and excluded from the analysis
• Identify paths that require more than one clock cycle to propagate the data
• Provide the external load at a specific port

To get the most effective results you need to set the timing constraints close to your design goals.
Sometimes slightly tightening the timing constraint helps the optimization process to meet the original
specifications.

Synthesize
Double-click Synthesize to run synthesis on your design automatically; automatic synthesis uses the default
settings in your synthesis tool.
If you wish to run synthesis manually, right-click Synthesize and choose Open Interactively to open your
synthesis tool.
The default synthesis tool included with Libero SoC is Synplify Pro ME. If you wish to use a different
synthesis tool you can change the settings in your Tool Profile.
Libero SoC works with the following synthesis tools:
• Synplify Pro ME from Synopsys
• Precision RTL from Mentor Graphics

While Precision RTL is not part of the Libero SoC package, they can be integrated to work with Libero SoC.
You can also integrate different versions of Synplify. To integrate tools, add them to your project profile.
Some families enable you to set or change Configuration options for your synthesis tool from the Design
Flow window. To do so, in the Design Flow window expand Implement Design, right-click Synthesize and
choose Configure Options. This opens the Synthesize Options dialog box.
Verilog Standard - Sets your Verilog Standard to Verilog 2001 and/or System Verilog; make your selection
based on your design preferences.
VHDL Standard - Sets your VHDL Standard to VHDL 2008; make your selection based on your design
preferences.

Synplify Pro ME
Synplify Pro ME is the default synthesis tool for Libero SoC.
To run synthesis using Synplify Pro ME and default settings, right-click Synthesize and choose Run.
If you wish to use custom settings you must run synthesis interactively.

Precision RTL

Libero User's Guide 91

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

To run synthesis using Synplify Pro ME with custom settings:
1. If you have set Synplify as your default synthesis tool, right-click Synthesize in the Libero SoC Design

Flow and choose Open Interactively. Synplify starts and loads the appropriate design files, with a few
pre-set default values.

2. From Synplify’s Project menu, choose Implementation Options.
3. Set your specifications and click OK.
4. Deactivate synthesis of the defparam statement. The defparam statement is only for simulation tools

and is not intended for synthesis. Embed the defparam statement in between translate_on and
translate_off synthesis directives as follows :
/* synthesis translate_off */
defparam M0.MEMORYFILE = "meminit.dat"

/*synthesis translate_on */
// rest of the code for synthesis

5. Click the RUN button. Synplify compiles and synthesizes the design into an EDIF, *.edn, file. Your
EDIF netlist is then automatically translated by the software into an HDL netlist. The resulting *edn and
*.vhd files are visible in the Files list, under Synthesis Files.

Should any errors appear after you click the Run button, you can edit the file using the Synplify editor. Double-click the file name
in the Synplify window showing the loaded design files. Any changes you make are saved to your original design file in your
project.

6. From the File menu, choose Exit to close Synplify. A dialog box asks you if you would like to save any
settings that you have made while in Synplify. Click Yes.

Note: Note: See the Microsemi Attribute and Directive Summary in the Synplify online help for a list of
attributes related to Microsemi devices.

Note: To add a clock constraint in Synplify you must add "n:<net_name>" in your SDC file. If you put the
net_name only, it does not work.

Precision RTL
Libero SoC supports Precision RTL from Mentor Graphics.
To run synthesis with Precision RTL default settings, set Precision RTL as the synthesis tool for your project
(as outlined below), right-click Synthesize and choose Run.
To run synthesis with custom settings, right-click Synthesize and choose Open Interactively. Precision
RTL opens and enables you to change settings before you run synthesis.
If your design is not ready for synthesis then Open does not appear in your right-click menu.

To set Precision RTL as the synthesis tool for your project:
1. From the Project menu, choose Tool Profiles. The Tool Profiles dialog box appears.
2. Click Synthesis to choose the synthesis tool profile.
3. Click the Add button. The Add Profile dialog box appears.
4. Enter a name. This is the name that appears in the Tool Profile dialog box.
5. In the Tool integration dropdown menu choose Precision RTL.
6. Enter the location of Precision RTL and any additional parameters.
7. Click OK.
8. Select Precision RTL in the Tool Profile dialog box and click OK.
9. Double-click Synthesize in the Design Flow window to start Precision RTL and run synthesis.

Instrument Design with the Identify Debugger
Libero SoC integrates the Identify RTL debugger tool. It enables you to probe and debug your FPGA design
directly in the source RTL. Use Identify software when the design behavior after programming is not in
accordance with the simulation results.

92 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

To open the Identify RTL debugger, in the Design Flow window under Debug Design double-click
Instrument Design.
Identify features:
• Instrument and debug your FPGA directly from RTL source code .
• Internal design visibility at full speed.
• Incremental iteration - Design changes are made to the device from the Identify environment using

incremental compile. You iterate in a fraction of the time it takes route the entire device.
• Debug and display results - You gather only the data you need using unique and complex triggering

mechanisms.

You must have both the Identify RTL Debugger and the Identify Instrumentor to run the debugging flow
outlined below.

To use the Identify debugger:
1. Create your source file (as usual) and run pre-synthesis simulation.
2. (Optional) Run through an entire flow (Synthesis - Compile - Place and Route - Generate a

Programming File) without starting Identify.
3. In Synplify, click Options > Configure Identify Launch to setup Identify.
4. Right-click Synthesize and choose Open Interactively in the Libero SoC to launch Synplify. In

Synplify, create an Identify implementation; to do so, click Project > New Identify Implementation.
5. In the Implementations Options dialog, make sure the Implementation Results > Results Directory

points to a location under <libero project>\synthesis\, otherwise Libero SoC is unable to detect your
resulting EDN file

6. From the Instumentor UI specify the sample clock, the breakpoints, and other signals to probe.
Synplify creates a new synthesis implementation. Synthesize the design.

7. In Libero SoC, select the edif netlist of the Identify implementation you want to use in the flow. Right-
click Compile and choose Organize Input Files > Organize Source Files and select the edif netlist
of your Identify implementation.

8. Run Compile, Place and Route and Generate a Programming File with the edif netlist you created with
the Identify implementation.

9. Double-click Instrument Design in the Design Flow window to launch the Identify Debugger.

The Identify RTL Debugger, Synplify, and FlashPro must be synchronized in order to work properly. See the
Release Notes for more information on which versions of the tools work together.

Verify Post-Synthesis Implementation - Simulate
The steps for performing functional and timing simulation are nearly identical. Functional simulation is
performed before place-and-route and simulates only the functionality of the logic in the design. Timing
simulation is performed after the design has gone through place-and-route and uses timing information
based on the delays in the placed and routed designs.
Timing simulation includes much more detailed timing information for the targeted device. Timing simulation
requires a testbench.

To perform timing simulation:
1. If you have not done so, back-annotate your design and create your testbench.
2. Right-click Simulate (in Design Flow window, Implement Design > Verify Post-Synthesis

Implementation > Simulate) and choose Organize Input Files > Organize Source Files from the
right-click menu.

In the Organize Files for Source dialog box, all the stimulus files in the current project appear in the Source Files in the Project list
box. Files already associated with the block appear in the Associated Source Files list box.

In most cases you will only have one testbench associated with your block. However, if you want simultaneous association of
multiple testbench files for one simulation session, as in the case of PCI cores, add multiple files to the Associated Source Files list.

http://www.actel.com/download/software/libero

Compile

Libero User's Guide 93

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

To add a testbench: Select the testbench you want to associate with the block in the Source Files in the Project list box and click
Add to add it to the Associated Source Files list.

To remove a testbench: To remove or change the file(s) in the Associated Source Files list box, select the file(s) and click Remove.

To order testbenches: Use the up and down arrows to define the order you want the testbenches compiled. The top level-entity
should be at the bottom of the list.

3. When you are satisfied with the Associated Simulation Files list, click OK.
4. To start ModelSim AE, right-click Simulate in the Design Hierarchy window and choose Open

Interactively. ModelSim starts and compiles the appropriate source files. When the compilation
completes, the simulator runs for 1 µs and the Wave window opens to display the simulation results.

5. Scroll in the Wave window to verify the logic works as intended. Use the cursor and zoom buttons to
zoom in and out and measure timing delays. If you did not create a testbench with WaveFormer Pro,
you may get error messages with the vsim command if the instance names of your testbench do not
follow the same conventions as WaveFormer Pro. Ignore the error message and type the correct vsim
command.

6. When you are done, from the File menu, choose Quit.

Compile
After you import your netlist files and select your device, you must compile your design. Compile contains a
variety of functions that perform legality checking and basic netlist optimization. Compile checks for netlist
errors (bad connections and fan-out problems), removes unused logic (gobbling), and combines functions to
reduce logic count and improve performance. Compile also verifies that the design fits into the selected
device.
To compile your device with default settings, right-click Compile in the Design Flow window and choose
Run.
To compile your design with custom settings, right-click Compile in the Design Flow window and choose
Configure Options. You can merge your PDC or SDC files with existing physical or timing constraints,
respectively; see the Configure Options in Compile description below for more information.
During compile, the Log window displays information about your design, including warnings and errors.
Libero SoC issues warnings when your design violates recommended Microsemi design rules. Microsemi
recommends that you address all warnings, if possible, by modifying your design before you continue.
If the design fails to compile due to errors in your input files (netlist, constraints, etc.), you must modify the
design to remove the errors. You must then re-import and re-compile the files.

Configure Options in Compile
Right-click Compile in the Design Flow window and choose Configure Options to view compile options.

Merge User SDC file(s) with Existing Timing Constraints
Select Merge User SDC file(s) with existing timing constraints. to preserve all existing timing constraints
that you have made using the Timer GUI or previously imported file. If you import a SDC file and you have
this checkbox selected, the software merges the existing constraints and the constraints existing in the SDC
file. In case of a conflict, the new constraint has priority over the existing constraint.
The Merge SDC file(s) with existing timing constraints option is On by default. With this option On, your
timing constraints from the imported SDC files are merged with the existing constraints. When this option is
Off, all the existing timing constraints are replaced by the constraints in the newly imported SDC files.

Merge PDC file(s) with Existing Physical Constraints
Select Merge PDC file(s) with existing physical constraints to preserve all existing physical constraints
that you have entered either using one of the MVN tools (ChipPlanner, PinEditor, or the I/O Attribute Editor)
or a previous GCF or PDC file. The software will resolve any conflicts between new and existing physical
constraints and display the appropriate message.

94 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

The Merge PDC file(s) with existing physical constraints option is Off by default. When this option is Off, all
the physical constraints in the newly imported GCF or PDC files are used. All pre-existing constraints are
lost. When this option is On, the physical constraints from the newly imported GCF or PDC files are merged
with the existing constraints.

Abort Compile if errors are found in the physical design constraints
Changes the Abort on PDC error behavior. Select this option to stop the flow if any error is reported in
reading your PDC file. If you deselect this option, the tool skips errors in reading your PDC file and just
reports them as warnings. The default is ON.
Note: Note: The flow always stops even if this option is deselected in the following two cases:
• If there is a Tcl error (for example, the command does not exist or the syntax of the command is

incorrect)
• The assign_local_clock command for assigning nets to LocalClocks fails. This may happen if any floor

planning DRC check fails, such as, region resource check, fix macro check (one of the load on the net
is outside the local clock region). If such an error occurs, then the Compile command fails. Correct
your PDC file to proceed.

Note: Note: Every time you invoke this dialog box, this option is reset to its default value ON. This is to
ensure that your PDC file is correct.

Reserve Live Probe
Specifies if the pins need to be preserved for Live Probe. Reserve your pins for probing if you intend to
debug using SmartDebug.

Compile Report
Limit the number of displayed high fanout nets to: Enables flip-flop net sections in the compile report
and defines the number of nets to be displayed in the high fanout. The default value is 10.

Compile Options
To set custom compile options:

1. Right-click Compile and choose Open Interactively. Designer opens.
2. Click the Compile button. The Compile Options dialog box opens. The Options available are family

specific.
3. Select your options, and click OK.

The Compile Options dialog box enables you to do the following:
• Set your Block Instantiation options (used for conflict resolution when you instantiate multiple blocks)
• Verify Physical Design Constraints
• Perform Globals Management
• Netlist Optimization
• Generate a Compile report in Display of Results
• Set Block Creation options (available only if you are creating a block)

Compile Options

Libero User's Guide 95

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Block Instantiation

Designer uses the Block Instantiation options to resolve conflicts between multiple blocks in your design.
The default options is to return an error if there is overlapping placement between the blocks and resolve
any conflict for nets.
This ensures you are aware that the blocks overlap; you can go back and set the placement to resolve the
conflicts and it will Compile.
See Conflict resolution in Designer Blocks for more information.

Physical Design Constraints
This interface enables you to verify the Physical Design Constraints (PDC) file.

96 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 37 ·

Checking the Physical Design Constraint (PDC)
Abort Compile if errors are found in the physical design constraints: Changes the Abort on PDC error
behavior. Select this option to stop the flow if any error is reported in reading your PDC file. If you deselect
this option, the tool skips errors in reading your PDC file and just reports them as warnings. The default is
ON.
Note: Note: The flow always stops even if this option is deselected in the following two cases:

• If there is a Tcl error (for example, the command does not exist or the syntax of the command is
incorrect)

• The assign_local_clock command for assigning nets to LocalClocks fails. This may happen if any floor
planning DRC check fails, such as, region resource check, fix macro check (one of the load on the net
is outside the local clock region). If such an error occurs, then the Compile command fails. Correct
your PDC file to proceed.

Note: Note: Every time you invoke this dialog box, this option is reset to its default value ON. This is to
ensure that your PDC file is correct.

Display object names that are no longer found after netlist matching is performed on the design: Displays
netlist objects in the PDC that are not found in the imported netlist during the Compile ECO mode. Select
this option to report netlist objects not found in the current netlist when reading the internal ECO PDC
constraints. The default is OFF.
Limit the number of displayed messages to: Defines the maximum number of errors/warnings to be
displayed in the case of reading ECO constraints. The default is 10000 messages.

Globals Management
The interface provides a global control to the Compile component of the design flow.

Compile Options

Libero User's Guide 97

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Automatic Demotion/Promotion
Demote global nets whose fanout is less than: Enables the global clock demotion of global nets to
regular nets.
By default, this option is OFF. The maximum fanout of a demoted net is 12.
Note: Note: A global net is not automatically demoted (assuming the option is selected) if the resulting

fanout of the demoted net is greater than the max fanout value. Microsemi recommends that the
automatic global demotion only act on small fanout nets. Microsemi recommends that you drive high
fanout nets with a clock network in the design to improve timing and routability.

Promote regular nets whose fanout is greater than: Enables global clock promotion of nets to global
clock network. By default, this option is OFF. The minimum fanout of a promoted net is 200.
But do not promote more than: Defines the maximum number of nets to be automatically promoted to
global. The default value is 0. This is not the total number as nets need to satisfy the minimum fanout
constraint to be promoted. The promote_globals_max_limit value does not include globals that may have
come from either the netlist or PDC file (quadrant clock assignment or global promotion).
Note: Note: Demotion of globals through PDC or Compile is done before automatic global promotion is

done.
Note: You may exceed the number of globals present in the device if you have nets already assigned to

globals or quadrants from the netlist or by using a PDC file. The automatic global promotion adds
globals on what already exists in the design.

Local clocks
Limit the number of shared instances between any two non-overlapping local clock regions to:
Defines the maximum number of shared instances allowed to perform the legalization. It is also for quadrant
clocks.
The maximum number of instances allowed to be shared by 2 local clock nets assigned to disjoint regions to
perform the legalization (default is 12, range is 0-1000). If the number of shared instances is set to 0, no
legalization is performed.
When inserting buffers to legalize shared instances between non-overlapping local clock regions,
limit the buffers' fanout to: Defines the maximum fanout value used during buffer insertion for clock
legalization. Set the value to 0 to disable this option and prevent legalization (default value is 12, range is 0-

98 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

1000). If the value is set to 0, no buffer insertion is performed. If the value is set to 1, there will be one buffer
inserted per pin.
Note: Note: If you assign quadrant clock to nets using MultiView Navigator, no legalization is performed.

Netlist Optimization
This interface allows you to perform netlist optimization.

Combining
Combine registers into I/O wherever possible: Combines registers at the I/O into I/O-Registers. Select this
option for optimization to take effect. By default, this option is OFF.

Buffer/Inverter Management
Delete buffers and inverter trees whose fanout is less than: Enables buffer tree deletion on the global signals
from the netlist. The buffer and inverter are deleted. By default, this option is OFF. The maximum fanout of a
net after buffer tree deletion is 12.
Note: Note: A net does not automatically remove its buffer tree (assuming the option is on) if the resulting

fanout of the net (if the buffer tree was removed) is greater than the max fanout value. Microsemi
recomends that the automatic buffer tree deletion should only act on small fanout nets. From a
routability and timing point of view, it is not recommended to have high fanout nets not driven by a
clock network in the design.

Display of Results
This interface lets you generate a Compile report.

Compile Options

Libero User's Guide 99

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Compile Report
Limit the number of displayed high fanout nets to: Enables flip-flop net sections in the compile report
and defines the number of nets to be displayed in the high fanout. The default value is 10.

Block Creation (Available only when creating Designer Blocks)

Delete I/Os whenever possible - Deletes I/Os in the block during compile (except TRIBUFF and BIBUFF,
because they cannot be removed). Useful if you have I/Os in your design but want to create a block anyway.

100 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Add buffers on ports whose fanout is greater than <value> - Adds buffers on ports with a fanout greater
than a value you specify. This option enables more predictable block timing. For example, if you have a net
with a fanout of 100 the net will be unrouted. If you add a buffer, the output of the buffer is routed and the
routing is preserved.

See Also
compile

Configure Flash*Freeze
Opens the Flash*Freeze Hardware Settings dialog box. For more information on the Flash*Freeze mode for
SmartFusion2 see the SmartFusion2 Low Power User's Guide.
The fabric SRAMs can be put into a Suspend Mode or a Sleep Mode. This applies to both the Large SRAM
(LSRAM) instances of RAM1xK18 and the Micro SRAM (uSRAM) instances of RAM64x18. These SRAMs
are grouped in rows in Libero® System-on-Chio (SoC) devices and each SRAM row can be configured
independently to go into Suspend or Sleep mode during Flash*Freeze mode:

• In Suspend mode: LSRAM and uSRAM contents are retained.
• In Sleep mode: LSRAM and uSRAM contents are not retained.

The SRAM state during Flash*Freeze mode must be configured in a PDC file and can be done on a per row
basis. The syntax for configuring SRAM in Sleep or Suspend mode is:
set_ram_ff -mode [suspend |sleep] -row [Row Number]

uRAM/LSRAM State
Sleep - Sets to Sleep.
Suspend - Sets to Suspend.

MSS Clock Source
The lower the frequency the lower the power will be. But for some peripherals that can remain active (such
as SPI or MMUART), you may need a higher MSS clock frequency (such as to meet the baud rate for
MMUART).
Options are:
• On-Chip 1 MHz RC Oscillator
• On-Chip 50 MHz RC Oscillator
• External 32 KHz Crystal Oscillator

http://www.actel.com/documents/SmartFusion2_LPower_UG.pdf

Configure Flash*Freeze

Libero User's Guide 101

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Place and Route

Place and Route runs automatically with default settings as part of the push-button design flow in Libero
SoC.
Custom Layout options are saved when you save your ADB after place and route.

To change your Place and Route settings:
Expand Implement Design, right-click Place and Route and choose Configure Options.

Place and Route Options

Timing-Driven
Select this option to run Timing-Driven Layout. The primary goal of timing-driven layout is to meet timing
constraints, specified by you or generated automatically. Timing-driven Layout typically delivers better
performance than Standard layout.
If you do not select Timing-driven layout, Designer runs Standard layout. Standard layout targets efficient
usage of the chip resources. Chip performance is not optimized. Timing constraints are not considered by
the Layout in standard mode, although a delay report based on delay constraints entered in SmartTime can
still be generated for the design. This is helpful to determine if timing-driven Layout is required.
If your design has multiple scenarios, you can select a scenario from the pull-down list to perform timing-
driven layout.

Place and Route Incrementally
Select this option to use previous placement data as the initial placement for next placement run.
Additionally, this will preserve previous placement data during the next incremental placement run.
Router will also be run incrementally. Select to fully route a design when some nets failed to route during a
previous run. You can also use it when the incoming netlist has undergone an ECO. (Engineering Change
Order). Incremental routing should only be used if a low number of nets fail to route (less than 50 open nets
or shorted segments). A high number of failures usually indicates a less than optimal placement (if using
manual placement through macros, for example) or a design that is highly connected and does not fit in the
device. If a high number of nets fail, relax constraints, remove tight placement constraints, deactivate timing-
driven mode, or select a bigger device and rerun Layout. Also, see the Advanced Layout options for your
device.

Lock Existing Placement (Fix)
Locks your existing placement. Use this option if you do not want any changes in your layout.

Additional Layout Options Available if you Open Interactively
The I/O Bank Assigner and Global Planner run automatically after you click OK in the Layout Options
dialog box. The I/O Bank Assigner automatically assigns technologies to all I/O banks that have not been
assigned a technology. The Global Planner automatically assigns global nets to clock conditioning circuit
(CCC) locations on the chip in the design.
Note: Note: All I/O technologies assigned to I/O banks by the I/O Bank Assigner in Layout are unlocked.

Power-Driven
Select this option to run Power-Driven Layout. The primary goal of power-driven layout is to reduce dynamic
power while still maintaining timing constraints.
To get the most out of Power-Driven Layout:

102 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

1. Enter maximum delay, minimum delay, setup, and hold constraints in SmartTime's constraint editor or
in SDC.

2. Set false paths on any paths that have a constraint, but do not need one (this will help layout meet the
constraints that are needed).

3. Perform Layout with Timing-Driven, Run Place, and Run Route options checked.
4. Resolve worst case setup and maximum delay violations.
5. Generate an SDF back-annotation file.
6. Perform a post layout back-annotated simulation using this SDF file, and export a VCD (Value Change

Dump) file that will capture real activities for each net.
7. Import this VCD file in Designer using the Import Auxiliary option from the File menu.
8. Perform Layout with Timing-Driven and Power-Driven checked. Run Place and Route.
9. Verify that your timing constraints are still met with SmartTime.

10. Analyze your power with SmartPower.

In case you do not have simulation vectors for your design, the following alternative flow is recommended:
1. Enter maximum delay, minimum delay, setup, and hold constraints in SmartTime's constraint editor or

in SDC.
2. Set false paths on any paths that have a constraint, but do not need one (this will help layout to meet

the constraints that are needed).
3. Perform Layout with Timing-Driven, Run Place, and Run Route options checked.
4. Resolve worst case setup and maximum delay violations.
5. Verify that your timing constraints are still met with SmartTime.
6. Open SmartPower and set clock frequencies and toggle rates for the different clocks. Clock

frequencies can be imported from your timing constraints. Refer to Initialize Frequencies for more
information.

7. Perform Layout with Timing-Driven, and Power-Driven options checked. Run Place and Route.
8. Verify that your timing constraints are still met with SmartTime.
9. Analyze your power with SmartPower

Run Place
Select this option to run the placer during Layout. By default, it reflects the current Layout state. If you have
not run Layout before, Run Place is selected by default. If your design has already been placed but not
routed, this box is cleared by default. You can also select the following incremental placement options.
• Incrementally: Select to use previous placement data as the initial placement for the next place run.
• Lock Existing Placement (fix): Select to preserve previous placement data during the next

incremental placement run.

Incremental options apply to the entire design. For more detailed control of the placer behavior (such as, to
fix placement of a portion of the design), use the MultiView Navigator tools or set fixed attributes on the
placed instances via PDC constraint files.

Run Route
Select to run the router during Layout. By default, it reflects the current Layout state. If you have not run
Layout before, Run Route is checked. Run Route is also checked if your previous Layout run completed with
routing failures. If your design has been routed successfully, this check box is cleared.
• Incrementally: Select to fully route a design when some nets failed to route during a previous run. You

can also use it when the incoming netlist has undergone an ECO. (Engineering Change Order).
Incremental routing should only be used if a low number of nets fail to route (less than 50 open nets or
shorted segments). A high number of failures usually indicates a less than optimal placement (if using
manual placement through macros, for example) or a design that is highly connected and does not fit
in the device. If a high number of nets fail, relax constraints, remove tight placement constraints,
deactivate timing-driven mode, or select a bigger device and rerun Layout. Also, see the Advanced
Layout options for your device.

Place and Route - SmartFusion2

Libero User's Guide 103

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

There is no "Fix" option for the router. In incremental mode the router tries to preserve the existing routing;
there is no guarantee that it will be preserved. Therefore the timing characteristics of the previously routed
portion of the design may change, even if the placement was fixed for that portion of the design. The chance
of this is quite small, and the router will print the list of nets that have fixed terminals (i.e. those nets whose
every pin's macro has the placement FIX attribute).

Use Multiple Passes
Select to run layout multiple times with different seeds. Multiple Pass Layout attempts to improve layout
quality by selecting from a greater number of layout results. Click Configure to set your Multiple Pass
Configuration.
Click the Advanced button to set Timing-Driven options.

Place and Route - SmartFusion2
Timing-Driven

Select this option to run Timing-Driven Place and Route. The primary goal of timing-driven Place and Route
is to meet timing constraints, specified by you or generated automatically. Timing-driven Place and Route
typically delivers better performance than Standard.
If you do not select Timing-driven Place and Route, software uses default settings. The default Place and
Route targets efficient usage of the chip resources. Chip performance is not optimized. Timing constraints
are not considered by the software in standard mode, although a delay report based on delay constraints
entered in SmartTime can still be generated for the design. This is helpful to determine if timing-driven Place
and Route is required.
If your design has multiple scenarios, you can select a scenario from the pull-down list to perform timing
driven Place and Route.

Power-Driven
Select this option to run Power-Driven Layout. The primary goal of power-driven layout is to reduce dynamic
power while still maintaining timing constraints.
To get the most out of Power-Driven Layout:

1. Enter maximum delay, minimum delay, setup, and hold constraints in SmartTime constraint editor or
in the SDC file.

2. Set false paths on any paths that have a constraint, but do not need one (this will help layout meet the
constraints that are needed).

3. Perform Place and Route with Timing-Driven checked.
4. Resolve worst case setup and maximum delay violations.
5. Generate an SDF back-annotation file.
6. Perform a post layout back-annotated simulation using this SDF file, and export a VCD (Value Change

Dump) file that will capture real activities for each net.
7. Import this VCD file in Designer using the Import Auxiliary option from the File menu.
8. Perform Place and Route with Timing-Driven and Power-Driven checked. Run Place and Route.
9. Verify that your timing constraints are still met with SmartTime.

10. Analyze your power with SmartPower.

High Effort Layout
This option turns on netlist optimizations to obtain better performance. Layout runtime will increase when
this option is selected. You can also combine this option with the Multi-Pass mode to achieve the best
possible performance.
In the regular flow the compile step in Designer would modify the netlist to make use of efficient resources
on the chip, such as global networks and special macros. When the High Effort Layout option is turned on,
the placer could further change the mapping of the logic components, preserving the original functionality of
the design. The changed netlist is then used in all post-layout Designer tools including back-annotation.

104 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

The names and types of the combinational core logic primitives may change. All other logic cells (such as
registers, memory, I/Os or clocks) or combinational logic primitives that are assigned a physical constraint
(locked at a location, assigned to a region, or part of a block component), referred in a timing constraint, or
have a preserve property, will remain unchanged.

Incremental Layout
Choose Incremental Layout to use previous placement data as the initial placement for the next run. Note
that you should use Incremental Layout only if a low number of nets fail to route (less than 50 open nets or
shorted segments). A high number of failures usually indicates a less than optimal placement (if using
manual placement through macros, for example) or a design that is highly connected and does not fit in the
device. If a high number of nets fail, relax constraints, remove tight placement constraints, deactivate timing-
driven mode, or select a bigger device and rerun Place and Route.

SmartFusion, IGLOO, ProASIC3 and Fusion Place and Route
Advanced Options

To set these advanced options during Layout, click Advanced in the Layout dialog box. The Advanced
Layout options are only available in timing-driven Layout mode.

High Effort Layout Mode
This option turns on netlist optimizations to obtain better performance. Layout runtime will increase when
this option is selected. You can also combine this option with the Multi-Pass mode to achieve the best
possible performance.
In the regular flow the compile step in Designer would modify the netlist to make use of efficient resources
on the chip, such as global networks and special macros. When the High Effort Layout option is turned on,
the placer could further change the mapping of the logic components, preserving the original functionality of
the design. The changed netlist is then used in all post-layout Designer tools including back-annotation.
The names and types of the combinational core logic primitives may change. All other logic cells (such as
registers, memory, I/Os or clocks) or combinational logic primitives that are assigned a physical constraint
(locked at a location, assigned to a region, or part of a block component), referred in a timing constraint, or
have a preserve property, will remain unchanged.
When the Lock Existing Placement option is also turned on, the placer runs in regular effort mode.
Note: Note: If you change the High Effort Setting you must rerun Place and Route to complete Layout.

Sequential Optimization
Applies to SmartFusion, Fusion, ProASIC3/E/L and IGLOO/E families only.
This option turns on optimization of sequential cells in the High Effort Layout mode. This typically enables
register retiming without disturbing timing latency. The names of registers may change unless they are
assigned a physical constraint (locked at a location, assigned to a region, or part of a block component),
referred in a timing constraint, or have a preserve property. Other restrictions may also apply.
The following cases are excluded from sequential optimization:
• Registers that have any timing constraint other than global FMAX, TSU (setup time) or TCO (clock to

out). Registers referred by multi-cycle or exception timing constraints are not moved.
• Registers that feed asynchronous control signals on another register.
• Registers feeding the clock of another register.
• Registers feeding a register in another clock domain.
• Registers that are fed by a register in another clock domain.
• Registers connected to PLL.
• Registers that have PDC attribute “preserve”, assigned a physical constraint (locked at a location,

assigned to a region, or part of a block component).

SmartFusion, IGLOO, ProASIC3 and Fusion Place and Route Advanced Options

Libero User's Guide 105

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

• Both registers in a direct connection from input I/O-to-register-to-register if both registers have the
same clock and the first register does not fan out to anywhere else. These registers are considered
synchronization registers.

• Both registers in a direct connection from register-to-register if both registers have the same clock, the
first register does not fanout anywhere else, and the first register is fed by another register in a
different clock domain. These registers are considered synchronization registers.

Router

Repair Minimum Delay Violations
With this option selected, layout will perform an additional route that will attempt to repair paths that have
minimum delay and hold time violations. This is done by increasing the length of routing paths and inserting
routing buffers to add delay to paths. Since placement will remain unchanged and no additional tiles or
modules will be inserted, the amount of delay inserted is limited. As a result, this function is best suited to
repair paths with small (0 to 3 ns) hold and minimum delay violations. Paths with large violations will likely
improve, but for a complete repair of these paths, manual placement or source code modification may be
necessary. Every effort will be made to avoid creating max-delay timing violations on worst case paths.
To get the most out of repair minimum delay violations:

1. Enter max-delay, min-delay, setup and hold constraints in SmartTime's constraint editor or in SDC.
2. Set false paths on any paths that have a constraint, but do not need one (this will help layout to meet

the constraints that are needed).
3. Perform Layout with Timing Driven, Run Place, Run Route and optionally Run incrementally

enabled.
4. Resolve worst case setup and max-delay violations before running minimum delay violations repair.
5. After worst case max-delay timing is resolved, evaluate timing in SmartTime’s Timing Analyzer in

minimum delay analysis mode to check for hold time and minimum delay violations.
6. Run repair minimum delay violations with incremental route enabled.

The repair minimum delay violations tool will attempt to fix all hold time and minimum delay violations
by lengthening routing delay paths and inserting routing buffers. As delay is added to paths, worst
case max-delay timing is verified to avoid creating new max-delay timing violations. Designer will
report the worst minimum slack and the number of violating paths in the log window. In some cases,
additional improvement can occur by running repair minimum delay violations multiple times with Run
Incrementally enabled.

7. Perform both maximum and minimum delay timing analysis to check the timing. Manual placement or
source code modification may be necessary to repair all minimum delay violations.

8. After making placement or source code changes, run incremental route and repair minimum delay
violations, and then analyze timing again.

Additional Factors
Runtime may vary greatly with the number of paths that need repair, the number of nets in those paths, and
the resources available for the tool to insert delay. Over-constraining paths will increase runtime, but will not
likely improve results .
The tool will only work on paths that have min delay and hold time constraints. However, other paths that
share common nets to the constrained paths may be inadvertently affected.
It is recommended to run minimum delay violations repair with incremental route. This will ensure that paths
which do not have minimum delay violations are preserved.
Repair will be performed on:
• Register to register paths where both registers are on the same global or non-global clock
• Register to register paths where the registers are on different clock networks and a minimum delay

constraint exists
• Input to register, register to output, clock to out, input to output paths with minimum delay or hold

constraint.

You may select programmable input delays to increase delay on input to register paths for devices that
support the feature.

106 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Restore Defaults
Click Restore Defaults to run the factory default settings for Advanced options.

Simulate - Opens ModelSim AE
The back-annotation functions are used to extract timing delays from your post layout data. These extracted
delays are put into a file to be used by your CAE package’s timing simulator. The default simulator for Libero
SoC is ModelSim AE. You can change your default simulator in your Tool Profile.
If you wish to perform pre-layout simulation: In the Design Flow Window, under Verify Pre-Synthesized
design, double-click Simulate.

To perform timing simulation:
1. If you have not done so, back-annotate your design and create your testbench.
2. Right-click Simulate (in Design Flow window, Implement Design > Verify Post-Synthesis

Implementation > Simulate) and choose Organize Input Files > Organize Source Files from the
right-click menu.

In the Organize Files for Source dialog box, all the stimulus files in the current project appear in the Source Files in the Project list
box. Files already associated with the block appear in the Associated Source Files list box.

In most cases you will only have one testbench associated with your block. However, if you want simultaneous association of
multiple testbench files for one simulation session, as in the case of PCI cores, add multiple files to the Associated Source Files list.

To add a testbench: Select the testbench you want to associate with the block in the Source Files in the Project list box and click
Add to add it to the Associated Source Files list.

To remove a testbench: To remove or change the file(s) in the Associated Source Files list box, select the file(s) and click Remove.

To order testbenches: Use the up and down arrows to define the order you want the testbenches compiled. The top level-entity
should be at the bottom of the list.

3. When you are satisfied with the Associated Simulation Files list, click OK.
4. To start ModelSim AE, right-click Simulate in the Design Hierarchy window and choose Open

Interactively. ModelSim starts and compiles the appropriate source files. When the compilation
completes, the simulator runs for 1 µs and the Wave window opens to display the simulation results.

5. Scroll in the Wave window to verify the logic works as intended. Use the cursor and zoom buttons to
zoom in and out and measure timing delays. If you did not create a testbench with WaveFormer Pro,
you may get error messages with the vsim command if the instance names of your testbench do not
follow the same conventions as WaveFormer Pro. Ignore the error message and type the correct vsim
command.

6. When you are done, from the File menu, choose Quit.

Generate Back Annotated Files - SmartFusion2 Only
Generates Back Annotated (post-layout) files for your design.
Post-layout files include:
• *ba.sdf - Standard Delay Format for back-annotation to the simulator.
• *ba.vhd - AFL flattened netlist used exclusively for back-annotated timing simulation. May contain low

level macros not immediately recognizable to you; these were added by the software to improve your
design performance.

To generate a post-layout file, in the Design Flow window click Implement Design and double-click
Generate Back Annotated Files.
Right-click Generate Back Annotated Files and choose Configure Options to open the Generate Back
Annotated Files Options dialog box.
Simulator Language Type - Set your simulator language type according to your design.

Export Back Annotated Files

Libero User's Guide 107

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Timing: Export enhanced min delays for best case - Exports your enhanced min delays to include your
best-case timing results in your Back Annotated file.

Export Back Annotated Files
Libero SoC uses post-layout files for back-annotated timing simulation.
Post-layout files include:
• *ba.sdf - Standard Delay Format for back-annotation to the simulator.
• *ba.vhd - AFL flattened netlist used exclusively for back-annotated timing simulation. May contain low

level macros not immediately recognizable to you; these were added by the software to improve your
design performance.

To generate a post-layout file, in the Design Flow window click Implement Design and double-click Export
Back Annotated Files.
If you wish to export the Back Annotated simulation model with options that are different than the default,
right-click Export Back Annotated Simulation Model and choose Open Interactively.

Generate Fabric Programming Data - SmartFusion2 Only
Generates programming data for your design. This operation is completed automatically as the last step if
you use the Build button.
When the process is complete a green check appears next to the operation in the Design Flow window and
information messages appear in the Log window (shown in the figure below).

Figure 38 · Generate Fabric Programming Data (Complete)

108 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Device Programming

Default Programming Data is generated automatically as part of the Libero SoC push-button design flow.
To generate your programming data with custom settings via FlashPoint, expand Implement Design, right-
click Generate Programming Data and choose Open Interactively.
FlashPoint enables you to generate other programming files, such as DirectC files (*.dat), IEEE 1532 files
(*.bsd, *.isc), programming data files (*.pdb), or Serial Vector Files (*.svf).
You must have completed your design to generate your programming (*.stp or STAPL) file.
SmartFusion, IGLOO, ProASIC3 and Fusion devices use the FlashPoint program file generator to create a
programming file. The FlashPoint interface enables the advanced security features in all three device
families.

See Also
Generate a DAT file

Programming Connectivity and Interface - SmartFusion2 Only
In the Libero SoC Design Flow window expand Edit Design Hardware Configuration and double-click
Programming Connectivity and Interface to open the Programming Connectivity and Interface window.
The Programming Connectivity and Interface window displays the physical chain from TDI to TDO.
The Programming Connectivity and Interface view enables the following actions:
Construct Chain Automatically - Attempts to automatically construct the chain from the physical chain
connected to the programmer

Manual Chain Construction Buttons
• Add Microsemi Device – Add a Microsemi Device to the chain
• Add Non-Microsemi Device – Add a non-Microsemi Device to the chain
• Add Microsemi Devices From Files – Add a Microsemi Device from a programming file
• Delete Selected Device – Delete selected devices in the grid
• Scan and Check Chain – Scan the physical chain connected to the programmer and check if it

matches the chain constructed in the grid
• Zoom In – Zoom into the grid
• Zoom Out – Zoom out of the grid

Hover Information
The device tooltip displays the following information if you hover your pointer over a device in the grid:
• Device - Device name
• Name - Editable field for a user-specified device name. If you have two or more identical devices in

your chain you can use this field to give them unique names.
• File - Path to programming file
• ID - The unique ID location within the chain
• IR Length - Device instruction length
• Max TCK (MHz) - Maximum clock frequency to program a specific device; FlashPro uses this

information to ensure that the programmer operates at a frequency lower than the slowest device in
the chain

Programmer Settings - SmartFusion2 Only

Libero User's Guide 109

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Device Chain Details
The device within the chain has the following details:
• Enable Device - Select to enable the device for programming; enabled devices are green, disabled

devices are gray.
• Name - Displays your specified device name.
• File - Path to programming file.

Right-Click Properties
• Enable Device - Select to enable the device for programming; enabled devices are green, disabled

devices are gray.
• HIGH-Z - Sets disabled Microsemi SoC SmartFusion2 devices in the chain to HIGH-Z (tri-states all the

I/Os) during chain programming of enabled Microsemi devices in the daisy chain (Not supported for
Libero SoC target design device)

• Configure Device – Ability to reconfigure the device (for a Libero SoC target device the dialog
appears but only the device name is editable)

• Load Programming File – Load programming file for selected device (Not supported for Libero SoC
target design device)

• Enable Serial - Select to enable serialization when you have loaded a serialization programming file
(not supported in software version 11.0)

• Serial Data - Opens the Serial Settings dialog box; enables you to set your serialization data.
• Select Program Procedure/Actions (Not supported for Libero SoC target design device):

• Actions - List of programming actions for your device.

• Procedures - Advanced option; enables you to customize the list of recommended and
optional procedures for the selected Action.

Programmer Settings - SmartFusion2 Only
In the Libero SoC Design Flow window expand Edit Design Hardware Configuration and double-click
Programmer Settings to view the name, type, and port. The dialog box displays information about your
programmer if it is connected.

Figure 39 · Programmer Settings for Connected Programmer

Click Edit Programmer Settings to view the Programmer Settings Dialog box. It enables you to set specific
voltage and force TCK frequency values for your programmer.

110 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 40 · Programmer Settings Dialog Box

The Programmer Settings dialog box includes setting options for FlashPro4/3/3X, FlashPro Lite and
FlashPro.
Set the TCK setting in your PDB/STAPL file by selecting the TCK frequency in the Programmer Settings
dialog box. TCK frequency limits by programmer:
• FlashPro supports 1-4 MHz
• FlashPro Lite is limited to 1, 2, or 4 MHz only.
• FlashPro4/3/3X supports 1-4 MHz.

TCK frequency limits by target device:
• IGLOO, ProASIC3, Fusion, SmartFusion and SmartFusion2 – 10MHz to 20MHz
• ProASICPLUS and ProASIC – 10 MHz.
During execution, the frequency set by the FREQUENCY statement in the PDB/STAPL file overrides the
TCK frequency setting selected by you in the Programmer Settings dialog box unless you also select the
Force TCK Frequency checkbox.

FlashPro Programmer Settings
Choose your programmer settings for FlashPro (see above figure). If you choose to add the Force TCK
Frequency, select the appropriate MHz frequency. After you have made your selection(s), click OK.

Default Settings

• The Vpp, Vpn, Vdd(l), and Vddp options are checked (Vddp is set to 2.5V) to instruct the FlashPro
programmer(s) to supply Vpp, Vpn, Vdd(l) and Vddp.

• The Driver TRST option is unchecked to instruct the FlashPro programmer(s) NOT to drive the TRST
pin.

• The Force TCK Frequency option is unchecked to instruct FlashPro to use the TCK frequency
specified by the Frequency statement in the STAPL file(s).

FlashPro Lite Programmer Settings
If you choose to add the Force TCK Frequency, select the appropriate MHz frequency. After you have made
your selection(s), click OK.

Default Settings

• The Vpp and Vpn options are checked to instruct the FlashPro Lite programmer(s) to supply Vpp and
Vpn.

Device I/O States During Programming

Libero User's Guide 111

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

• The Driver TRST option is unchecked to instruct the FlashPro Lite programmer(s) NOT to drive the
TRST pin.

• The Force TCK Frequency option is unchecked to instruct the FlashPro Lite to use the TCK frequency
specified by the Frequency statement in the STAPL file(s).

FlashPro4/3/3X Programmer Settings
 For FlashPro3, you have the option of choosing the Set Vpump setting or the Force TCK Frequency. If you
choose the Force TCK Frequency, select the appropriate MHz frequency. For FlashPro4/3X settings, you
have the option of switching the TCK mode between Free running clock and Discrete clocking. After you
have made your selections(s), click OK.

Default Settings

• The Vpump option is checked to instruct the FlashPro3 programmer(s) to supply Vpump to the device.
• The Force TCK Frequency option is unchecked to instruct the FlashPro3 to use the TCK frequency

specified by the Frequency statement in the PDB/STAPL file(s).
• FlashPro3x default TCK mode setting is Free running clock

Device I/O States During Programming
In the Libero SoC Design Flow window expand Edit Design Hardware Configuration and double-click
Device I/O states during programming to specify the I/O states prior to programming. In Libero SoC, this
feature is only available once Layout is completed.
The default state for all I/Os is Tri-state.

To specify I/O statues during programming:
1. Sort the pins as desired by clicking any of the column headers to sort the entries by that header.

Select the I/Os you wish to modify (as shown in the figure below).
2. Set the I/O Output state. You can set Basic I/O settings if you want to use the default I/O settings for

your pins, or use Custom I/O settings to customize the settings for each pin. See the Specifying I/O
States During Programming - I/O States and BSR Details help topic for more information on setting
your I/O state and the corresponding pin values. Basic I/O state settings are:

• 1 – I/O is set to drive out logic High

• 0 – I/O is set to drive out logic Low

• Last Known State: I/O is set to the last value that was driven out prior to entering the
programming mode, and then held at that value during programming

• Z - Tri-State: I/O is tristated

112 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 41 · I/O States During Programming Window

6. Click OK to save your settings.

Note: NOTE: I/O States During programming will be used during programming or when exporting
programming files.

Security Features Frequently Asked Questions
The following Frequently Asked Questions address the most common queries related to managing and
programming SmartFusion2 Security Features.

I have configured the Security Policy Manager and enabled security in my design but I do not want to program my design
with the Security Policy Manager features enabled. What do I do?

Go to Programming Features and un-check Security.
What is programmed when I click Program Device?

All features configured in your design and enabled in the Programming Features tool. Any features you have
configured (such as eNVM or Security) are enabled for programming by default.

When I click Program Device is the programming file encrypted?

All programming files are encrypted. To generate programming files encrypted with UEK1 or UEK2 you must
generate them from Export Programming File for field updates.
Note: NOTE: Once security is programmed, you must erase the security before attempting to reprogram the

security.
How do I generate encrypted programming files with User Encryption Key 1/2?

• Configure the Security Policy Manager and specify a User Key Set 1 and User Key Set 2 (User Key
Set 2 is available if you select Field Update Broadcast mode). Ensure the Security programming
feature is enabled in Programming Features; it is enabled by default once you configure the Security
Policy Manager.

• Export Programming File from Handoff Design for Production - <filename>_uek1.(stp/svf/spi/dat) and
<filename>_uek2.(stp/svf/spi/dat) files are encrypted with UEK1 and UEK2 respectively. See Security
Programming File Descriptions below for more information on programming files.

Security Programming Files

Libero User's Guide 113

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

What are Security Programming Files?

See the Security Programming Files topic for more information.

Security Programming Files
Export Programming File (expand Handoff Design for Production in the Design Flow window) creates the
following files:
<filename>_master.(stp/svf/spi/dat) - Created when Program Security and Design at Trusted Facility use
model is specified in the Security Policy Manager. This is the master programming file; it includes all
programming features enabled, User Key Set 1, User Key Set 2 (optionally if specified), and your security
policy settings.
<filename>_security_only_master.(stp/svf/spi/dat) – Created when Program Security at Trusted Facility
and Design at untrusted facility use model is specified in the Security Policy Manager. Master security
programming file; includes User Key Set 1, User Key Set 2 (optionally if specified), and your security policy
settings.
<filename>_uek1.(stp/svf/spi/dat) – Programming file encrypted with User Encryption Key 1 used for field
updates; includes all your features for programming except security .
<filename>_uek2.(stp/svf/spi/dat) – Programming file encrypted with User Encryption Key 2 used for field
updates; includes all your features for programming except security.

Security Policy Manager (SPM)
Expand Configure Security and Programming Options, double-click Security Policy Manager to
customize the security settings in your design.
In this dialog box you can set your Secured Programming Use Model, User Key Entry and Security Policies.
The security settings can be implemented in three different Production Programming locations.

Note: You must complete Place and Route prior to setting security using Security Policy Manager.

Figure 42 · Security Policy Manager Dialog Box (Partial)

Production Programming Location

Program Security and Design at trusted facility – Your design and security are programmed in a trusted
facility.

114 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Program Security at trusted facility and Design at un-trusted facility – Security is programmed at a
trusted location and your design is programmed at an untrusted location. The Design bitstream is encrypted
with a User Encryption Key (UEK).
Program Security and Design at un-trusted facility - Security and design are both programmed at an
untrusted location.

Field Update Mode

Broadcast - Generic field design update intended for all users. User Encryption Key 1 (UEK1) or User
Encryption Key 2 (UEK2) can be utilized for this update, as long as either key is common for all devices.
Targeted - An additional update feature that can be used to update the design data for a subset of the
customer database.

Configuring User Keys

There are two sets of user keys:
• User Key Set 1 (UPK1, UEK1) is selected by default. User Passkey 1 (UPK1) protects the User

Encryption Key 1 (UEK1) and all user security policy settings.
• User Key Set 2 (UPK2, UEK2) is an optional set of keys. These keys are available only if an update

option is specified; click the checkbox to enable it.
Project Key for broadcast update and Unique Key for targeted update
Note that User Pass Key 2 (UPK2) protects only User Encryption Key 2 (UEK2).

Security Policies

Update Policy - Sets your Fabric, eNVM and Back Level protections. See the Update Policy topic for more
information.
Debug Policy - Enables and sets your Debug Pass Key and debug options. See the Debug Policy topic for
more information.
Protocol Policy - Configures the programming protocol to enable or disable. See the Programming Protocol
Policy topic for more information.
Operational Integrity Policy - Enables you to check the Digest on power-up for Fabric and eNVM0. See
the Operational Integrity Policy topic for more information.

Update Policy - Programming
This dialog box enables you to specify Components that can be updated in the field, and their field-update
protection parameters.
 Choose your protection options from the drop-down menus; click the appropriate checkbox to set your
programming protection preferences.

Fabric update protection

• Erase/Write/Verify protected by UPK1 - Select this option to require UPK1 to erase, write, or verify the
Fabric.

• Open for encrypted update with for UEK1 or UEK2 - Encrypted update is allowed with either UEK1 or
UEK2 (if enabled).

• Custom

Custom

• OTP - One time programmable; you cannot reprogram the Fabric again.
• Protect Write/Erase by Pass Key - Select this option to require a UPK1 to write or erase your fabric.
• Protect Verify by Pass Key - Select this option to require a UPK1 to verify your fabric.

Note: SmartFusion2 always enforces encrypted programming, whether or not the Fabric/eNVM is protected
by UPK1.

eNVM update protection

Erase/Write protected by UPK1 - Select this option to require UPK1 to erase or write to eNVM.

Debug Security Policy

Libero User's Guide 115

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Custom

• OTP - eNVM is one time programmable; you cannot reprogram the eNVM.
• Protect Write/Erase by Pass Key - Select this option to require a passkey to write or erase your eNVM.
• Protect Verify/Read by Pass Key - Select this option to require a passkey to read and verify your

eNVM through the JTAG/SPI-Slave.
Back Level protection - If enabled, this provides bitstream replay protection. The BACKLEVEL value limits
the design versions that the device can update. So, only programming bistreams with DESIGNER >
BACKLEVEL are allowed for programming.

Protect Programming Interface with Pass Key

These settings protect the following programing interfaces with UPK1:

• Auto Programming
• Cortex M3 IAP
• JTAG
• SPI Slave

For more technical information on the Protect Programming Interface with Pass Key option see the
SmartFusion2 Programming User's Guide.
Permanent Security - Permanently secures all security settings.
 Note: The dialog box informs you of the security settings and features that are no longer reprogrammable.

Debug Security Policy
Debug Security Policy is disabled in this release.

Protocol Policy
Protect programming protocols with UPK1. If a programming protocol is disabled, then UPK1 is required to
program with that programming protocol.
Two protocols can be disabled:

• User Encryption Key 1
• User Encryption Key 2

If both protocols are disabled then device update is impossible.

Operational Integrity Policy
Add digest calculation and verification on power-up. Only features in the design can be selected. The
available features are:
• Fabric
• eNVM

Note: NOTE: Only clients with Use as ROM selected are included in this check. Verify/Read eNVM must
not be protected by UPK1 within the Update Policy to enable eNVM digest check.

Programming Features
Enables you to select which options you wish to program. Only features that have been added to your
design are available for programming. For example, you cannot select eNVM for programming if you do not
have an eNVM in your design.

http://www.microsemi.com/soc/documents/SmartFusion2_Programming_UG.pdf

116 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 43 · Programming Features Dialog Box

Updated features only (not supported in this release) - Updates only the features that have changed since
your last programming.
Selected features - Updates the features you select, regardless of whether or not they have changed since
your last programming.

Update eNVM Memory Content
Double-click Update eNVM Memory Content to open the dialog box and modify your eNVM content.
The Update eNVM Memory Content dialog box enables you to change your eNVM content for programming
without having to rerun Compile and Place and Route. It is useful if you have reserved space in the eNVM
configurator within the MSS for firmware development. Use the eNVM Memory Content dialog box when you
have completed your firmware development and wish to incorporate your updated MEM file into the project.
If you import your memory file into a project that has completed Place and Route you do not have to rerun
Compile or Place and Route - you can program or export your programming file directly.
Click the checkbox in the Program column to enable or disable programming for each eNVM user client.
Click the Browse button in the Update Content column to change the memory file for a specific client.
The dialog box displays updated memory files in red text.

Click the Reset button in the Update Content column to return to the original file.

Figure 44 · Update eNVM Memory Content Dialog Box

Program Device
If you have a device programmer connected you can double-click Program Device to execute your
programming in batch mode with default settings.

SmartFusion2 Programming - Default Settings

Libero User's Guide 117

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

If your programmer is not connected, or if your default settings are invalid, the Reports view lists the error(s).

See Also
Right-click menu options for Program Device

SmartFusion2 Programming - Default Settings
To view your default settings, from the Project menu choose Project Settings.
To program your SmartFusion2 device with default settings:

1. Create a Libero Soc project using any SmartDesign component. For example, you can create a project
using a SmartDesign component, such as a simple fabric module and a MSS block with Flash Memory
module (eNVM).

2. Click the Build button to complete Synthesis, Place and Route and program the device with default
settings. The default settings do not contain any security settings; use the Security Policy Manager
(SPM) to manage your settings prior to programming your device.

SmartFusion2 Programming - Custom Settings
Custom Programming Settings enable you to build the JTAG chain, define programmer settings, set I/O
states during programming and run scan chain.

1. To create a JTAG chain, in the Design Flow window expand Edit Design Hardware Configuration,
right-click Programming Connectivity and Interface and choose Open Interactively. It opens a
schematic view of the devices connected in a JTAG chain; all the devices are targeted by default.

The Programming and Connectivity Interface detects and constructs the JTAG chain automatically. Use the interface to add
devices manually.

When you add Microsemi devices you can either load the STP or PDB file or add the device from a drop-down list. You must
provide the IR length and Max TCK frequency OR load the BSDL file for non-Microsemi devices.

2. Right-click Programmer Settings and choose Open Interactively to view your programmer settings.
If necessary, click Edit Programmer Settings to specify custom settings for your programmer.

3. Right-click Device I/O States During Programming and choose Open Interactively to open the
Specify I/O States During Programming dialog box and set your device I/O states. Click OK to save
your settings and continue.

4. Expand Configure Security, right-click Security Policy Manager and choose Open Interactively to
specify your Secured Programming Use Model, User Key Entry and Security Policies.

Exit Codes
Exit

Code
Exit Message Possible

Cause
Possible Solution

0 Passed (no error) - -

5 Invalid, corrupted
bitstream

Unstable
voltage level

Signal integrity
issues on JTAG
pins

Monitor related power supplies that
cause the issue during programming;
check for transients outside of
Microsemi specifications. See your
device datasheet for more information
on transient specifications.

Monitor JTAG supply pins during
programming; measure JTAG signals
for noise or reflection

Failed to set
programming
voltage

Device is busy

Failed to read

118 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Exit
Code

Exit Message Possible
Cause

Possible Solution

design information

Failed to enter
programming mode

Failed to set
programming mode

Failed to read
programming
information

6 Failed to verify
IDCODE

Incorrect
programming
file

Incorrect device
in chain

Signal integrity
issues on JTAG
pins

Choose the correct programming file
and select the correct device in the
chain.

Measure JTAG pins and noise for
reflection. If TRST is left floating then
add pull-up to pin.

Reduce the length of Ground
connection.

10 Authentication
Error - See
Authentication
Error Codes

If Authentication
Error is not
displayed, see
Error Codes

-35 Failed to unlock
User Pass Key 1

Pass key in file
does not match
device

Provide a programming file with a pass
key that matches pass key
programmed into the device

Failed to unlock
User Pass Key 2

SmartFusion2 Programming Authentication Error Codes
(AUTHERRCODE)

The table below lists authentication error codes for SmartFusion2 devices.
Errors related to programming failures (ERRORCODE errors) are summarized in SmartFusion2
Programming Error Codes.

Table 3 · SmartFusion2 Programming Authentication Error Codes

AUTHERRCODE Description Possible Cause Possible Solution

0 Passed (no
error)

- -

SmartFusion2 Programming Authentication Error Codes (AUTHERRCODE)

Libero User's Guide 119

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

AUTHERRCODE Description Possible Cause Possible Solution

1, 2 Invalid,
corrupted
bitstream

Programming file has
been corrupted

Regenerate
programming file

3 Invalid, corrupt
encryption key

File contains an
encrypted key that
does not match the
device

File contains user
encryption key, but
device has not been
programmed with the
user encryption key

Device has user
encryption key 1/2
enforced and you are
attempting to
reprogram security
settings

Provide a programming
file with an encryption
key that matches that on
the device

First program security
with master programming
file, then program with
user encryption 1/2 field
update programming files

You must first ERASE
security with the master
security file, then you can
reprogram new security
settings

4 Invalid,
corrupted
bitstream

Programming file has
been corrupted

Regenerate the
programming file

5 Back level not
satisfied

Design version is not
higher than the back-
level programmed
device

Generate a programming
file with a design version
higher than the back
level version

7 DSN binding
mismatch

DSN specified in
programming file does
not match the device
being programmed

Use the correct
programming file with a
DSN that matches the
DSN of the target device
being programmed

8 Invalid,
corrupted
bitstream

Programming file has
been corrupted

Regenerate the
programming file

9 Insufficient
device
capabilities

Device does not
support the capabilities
specified in
programming file

Generate a programming
file with the correct
capabilities for the target
device

10 Incorrect
DEVICEID

Incorrect programming
file

Incorrect device in
chain

Signal integrity issues
on JTAG pins

Choose the correct
programming file and
select the correct device
in chain

Measure JTAG pins and
noise or reflection. If
TRST is left floating, then
add pull-up to pin

120 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

AUTHERRCODE Description Possible Cause Possible Solution

Reduce the length of
ground connection

11 Unsupported
bitstream
protocol
version

Old programming file Generate programming
file with latest version of
Libero SoC

12 Verify not
permitted on
this bitstream

SmartFusion2 Programming Error Codes (ERRORCODE)
The table below lists authentication error codes for SmartFusion2 devices.
Errors related to authentication failures are summarized in SmartFusion2 Programming Authentication Error
Codes.

Table 4 · SmartFusion2 Programming Error Codes

ERRORCODE Description

0 Passed (no error)

1 Fabric verification failed

2 Device security prevented operation

3 Programming mode not enabled

4 eNVM programing operation failed

5 eNVM verify operation failed

Programming File Actions - SmartFusion2
Libero SoC enables you to program security settings, FPGA Array, and eNVM features for SmartFusion2
device support. You can program these features separately using different programming files or you can
combine them into one programming file.

Table 5 · Programming File Actions

Action Description

PROGRAM Programs all selected family features: FPGA Array,
targeted eNVM clients, and security settings.

VERIFY Verifies all selected family features: FPGA Array,
targeted eNVM clients, and security settings.

ERASE Erases the selected family features: FPGA Array
and Security settings.

Export Programming Files - SmartFusion2

Libero User's Guide 121

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Action Description

DEVICE_INFO Displays the IDCODE, the design name, the
checksum, and device security settings and
programming environment information programmed
into the device.

READ_IDCODE Reads the device ID code from the device

ENC_DATA_AUTHENTICATOIN Encrypted bitstream authentication data.

Options Available in Programming Actions
The table below shows the options available for specific programming actions.

Table 6 · Programming File Actions - Options

Action Option and Description

PROGRAM DO_VERIFY - Enables or disables programming verification

Export Programming Files - SmartFusion2
Export Programming Files enables you to export STAPL, DAT, SPI and SVF programming files. Go to
Programming Features to change the features selected for programming.
To generate a STAPL file with default settings, in the Libero SoC Design Flow window expand Handoff
Design for Production and double-click Export Programming File.

To modify your programming file settings before you export:
1. Right-click Export Programming File and choose Configure Options. The Export Programming File

Options dialog box opens.
2. Choose your options, such as DAT file if you wish to include support for Embedded ISP, or SPI file if

you need support for IAP.
3. Enter your Programming file name and click OK.

122 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 45 · Export Programming File Options Dialog Box

Limit File Size

Some testers may have memory size restrictions for a single SVF file. The SVF limit file option enables you
to limit the size of each SVF file by either file size or vectors.

The generated SVF files append an index to the file name indicating the sequence of files. The format is:

 <SVF_filename>_XXXXX.svf

where XXXXX is the index of the SVF file. The first SVF file begins with <SVF_filename>_00000.svf and increments by 1 until
file generation is complete.

Maximum file size: Max file size limit for the SVF file; use this option to limit your SVF file size based on number of kB.

Maximum number of vectors: Max vector limit for the SVF file; use this option to limit the size of your SVF based on number of
vectors.

Programming features – Lists which programming features will be included in the exported programming
files.
Note: NOTE: SPI master files will not include the Security programming feature.

Programming File Types

STAPL Files
The Standard Test And Programming Language (STAPL) is designed to support the programming of
programmable devices and testing of electronic systems, using the IEEE Standard 1149.1: “Standard Test
Access Port and Boundary Scan Architecture” (commonly referred to as JTAG) interface. As a STAPL file is
executed, signals are produced on the IEEE 1149.1 interface, as described in the STAPL file. STAPL
operates on a single IEEE 1149.1 chain. STAPL supports the programming of any IEEE 1149.1-compliant
programmable device.
STAPL has support for programming and test systems with user interface features. A single STAPL file may
perform several different functions, such as programming, verifying, and erasing a programmable device.

DAT Files
Export a DAT file if you want to include support for the features listed in the dialog box.

SmartFusion2 Programming Tutorial

Libero User's Guide 123

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

SPI File
Export SPI (serial peripheral interface) file if you want to include support for the features listed in the dialog
box.

SVF Files
Courtesy Serial Vector Format Specification from ASSET InterTech, 1999:
Serial Vector Format (SVF) is the media for exchanging descriptions of high-level IEEE 1149.1 bus
operations. In general, IEEE 1149.1 bus operations consist of scan operations and movements between
different stable states on the IEEE 1149.1 state diagram. SVF does not explicitly describe the state of the
IEEE 1149.1 bus at every Test Clock.
The SVF file is defined as an ASCII file that consists of a set of SVF statements. The maximum number of
characters on a line is 256, although one SVF statement can span more than one line. Each statement
consists of a command and associated parameters. Each SVF statement is terminated by a semicolon. SVF
is not case sensitive.

SmartFusion2 Programming Tutorial
The SmartFusion2 Programming Tutorial describes the basic steps for SmartFusion2 programming.
Only the bold steps in the Design Flow window are required to complete and program your design. Note that
the bold steps are completed automatically if you use the Build button.

1. MSS Configuration - eNVM
eNVM configuration enables you to configure eNVM as a ROM so that it can be included in the eNVM
digest calculations.
Data Security Configuration controls which masters have access to which memory region within the MSS.

2. Generate Fabric Programming Data
Generates the map and DCA file; it does not generate the programming file.

3. Edit Design Hardware Configuration
Configures Device I/O States During Programming.

4. Configure Security and Programming Options

• Security Policy Manager
• Programming Features
• Update eNVM Memory Content

5. Program Design
Configure Actions/Procedures (sets programming options) and programs your device.

5. Handoff Design for Production

• Export Programming File

• Export BSDL

MSS Configuration - eNVM

eNVM Configuration
You must create a MSS to configure your eNVM.
eNVM configuration enables you to configure eNVM as a ROM so that it can be included in the eNVM digest
calculations. To do so:

124 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

1. Open your MSS and double-click the eNVM block to open the eNVM configuration dialog box, as
shown in the figure below.

Figure 46 · eNVM Configuration Dialog Box

The example design shown in the figure above already has a Data Storage Client.

2. Double-click the Data Storage Client to open the Modify Data Storage Client dialog box, as shown
in the figure below.

Figure 47 · Modify Data Storage Client Dialog Box - Use as ROM Selected

3. Click Use as ROM (as shown in the figure above) to configure the memory region as a ROM and
include the eNVM digest calculations.

4. Click OK in the Modify Data Storage Client dialog box to continue.
5. Click OK in the eNVM Configuration dialog box to return to the MSS.

Generate Fabric Programming Data - SmartFusion2 Only

Libero User's Guide 125

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Enable Data Security
The Data Security Configuration controls which masters have access to which memory region within the
MSS. To configure your data security:
Double-click the Security block in the MSS to open the MSS Security Policies Configurator, as shown in
the figure below.

Figure 48 · MSS Security Policies Configurator

Masters are listed on the left, Slaves are shown at the top. All Masters have access to all Slaves by default;
click to enable or disable Read/Write access for specific Masters and Slaves.
Restrict your Master/Slave Read/Write access according to your preference and click OK to continue.

Generate Fabric Programming Data - SmartFusion2 Only
Generates programming data for your design. This operation is completed automatically as the last step if
you use the Build button.
When the process is complete a green check appears next to the operation in the Design Flow window and
information messages appear in the Log window (shown in the figure below).

126 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 49 · Generate Fabric Programming Data (Complete)

Edit Design Hardware Configuration - Device I/O States During
Programming

You can configure your FPGA I/Os while the device is being programmed using Device I/O States During
Programming.
In the Design Flow window, expand Edit Design Hardware Configuration and double-click Device I/O
States During Programming.
The Device I/O States During Programming dialog box appears.
Click a value in the I/O State (Output Only) column to set your I/O State options according to your
preference, as shown in the figure below.

Figure 50 · Set I/O State

Configure Security Policy Manager

Libero User's Guide 127

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Configure Security Policy Manager
To configure your security settings, expand Configure Security and Programming Options and double-
click Security Policy Manager. This opens the Security Policy Manager dialog box, as shown in the figure
below.

Figure 51 · Security Policy Manager Dialog Box (Partial)

The Security Policy Manager has scenarios that enable security settings based on your likely needs.
Choose the scenario that best describes your process. Note that you can further customize each security
option individually after you select your scenario.
Field Update Mode enables you to program all devices with a single key (Broadcast) or program individual
devices with unique keys (Targeted).
Click the Generate Key button to generate a new User Pass Key (UPK) or User Encryption Key (UEK).
User Key Set 2 is available only if you are using a Field Update Mode.
After you create your User Keys you can set your Security Policies. Note that each Security Policy can be
enabled or disabled any time by clicking the Use checkbox underneath it.
Click Update Policy to open the Update Policy dialog box. The Update Policy dialog box enables you to set
your Fabric and eNVM Update Protection, as shown in the figure below.
Back Level protection limits how many versions back a design can be programmed. For example, if you are
on version 5 of a design and want to enable programming only back to version 4 you can set that option
here.
Protect your Programming Interface with a pass key according to your design preferences. This requires a
UPK1 match in order to utilize the protected programming interface.
Click Permanent Security to make the security settings permanent (they cannot be modified once
programmed). After you configure your settings click OK to continue.

128 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 52 · Update Policy Dialog Box

Click Protocol Policy to open the Protocol Policy dialog box, as shown in the figure below.
Protocol policy allows you to disable programming protocols. Click the checkbox adjacent to your User
Encryption Key to disable it. If a programming protocol is disabled, then UPK1 is required to program with
that programming protocol.

Figure 53 · Protocol Policy Dialog Box

Click Operational Integrity Policy to open the Operational Integrity Policy dialog box. Click the checkbox to
Check Digest on Power Up (as shown in the figure below).
Note: NOTE: eNVM is only enabled if the feature has been configured, at least 1 client has Use as ROM

selected, and eNVM verify/read is NOT protected by pass key within the update policy.

Figure 54 · Operational Integrity Policy Dialog Box

Click OK to save your policies and proceed.

Programming Features
Expand Configure Security and Programming Options and double-click Programming Features to open the
Programming Features dialog box, as shown in the figure below.

Update eNVM Memory Content

Libero User's Guide 129

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 55 · Programming Features Dialog Box

You can program your Security, Fabric, eNVM or any combination.
Features (Security, Fabric, eNVM) are enabled for programming by default when you add them to your
design. If you manually disable a feature in this dialog box then you must re-enable it here if you want it
included during programming.

Update eNVM Memory Content
Double-click Update eNVM Memory Content to open the dialog box and modify your eNVM content.
The Update eNVM Memory Content dialog box enables you to change your eNVM content for programming
without having to rerun Compile and Place and Route. It is useful if you have reserved space in the eNVM
configurator within the MSS for firmware development. Use the eNVM Memory Content dialog box when you
have completed your firmware development and wish to incorporate your updated MEM file into the project.
If you import your memory file into a project that has completed Place and Route you do not have to rerun
Compile or Place and Route - you can program or export your programming file directly.
Click the checkbox in the Program column to enable or disable programming for each eNVM user client.
Click the Browse button in the Update Content column to change the memory file for a specific client.
The dialog box displays updated memory files in red text.

Click the Reset button in the Update Content column to return to the original file.

Figure 56 · Update eNVM Memory Content Dialog Box

Program Design - Program Device
Expand Program Design and double-click Program Device to program your device with default settings, as
shown in the figure below.

130 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 57 · Program Device in the Design Flow Window

Right-click Program Device and choose from the following menu options:

• Clean and Run All - Cleans all tools, deletes all reports and output files and runs through
programming. All logs will be updated with new files.

• Clean - deletes only reports and output files associated with the Program Device; the other tool files
and reports are unaffected.

• Configure Actions/Procedures - Enables you to set the specific Action you wish to program. Select
your programming action from the dropdown menu.

Handoff Design for Production
In order to handoff your design for production you must export a programming file or generate a BSDL file.

Export Programming File
Expand Handoff Design for Production and double-click Export Programming File to create a file that
you can use to program your part.
Right-click Export Programming file to:
• Run - Same as double-click behavior; exports your device programming file for production.
• Clean and Run All - Removes all data and output from tools run previously and runs back through to

the current step.
• Clean - Cleans the output for the current tool.
• Configure Options - Opens the Export Programming File Options dialog box. It enables you to

choose your Programming file type (STAPL, DAT, SPI, SVFJ), create a unique Programming file name
and view your Programming features. The exported files are listed below; note that <filename>_master
and <filename>_security_master_only are NOT exported for the SPI file type.

When the file is exported successfully a green check appears next to Export Programming File in the Design
Flow Window (as shown in the figure below).

Handoff Design for Production

Libero User's Guide 131

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 58 · Export Programming File Complete (Design Flow Window)

The file is exported to the directory <project>/designer/<project_name>/export. Exported programming files
vary depending on whether or not security is specified/enabled for programming and which Programming
Use Model you select.

Security Feature Not Enabled for Programming

Software exports <filename>.stp.
Security Feature Enabled for Programming with the Use Model Program Security and Design at Trusted Facility

• <filename>_master.stp – Master programming file; includes all programming features enabled, User
Key Set 1, User Key Set 2 (if Field Update mode is enabled), and security policy settings.

• <filename>_secured_uek1.stp – Programming file encrypted with User Encryption Key 1 used for field
updates; includes all your selected Programming Features except Security

• <filename>_secured_uek2.stp (if Field Update mode is enabled) – Programming file encrypted with
User Encryption Key 2 used for field updates; includes all Programming Features except Security

Security feature Enabled for Programming with the Use Model Program Security at Trusted Facility and Design at
Untrusted Facility

• <filename>_security_only_master.stp - Master programming file ; includes User Key Set 1, User Key
Set 2 (if Field Update mode is enabled), and Security Policy settings.

• <filename>_secured_uek1.stp – Programming file encrypted with User Encryption Key 1 used for field
updates; includes all selected Programming Features except Security

• <filename>_secured_uek2.stp (optionally, if Field Update mode is enabled) – Programming file
encrypted with User Encryption Key 2 used for field updates; includes all your selected Programming
Features except Security

132 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 59 · Export Programming File Options Dialog Box

Export BSDL File
Double-click Export BSDL File to generate a BSDL file for your project.
Right-click Export BSDL File and choose Clean and Run All to remove all data and output from tools run
previously and rerun the Design Flow up through this point.

Programming SmartFusion in the Libero SoC
Double-click Program Device to create a programming file (if necessary) and program your device with
default settings.
Right-click Program Device and choose Open Interactively to open FlashPro.

Generate a Programming File in FlashPoint

Libero User's Guide 133

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Generating Programming Files

Generate a Programming File in FlashPoint
FlashPoint enables you to program security settings, FPGA Array, and FlashROM features for IGLOO,
ProASIC3, SmartFusion, Fusion family devices. You can program these features separately using different
programming files or you can combine them into one programming file. Each feature is listed as a silicon
feature in the GUI.
Note: You can generate a programming file with one, two, or all of the silicon features from the

Programming File Generator first page.

To generate a programming file:
1. Select the Silicon feature(s) you want to program.

• Security settings
• FPGA Array
• FlashROM

Figure 60 · Programming File Generator – Step 1 of 2

Note: Note: When FlashPoint is invoked for the first time, after netlist files are imported and the design
is in post-layout state, the software retrieves the FlashROM and EFM blocks configuration files
from the imported netlists and imports the configuration files. Otherwise, you need to import
configuration files.

2. Click the Programming previously secured device(s) check box if you are reprogramming a device
that has been secured.

Because the IGLOO, ProASIC3, SmartFusion, Fusion families enable you to program the Security Settings separately from the
FPGA Array and/or FlashROM, you must indicate if the Security Settings were previously programmed into the target device.
This requirement also applies when you generate programming files for reprogramming.

3. Enter the silicon signature (0-8 HEX characters). See Silicon Signature for more information.

134 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

4. Depending upon the Silicon features you selected, click Next or Finish.

If you click Next, follow the instructions in the appropriate dialog box. If you click Finish, the Generate Programming Files
dialog box appears (as shown in the figure below). Use this dialog box box to specify the programming file name, location, output
format (STAPL file, SVF file, PDB file, DirectC DAT file, 1532 file), and, if necessary, limit the file size (as explained below).

Some testers may have memory size restrictions for a single SVF file. The SVF limit file option enables you to limit the size of
each SVF file by either file size or vectors.

The generated SVF files append an index to the file name indicating the sequence of files. The format is:

 <SVF_filename>_XXXXX.svf

where XXXXX is the index of the SVF file. The first SVF file begins with <SVF_filename>_00000.svf and increments by 1 until
file generation is complete.

Maximum file size: Max file size limit for the SVF file; use this option to limit your SVF file size based on number of kB.

Maximum number of vectors: Max vector limit for the SVF file; use this option to limit the size of your SVF based on number of
vectors.

Figure 61 · Generate Programming Files Dialog Box (Flashpoint)

Programming File Types
The table below summarizes the Microsemi SoC programming file types and programmers.
Unless otherwise noted, listing an individual device indicates the device family and all its derivatives. For
example, IGLOO indicates IGLOO, IGLOOe, IGLOO nano and IGLOO plus. See the Supported Families
topic for more information. See the list of programming file type descriptions below for more details.

Programming File
Type

Device Support Programmer

PDB (*.pdb) See device
specifications

FlashPro 4/3/3x

STAPL (*.stp) FlashPro 4/3/3x, FlashPro Lite, FlashPro,

http://www.actel.com/documents/directc_ug.pdf

Programming File Types

Libero User's Guide 135

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Programming File
Type

Device Support Programmer

Silicon Sculptor III/II

SVF (*.svf) Third party programmer

IEEE 1532 (*.isc or
*.bsd)

Third party programmer

The following programming-related files are required if you use the related functional block elements in your
enabled devices. See the appropriate sections of the FlashPro help for more information on creating these
files.

File Type Device Support Function

FDB (*.fdb) See device specifications Contains your FPGA array data

UFC (*.ufc) Contains your FlashROM data

EFC (*.efc) Contains your Embedded Flash Memory file

PDB Files

A proprietary Microsemi and Actel programming data file.
STAPL Files

The Standard Test And Programming Language (STAPL) is designed to support the programming of
programmable devices and testing of electronic systems, using the IEEE Standard 1149.1: “Standard Test
Access Port and Boundary Scan Architecture” (commonly referred to as JTAG) interface. As a STAPL file is
executed, signals are produced on the IEEE 1149.1 interface, as described in the STAPL file. STAPL
operates on a single IEEE 1149.1 chain. STAPL supports the programming of any IEEE 1149.1-compliant
programmable device.
STAPL has support for programming and test systems with user interface features. A single STAPL file may
perform several different functions, such as programming, verifying, and erasing a programmable device.

Bitstream Files

Proprietary Microsemi and Actel programming data file.
SVF Files

Courtesy Serial Vector Format Specification from ASSET InterTech, 1999:
Serial Vector Format (SVF) is the media for exchanging descriptions of high-level IEEE 1149.1 bus
operations. In general, IEEE 1149.1 bus operations consist of scan operations and movements between
different stable states on the IEEE 1149.1 state diagram. SVF does not explicitly describe the state of the
IEEE 1149.1 bus at every Test Clock.
The SFV file is defined as an ASCII file that consists of a set of SVF statements. The maximum number of
characters on a line is 256, although one SVF statement can span more htan one line. Each statement
consists of a command and associated parameters. Each SVF statement is terminated by a semicolon. SVF
is not case sensitive.

IEEE 1532 Files

Courtesy ieee.org:
The IEEE 1532 files implement programming capabilities within programmable integrated circuit devices,
utilizing (and compatible with) the 1149.1 communication protocol. This standard allows the programming of
one or more compliant devices concurrently, while mounted on a board or embedded in a system, known as
In-System Configuration.

136 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Generate a Programming File for SmartFusion
You can configure and generate a new PDB file from FlashPoint.
If you are using Single Mode, click Create to add a new PDB, or click Modify to make changes to a loaded
PDB.
In Chain Mode, if you have not already done so, construct a chain and click Create PDB to create a new
PDB for programming, or click Modify PDB to make changes to a loaded PDB.
FlashPoint enables you to specify your security settings and silicon features when you generate your
programming file in SmartFusion. You can specify your FPGA Array, FlashROM, and Embedded Flash
Memory by importing FDB, UFC and EFC files, respectively (as shown in the figure below). If you have
imported a FlashROM and Embedded Flash Memory file you can click Modify to configure these feature
before saving your PDB file.
Click Specify I/O States During Programming to set custom I/O states.
Note: NOTE: You must import an FDB to populate Port Name and Macro Cell columns.

Figure 62 · FlashPoint Programming Settings for SmartFusion

Generate a Programming File for AFS Device Support - Designer Only

Libero User's Guide 137

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Generate a Programming File for CoreMP7/Cortex-M1
Device Support

FlashPoint enables you to program FPGA Array and FlashROM features for CoreMP7/Cortex-M1 devices.
You can program these features separately using different programming files or you can combine them into
one programming file. Each feature is listed as a silicon feature in the GUI. You can generate a programming
file with one, two, or all of the silicon features from the Programming File Generator first page. For
CoreMP7/Cortex-M1 device support, you cannot select your own security settings. The generated
programming file always has the encrypted FPGA Array content. The programming file generation is the
same as the ProASIC3 family devices.

To generate a programming file:

1. Select the Silicon feature(s) you want to program.

FPGA Array

FlashROM

2. Click Next or Finished depending on the silicon features you selected.

If you click Next, follow the instructions in the appropriate dialog box. If you click Finish, the Generate
Programming Files dialog box appears. Use this dialog box box to specify the programming file name, location, and
output format (STAPL file, SVF file, PDB file, DirectC DAT file, 1532 file).

For more information on DAT files, refer to the Data File Generator (DatGen) section of the DirectC User's Guide.

CoreMP7/Cortex-M1 Device Security
CoreMP7/Cortex-M1 devices are shipped with the following security enabled:

• FPGA Array enabled for AES encrypted programming and verification.

• FlashROM enabled for plain text read and write.

You cannot select your own security settings. The generated programming file includes the encrypted
FPGA Array content.

Programming FlashROM and FPGA Array
For CoreMP7/Cortex-M1 device support, the programming generation for FlashROM and FPGA Array is the
same as the programming generation for ProASIC3 and ProASIC family devices.

Generate a Programming File for AFS Device Support - Designer
Only

FlashPoint enables you to program Security Settings, FPGA Array, Embedded Flash Memory Blocks, and
FlashROM features for AFS device support. You can program these features separately using different
programming files or you can combine them into one programming file. Each feature is listed as a silicon
feature in the GUI. You can generate a programming file with one, two, or all of the silicon features from the
Programming File Generator first page.

http://www.actel.com/documents/directc_ug.pdf

138 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

AFS Programming
In addition to FPGA Array, FlashROM and security setting, the Fusion devices provide Embedded Flash
Memory
Blocks (FB) for both Analog configuration initialization and regular memory storage. Depending on the
targeted AFS device, you may have one, two, or four FBs available to you. FlashPoint enables you to
initialize the FB Instance(s), as desribed in the Embedded Flash Memory help.

To generate a programming file:
1. Select the Silicon feature(s) you want to program.

Security Settings

FPGA Array

FlashROM

Embedded Flash Memory Block

Figure 63 · FlashPoint- Programming File Generator for AFS

Note: Note: Check the check box in the Program column to enable block modification.
2. Check the Programming previously secured devices(s) box if you want to program previously

secured devices.
3. Enter the Silicon signature.
4. Depending upon the Silicon features you selected, click Finish or Next.

If you click Next, follow the instructions in the appropriate dialog box. If you click Finish, the Generate Programming Files
dialog box appears. Use this dialog box box to specify the programming file name, location, and output format (STAPL file, SVF
file, PDB file, DirectC DAT file, 1532 file).

For more information on DAT files, refer to the Data File Generator (DatGen) section of the DirectC User's Guide.

http://www.actel.com/documents/directc_ug.pdf

Generate a Programming File for Serialization Support in In House Programming (IHP)

Libero User's Guide 139

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Programming Security Settings, FlashROM, and FPGA Array
For AFS device support, the programming generation for Security Settings, FlashROM and FPGA Array is
the same as the programming generation for ProASIC3 family devices.

Generate a Programming File for Serialization Support in In House
Programming (IHP)

FlashPoint allows you to program security settings, FPGA Array, and FlashROM features for IGLOO,
ProASIC3, SmartFusion, Fusion family devices. You can program these features separately using different
programming files or you can combine them into one programming file. Each feature is listed as a silicon
feature in the GUI.

SVF Serialization Support in IHP
In addition to FPGA Array, FlashROM, and security setting, FlashPoint supports generating SVF files with
serialization support in IHP.

To generate SVF with serialization support:
1. Select the Silicon feature(s) you want to program.

• Security settings

• FPGA Array

• FlashROM

• Programming Embedded Flash Memory Block

2. Import the UFC file which contains serialization data to FlashROM. Click Next.
3. Type in the number of devices to program (as shown in the figure below).

Figure 64 · Type Number of Devices

4. Click Target Programmer and select Actel IHP.

140 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 65 · Select Actel IHP

5. Click OK. The Generate Programming Files window appears (as shown in the figure below). Select
Serial Vector Files (*.svf).

Select Serial Vector Files

6. Click Generate. An Actel-specific SVF file will be generated with a corresponding serialization data file.

Note: Note: Generated SVF files will only work with IHP.

Creating a Programming Database (PDB) File in Designer

Libero User's Guide 141

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Creating a Programming Database (PDB) File in Designer
The programming database (PDB) file supports SmartFusion, IGLOO, ProASIC3 and Fusion devices only.
This allows reconfiguration of the security settings, FlashROM, FPGA Array, and Embedded Flash Memory
Blocks. You create the file in Designer using FlashPoint and you modify the file in FlashPro.
You must create programming files for SmartFusion in FlashPro; see the Generate a Programming File for
SmartFusion topic for more information.

1. From the Designer main window, click the Programming File button. This brings up FlashPoint (see
figure below).

Figure 66 · FlashPoint Programming File Generator - PDB File

2. Select the silicon feature(s) to be programmed: Security Settings, FPGA array, FlashROM, and
Embedded Flash Memory Block. If you are programming a previously secured device, check the
Programming previously secured device(s) and enter the silicon signature.

3. Click Finish to create the PDB file.

See Also
Configuring security and FlashROM settings in FlashPro
Configuring security settings in FlashPro
Configuring FPGA array settings
Configuring FlashROM settings in FlashPro
Configuring Embedded Flash Memory Block settings in FlashPro

Programming Embedded Flash Memory Block
For more information about the Embedded Flash Memory Block, see the Flash Memory System Builder
online help.

To program the Embedded Flash Memory Block:
1. Check the Program box to enable Embedded Flash Memory Block modification.

http://www.actel.com/documents/asb_flashrom_nvm_ug.pdf

142 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

2. Click the Modify button to import Embedded Flash Memory Block configuration and memory content.

The Modify Embedded Flash Memory Block dialog box appears.

Figure 67 · Modify Embedded Flash Memory Block Content Dialog Box

3. Click the Import Configuration File button (if available) to import the Embedded Flash Memory Block
configuration and memory content from the EFC file. This will populate the client table below. All
clients that belong to this block will be selected by default.

4. Click the Import content button if you want to change the client memory content.
5. Click OK.

Note: Note: FlashPoint audits original configuration and memory content files and warns you if the files
cannot be located or if they have been updated.

Programming the FlashROM
You can program selected memory pages and specify the region values of the FlashROM.
• Single STAPL file for all devices: generates one programming file with all the generated increment

values or with values in the custom serialization file.
• One STAPL file per device: generates one programming file for each generated increment value or

for each value in the custom serialization file.
1. Select your target Programmer type.

• Select Generic STAPL Player when generating STAPL files for generic STAPL players.

• Select Silicon Sculptor II, BP Auto Programmer, or FlashPro4/3x/3 when generating
programming files for those programmers.

• Select Actel IHP (In House Programming) when generating STAPL or SVF files for
Microsemi SoC (formerly Actel) IHP.

2. Click OK.
FlashPoint generates your programming file.

Note: Note: You cannot change the FlashROM region configuration from FlashPoint. You can only change
the configuration from the FlashROM core generator.

For more information, click the Help button in FlashROM.

To program FlashROM:
1. Select FlashROM from the Generate Programming File page.
2. Enter the location of the FlashROM configuration file. The FlashROM Settings page appears (see

figure below).

Programming the FlashROM

Libero User's Guide 143

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 68 · FlashROM Settings

3. Select the FlashROM memory page that you want to program.

4. Enter the data value for the configured regions.

5. If you selected the region with a Read From File, specify the file location.

6. If you selected the Auto Increment region, specify the Start and Max values.

Enter the number of devices you want to program.

Select your target Programmer Type.

Select Programmer

7. Click Finish.
FlashPoint generates your programming file.

Note: Note: You cannot change the FlashROM region configuration from FlashPoint. You can only
change the configuration from the FlashROM core generator.

144 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Silicon Signature
With Libero SoC tools, you can use the silicon signature to identify and track Microsemi designs and
devices. When you generate a programming file, you can specify a unique silicon signature to program into
the device. This signature is stored in the design database and in the programming file, and programmed
into the device during programming.
The silicon signature is accessible through the USERCODE JTAG instruction.
Note: Note: If you set the security level to high, medium, or custom, you must program the silicon signature

along with the Security Setting. If you have already programmed the Security Setting into the target
device, you cannot reprogram the silicon signature without reprogramming the Security Setting.

Note: The previously programmed silicon signature will be erased if:
• You have already programmed the silicon signature and
• You are programming the security settings, but you do not have an entry in the silicon signature field

Programming Security Settings
FlashPoint allows you to set a security level of high, medium, or none (SmartFusion uses radio buttons and
the option Clear Security instead of None).

To program Security Settings on the device:
1. If you choose to program Security Settings on the device from the Generate Programming File page,

the wizard takes you to the Security Settings page.

Your Security Settings page depends on your family.

2. Set the security level for FPGA and FlashROM (see the table below for a description of the security
levels).

Table 7 · FPGA and FROM Security Settings

Security
Level

Security Option Description

High Protect with a 128-bit
Advanced Encryption
Standard (AES) key
and a Pass Key

Access to the device is protected by an AES Key
and the Pass Key.
The Write and Verify operations of the FPGA
Array use a 128-bit AES encrypted bitstream.
 From the JTAG interface, the Write and Verify
operations of the FlashROM use a 128-bit AES
encrypted bitstream. Read back of the
FlashROM content via the JTAG interface is
protected by the Pass Key.
Read back of the FlashROM content is allowed
from the FPGA Array.

Medium Protect with Pass Key The Write and Verify operations of the FPGA
Array require a Pass Key.
From the JTAG interface, the Read and Write
operations on the FlashROM content require a
Pass Key. You can Verify the FlashROM content
via the JTAG interface without a Pass Key.
Read back of the FlashROM content is allowed
from the FPGA Array.

None No security The Write and Verify operations of the FPGA
Array do not require keys.
The Read, Write, and Verify operations of the
FlashROM content also do not require keys.

Custom Security Levels

Libero User's Guide 145

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Security
Level

Security Option Description

This option is available for SmartFusion; to
choose it, de-select the Security Settings
checkbox.

Note: Note: When a Device is programmed with a Pass key and AES key, only the Pass key is required
for reprogramming since re-entering the correct Pass key unlocks the bits that restrict programming
to require AES encryption and also unlocks the bits that prohibit reprogramming altogether (if
locked); thus both plaintext and encrypted programming are [re-] enabled.

3. Enable eNVM client JTAG protection - Enables eNVM client JTAG protection in
the event you have not set Medium or High security. Enables you to protect specific
clients with a user pass key and then leave others unprotected. This can be
advantageous if you want to protect your IP, but give another user access to the rest of
the eNVM for storage. You can also set custom security levels for your eNVM.

4. Enter the Pass Key and/ or the AES Key as appropriate. You can generate a random
key by clicking the Generate random key button.

The Pass Key protects all the Security Settings for the FPGA Array and/or FlashROM.
The AES Key decrypts FPGA Array and/or FlashROM programming file content. Use the AES Key if you
intend to program the device at an unsecured site or if you plan to update the design at a remote site in the
future.

You can also customize the security levels by clicking the Custom Level button. For more information, see
the Custom Security Levels section.
To change or disable your security keys you must run the ERASE_SECURITY action code. This erases your
security settings and enables you to generate the programming file with new keys and reprogram, or to
generate a programming file that has no security key.

Custom Security Levels
For advanced use, you can customize your security levels.

To set custom security levels:
1. Click the Custom Level button in the Security Settings page. The Custom Security Level dialog

box appears.
2. Select the FPGA Array Security and the FlashROM Security levels. ForSmartFusion and Fusion

devices, you can also choose the Embedded Flash Memory Block level of security. The FPGA Array
and the FlashROM can have different Security Settings. See the tables below for a description of the
custom security option levels for FPGA Array and FlashROM.

Table 8 · FPGA Array

Security Option Description

Lock for both writing and verifying

Allows
writing/erasing
and verification
of the FPGA
Array via the
JTAG interface

146 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Security Option Description

only with a
valid Pass
Key.

Lock for writing

Allows the
writing/erasing
of the FPGA
Array only with
a valid Pass
Key.
Verification is
allowed
without a valid
Pass Key.

Use the AES Key for both writing and verifying

Allows the
writing/erasing
and verification
of the FPGA
Array only with
a valid AES
Key via the
JTAG
interface. This
configures the
device to
accept an
encrypted
bitstream for
reprogramming
and verification
of the FPGA
Array. Use this
option if you
intend to
complete final
programming
at an
unsecured site
or if you plan
to update the
design at a
remote site in
the future.
Accessing the
device security
settings
requires a valid
Pass Key.

Allow write and verify

Allows
writing/erasing
and verification
of the FPGA
Array with
plain text

Custom Security Levels

Libero User's Guide 147

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Security Option Description

bitstream and
without
requiring a
Pass Key or an
AES Key. Use
this option
when you
develop your
product in-
house.

Note: Note: The ProASIC3 family FPGA Array is always read protected regardless of the Pass Key or the
AES Key protection.

Table 9 · FlashROM

Security Option Description

Lock for both reading and writing

Allows the
writing/erasing
and reading of
the FlashROM
via the JTAG
interface only
with a valid
Pass Key.
Verification is
allowed
without a valid
Pass Key.

Lock for writing

Allows the
writing/erasing
of the
FlashROM via
the JTAG
interface only
with a valid
Pass Key.
Reading and
verification is
allowed
without a valid
Pass Key.

Use the AES Key for both writing and verifying

Allows the
writing/erasing
and verification
of the
FlashROM via
the JTAG
interface only
with a valid
AES Key. This
configures the
device to

148 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Security Option Description

accept an
encrypted
bitstream for
reprogramming
and verification
of the
FlashROM.
Use this option
if you complete
final
programming
at an
unsecured site
or if you plan
to update the
design at a
remote site in
the future.
Note: The
bitstream that
is read back
from the
FlashROM is
always
unencrypted
 (plain text).

Allow reading, writing, and verifying

Allows
writing/erasing,
reading and
verification of
the FlashROM
content with a
plain text
bitstream and
without
requiring a
valid Pass Key
or an AES
Key.

Note: The FPGA Array can always read the FlashROM content regardless of these Security Settings.
Table 10 · Embedded Flash Memory Block

Security Option Description

Lock for reading, verifying, and writing

Allows the
writing and
reading of the
Embedded
Flash Memory
Block via the
JTAG interface
only with a
valid Pass

Custom Security Levels

Libero User's Guide 149

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Security Option Description

Key.
Verification
accomplished
by reading
back and
compare.

Lock for writing

Allows the
writing of the
Embedded
Flash Memory
Block via the
JTAG interface
only with a
valid Pass
Key. Reading
and verification
is allowed
without a valid
Pass Key.

Use AES Key for writing

Allows the
writing of the
Embedded
Flash Memory
Block via the
JTAG interface
only with a
valid AES Key.
This configures
the device to
accept an
encrypted
bitstream for
reprogramming
of the
Embedded
Flash Block.
Use this option
if you complete
final
programming
at an
unsecured site
or if you plan
to update the
design at a
remote site in
the future. The
bitstream that
is read back
from the
Embedded
Flash Memory
Block is always
unencrypted

150 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Security Option Description

 (plain text),
when a valid
pass key is
provided.

Allow reading, writing, and verifying

Allows writing,
reading and
verification of
the Embedded
Flash Memory
Block content
with a plain
text bitstream
and without
requiring a
valid Pass Key
or an AES
Key.

3. To make the Security Settings permanent, select Permanently lock the security settings check box.
This option prevents any future modifications of the Security Setting of the device. A Pass Key is not
required if you use this option.

Note: When you make the Security Settings permanent, you can never reprogram the Silicon
Signature. If you Lock the write operation for the FPGA Array or the FlashROM, you can never
reprogram the FPGA Array or the FlashROM, respectively. If you use an AES key, this key
cannot be changed once you permanently lock the device.

4. (SmartFusion Only) Enable M3 Debugger option enables access to the M3 debugger even if security is
enforced. Select the Enable M3 debugger checkbox if you want to access the M3 debugger after
programming.

5. To use the Permanent FlashLock™ feature, select Lock for both writing and verifying for FPGA
Array and Lock for both reading and writing for FlashROM and select the Permanently lock the
security settings checkbox as shown in the figure below. This will make your device one-time-
programmable.

Custom Security Level

Reprogramming a Secured Device

Libero User's Guide 151

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

6. Click the OK button. The Security Settings page appears with the Custom security settings
information as shown in the figure below.

Figure 69 · Security Settings

Reprogramming a Secured Device
You must know the previous Security Settings of the device before you can reprogram a device with
Security Settings.

To program a secured device:
1. In the Generate Programming File window, click the Programming previously secured devices(s)

check box (see figure below).

152 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 70 · Generate Programming File

2. Specify the previously programmed security setting for the FlashROM and/or the FPGA Array. To
generate a programming file for encrypted programming please ensure that the Security settings
checkbox is unchecked.

3. If you programmed the device with a custom security level, click the Custom Level button to open the
Custom security dialog box, and select the Security Settings for the FPGA Array or the FlashROM
that you programmed (see figure below).

Custom Serialization Data for FlashROM Region

Libero User's Guide 153

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 71 · Security Settings

4. Enter the previously programmed Pass Key and/or the AES Key.
5. Click Finish.

Note: Note: Enter the AES Key only if you want to perform encrypted programming.

Programming a Secured SmartFusion Device
After you create a PDB you may wish to export a programming file for a secured device. To do so:

1. Create a PDB file (as explained above) with security set to High or Medium. Save the PDB file.
2. From the File menu, choose Export Single Programming File. The Export Programming Files dialog

box appears.
3. Click the Export programming file(s) for currently secured device checkbox. This exports

programming files for devices that already have security settings programmed.
4. Choose your outputs and enter your output file Name and Location.
5. Click Export to create the file(s). Your updated secured programming files are in the directory you

specified.

Custom Serialization Data for FlashROM Region
FlashPoint enables you to specify a custom serialization file as a source to provide content for programming
into a Read from file FlashROM region. You can use this feature for serializing the target device with a
custom serialization scheme.

To specify a FlashROM region:
1. From the Properties section in the FlashROM Settings page, select the file name of the custom

serialization file (see figure below). For more information on custom serialization files, see Custom
Serialization Data File Format.

154 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 72 · FlashROM Settings

2. Select the FlashROM programming file type you want to generate from the two options below:

• Single programming file for all devices option: generates one programming file with all the values in the custom
serialization file.

• One programming file per device: generates one programming file for each value in the custom serialization file.

3. Enter the number of devices you want to program.
4. Click the Target Programmer button.
5. Select your target Programmer type.
6. Click OK.

Custom Serialization Data File Format
FlashPoint supports custom serialization data files that specify the data in binary, HEX, decimal, or ASCII
text. The custom serialization data files may contain multiple data with the Line Feed (LF) character as the
delimiter. You can create a file by entering serialization data into any type of text editor. Depending on the
serialization data format (hex, ASCII, binary, decimal), input the serialization data according to the size of
the region you specified in the FlashROM settings page.

Semantics
 Each custom serialization file has only one type of data format (binary, decimal, Hex or ASCII text). For
example, if a file contains two different data formats (i.e. binary and decimal) it is considered an invalid file.
The length of each data file must be shorter or equal to the selected region length. If the data is shorter then
the selected region length, the most significant bits shall be padded with 0’s. If the specified region length is
longer then the selected region length, it is considered an invalid file.
The digit / character length is as follows:
-Binary digit: 1 bit

-Decimal digit: 4 bits

-Hex digit: 4 bits

-ASCII Character: 8 bits

Note: Note the standard example below:
If you wanted to use, for example, device serialization for three devices with serialization data 123, 321, and
456, you would create file name from_read.txt. Each line in from_read.txt corresponds to the serialization
data that will be programmed on each device. For example, the first line corresponds to the first device to be
programmed, the second line corresponds to the second device to be programmed, and so on.

Hex serialization data file example
The following example is a Hex serialization data file for a 40-bit region. Enter the serialization data below
into file created by any text editor:
123AEd210

AeB1

0001242E

Custom Serialization Data File Format

Libero User's Guide 155

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Note: Note: If you enter an invalid Hex digit such as 235SedF1, an error occurs. An error will also occur if
you enter data that is out of range, i.e. 4300124EFE.

The following is an example of programming "AeB1" into Region_7_1 located on page 7, from Word 5 to
Word 1 in the FlashROM settings page. See Custom serialization data for FlashROM region for more
information.

 Table 15 ... Word 5 Word 4 Word 3 Word 2 Word 1 Word 0

Page 7 00 00 00 AE B1 ...

Binary serialization data file example
The following example is a binary serialization data file for a 16-bit region:
1100110011010001
100110011010011

11001100110101111 (This is an error: data out of range)

1001100110110111

1001100110110112 (This is an error: invalid binary digit)

Decimal serialization data file example
The following example is a decimal serialization data file for a 16-bit region:
65534

65535

65536 (This is an error: data out of range)

6553A (This is an error: invalid decimal digit)

Text serialization data file example
The following example is a text serialization data file for a 32-bit region:
AESB

A)e

ASE3 23 (This is an error: data out of range)

65A~

1234

AEbF

Syntax
Indentations in the syntax below indicate a wrapped line. If a line wraps and is not indented, then it should
appear on one line; you may need to expand your help window to view the syntax correctly.
Custom serialization data file =

 <hex region data list> | <decimal region data list> |

 <binary region data list> | <ascii text data list>

Hex region data list = <hex data> <new line> { < hex data> <new line> }

Decimal region data list = <decimal data> <new line> {<decimal data><new line> }

Binary region data list = <binary data> <new line> { <binary data> <new line> }

ASCII text region data list = < ascii text data> <new line> { < ascii text data> <new
line> }

hex data = <hex digit> {<hex digit>}

decimal data = < decimal digit> {< decimal digit>}

binary data = < binary digit> {< binary digit>}

ASCII text data = <ascii character> {< ascii character >}

new line = LF

156 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

binary digit = ‘0’|‘1’

decimal digit = ‘0’|‘1’|‘2’|‘3’|‘4’|‘5’|‘6’|‘7’|‘8’| ‘9’

hex digit = ‘0’|‘1’|‘2’|‘3’|‘4’|‘5’|‘6’|‘7’|‘8’|‘9’|‘A’|‘B’|‘C’|‘D’ | ‘E’| ‘F’ |

 ‘a’| ‘b’ | ‘c’| ‘d’ | ‘e’| ‘f’

ascii character = characters from SP(0x20) to‘~’(0x7E).

Specifying I/O States During Programming
In Libero SoC, the I/O states can be set prior to programming, and held at the set values during
programming. In Libero SoC, this feature is only available once layout is completed.

1. From the Designer GUI, click the Modify I/O States During Programming button. The Programming
File Generator window appears.

2. Click the Specify I/O States During Programming button to display the Specify I/O States During
Programming dialog box.

3. Sort the pins as desired by clicking any of the column headers to sort the entries by that header.
Select the I/Os you wish to modify (as shown in the figure below).

4. Set the I/O Output state. You can set Basic I/O settings if you want to use the default I/O settings for
your pins, or use Custom I/O settings to customize the settings for each pin. See the Specifying I/O
States During Programming - I/O States and BSR Details help topic for more information on setting
your I/O state and the corresponding pin values. Basic I/O state settings are:

• 1 – I/O is set to drive out logic High

• 0 – I/O is set to drive out logic Low

• Last Known State: I/O is set to the last value that was driven out prior to entering the
programming mode, and then held at that value during programming

• Z - Tri-State: I/O is tristated

Figure 73 · I/O States During Programming Window

6. Click OK to return to the FlashPoint – Programming File Generator window.

Note: NOTE: I/O States During programming are saved to the ADB and resulting programming files
after completing programming file generation.

Custom I/O Settings and Boundary Scan Registers

Libero User's Guide 157

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Custom I/O Settings and Boundary Scan Registers
Each I/O in your device is comprised of an Input, Output and Output Enable Boundary Scan Register (BSR)
cell..
The BSR cells enable you to define I/O states during programming and control the individual states for each
Input, Output, and Output Enable register.
The Specify I/O States During Programming dialog box enables access to each of these BSR cells for
control over the individual states. You can use the I/O State (Output Only) settings to set a specific output
state and ignore the other values for the individual BSR elements, or you can click the Show BSR Details
checkbox for control over the settings for each Input, Output Enable, and Output as you exit programming.

Specifying I/O States During Programming - I/O States and BSR
Details

The I/O States During Programming dialog box enables you to set custom I/O states prior to programming.

I/O State (Output Only)
Sets your I/O states during programming to one of the values shown in the list below.

• 1 – I/Os are set to drive out logic High
• 0 – I/Os are set to drive out logic Low
• Last Known State: I/Os are set to the last value that was driven out prior to entering the programming

mode, and then held at that value during programming
• Z - Tri-State: I/Os are tristated

When you set your I/O state, the Boundary Scan Register cells are set according to the table below. Use the
Show BSR Details option to set custom states for each cell.

Table 11 · Default I/O Output Settings

Output State Settings

Input Control (Output
Enable)

Output

Z (Tri-State) 1 0 0

0 (Low) 1 1 0

1 (High) 0 1 1

Last_Known_State Last_Known_State Last_Known_State Last_Known_State

Table Key:

• 1 – High: I/Os are set to drive out logic High
• 0 – Low: I/Os are set to drive out logic Low
• Last_Known_State - I/Os are set to the last value that was driven out prior to entering the

programming mode, and then held at that value during programming

Boundary Scan Registers - Enabled with Show BSR Details
 Sets your I/O state to a specific output value during programming AND enables you to customize the values
for the Boundary Scan Register (Input, Output Enable, and Output). You can change any Don't Care value in
Boundary Scan Register States without changing the Output State of the pin (as shown in the table below).
For example, if you want to Tri-State a pin during programming, set Output Enable to 0; the Don't Care
indicates that the other two values are immaterial.

158 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

If you want a pin to drive a logic High and have a logic 1 stored in the Input Boundary scan cell during
programming, you may set all the values to 1.

Table 12 · BSR Details I/O Output Settings

Output State Settings

Input Output Enable Output

Z (Tri-State) Don't Care 0 Don't Care

0 (Low) Don't Care 1 0

1 (High) Don't Care 1 1

Last Known State Last State Last State Last State

Table Key:

• 1 – High: I/Os are set to drive out logic High
• 0 – Low: I/Os are set to drive out logic Low
• Don't Care – Don’t Care values have no impact on the other settings.
• Last_Known_State – Sampled value: I/Os are set to the last value that was driven out prior to entering

the programming mode, and then held at that value during programming

The figure below shows an example of Boundary Scan Register settings.

Figure 74 · Boundary Scan Registers

Specify I/O States During Programming Dialog Box
The I/O States During Programming dialog box enables you to specify custom settings for I/Os in your
programming file. This is useful if you want to set an I/O to drive out specific logic, or if you want to use a
custom I/O state to manage settings for each Input, Output Enable, and Output associated with an I/O.

Specify I/O States During Programming Dialog Box

Libero User's Guide 159

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Load from file
Load from file enables you to load an I/O Settings (*.ios) file. You can use the IOS file to import saved
custom settings for all your I/Os. The exported IOS file have the following format:
• Used I/Os have an entry in the IOS file with the following format:
set_prog_io_state -portName {<design_port_name>} -input <value> -outputEnable <value> -
output <value>

• Unused I/Os have an entry in the IOS file with the following format:
set_prog_io_state -pinNumber {<device_pinNumber>} -input <value> -outputEnable <value> -
output <value>

Where <value> is:
• 1 – I/O is set to drive out logic High
• 0 – I/O is set to drive out logic Low
• Last_Known_State: I/O is set to the last value that was driven out prior to entering the programming

mode, and then held at that value during programming
• Z - Tri-State: I/O is tristated

Save to file
Saves your I/O Settings File (*.ios) for future use. This is useful if you set custom states for your I/Os and
want to use them again later in conjunction with a PDC file.

Port Name
Lists the names of all the ports in your design.

Macro Cell
Lists the I/O type, such as INBUF, OUTBUF, PLLs, etc.

Pin Number
The package pin associate with the I/O.

I/O State (Output Only)
Your custom I/O State set during programming. This heading changes to Boundary Scan Register if you
select the BSR Details checkbox; see the Specifying I/O States During Programming - I/O States and BSR
Details help topic for more information on the BSR Details option.

160 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 75 · I/O States During Programming Dialog Box

Generate a DAT file
DAT files are generated via the Generate Programming Files dialog box.

To access the Generate Programming Files dialog box from Libero SoC and generate a DAT file:

1. In the Design Flow window, expand Implement Design, right-click Generate Programming Data and
choose Open Interactively. This opens Designer.

2. Click Programming File to start FlashPoint.
3. Set your feature and I/O options if necessary. Click Finish. This opens the Generate Programming File

dialog box, as shown in the figure below.

FlashLock®

Libero User's Guide 161

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 76 · Generate Programing Files Dialog Box - DirectC File (*.dat)

4. Set your output file Name and Location.
5. Set your Output Formats to DirectC file (*.dat) and Programming Data File (*.pdb).
6. Click Generate to create your file.

FlashLock®
Microsemi’s SmartFusion devices contain FlashLock circuitry to lock the device by disabling the
programming and readback capabilities after programming. Care has been taken to make the locking
circuitry very difficult to defeat through electronic or direct physical attack.
FlashLock has three security options: No Lock, Permanent Lock, and Keyed Lock.

No Lock
Creates a programming file which does not secure your device.

Permanent Lock
The permanent lock makes your device one time programmable. It cannot be unlocked by you or anyone
else.

Keyed Lock
Within each device, there is a multi-bit security key user key. The number of bits depends on the size of the
device. Once secured, read permission and write permission can only be enabled by providing the correct
user key to first unlock the device. The maximum security key for the device is shown in the dialog box.

Generating Bitstream and STAPL files
Bitstream allows you to generate a STAPL file for IGLOO, ProASIC3, SmartFusion, Fusion devices. Please
consult the Program Files table to find out which file type you should choose.

To generate a STAPL file:
1. From the Tools menu, choose Programming File.
2. Select Bitstream or STAPL from the File Type drop-down list box. Bitstream files are not available for

SmartFusion, IGLOO, ProASIC3 and Fusion devices.
3. FlashLock. Select one of the following options:

162 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

• No Locking: Creates a programming file which does not secure your device.
• Use Keyed Lock: Creates a programming file which secures your device with a FlashLock key. The

maximum security key for the device is shown in the dialog box. The maximum security key for the
device is shown in the dialog box.

• Use Permanent Lock: Creates a one-time programmable device.
4. Click OK. Designer validates the security key and alerts you to any concerns.

Note: Note: The bitstream file header contains the security key.

Export Programming File
Double-click to export your programming file with default settings.
To modify your programming file settings before you export:

1. Right-click Export Programming File and choose Open Interactively. FlashPro opens.
2. From the File menu, choose Export and select your programming file type.
3. Set your options and click OK.

SmartFusion2 Only
To generate a STAPL file, in the Libero SoC Design Flow window expand Handoff Design for Production
and double-click Export Programming File. See the Export Programming Files - SmartFusion2 topic for
more information.

To modify your programming file settings before you export:
1. Right-click Export Programming File and choose Open Interactively. The Configure Programming

File Options dialog box opens.
2. Choose your options, such as DAT file if you wish to include support for Embedded ISP, or SPI file if

you need support for Auto Programming.
3. Set your options and click OK.

Export Pin Report
Double-click Export Pin Report to display the pin report in your Design Datasheet/Report.
The Pin Report lists the pins in your device. Right-click Export Pin Report and choose Configure Options
to select your pin report type. You can generate a report sorted by port name and/or by package pin name,
as shown in the figure below. The Pin Report generates two files:
• <design>_pinrpt_name.rpt - Pin report sorted by name.
• <design>_pinrpt_number.rpt - Pin report sorted by pin number.

 You must select at least one report.
Export Pin Report also generates a Bank Report by default; the filename is <design>-bankrpt.rpt.

Figure 77 · Export Pin Report Dialog Box

Export BSDL File

Libero User's Guide 163

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Export BSDL File
Double-click Export BSDL File (in the Libero SoC Design Flow window, Handoff Design for Production >
Export BSDL File) to generate the BSDL File report to your Design Datasheet/Report.
The BSDL file provides a standard file format for electronics testing using JTAG. It describes the boundary
scan device package, pin description and boundary scan cell of the input and output pins. BSDL models are
available as downloads for many Microsemi SoC devices; see the Microsemi website for more information.

Export IBIS Model
Double-click Export IBIS Model (in the Libero SoC Design Flow window, Handoff Design for Production >
Export IBIS Model) to generate the IBIS Model report to your Design Datasheet/Report.
The IBIS model report provides a standard file format for recording parameters like driver output impedance,
rise/fall time, and input loading, which may then be used by any software application.
See the IBIS model application note for more information on IBIS models.

Develop Firmware - Write Application Code
You must set your default third party software IDE profile and other options in the Tool Profiles dialog box
(as shown in the figure below) in order to use Write Application Code.

Figure 78 · Add Software IDE Tool in Tool Profiles Dialog Box

The generation of your root design automatically generates your firmware drivers and your software IDE
workspace. Two projects are created based on the software toolchain selected in your Tools Profile. When
you invoke the Write Application Code tool from your design flow the software IDE automatically opens the
workspace with both projects.
The software projects are:
• hardware_platform - This project contains all the firmware and hardware abstraction layers that

correspond to your hardware design. This project is configured as a library and is referenced by your
application project. The contents of this folder get over-written every time you regenerate your root
design in Libero SoC.

• application - This project produces a program and results in the binary file. It links with the
hardware_platform project. From your application you can reference the header files of any hardware
peripherals in the hardware_platform projct because all the include paths have been setup to work
right out of the box. This folder does not get overwritten when you regenerate your root design in
Libero SoC. This is where you can write your own main.c and other application code, as well as add
other user drivers and files.

The benefit of separating your embedded projects into an _app and _hw_platform project enables you to
better manage the files generated by Libero SoC vs your own firmware and application code.
Keep your user firmware files and application files in the _app project as this will be maintained upon each
re-generation.
To build your workspace, make sure you have both the hw_platform and _app projects set to the same
compile target (Release or Debug) and build both projects.
Run Write Application Code to open your projects in a third-party development tool, such as SoftConsole,
Keil or IAR.

http://www.actel.com/download/bsdl/default.aspx
http://www.actel.com/documents/Ibis_AN.pdf

164 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Command Line
If your tool does not support adding any external tools, then you can invoke Libreo SoC directly from the
command line and pass these values as arguments, for example:
libero.exe "PROJECT_LOCATION:C:/Project" "DESIGN_NAME:MyMSS" "STARTED_BY:Keil"

Version Support
Libero SoC v10.0 supports the following versions of third-party development tools:

• SoftConsole v3.3
• IAR v5.4
• Keil v4.14

See Also

Libero SoC Frequently Asked Questions
Running Libero SoC from your Software Tool Chain
Software IDE Integration
View/Configure Firmware Cores

Running Libero SoC from your Software Tool Chain
When launched from your software toolchain, Libero SoC becomes solely an MSS configurator. This can be
useful if you are responsible for the embedded code development for the SmartFusion device and are more
comfortable in your existing software tool chain.
Any FPGA fabric development needs to be done using the regular Libero® SoC tool flow. Using the Libero
SoC in the software toolchain mode only enables you to configure the SmartFusion Microcontroller
Subsystem (MSS) and not the FPGA fabric.
The MSS Configurator can be integrated in any software development IDE that supports external tools.
Configure your IDE to start the Libero SoC executable and use the parameters below to customize your
interface. For SoftConsole, Keil and IAR the parameters are:
"PROJECT_LOCATION:<path>" //Project directory location, and the location of your
generated MSS files.

"DESIGN_NAME:<name>" //Name of your design.

"STARTED_BY:<tool>" //Identifies which tool invoked the MSS Configurator; can be
SoftConsole, Keil, or IAR EWARM

See Also

Develop Firmware - Write Application Code
Libero SoC Frequently Asked Questions
Software IDE Integration
View/Configure Firmware Cores

Project Manager Tcl Command Reference
A Tcl (Tool Command Language) file contains scripts for simple or complex tasks. You can run scripts from
either the Windows or UNIX command line or store and run a series of Tcl commands in a *.tcl batch file.
You can also run scripts from within the GUI in Project Manager.
Note: Note: Tcl commands are case sensitive. However, their arguments are not.
The Libero SoC Project Manager supports the following Tcl scripting commands:

Command Action

add_file_to_library Adds a file to a library in your project

Project Manager Tcl Command Reference

Libero User's Guide 165

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Command Action

add_library Adds a VHDL library to your project

add_modelsim_path Adds a ModelSim simulation library to your project

add_profile Adds a profile; sets the same values as the Add or
Edit Profile dialog box

associate_stimulus Associates a stimulus file in your project

change_link_source Changes the source of a linked file in your project

check_hdl Checks the HDL in the specified file

check_schematic Checks the schematic

close_project Closes the current project in Libero SoC

create_links Creates a link (or links) to a file/files in your project

create_symbol Creates a symbol in a module

delete_files Deletes files from your Libero SoC project

edit_profile Edits a profile; sets the same values as the Add or
Edit Profile dialog box

export_as_link Exports a file to another directory and links to the file

export_io_constraints_from_adb Exports the I/O constraints from your project ADB file
to an output file

export_profiles Exports your tool profiles; performs the same action
as the Export Profiles dialog box

generate_ba_files Generates the back-annotate files for your design

generate_hdl_from_schematic Generates an HDL file from your schematic

generate_hdl_netlist Generates the HDL netlist for your design and runs
the design rule check

import_files (Libero SoC) Imports files into your Libero SoC project

new_project Creates a new project in the Libero SoC

open_project Opens an existing Libero SoC project

organize_cdbs Organizes the CDB files in your project

organize_constraints Organizes the constraint files in your project

organize_sources Organizes the source files in your project

project_settings Modifies project flow settings for your Libero SoC
project

166 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Command Action

remove_core Removes a core from your project

remove_library Removes a VHDL library from your project

remove_profile Deletes a tool profile

rename_library Renames a VHDL library in your project

rollback_constraints_from_adb Opens the ADB file, exports the PDC file, and then
replaces it with the specified PDC file

run_designer Runs Designer with compile and layout options (if
selected)

run_drc Runs the design rule check on your netlist and
generates an HDL file

run_simulation Runs simulation on your project with your default
simulation tool and creates a logfile

run_synthesis Runs synthesis on your project and creates a logfile

save_log Saves your Libero SoC log file

save_project Saves your project

save_project_as Saves your project with a different name

select_profile Selects a profile to use in your project

set_actel_lib_options Sets your simulation library to default, or to another
library

set_device (Project Manager) Sets your device family, die, and package in the
Project Manager

set_modelsim_options Sets your ModelSim simulation options

set_option Sets your synthesis options on a module

set_userlib_options Sets your user library options during simulation

set_root Sets the module you specify as the root

synplify Runs Synplify in batch mode and executes a Tcl
script.

synplify_pro Runs Synplify Pro in batch mode and executes a Tcl
script.

unlink Removes a link to a file in your project

use_file Specifies which file in your project to use

use_source_file Defines a module for your project

Project Manager Tcl Command Reference

Libero User's Guide 167

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

168 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

TCL Command Reference

Basic Syntax

Libero User's Guide 169

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Introduction to Tcl Scripting
Tcl, the Tool Command Language, pronounced tickle, is an easy-to-learn scripting language that is
compatible with Libero SoC and Designer software. You can run scripts from either the Windows or UNIX
command line or store and run a series of commands in a *.tcl batch file.
This section provides a quick overview of the main features of Tcl:
• Basic syntax
• Types of Tcl commands
• Variables
• Command substitution
• Quotes and braces
• Lists and arrays
• Control structures
• Handling exceptions
• Print statement and Return values
• Running Tcl scripts from the command line
• Running Tcl scripts from the GUI
• Exporting Tcl scripts
• Extended_run_gui
• Extended_run_shell
• Sample Tcl scripts
• Project Manager Tcl Commands
• Designer Tcl Commands

For complete information on Tcl scripting, refer to one of the books available on this subject. You can also
find information about Tcl at web sites such as http://www.tcl.tk.

Basic Syntax
Tcl scripts contain one or more commands separated by either new lines or semicolons. A Tcl command
consists of the name of the command followed by one or more arguments. The format of a Tcl command is:
command arg1 ... argN

The command in the following example computes the sum of 2 plus 2 and returns the result, 4.
expr 2 + 2

The expr command handles its arguments as an arithmetic expression, computing and returning the result
as a string. All Tcl commands return results. If a command has no result to return, it returns an empty string.
To continue a command on another line, enter a backslash (\) character at the end of the line. For example,
the following Tcl command appears on two lines:
import -format "edif" -netlist_naming "Generic" -edif_flavor "GENERIC" {prepi.edn}

Comments must be preceded by a hash character (#). The comment delimiter (#) must be the first character
on a line or the first character following a semicolon, which also indicates the start of a new line. To create a
multi-line comment, you must put a hash character (#) at the beginning of each line.
Note: Note: Be sure that the previous line does not end with a continuation character (\). Otherwise, the

comment line following it will be ignored.

Special Characters
Square brackets ([]) are special characters in Tcl. To use square brackets in names such as port names,
you must either enclose the entire port name in curly braces, for example, pin_assign -port {LFSR_OUT[15]}
-iostd lvttl -slew High, or lead the square brackets with a slash (\) character as shown in the following
example:
pin_assign -port LFSR_OUT\[15\] -iostd lvttl -slew High

http://www.tcl.tk/

170 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Sample Tcl Script
#Set up a new design

new_design -name "multiclk" -family "Axcelerator" -path {.}

Set device, package, speed grade, default I/O standard and

operating conditions

set_device -die "AX1000" -package "BG729" -speed "-3" \

-voltage "1.5" -iostd "LVTTL" -temprange "COM" -voltrange "COM"

Import the netlist

import -format "verilog" {multiclk.v}

Compile the netlist

compile

Import a PDC file

import_aux -format "pdc" {multiclk.pdc}

Run standard layout

layout -incremental "OFF"

Generate backannotated sdf and netlist file

backannotate -name {multiclk_ba} -format "sdf" -language "Verilog"

Generate timing report

report -type "timing" -sortby "actual" -maxpaths "100" {report_timing.txt}

Generate programming file

export -format "AFM" -signature "ffff" {multiclk.afm}

Types of Tcl commands
There are three types of Tcl commands:

• Built-in commands
• Procedures created with the proc command
• Commands built into the Designer software

Built-in commands
Built-in commands are provided by the Tcl interpreter. They are available in all Tcl applications. Here are
some examples of built-in Tcl commands:
• Tcl provides several commands for manipulating file names, reading and writing file attributes, copying

files, deleting files, creating directories, and so on.
• exec - run an external program. Its return value is the output (on stdout) from the program, for example:

set tmp [exec myprog]

puts stdout $tmp

• You can easily create collections of values (lists) and manipulate them in a variety of ways.
• You can create arrays - structured values consisting of name-value pairs with arbitrary string values for

the names and values.
• You can manipulate the time and date variables.

Variables

Libero User's Guide 171

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

• You can write scripts that can wait for certain events to occur, such as an elapsed time or the
availability of input data on a network socket.

Procedures created with the proc command
You use the proc command to declare a procedure. You can then use the name of the procedure as a Tcl
command.
The following sample script consists of a single command named proc. The proc command takes three
arguments:
• The name of a procedure (myproc)
• A list of argument names (arg1 arg2)
• The body of the procedure, which is a Tcl script
proc myproc { arg1 arg2 } {

procedure body

}

myproc a b

Commands built into the software
Many functions that you can perform through the software's GUI interface, you can also perform using an
equivalent Tcl command. For example, the backannotate command is equivalent to executing the Back-
Annotate command from Designer's Tools menu. For a list of Tcl commands supported in the Designer
software, see "Tcl Commands."

Variables
With Tcl scripting, you can store a value in a variable for later use. You use the set command to assign
variables. For example, the following set command creates a variable named x and sets its initial value to
10.
set x 10

A variable can be a letter, a digit, an underscore, or any combination of letters, digits, and underscore
characters. All variable values are stored as strings.
In the Tcl language, you do not declare variables or their types. Any variable can hold any value. Use the
dollar sign ($) to obtain the value of a variable, for example:
set a 1

set b $a

set cmd expr

set x 11

$cmd $x*$x

The dollar sign $ tells Tcl to handle the letters and digits following it as a variable name and to substitute the
variable name with its value.

Global Variables
Variables can be declared global in scope using the Tcl global command. All procedures, including the
declaration can access and modify global variables, for example:
global myvar

Command substitution
By using square brackets ([]), you can substitute the result of one command as an argument to a
subsequent command, as shown in the following example:
set a 12

set b [expr $a*4]

172 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Tcl handles everything between square brackets as a nested Tcl command. Tcl evaluates the nested
command and substitutes its result in place of the bracketed text. In the example above, the argument that
appears in square brackets in the second set command is equal to 48 (that is, 12* 4 = 48).
Conceptually,
set b [expr $a * 4]

expands to
set b [expr 12 * 4]

and then to
set b 48

Quotes and braces
The distinction between braces ({ }) and quotes (" ") is significant when the list contains references to
variables. When references are enclosed in quotes, they are substituted with values. However, when
references are enclosed in braces, they are not substituted with values.
Example

 With Braces With Double Quotes

 set b 2 set b 2

 set t { 1 $b 3 } set t " 1 $b 3 "

 set s { [expr $b + $b] } set s " [expr $b + $b] "

 puts stdout $t puts stdout $t

 puts stdout $s puts stdout $s

will output
1 $b 3 vs. 1 2 3
[expr $b + $b] 4

Filenames
In Tcl syntax, filenames should be enclosed in braces { } to avoid backslash substitution and white space
separation. Backslashes are used to separate folder names in Windows-based filenames. The problem is
that sequences of “\n” or “\t” are interpreted specially. Using the braces disables this special interpretation
and specifies that the Tcl interpreter handle the enclosed string literally. Alternatively, double-backslash “\\n”
and “\\t” would work as well as forward slash directory separators “/n” and “/t”.For example, to specify a file
on your Windows PC at c:\newfiles\thisfile.adb, use one of the following:
{C:\newfiles\thisfile.adb}

C:\\newfiles\\thisfile.adb

"C:\\newfiles\\thisfile.adb"

C:/newfiles/thisfile.adb

"C:/newfiles/thisfile.adb"

If there is white space in the filename path, you must use either the braces or double-quotes. For example:
C:\program data\thisfile.adb

should be referenced in Tcl script as
{C:\program data\thisfile.adb} or "C:\\program data\\thisfile.adb"

If you are using variables, you cannot use braces { } because, by default, the braces turn off all special
interpretation, including the dollar sign character. Instead, use either double-backslashes or forward slashes
with double quotes. For example:
 "$design_name.adb"

Lists and arrays

Libero User's Guide 173

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Note: Note: To use a name with special characters such as square brackets [], you must put the entire
name between curly braces { } or put a slash character \ immediately before each square bracket.

The following example shows a port name enclosed with curly braces:
 pin_assign -port {LFSR_OUT[15]} -iostd lvttl -slew High

The next example shows each square bracket preceded by a slash:
pin_assign -port LFSR_OUT\[15\] -iostd lvttl -slew High

Lists and arrays
A list is a way to group data and handle the group as a single entity. To define a list, use curly braces { } and
double quotes “ “. For example, the following set command {1 2 3 }, when followed by the list command,
creates a list stored in the variable "a." This list will contain the items "1," "2," and "3."
set a { 1 2 3 }

Here's another example:
set e 2

set f 3

set a [list b c d [expr $e + $f]]

puts $a

displays (or outputs):
b c d 5

Tcl supports many other list-related commands such as lindex, linsert, llength, lrange, and lappend. For
more information, refer to one of the books or web sites available on this subject.

Arrays
An array is another way to group data. Arrays are collections of items stored in variables. Each item has a
unique address that you use to access it. You do not need to declare them nor specify their size.
Array elements are handled in the same way as other Tcl variables. You create them with the set command,
and you can use the dollar sign ($) for their values.
set myarray(0) "Zero"

set myarray(1) "One"

set myarray(2) "Two"

for {set i 0} {$i < 3} {incr i 1} {

Output:
Zero

One

Two

In the example above, an array called "myarray" is created by the set statement that assigns a value to its
first element. The for-loop statement prints out the value stored in each element of the array.

Special arguments (command-line parameters)
You can determine the name of the Tcl script file while executing the Tcl script by referring to the $argv0
variable.
puts “Executing file $argv0”

To access other arguments from the command line, you can use the lindex command and the argv
variable:
To read the the Tcl file name:
lindex $argv 0

To read the first passed argument:
lindex $argv 1

Example

174 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

puts "Script name is $argv0" ; # accessing the scriptname

puts "first argument is [lindex $argv 0]"

puts "second argument is [lindex $argv 1]"

puts "third argument is [lindex $argv 2]"

puts "number of argument is [llength $argv]"

set des_name [lindex $argv 0]

puts "Design name is $des_name"

Control structures
Tcl control structures are commands that change the flow of execution through a script. These control
structures include commands for conditional execution (if-then-elseif-else) and looping (while, for, catch).
An "if" statement only executes the body of the statement (enclosed between curly braces) if the Boolean
condition is found to be true.

if/else statements
if { “$name” == “paul” } then {

…

body if name is paul

} elseif { $code == 0 } then {

…

body if name is not paul and if value of variable code is zero

} else {

…

body if above conditions is not true

}

for loop statement
A "for" statement will repeatedly execute the body of the code as long as the index is within a specified limit.
for { set i 0 } { $i < 5 } { incr i } {

…

body here

}

while loop statement
A "while" statement will repeatedly execute the body of the code (enclosed between the curly braces) as
long as the Boolean condition is found to be true.
while { $p > 0 } {

…

}

catch statement
A "catch" statement suspends normal error handling on the enclosed Tcl command. If a variable name is
also used, then the return value of the enclosed Tcl command is stored in the variable.
catch { open “$inputFile” r } myresult

Handling Exceptions (Tcl Scripting)
To control the flow of the Designer software based on certain conditions (for example, success or failure of
certain commands), you can use the Tcl built-in catch command as follows:
if { [catch {open_design $des_name.adb}] } {

Print statement and Return values

Libero User's Guide 175

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

 puts "Cannot open $des_name.adb"

 export -format "log" -diagnostic $des_name.log"

 return 1

 } else {

 puts "Design $des_name.adb Successfully Opened"

}

set layout mode to standard

layout -incremental "OFF"

if { [catch {layout}] } {

 puts "Layout Failed"

 export -format "log" -diagnostic $des_name.log"

 return 1

} else {

 puts "layout successful"

 export -format log "$des_name.log"

 save_design "$des_name.adb";

 close_design

}

Print statement and Return values

Print Statement
Use the puts command to write a string to an output channel. Predefined output channels are “stdout” and
“stderr.” If you do not specify a channel, then puts display text to the stdout channel.
Note: Note: The STDIN Tcl command is not supported by Microsemi SoC tools.
Example:
set a [myprog arg1 arg2]

puts "the answer from myprog was $a (this text is on stdout)"

puts stdout “this text also is on stdout”

Return Values
The return code of a Tcl command is a string. You can use a return value as an argument to another
function by enclosing the command with square brackets [].
Example:
set a [prog arg1 arg2]

exec $a

The Tcl command “exec” will run an external program. The return value of “exec” is the output (on stdout)
from the program.
Example:

set tmp [exec myprog]

puts stdout $tmp

Running Tcl Scripts from the GUI
Instead of running scripts from the command line, you can use Execute Script dialog box to run a script in
the software.

To run a Tcl script from the GUI:
1. In Libero SoC, from the File menu choose Execute Script.

176 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 79 ·
Figure 80 · Execute Script Dialog Box

2. Click Browse to display the Open dialog box, in which you can navigate to the folder containing the
script file to open. When you click Open, the software enters the full path and script filename into the
Execute Script dialog box for you.

3. In the Arguments edit box, enter the arguments to pass to your Tcl script as shown in the following
sample Execute Script dialog box. Separate each argument by a space character. For information
about accessing arguments passed to a Tcl script, see "Running Scripts from the command line."

Figure 81 · Execute Script Dialog Box Example

4. Click Run.

Specify your arguments in the Execute Script dialog box. To get those argument values from your Tcl script,
use the following:
puts "Script name: $argv0"

puts "Number of arguments: $argc"

set i 0

foreach arg $argv {

puts "Arg $i : $arg"

incr i

}

Running Tcl scripts from the Command Line
You can run Tcl scripts from your Windows or Unix command line as well as pass arguments to scripts from
the command line.

To execute a Tcl script file in the Libero SoC Project Manager software from a shell command line:
At the prompt, type the path to the Microsemi SoC software followed by the word "SCRIPT" and a colon, and
then the name of the script file as follows:
<location of Microsemi SoC software>\bin\libero SCRIPT:<filename>

where <location of Microsemi SoC software> is the root directory in which you installed the
Microsemi SoC software, and <filename> is the name, including a relative or full path, of the Tcl
script file to execute. For example, to run the Tcl script file "myscript.tcl", type:

Exporting Tcl Scripts

Libero User's Guide 177

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

C:\libero\designer\bin\libero SCRIPT:myscript.tcl

If myscript.tcl is in a particular folder named "mydesign", you can use SCRIPT_DIR to change the current
working directory before calling the script, as in the following example:
C:\libero\designer\bin\libero SCRIPT:myscript.tcl "SCRIPT_DIR:C:\actelprj\mydesign"

To execute a Tcl script file in the Designer software from a shell command line:
At the prompt, type the path to the Microsemi SoC software followed by the word "SCRIPT" and a colon, and
then the name of the script file as follows:
<location of Microsemi SoC software>\bin\designer SCRIPT:<filename>

where <location of Microsemi SoC software> is the root directory in which you installed the
Microsemi SoC software, and<filename>is the name, including a relative or full path, of the
Tcl script file to execute.

For example, to run the Tcl script file named "myscript.tcl" from the command line, you
can type:

C:\libero\designer\bin\designer SCRIPT:myscript.tcl

If myscript.tcl is in a particular folder named "mydesign", you can use SCRIPT_DIR to change the current
working directory before calling the script, as in the following example:
C:\libero\designer\bin\designer SCRIPT:myscript.tcl "SCRIPT_DIR:C:\actelprj\mydesign"

To pass arguments from the command line to your Tcl script file:
At the prompt, type the path to the Microsemi SoC software followed by the SCRIPT argument. Enclose the
entire argument expression in double quotes:
<location of Microsemi SoC software>\bin\designer "SCRIPT:<filename arg1 arg2 ...>"

where <location of Microsemi SoC software> is the root directory in which you installed the
Microsemi SoC software, and <filename arg1 arg2 ...>is the name, including a relative or
full path, of the Tcl script file and arguments you are passing to the script file.
For example,
C:\libero\designer\bin\designer "SCRIPT:myscript.tcl one two three"

To obtain the output from the log file:
At the prompt, type the path to the Microsemi SoC software followed by the SCRIPT and LOGFILE
arguments.
<location of Microsemi SoC software> SCRIPT:<filename> SCRIPT_ARGS:"a b c"
LOGFILE:<output.log>

where

• location of Microsemi SoC software is the root directory in which you installed the Microsemi
SoC software

• filename is the name, including a relative or full path, of the Tcl script file
• SCRIPT_ARGS are the arguments you are passing to the script file
• output.log is the name of the log file

For example,
C:\libero\designer\bin\designer SCRIPT:testTCLparam.tcl SCRIPT_ARGS:"a b c"
LOGFILE:testTCLparam.log

Exporting Tcl Scripts
You can write out a Tcl script file that contains the commands executed in the current session. You can then
use this exported Tcl script to re-execute the same commands interactively or in batch. You can also use
this exported script to become more familiar with Tcl syntax.
You can export Tcl scripts from the Project Manager or Designer; the actions are the same.

To export a Tcl session script from the Project Manager or Designer:
1. From the File menu, choose Export Script File. The Export Script dialog box appears.
2. Click OK. The Script Export Options dialog box appears

178 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 82 · Script Export Options

5. Check the Include Commands from Current Design [Project] Only checkbox. This option applies
only if you opened more than one design or project in your current session. If so, and you do not check
this box, Project Manager / Designer exports all commands from your current session.

6. Select the radio button for the appropriate filename formatting. To export filenames relative to the
current working directory, select Relative filenames (default) formatting. To export filenames that
include a fully specified path, select Qualified filenames (full path; including directory name)
formatting.

Choose Relative filenames if you do not intend to move the Tcl script from the saved location, or
Qualified filenames if you plan to move the Tcl script to another directory or machine.

7. Click OK.

Project Manager / Designer saves the Tcl script with the specified filename.
Note: Notes:
• When exporting Tcl scripts, Project Manager and Designer always encloses filenames in curly braces

to ensure portability.
• Libero SoC software does not write out any Tcl variables or flow-control statements to the exported Tcl

file, even if you had executed the design commands using your own Tcl script. The exported Tcl file
only contains the tool commands and their accompanying arguments.

extended_run_gui - Designer Only
This script is used to reproduce the GUI behavior and is more suited for running through Designer or inside
another Designer TCL script.
The only difference from the extended_run_shell Tcl script is that the extended_run_gui.tcl script does not
need the –adb argument and assumes that the design is already saved and open.

extended_run_gui.tcl [-n numPasses] [-starting_seed_index numIndex] [-save_all] [-
compare_criteria value] [-c clockName] [-analysis value] [-slack_criteria value] [-
timing_driven|-standard] [-stop_on_success] [-run_placer value] [-place_incremental value]
[-route_incremental value] [-effort_level numLevel] [-timing_weight numWeight] [-
placer_high_effort value] [-mindel_repair value] [-power_driven value]

 To invoke extended_run_gui from Designer:
1. Open an *.adb file in Designer.
2. From the File menu, select Execute Script. This opens the Execute Script dialog box.

extended_run_shell - Designer Only

Libero User's Guide 179

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 83 · Execute Script Dialog Box

3. Find the extended_run-gui.tcl script under ACTEL_SW_DIR/scripts and then copy all the parameters in
to the arguments section.

4. Click Run.

To invoke extended_run_gui from within a TCL script:
1. Save the design in compiled state.

 …

compile

save_design “my.adb”

2. Override the original argument list in the caller script and then source the extended_run_gui.tcl script.
set save_argv0 $::argv0

set save_argv $::argv

set ACTEL_SW_DIR $env(ACTEL_SW_DIR)

set ::argv0 “$ACTEL_SW_DIR/scripts/extended_run_gui.tcl”

set ::argv [list -n 3 -save_all -c PCI_CLK]

set ::argc [llength $::argv]

source $::argv0

set ::argv0 $save_argv0

set ::argv $save_argv

set ::argc [llength $::argv]

See Also
Running Layout
Multiple Pass Layout
extended_run_shell

extended_run_shell - Designer Only
Note: Note: This is not a Tcl command; it is a shell script that can be run from the command line. To invoke

multiple pass layout within another Designer Tcl script, refer to extended_run_gui.
The extended_run_shell Tcl script enables you to run the multiple pass layout in batch mode from a
command line. Use this script from the tcl shell "acttclsh". This is the script or command-line
equivalent to using the multiple pass layout in the GUI.

$ACTEL_SW_DIR/bin/acttclsh extended_run_shell.tcl -adb adbFileName.adb [-n numPasses] [-
starting_seed_index numIndex] [-save_all] [-compare_criteria value] [-c clockName] [-
analysis value] [-slack_criteria value] [-timing_driven|-standard] [-stop_on_success] [-
run_placer value] [-place_incremental value] [-route_incremental value] [-
placer_high_effort value] [-mindel_repair value] [-power_driven value]

180 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Arguments
-adb adbFileName.adb

This is the design file to run multiple passes of layout.
[-n numPasses]

Sets the number of passes to run. The default number of passes is 5.
[-starting_seed_index numIndex]

Indicates the specific index into the array of random seeds which is to be the starting point for the passes.
Its value should range from 1 to 101. If not specified, the default behavior is to continue from the last seed
index which was used.
[-save_all]

Saves all intermediate designs in<adbFileName>_r<runNum>_s<seedIndex>.adb. The best result is also
stored to the original *.adb file as well. The default behavior does not save all results.
[-compare_criteria value]

The following table shows the acceptable values for this argument:

Value Description

frequency Sets the criteria for comparing results between passes to be clock
frequency based. This is the default. This option enables the -c option
(described below).

violations Sets the criteria for comparing results between passes to be timing
violations (slack) based. This option enables the -analysis, -slack_criteria,
and -stop_on_success options (described below).

power Sets the criteria for comparing results between passes to be based on the
lowest total power.

[-c clockName]

Applies only when the clock frequency comparison criteria is used. Specifies the particular clock that is to
be examined. If no clock is specified, then the slowest clock frequency in the design in a given pass is
used.
[-analysis value]

Applies only when the timing violations comparison criteria is used. The following table shows the
acceptable values for this argument:

Value Description

max Examines timing violations (slacks) obtained from maximum delay analysis.
This is the default.

min Examines timing violations (slacks) obtained from minimum delay analysis.

[-slack_criteria value]

Applies only when the timing violations comparison criteria is used. The type of timing violations (slacks)
is determined by the -analysis option. The following table shows the acceptable values for this argument:

Value Description

worst Sets the timing violations criteria to worst slack. For each pass obtains the most
amount of negative slack (or least amount of positive slack if all constraints are
met) from the timing violations report. The largest value out of all passes will
determine the best pass. This is the default.

extended_run_shell - Designer Only

Libero User's Guide 181

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Value Description

tns Sets the timing violations criteria to total negative slack. For each pass obtains
the sum of negative slacks from the first 100 paths from the timing violations
report. The largest value out of all passes will determine the best pass. If no
negative slacks exist for a pass, then the worst slack is used to evaluate that
pass

 [-stop_on_success]

Applies only when the timing violations comparison criteria is used. The type of timing violations (slacks)
is determined by the -analysis option. Stops performing remaining passes if all timing constraints have
been met (when there are no negative slacks reported in the timing violations report).
[-timing_driven|-standard]

Sets layout mode to be timing driven or standard (non-timing driven). The default is -timing_driven or the
mode used in the previous layout command.
 [-run_placer value]

The following table shows the acceptable values for this argument:

Value Description

on Invokes placer. This is the default.

off Skips placer.

[-place_incremental value]

The following table shows the acceptable values for this argument:

Value Description

off Discards previous placement. This is the default.

on Sets the previous placement as the initial starting point for each pass.

fix Locks previous placement for each pass.

[-route_incremental value]

The following table shows the acceptable values for this argument:

Value Description

off Discards previous routing. This is the default.

on Sets the previous routing as the initial starting point for each pass.

[-placer_high_effort value]

This is an advanced option that is available only for SmartFusion, IGLOO, ProASIC3 and Fusion families.
The following table shows the acceptable values for this argument:

Value Description

off Runs layout in regular effort. This is the default.

on Activates high effort layout mode.

182 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

[-mindel_repair value]

This is an advanced option that is available only for SmartFusion, IGLOO, ProASIC3 and Fusion families.
The following table shows the acceptable values for this argument:

Value Description

off Does not run minimum delay violations repair. This is the default.

on Enables repair of minimum delay violations during route.

[-power_driven value]

This option is available only for IGLOO, ProASIC3, SmartFusion2, SmartFusion, Fusionfamilies. The
following table shows the acceptable values for this argument:

Value Description

off Does not run power-driven layout. This is the default.

on Enables power-driven layout.

Return
A non-zero value will be returned on error.

Supported Families
IGLOO, ProASIC3, SmartFusion2, SmartFusion, Fusion

Exceptions
None

Example
1. On my.adb, run 5 (default) passes continuing from the last seed index using slowest clock frequency

(default) comparison criteria.
% acttclsh extended_run_shell.tcl -adb my.adb

2. On my.adb, run 3 passes starting with seed index 6, saving all results, using clock frequency
comparison criteria for clock "PCI_CLK".
% acttclsh extended_run_shell.tcl -adb my.adb -n 3 -starting_seed_index 6 -save_all -
c PCI_CLK

3. On my.adb, run 5 (default) passes continuing from the last seed index, saving all results, using timing
violations comparison criteria with maximum delay (default) analysis and worst slack (default) criteria;
invoke high effort layout.
% acttclsh extended_run_shell.tcl -adb my.adb -save_all -compare_criteria violations
–placer_high_effort on

4. On my.adb, run 5 (default) passes continuing from the last seed index, saving all results, using timing
violations comparison criteria with maximum delay (default) analysis and total negative slack criteria;
invoke placement effort level 5.
% acttclsh extended_run_shell.tcl -adb my.adb -save_all -compare_criteria violations
-slack_criteria tns –effort_level 5

5. On my.adb, run 5 (default) passes continuing from the last seed index, saving all results, using timing
violations comparison criteria with minimum delay analysis and worst slack (default) criteria; stop if
there are no violations.
% acttclsh extended_run_shell.tcl -adb my.adb -save_all -compare_criteria violations
-analysis min –stop_on_success

Sample Tcl Script - Project Manager

Libero User's Guide 183

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

6. On my.adb, run 5 (default) passes continuing from the last seed index, saving all results, using timing
violations comparison criteria with minimum delay analysis and total negative slack criteria; invoke
repair of minimum delay violations.
% acttclsh extended_run_shell.tcl -adb my.adb -save_all -compare_criteria violations
-analysis min -slack_criteria tns –mindel_repair on

See Also
Running Layout
Multiple Pass Layout
extended_run_gui

Sample Tcl Script - Project Manager
The following Tcl commands create a new project named proj1 and sets your project options.
#Create new project

new_project -name proj1 -location c:/actelprj -family fusion –die AFS090 -package "108
QFN" -hdl VHDL

#Import HDL source file named hdlsource1.vhd

import_files -hdl_source c:\hdlsource1.vhd

#Run synthesis and create a logfile named synth1.

run_synthesis -logfile synth.log

he default ADB file, run Compile, run Layout

run_designer -logfile designer_log -adb new -compile TRUE -layout TRUE -export_ba TRUE

Tcl Flow in the Libero SoC
Use the following commands to manage and build your project in the Libero SoC.

Design Flow in the Project Manager
The Tcl commands below outline the entire design flow. Once you create a project in the Project Manager
you can use the commands below to complete every operation from synthesis to generating an HDL netlist.
Click any command to go to the command definition.
run_synthesis [-logfile name]

run_simulation [-logfile name]

check_hdl -file filename

check_schematic -file filename

create_symbol [-module module]

export_io_constraints_from_adb -adb filename -output outputfilename

generate_ba_files -adb filename

generate_hdl_from_schematic [-module modulename]

generate_hdl_netlist [-netlist filename] [-run_drc "TRUE | FALSE"]

rollback_constraints_from_adb -adb filename -output output_filename

run_designer [-logfile filename] [-script "script to append"] [-append_commands "commands
to execute"] [-adb "new | open | default"] [-compile "TRUE | FALSE"] [-layout "TRUE |
FALSE"] [-export_ba "TRUE | FALSE"]

run_drc [-netlist file] [-gen_hdl "TRUE | FALSE"]

Manage Profiles in the Project Manager
add_profile -name profilename -type "synthesis | simulation | stimulus | flashpro |
physynth | coreconfig" -tool profiletool -location tool_location [-args tool_parameters]
[-batch "TRUE | FALSE"]

184 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

edit_profile -name profilename -type "synthesis | simulation | stimulus | flashpro |
physynth | coreconfig" -tool profiletool -location tool_location [-args tool_parameters]
[-batch "TRUE | FALSE"] [-new_name name]

export_profiles -file name [-export "predefined | user | all"]

remove_profile -name profile_name

select_profile -name profile_name

Linking Files
change_link_source -file filename -path pathname

create_links [-hdl_source file]* [-stimulus file]* [-sdc file]* [-pin file]* [-dcf file]*
[-gcf file]* [-pdc file]* [-crt file]* [-vcd file]*

export_as_link -file filename -path link_path

unlink -file file [-local local_filename]

Set Simulation Options in the Project Manager
add_modelsim_path -lib library_name [-path library_path] [-remove " "]

Set Device in the Project Manager
set_device [-family family] [-die die] [-package package]

Miscellaneous Operations in the Project Manager
project_settings [-hdl "VHDL | VERILOG"] [-auto_update_modelsim_ini "TRUE | FALSE"] [-
auto_update_viewdraw_ini "TRUE | FALSE"] [-block_mode "TRUE | FALSE"] [-
auto_generate_synth_hdl "TRUE | FALSE"] [-auto_generate_physynth_hdl "TRUE | FALSE"] [-
auto_run_drc "TRUE | FALSE"] [-auto_generate_viewdraw_hdl "TRUE | FALSE"] [-
auto_file_detection "TRUE | FALSE"]

refresh

set_option [-synth "TRUE | FALSE"] [-physynth "TRUE | FALSE"] [-module "module"]

remove_core -name core_name

Project Manager Tcl Command Reference
A Tcl (Tool Command Language) file contains scripts for simple or complex tasks. You can run scripts from
either the Windows or UNIX command line or store and run a series of Tcl commands in a *.tcl batch file.
You can also run scripts from within the GUI in Project Manager.
Note: Note: Tcl commands are case sensitive. However, their arguments are not.
The Libero SoC Project Manager supports the following Tcl scripting commands:

Command Action

add_file_to_library Adds a file to a library in your project

add_library Adds a VHDL library to your project

add_modelsim_path Adds a ModelSim simulation library to your project

add_profile Adds a profile; sets the same values as the Add or
Edit Profile dialog box

Project Manager Tcl Command Reference

Libero User's Guide 185

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Command Action

associate_stimulus Associates a stimulus file in your project

change_link_source Changes the source of a linked file in your project

check_hdl Checks the HDL in the specified file

check_schematic Checks the schematic

close_project Closes the current project in Libero SoC

create_links Creates a link (or links) to a file/files in your project

create_symbol Creates a symbol in a module

delete_files Deletes files from your Libero SoC project

edit_profile Edits a profile; sets the same values as the Add or
Edit Profile dialog box

export_as_link Exports a file to another directory and links to the file

export_io_constraints_from_adb Exports the I/O constraints from your project ADB file
to an output file

export_profiles Exports your tool profiles; performs the same action
as the Export Profiles dialog box

generate_ba_files Generates the back-annotate files for your design

generate_hdl_from_schematic Generates an HDL file from your schematic

generate_hdl_netlist Generates the HDL netlist for your design and runs
the design rule check

import_files (Libero SoC) Imports files into your Libero SoC project

new_project Creates a new project in the Libero SoC

open_project Opens an existing Libero SoC project

organize_cdbs Organizes the CDB files in your project

organize_constraints Organizes the constraint files in your project

organize_sources Organizes the source files in your project

project_settings Modifies project flow settings for your Libero SoC
project

remove_core Removes a core from your project

remove_library Removes a VHDL library from your project

remove_profile Deletes a tool profile

186 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Command Action

rename_library Renames a VHDL library in your project

rollback_constraints_from_adb Opens the ADB file, exports the PDC file, and then
replaces it with the specified PDC file

run_designer Runs Designer with compile and layout options (if
selected)

run_drc Runs the design rule check on your netlist and
generates an HDL file

run_simulation Runs simulation on your project with your default
simulation tool and creates a logfile

run_synthesis Runs synthesis on your project and creates a logfile

save_log Saves your Libero SoC log file

save_project Saves your project

save_project_as Saves your project with a different name

select_profile Selects a profile to use in your project

set_actel_lib_options Sets your simulation library to default, or to another
library

set_device (Project Manager) Sets your device family, die, and package in the
Project Manager

set_modelsim_options Sets your ModelSim simulation options

set_option Sets your synthesis options on a module

set_userlib_options Sets your user library options during simulation

set_root Sets the module you specify as the root

synplify Runs Synplify in batch mode and executes a Tcl
script.

synplify_pro Runs Synplify Pro in batch mode and executes a Tcl
script.

unlink Removes a link to a file in your project

use_file Specifies which file in your project to use

use_source_file Defines a module for your project

Tcl Command Documentation Conventions
The following table shows the typographical conventions used for the Tcl command syntax.

Tcl Command Documentation Conventions

Libero User's Guide 187

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Syntax Notation Description

command -
argument

Commands and arguments appear in Courier New typeface.

variable Variables appear in blue, italic Courier New
typeface. You must substitute an appropriate value
for the variable.

[-argumentvalue]
[variable]+

Optional arguments begin and end with a square bracket with
one exception: if the square bracket is followed by a plus sign
(+), then users must specify at least one argument. The plus
sign (+) indicates that items within the square brackets can
be repeated. Do not enter the plus sign character.

Note: Note: All Tcl commands are case sensitive. However, their arguments are not.

Examples
Syntax for the get_defvar command followed by a sample command:

get_defvar variable

get_defvar “DESIGN”

Syntax for the backannotate command followed by a sample command:

backannotate -name file_name -format format_type -language language -dir directory_name [-
netlist] [-pin]

backannotate -dir \

 {..\design} -name "fanouttest_ba.sdf" -format "SDF" -language "VERILOG" \

-netlist

Wildcard Characters
You can use the following wildcard characters in names used in Tcl commands:

Wildcard What it Does

\ Interprets the next character literally

? Matches any single character

* Matches any string

[] Matches any single character among those listed between brackets
(that is, [A-Z] matches any single character in the A-to-Z range)

Note: Note: The matching function requires that you add a slash (\) before each slash in the port, instance,
or net name when using wildcards in a PDC command and when using wildcards in the Find feature
of the MultiView Navigator. For example, if you have an instance named “A/B12” in the netlist, and
you enter that name as “A\\/B*” in a PDC command, you will not be able to find it. In this case, you
must specify the name as A\\\\/B*.

188 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Special Characters [], { }, and \
Sometimes square brackets ([]) are part of the command syntax. In these cases, you must either enclose
the open and closed square brackets characters with curly brackets ({ }) or precede the open and closed
square brackets ([]) characters with a backslash (\). If you do not, you will get an error message.
For example:
pin_assign -port {LFSR_OUT[0]} -pin 15

or

pin_assign -port LFSR_OUT\[0\] -pin 180

Note: Note: Tcl commands are case sensitive. However, their arguments are not.

Entering Arguments on Separate Lines
To enter an argument on a separate line, you must enter a backslash (\) character at the end of the
preceding line of the command as shown in the following example:
backannotate -dir \

{..\design} -name "fanouttest_ba.sdf" -format "SDF" -language "VERILOG" \

-netlist

See Also
Introduction to Tcl scripting
Basic syntax
About Designer Tcl commands

add_file_to_library

Libero User's Guide 189

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Project Manager Tcl Commands

add_file_to_library
Tcl command; adds a file to a library in your project.

add_file_to_library
-library name
-file name

Arguments
-library name

Name of the library where you wish to add your file.
-file name

Specifies the new name of the file you wish to add (must be a full pathname).

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

Exceptions
• None

Example
Add a file named foo.vhd from the ./project/hdl directory to the library 'my_lib'
add_file_to_library -library my_lib -file ./project/hdl/foo.vhd

See Also
add_library

remove_library

rename_library

Project Manager Tcl Command Reference

add_library
Tcl command; adds a VHDL library to your project.

add_library
-library name

Arguments
-library name

Specifies the name of your new library.

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

190 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Exceptions
• None

Example
Create a new library called 'my_lib'.
add_library –library my_lib

See Also
remove_library

rename_library

Project Manager Tcl Command Reference

add_modelsim_path
Tcl command; adds a ModelSim simulation library to your project.

add_modelsim_path -lib library_name [-path library_path] [-remove " "]

Arguments
-lib library_name

Name of the library you want to add.
-path library_path

Path to library that you want to add.
-remove " "

Name of library you want to remove (if any).

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

Exceptions
None

Example
Add the ModelSim library 'msim_update2' located in the c:\modelsim\libraries directory and remove the
library 'msim_update1':
add_modelsim_path -lib msim_update2 [-path c:\modelsim\libraries] [-remove msim_update1]

See Also
Project Manager Tcl Command Reference

add_profile
Tcl command; sets the same values as the Add or Edit Profile dialog box.

add_profile -name profilename -type value -tool profiletool -location tool_location [-args
tool_parameters] [-batch value]

Arguments
-name profilename

associate_stimulus

Libero User's Guide 191

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Specifies the name of your new profile.
-type value

Specifies your profile type, where value is one of the following:

Value Description

synthesis New profile for a synthesis tool

simulation New profile for a simulation tool

stimulus New profile for a stimulus tool

flashpro New FlashPro tool profile

-tool profiletool

Name of the tool you are adding to the profile.
-location tool_location

Full pathname to the location of the tool you are adding to the profile.
-args tool_parameters

Profile parameters (if any).
-batch value

Runs the tool in batch mode (if TRUE). Possible values are:

Value Description

TRUE Runs the profile in batch mode

FALSE Does not run the profile in batch mode

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

Exceptions
None

Example
Create a new FlashPro tool profile called 'myflashpro' linked to a FlashPro installation in my
c:\programs\actel\flashpro\bin directory
new_profile -name myflashpro -type flashpro -tool flashpro.exe -location
c:\programs\actel\flashpro\bin\flashpro.exe -batch FALSE

See Also
Project Manager Tcl Command Reference

associate_stimulus
Tcl command; associates a stimulus file in your project.

-associate_stimulus
[-file name]*

192 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

[-mode value]
-module value

Arguments
-file name

Specifies the name of the file to which you want to associate your stimulus files.
-mode value

Specifies whether you are creating a new stimulus association, adding, or removing; possible values are:

Value Description

new Creates a new stimulus file association

add Adds a stimulus file to an existing association

remove Removes an stimulus file association

-module value

Sets the module, where value is the name of the module.

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

Exceptions
None

Example
The example associates a new stimulus file 'stim.vhd' for stimulus.
-associate_stimulus -file stim.vhd -mode new -module stimulus

See Also
Project Manager Tcl Command Reference

change_link_source
Tcl command; changes the source of a linked file in your project.

change_link_source -file filename -path new_source_path

Arguments
-file filename

Name of the linked file you want to change.
-path new_source_path

Location of the file you want to link to.

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

check_hdl

Libero User's Guide 193

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Exceptions
None

Example
Change the link to a file 'sim1.vhd' in your project and link it to the file in
c:\actel\link_source\simulation_test.vhd
change_link_source -file sim1.vhd -path c:\actel\link_source\simulation_test.vhd

See Also
Project Manager Tcl Command Reference

check_hdl
Tcl command; checks the HDL in the specified file.

check_hdl -file filename

Arguments
-file filename

Name of the HDL file you want to check.

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

Exceptions
None

Example
Check HDL on the file hdl1.vhd.
check_hdl -file hdl1.vhd

See Also
Project Manager Tcl Command Reference

close_project
Tcl command; closes the current project in Libero SoC. Equivalent to clicking the File menu, and choosing
Close Project.

close_project

Arguments
None

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

194 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Exceptions
• None

Example
close_project

See Also
open_project

Project Manager Tcl Command Reference

check_schematic
Tcl command; checks the schematic.

check_schematic -file filename

Arguments
-file filename

Name of the schematic file you want to check.

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

Exceptions
None

Example
Check schematic on the file schem.2vd.
check_schematic -file schem.2vd

See Also
Project Manager Tcl Command Reference

create_links
Tcl command; creates a link (or links) to a file/files in your project.

create_links [-hdl_source file]* [-stimulus file]* [-sdc file]* [-pin file]* [-dcf file]* [-
gcf file]* [-pdc file]* [-crt file]* [-vcd file]*

Arguments
-hdl_source file

Name of the HDL file you want to link.
-stimulus file

Name of the stimulus file you want to link.
-sdc file

Name of the SDC file you want to link.
-pin file

create_symbol

Libero User's Guide 195

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Name of the PIN file you want to link.
-dcf file

Name of the DCF file you want to link.
-gcf file

Name of the GCF file you want to link.
-pdc file

Name of the PDC file you want to link.
-crt file

Name of the crt file you want to link.
-vcd file

Name of the VCD file you want to link.

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

Exceptions
None

Example
Create a link to the file hdl1.vhd.
create links [-hdl_source hdl1.vhd]

See Also
Project Manager Tcl Command Reference

create_symbol
Tcl command; creates a symbol in a module.

create_symbol [-module module]

Arguments
-module module

Name of the symbol module you want to create.

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

Exceptions
None

Example
Create a symbol named mod2.
create_symbol [-module mod2]

See Also
Project Manager Tcl Command Reference

196 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

defvar_get
Tcl command; provides access to the internal variables within Libero and returns its value. This command
also prints the value of the variable on the Log window.

defvar_get -name variable

Arguments
variable

The internal variable.

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

Exceptions
None

Example
Example 1: Prints the design name on the log window.
 defvar_get -name “DESIGN”

set variableToGet "DESIGN"

set valueOfVariable [defvar_get $variableToGet]

puts "The value is $valueOfVariable"

See Also
Project Manager Tcl Command Reference
defvar_set

defvar_set
Tcl command; the defvar_set command sets an internal variable in the Libero system. You must specify at
least one argument for this command.

defvar_set -name variable -value value

Arguments
Variable must be a valid internal variable and could be accompanied by an optional value. If the value is
provided, the variable is set to the value. If the value is null the variable is reset.

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

Exceptions
None.

Example
Example 1:
defvar_set -name “FORMAT” -value “VHDL”

Sets the FORMAT internal variable to VHDL.

delete_files

Libero User's Guide 197

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Example 2:
set variableToSet "DESIGN"

set valueOfVariable “VHDL”

defvar_set $variableToSet $valueOfVariable

These commands set the FORMAT variable to VHDL, shows the use of variables for this command.

See Also
Project Manager Tcl Command Reference
defvar_get

delete_files
Tcl command; deletes files in your Libero SoC project.

delete_files
-file value
-from_disk

Arguments
-file value

Specifies the file you wish to delete from the project. This parameter is required for this Tcl command. It
does not delete the file from the disk. Use the -from_disk flag to delete a file from the disk. Value is the
name of the file you wish to delete (including the full pathname).
-from_disk

Deletes a file from the disk.

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

Exceptions
• None

Example
Delete the files file1.vhd and file2.vhd from the project, and delete the file top_palace.sdc from the disk.
delete_files –file ./project/hdl/file1.vhd –file ./project/hdl/file2.vhd

delete_files –from_disk –file ./project/phy_synthesis/top_palace.sdc

The following command deletes the core 'add1' from your disk and project (it is the same as the command
to delete an IP core from your disk and project).
delete_files -from_disk -file ./project/component/work/add1/add1.cxf

See Also
Project Manager Tcl Command Reference
close_project

new_project

edit_profile
Tcl command; sets the same values as the Add or Edit Profile dialog box.

198 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

edit_profile -name profilename -type value -tool profiletool -location profilelocation [-args
parameters] [-batch value] [-new_name name]

Arguments
-name profilename

Specifies the name of your new profile.
-type value

Specifies your profile type, where value is one of the following:

Value Description

synthesis New profile for a synthesis tool

simulation New profile for a simulation tool

stimulus New profile for a stimulus tool

flashpro New FlashPro tool profile

-tool profiletool

Name of the tool you are adding to the profile.
-location profilelocation

Full pathname to the location of the tool you are adding to the profile.
-args parameters

Profile tool parameters (if any).
-batch value

Runs the tool in batch mode (if TRUE). Possible values are:

Value Description

TRUE Runs the profile in batch mode

FALSE Does not run the profile in batch mode

-new_name name

Name of new profile.

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

Exceptions
None

Example
Edit a FlashPro tool profile called 'myflashpro' linked to a new FlashPro installation in my
c:\programs\actel\flashpro\bin directory, change the name to updated_flashpro.
edit_profile -name myflashpro -type flashpro -tool flashpro.exe -location
c:\programs\actel\flashpro\bin\flashpro.exe -batch FALSE -new_name updated_flashpro

export_as_link

Libero User's Guide 199

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

See Also
Project Manager Tcl Command Reference

export_as_link
Tcl command; exports a file to another directory and links to the file.

export_as_link -file filename -path link_path

Arguments
-file filename

Name of the file you want to export as a link.
-path link_path

Path of the link.

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

Exceptions
None

Example
Export the file hdl1.vhd as a link to c:\actel\link_source.
export_as_link -file hdl1.vhd -path c:\actel\link_source

See Also
Project Manager Tcl Command Reference

export_io_constraints_from_adb
Tcl command; exports the I/O constraints from your project ADB file to an output file.

export_io_constraints_from_adb -adb filename -output outputfilename

Arguments
-adb filename

Specifies name of the ADB file from which you want to export your I/O constraints.
-output filename

Specifies the output filename for your exported I/O constraints.

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
None

Example
The following example exports the I/O constraint file ios.pdc from the project file designer1.adb:

200 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

export_io_constraints_from_adb -adb designer1.adb -output ios.pdc

See Also
Project Manager Tcl Command Reference

export_profiles
Tcl command; exports your tool profiles. Performs the same action as the Export Profiles dialog box.

export_profile -file name [-export value]

Arguments
-file name

Specifies the name of your exported profile.
-export value

Specifies your profile export options. The following table shows the acceptable values for this argument:

Value Description

predefined Exports only predefined profiles

user Exports only user profiles

all Exports all profiles

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

Exceptions
None

Example
The following command exports all profiles to the file 'all_profiles':
export_profiles -file all_profiles [-export all]

See Also
Project Manager Tcl Command Reference

generate_ba_files
Tcl command; generates the back-annotate files for your design.

generate_ba_files -adb filename

Arguments
-adb filename

Specifies name of the ADB file from which you wish to generate the backannotate files.

generate_hdl_from_schematic

Libero User's Guide 201

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

Exceptions
None

Example
The following example generates backa-nnotate files from the file designer1.adb:
generate_ba_files -adb designer1.adb

See Also
Project Manager Tcl Command Reference

generate_hdl_from_schematic
Tcl command; generates an HDL file from your schematic.

generate_hdl_from_schematic [-module modulename]

Arguments
-module modulename

Specifies the module name for your new HDL module

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

Exceptions
None

Example
The following example generates a new HDL module module1.vhd:
generate_hdl_from_schematic [-module module1.vhd]

See Also
Project Manager Tcl Command Reference

generate_hdl_netlist
Tcl command; generates the HDL netlist for your design and runs the design rule check.

generate_hdl_netlist [-netlist filename] [-run_drc value]

Arguments
-netlist filename

Specifies the filename of your netlist.
-run_drc value

Runs the design rule check. The following table shows the acceptable values for this argument:

202 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Value Description

TRUE Runs the design rule check

FALSE Generates your netlist without running the design rule check

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

Exceptions
None

Example
The following example generates your netlist netlist2 and runs the design rule check:
generate_hdl_netlist [-netlist netlist2][-run_drc TRUE]

See Also
Project Manager Tcl Command Reference

import_files (Libero SoC)
Tcl command; the import_files command imports all the files you need in your Libero SoC project.

import_files
-schematic {file}
-symbol {file}
-smartgen_core {file}
-ccp {file}
-stimulus {file}
-hdl_source {file}
-edif {file}
-sdc {file}
-pin {file}
-dcf {file}
-pdc {file}
-gcf {file}
-vcd {file}
-saif {file}
-crt {file}
-simulation {file}
-profiles {file}
-cxf {file}
-templates {file}
-ccz {file}
-wf_stimulus {file}
-modelsim_ini {file}

Arguments
-schematic {file}

Specifies the schematics you wish to import into your IDE project. Type parameter must be repeated for
each file.

import_files (Libero SoC)

Libero User's Guide 203

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

-symbol {file}

Specifies the symbols you wish to import into your IDE project. Type parameter must be repeated for each
file.
-smartgen_core {file}

Specifies the cores you wish to import into your project. Type parameter must be repeated for each file.
-ccp {file}

Specifies the ARM or Cortex-M1 cores you wish to import into your project. Type parameter must be
repeated for each file.
-stimulus {file}

Specifies HDL stimulus files you wish to import into your project. Type parameter must be repeated for
each file.
-hdl_source {file}

Specifies the HDL source files you wish to import into your project. Type parameter must be repeated for
each file.
-edif {file}

Specifies the EDIF files you wish to import into your project. Type parameter must be repeated for each
file.
-constraint_sdc {file}

Specifies the SDC constraint files you wish to import into your project. Type parameter must be repeated
for each file.
-constraint_pin {file}

Specifies the PIN constraint files you wish to import into your project. Type parameter must be repeated
for each file.
-constraint_dcf {file}

Specifies the DCF constraint files you wish to import into your project. Type parameter must be repeated
for each file.
-constraint_pdc {file}

Specifies the PDC constraint files you wish to import into your project. Type parameter must be repeated
for each file.
-constraint_gcf {file}

Specifies the GCF constraint files you wish to import into your project. Type parameter must be repeated
for each file.
-constraint_vcd {file}

Specifies the VCD constraint files you wish to import into your project. Type parameter must be repeated
for each file.
-constraint_saif {file}

Specifies the SAIF constraint files you wish to import into your project. Type parameter must be repeated
for each file.
-constraint_crt {file}

Specifies the CRT constraint files you wish to import into your project. Type parameter must be repeated
for each file.
-simulation {file}

Specifies the simulation files you wish to import into your Libero SoC project. Type parameter must be
repeated for each file.
-profiles {file}

Specifies the profile files you wish to import into your Libero SoC project. Type parameter must be
repeated for each file.
-cxf {file}

Specifies the CXF file (such as SmartDesign components) you wish to import into your Libero SoC
project. Type parameter must be repeated for each file.
-templates {file}

204 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Specifies the template file you wish to import into your IDE project.
-ccz {file}

Specifies the IP core file you wish to import into your project.
-wf_stimulus {file}

Specifies the WaveFormer Pro stimulus file you wish to import into your project.
-modelsim_ini {file}

Specifies the ModelSIM INI file that you wish to import into your project.

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

Exceptions
None

Example
The command below imports the HDL source files file1.vhd and file2.vhd:
import_files -hdl_source file1.vhd –hdl_source file2.vhd

See Also
Project Manager Tcl Command Reference

new_project
Tcl command; creates a new project in the Libero SoC. If you do not specify a location, Libero SoC saves
the new project in your current working directory.

new_project -name project_name -location project_location -family family_name –die device_die -
package package_name -hdl HDL_type -speed speed_grade -die_voltage value -adv_options value

Arguments
-name project_name

The name of the project. This is used as the base name for most of the files generated from Libero SoC.
-location project_location

The location of the project. Must not be an existing directory.
-family family_name

The Microsemi SoC device family for your targeted design.
-die device_die

Die for your targeted design.
-package package_name

Package for your targeted design.
-hdl HDL_type

Sets the HDL type for your new project.

Value Description

VHDL Sets your new projects HDL type to VHDL

VERILOG Sets your new projects to Verilog

open_project

Libero User's Guide 205

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

-speed speed_grade

Sets the speed grade for your project. Possible values depend on your device, die and package. See your
device datasheet for details.
-die_voltage value

Sets the die voltage for your project. Possible values depend on your device. See your device datasheet
for details.
-adv_options value

Sets your advanced options, such as operating conditions.

Value Description

IO_DEFT_STD:LVTTL Sets your I/O default value to LVTTL

TEMPR:MIL Sets your default temperature range; can be COM
(Commercial), MIL (Military) or IND (industrial).

VCCI_1.5_VOLTR:COM Sets VCCI to 1.5 and voltage range to Commercial

VCCI_1.8_VOLTR:COM Sets VCCI to 1.8 and voltage range to Commercial

VCCI_2.5_VOLTR:COM Sets VCCI to 2.5 and voltage range to Commercial

VCCI_3.3_VOLTR:COM Sets VCCI to 3.3 and voltage range to Commercial

VOLTR:COM Sets your voltage range; can be COM (Commercial), MIL
(Military) or IND (industrial).

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

Exceptions
None

Example
Creates a new project in the directory c:/netlists/test named "project", with the HDL type VHDL for the
ProASIC3 family.
new_project -location C:/Netlists/Test -name Project -hdl VHDL -family PA3

See Also
Project Manager Tcl Command Reference

open_project
Tcl command; opens an existing Libero SoC project.

open_project project_name-do_backup_on_convert value-backup_file backup_filename

Arguments
project_name

Must include the complete path to the PRJ file. If you do not provide the full path, Libero SoC infers that
you want to open the project from your current working directory.

206 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

-do_backup_on_convert value

Sets the option to backup your files if you open a project created in a previous version of Libero SoC.

Value Description

TRUE Creates a backup of your original project before opening

FALSE Opens your project without creating a backup

-backup_file backup_filename

Sets the name of your backup file (if you choose to do_backup_on_convert).

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

Exceptions
• None

Example
Open project.prj from the c:/netlists/test directory.
open_project c:/netlists/test/project.prj

See Also
close_project

new_project

save_project

Project Manager Tcl Command Reference

organize_cdbs
Tcl command; enables you to organize the CDB files in your project.

organize_cdbs -file name -module name

Arguments
-file name

Specifies the name of the CDB file you intend to organize.
-module name

Identifies the name of the module to which you wish to add the CDB file.

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

Exceptions
None

Example
Adds the file design2.cdb to the module design_test.
organize_cdbs -file design2.cdb -module design_test

organize_constraints

Libero User's Guide 207

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

See Also
Project Manager Tcl Command Reference

organize_constraints
Tcl command; organizes the constraint files in your project.

-organize_constraints
[-file name]*
[-mode value]
-designer_view name
-module value
-tool value

Arguments
-file name

Specifies the name of the file to which you want to associate your stimulus files.
-mode value

Specifies whether you are creating a new stimulus association, adding, or removing; possible values are:

Value Description

new Creates a new stimulus file association

add Adds a stimulus file to an existing association

remove Removes an stimulus file association

-designer_view name

Sets the name of the Designer View in which you wish to add the constraint file, where name is the name
of the view (such as impl1).
-module value

Sets the module, where value is the name of the module.
-tool value

Identifies the intended use for the file, possible values are:

Value Description

synthesis File to be used for synthesis

designer File to be used in Designer

phsynth File to be used in physical synthesis

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

Exceptions
None

208 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Example
The example adds the constraint file delta.vhd in the Designer View impl2 for the Designer tool.
-organize_constraints -file delta.vhd -mode new -designer_view impl2 -module constraint
-tool designer

See Also
Project Manager Tcl Command Reference

organize_sources
Tcl command; organizes the source files in your project.

Arguments
-organize_sources
[-file name]*
[-mode value]
-module value
-tool value
[-use_default value]

Arguments
-file name

Specifies the name of the file to which you want to associate your stimulus files.
-mode value

Specifies whether you are creating a new stimulus association, adding, or removing; possible values are:

Value Description

new Creates a new stimulus file association

add Adds a stimulus file to an existing association

remove Removes an stimulus file association

-module value

Sets the module, where value is the name of the module.
-tool value

Identifies the intended use for the file, possible values are:

Value Description

synthesis File to be used for synthesis

simulation File to be used for simulation

-use_default value

Uses the default values for synthesis or simulation; possible values are:

Value Description

TRUE Uses default values for synthesis or simulation.

project_settings

Libero User's Guide 209

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Value Description

FALSE Uses user-defined values for synthesis or simulation

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

Exceptions
None

Example
The example organizes a new stimulus file 'stim.vhd' using default settings.
-organize_sources -file stim.vhd -mode new -module stimulus -tool synthesis -use_default
TRUE

See Also
Project Manager Tcl Command Reference

project_settings
Tcl command; modifies project flow settings for your Libero SoC project.

project_settings [-hdl "VHDL | VERILOG"] [-auto_update_modelsim_ini "TRUE | FALSE"] [-
auto_update_viewdraw_ini "TRUE | FALSE"] [-block_mode "TRUE | FALSE"] [-
auto_generate_synth_hdl "TRUE | FALSE"] [-auto_run_drc "TRUE | FALSE"] [-
auto_generate_viewdraw_hdl "TRUE | FALSE"] [-auto_file_detection "TRUE | FALSE"]

Arguments
-hdl "VHDL | VERILOG"

Sets your project HDL type.
-auto_update_modelsim_ini "TRUE | FALSE"

Sets your auto-update modelsim.ini file option. TRUE updates the file automatically.
-auto_update_viewdraw_ini "TRUE | FALSE"

Sets your auto-update viewdraw.ini file option. TRUE updates the file automatically.
-block_mode "TRUE | FALSE"

Puts the Project Manager in Block mode, enables you to create blocks in your project.
-auto_generate_synth_hdl "TRUE | FALSE"

Auto-generates your HDL file after synthesis (when set to TRUE).
-auto_run_drc "TRUE | FALSE"

Auto-runs the design rule check immediately after synthesis (when set to TRUE).
-auto_generate_viewdraw_hdl "TRUE | FALSE"

Auto-generates your HDL netlist after a Save & Check in ViewDraw (when set to TRUE).
-auto_file_detection "TRUE | FALSE"

Automatically detects when new files have been added to the Libero SoC project folder (when set to
TRUE).

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

210 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Exceptions
None

Example
Set your project to VHDL, do not auto-update the ModelSim INI or ViewDraw INI files, auto-generate HDL
after synthesis, and enable auto-detect for files.
project_settings [-hdl "VHDL"] [-auto_update_modelsim_ini "FALSE"] [-
auto_update_viewdraw_ini "FALSE"] [-block_mode "FALSE"] [-auto_generate_synth_hdl
"TRUE"] [-auto_file_detection "TRUE"]

See Also
Project Manager Tcl Command Reference

read_active_probe
Tcl command; reads active probe values from the device. The target probe points are selected by
select_active_probe command.

read_active_probe [-deviceName device_name] [-file file_path]

Arguments
-deviceName device_name

Parameter is optional if only one device is available in the current configuration or set for debug (see
SmartDebug user guide for details).

-file file_path

Optional; if specified, re-directs output with probe point values read from the device to the specified file.

Supported Families
SmartFusion2

Exceptions
• You must set a debug file
• Array must be programmed and active
• This command will affect any previously set Live probe channels
• Security locks may disable this function
• Probe points must be selected before calling this operation
• Probe point values are read asynchronously for all selected probe points

Example
Reads the active probe file in /sf2_proj/probe1 on the sf2 device.
read_active_probe [-deviceName sf2] [-file /sf2_proj/probe1]

See Also
Project Manager Tcl Command Reference

read_lsram
Tcl command; reads a specified block of large SRAM from the device.

read_usram

Libero User's Guide 211

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

read_lsram [-deviceName device_name] –block block_name [–file filename]

-deviceName device_name

Parameter is optional if only one device is available in the current configuration or set for debug (see
SmartDebug help for details).

-block block_name

Specifies the name for the target block.
-file filename

Optional; specifies the output file name for the data read from the device.

Supported Families
SmartFusion2

Exceptions
• You must set a debug file
• Array must be programmed and active
• Security locks may disable this function

Example
Reads the SRAM Block sram_block1 from the sf2 device and writes it to the file sram_block_output.
read_lsram [-deviceName sf2] –block sram_block1 [–file sram_block_output]

See Also
Project Manager Tcl Command Reference

read_usram
Tcl command; reads a uSRAM block from the device.

read_lsram [-deviceName device_name] –block block_name [–file filename]

-deviceName device_name

Parameter is optional if only one device is available in the current configuration or set for debug (see
SmartDebug help for details).

-block block_name

Specifies the name for the target block.
-file filename

Optional; specifies the output file name for the data read from the device.

Supported Families
SmartFusion2

Exceptions
• You must set a debug file
• Array must be programmed and active
• Security locks may disable this function

Example
Reads the uSRAM Block usram_block2 from the sf2 device and writes it to the file sram_block_output.

212 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

read_usram [-deviceName sf2] –block usram_block2 [–file sram_block_output]

See Also
Project Manager Tcl Command Reference

refresh
Tcl command; refreshes your project, updates the view and checks for updated links and files.

refresh .

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

Exceptions
None

Example
refresh

See Also
Project Manager Tcl Command Reference

remove_core
Tcl command; removes a core from your project.

remove_core -name core_name

Arguments
-name core_name

Name of the core you want to remove.

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

Exceptions
None

Example
Remove the core ip-beta2:
remove_core -name ip-beta2.ccz

See Also
Project Manager Tcl Command Reference

remove_library

Libero User's Guide 213

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

remove_library
Tcl command; removes a VHDL library from your project.

remove_library
-library name

Arguments
-library name

Specifies the name of the library you wish to remove.

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

Exceptions
None

Example
Remove (delete) a library called 'my_lib'.
remove_library –library my_lib

See Also
Project Manager Tcl Command Reference
add_library

rename_library

remove_profile
Tcl command; deletes a tool profile.

remove_profile -name profilename

Arguments
-name profilename

Specifies the name of the profile you wish to delete.

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

Exceptions
None

Example
The following command deletes the profile 'custom1':
remove_profile -name custom1

See Also
Project Manager Tcl Command Reference

214 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

rename_library
Tcl command; renames a VHDL library in your project.

rename_library
-library name
 -name name

Arguments
-library name

Identifies the current name of the library that you wish to rename.
-name name

Specifies the new name of the library.

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

Exceptions
None

Example
Rename a library from 'my_lib' to 'test_lib1'
rename_library –library my_lib -name test_lib1

See Also
Project Manager Tcl Command Reference
add_library

remove_library

rollback_constraints_from_adb
Tcl command; you can enter pin constraints from Project Manager by either using the text editor to add
them to a PDC file or by using the I/O Attribute Editor.
Once you have imported I/O constraint files into Designer, you can modify the constraints with the
MultiView Navigator. After modifying the constraints, you can import them back into Project Manager to
replace the existing constraints.
When you use the Rollback Constraints feature, Project Manager opens the ADB file, exports the PDC
file, and then replaces it with the specified PDC file.

rollback_constraints_from_adb -adb filename -output output_filename

Arguments
-adb filename

Specifies the filename of the ADB file from which you want to rollback constraints.
-output output_filename

Name of the output constraints file.

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

run_designer

Libero User's Guide 215

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Exceptions
None

Example
The following example creates a rollback constraints PDC file called rollback1.pdc from the ADB file
designer1.adb:
rollback_constraints_from_adb -file designer1.adb -output rollback1

See Also
Project Manager Tcl Command Reference

run_designer
Tcl command; runs Designer with compile and layout options (if selected).

run_designer [-logfile filename] [-script filename] [-append_commands commands] [-adb value]
[-compile value] [-layout value] [-export_ba value]

Arguments
-logfile filename

Specifies the filename of your logfile.
-script filename

Appends any scripts you wish to add to add to the flow, where filename is the name of the script.
-append_commands commands

Appends commands (if any), where commands is the list of appended commands.
-adb value

Creates or opens your ADB file. The following table shows the acceptable values for this argument:

Value Description

new Creates a new ADB file

open Opens an existing ADB file

default Uses the default ADB file in your Libero SoC project

-compile value

Compiles your design. The following table shows the acceptable values for this argument:

Value Description

TRUE Runs compile

FALSE Does not run compile, proceeds to the next command

-layout value

Runs layout on your design. The following table shows the acceptable values for this argument:

Value Description

TRUE Runs layout

216 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Value Description

FALSE Does not run layout, proceeds to the next command

-export_ba value

Exports back-annotate files for your design. The following table shows the acceptable values for this
argument:

Value Description

TRUE Exports back-annotate files

FALSE Does not export back-annotate files; proceeds to the next command

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
None

Example
The following example creates a logfile named designerlog2 and runs compile and layout on the default
ADB file created in your Libero SoC project:
run_designer [-logfile designerlog2] [-adb default] [-compile TRUE] [-layout TRUE]

See Also
Project Manager Tcl Command Reference

run_drc
Tcl command; runs the design rule check on your netlist and generates an HDL file.

run_drc [-netlist file] [-gen_hdl value]

Arguments
-netlist file

Name of the netlist file you want the design rule check to evaluate.
-gen_hdl value

Generates an HDL file (if TRUE). The following table shows the acceptable values for this argument:

Value Description

TRUE Generates an HDL file for your design

FALSE Does not generate an HDL file after the design rule check

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

run_simulation

Libero User's Guide 217

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Exceptions
None

Example
Run the design rule check on the netlist named 'dsnr3' and generates the HDL file
run_drc [-netlist 'dsnr3'] [-gen_hdl TRUE]

See Also
Project Manager Tcl Command Reference

run_simulation
Tcl command; runs simulation on your project with your default simulation tool and creates a logfile.

run_simulation [-logfile "name"] [-wlf "name"] [-dofile "name"] [-refresh_lib "value"] [-
state "value"]

Arguments
-logfile "name"

Name of your simulation logfile.
-wlf "name"

Name of WLF file you wish to use; this command and the -dofile command are exclusive.
-dofile "name"

Name of DO file you wish to use; this command and the -wlf command are exclusive.
-refresh_lib "value"

Sets your library refresh option using one of the following values:

Value Description

TRUE Refreshes your simulation library

FALSE Does not refresh your simulation library

-state "value"

Identifies which simulation you want to perform.

Value Description

Pre_Synthesis Runs pre-synthesis simulation

Post_Synthesis Runs post-synthesis simulation

Post_Phy_Synthesis Runs post-synthesis physical simulation

Post_Layout Runs post-layout simulation

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

218 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Exceptions
None

Example
The following command runs post-layout simulation on your project using the DO file 'myfile.do', does not
refresh the simulation library, and creates the logfile 'mylog.log':
run_simulation -logfile “Mylog.log” -dofile “Myfile.do” -refresh_lib "TRUE" -state
“Post_Layout”

See Also
Project Manager Tcl Command Reference
run_synthesis

run_synthesis
Tcl command; runs synthesis on your project and creates a logfile.

run_synthesis [-logfile "name"] [-target "target file name"]

Arguments
-logfile "name"

Name of your synthesis logfile.
-target "target file name"

Name of your synthesis target file.

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

Exceptions
None

Example
Run synthesis on your project and create the logfile 'mysynlogfile', and creates the target file 'targfile'.
run_synthesis [-logfile "mysynlogfile"] [-target "targfile"]

See Also
Project Manager Tcl Command Reference
run_simulation

save_log
Tcl command; saves your Libero SoC log file.

save_log -file value

Arguments
-file value

Value is your name for the new log file.

save_project

Libero User's Guide 219

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

Exceptions
None

Example
Save the log file file_log.
save_log -file file_log

See Also
close_project

new_project

Project Manager Tcl Command Reference

save_project
Tcl command; the save_project command saves the current project in Libero SoC.

save_project

Arguments
None

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

Exceptions
None

Example
Saves the project in your current working directory:
save_project

See Also
new_project

open_project

Project Manager Tcl Command Reference

save_project_as
Tcl command; the save_project_as command saves the current project in Libero SoC with a different
name and in a specified directory. You must specify a location with the -location parameter.

save_project_as
-name project_name
-location project_location
-files value

220 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

-designer_views value
-replace_links value

Arguments
-name project_name

Specifies the name of your new project.
-location project_location

Must include the complete path of the PRJ file. If you do not provide the full path, Libero SoC infers that
you want to save the project to your current working directory. This is a required parameter.
 -files value

Specifies the files you want to copy into your new project.

Value Description

all Copies all your files into your new project

project Copies only your Libero SoC project files into your new project

source Copies only the source files into your new project

none Copies none of the files into your new project; useful if you wish to manually
copy only specific project files

-designer_views value

Specifies the Designer views you wish to copy into your new project.

Value Description

all Copies all your Designer views into your new project

current Copies only your current Designer fiew files into your new project

none Copies none of your views into your new project

-replace_links value

Specifies whether or not you want to update your file links in your new project.

Value Description

true Replaces (updates) the file links in your project during your save

false Saves your project without updating the file links

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

Exceptions
None

select_active_probe

Libero User's Guide 221

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Example
Saves your current Libero SoC project as mydesign.prj in the c:/netlists/testprj/mydesign directory:
save_project_as -location c:/netlists/testprj/mydesign -name mydesign.prj

See Also
new_project

open_project

save_project

Project Manager Tcl Command Reference

select_active_probe
Tcl command; manages the current selection of active probe points to be used by active probe READ
operations. This command extends or replaces your current selection with the probe points found using the
search pattern.

select_active_probe [-deviceName device_name] [–name probe_name_pattern] [-reset true|false]

Arguments
-deviceName device_name

Parameter is optional if only one device is available in the current configuration or set for debug (see
SmartDebug user guide for details).

-name probe_name_pattern

Optional search pattern string that can specify one or multiple probe points. If this string contains an
asterisk symbol (*) at the end of the string, the search return all probe points with names that begin with
the symbols before the *.

-reset true | false
 Optional parameter; resets all previously selected probe points. If name is not specified, empties out
current selection.

Supported Families
SmartFusion2

Exceptions
None

Example
Selects the active probe *_a3 on the device sf2 with reset set to false.
select_active_probe [-deviceName sf2] [–name *_a3] [-reset false]

See Also
Project Manager Tcl Command Reference

select_profile
Tcl command; selects a profile to use in your project.

select_profile -name profilename

222 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Arguments
-name profilename

Specifies the name of the profile you wish to use.

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

Exceptions
None

Example
The following command selects the profile 'custom1':
select_profile -name custom1

See Also
Project Manager Tcl Command Reference

set_actel_lib_options
Tcl command; the set_actel_lib_options command sets your simulation library to default, or to another
library (when you specify a path.

set_actel_lib_options -use_default_sim_path value -sim_path {path}

Arguments
-use_default_sim_path value

Possible values are:

Value Description

TRUE Uses the default simulation library.

FALSE Disables the default simulation library; enables you to specify a different
simulation library with the -sim_path {path} option.

-sim_path {path}

Specifies the path to your simulation library.

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

Exceptions
None

Example
Uses a simulation library in the directory c:\sim_lib\test.
set_actel_lib_options -use_default_sim_path FALSE -sim_path {c:\sim_lib\test}

set_debug_data_file

Libero User's Guide 223

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

See Also
Project Manager Tcl Command Reference

set_debug_data_file
Tcl command; sets the debug file. The debug file contains information used by SmartDebug for mapping
user design names to their respective physical addresses. It also contains other information used during the
debug process. The debug file is generated by Libero during Place and Route and is stored in the /design
folder.
The output file name follows the pattern: <design_name>_debug.txt

set_debug_data_file –file file_path

Arguments
-file file_path

Specifies the target debug filename and location. Left slashes in the file pathname are not allowed.
The debug file is only valid for a specific design/device type.

Supported Families
SmartFusion2

Exceptions
None

Example
Sets the debug data file to the sf2_proj/debug directory.
set_debug_data_file -file /sf2_proj/debug

See Also
Project Manager Tcl Command Reference

set_device (Project Manager)
Tcl command; sets your device family, die, and package in the Project Manager.

set_device [-family family] [-die die] [-package package].[-speed speed_grade] [-adv_options
value]

Arguments
-family family

Sets device family.
-die die

Sets device die.
-package package

Sets device package.
-speed speed_grade

Sets device speed grade.
-adv_options value

Sets your advanced options, such as temperature and voltage settings.

224 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Value Description

IO_DEFT_STD:LVTTL Sets your I/O default value to LVTTL

TEMPR:COM Sets your default temperature range; can be COM
(Commercial), MIL (Military) or IND (industrial).

VCCI_1.5_VOLTR:COM Sets VCCI to 1.5 and voltage range to Commercial

VCCI_1.8_VOLTR:COM Sets VCCI to 1.8 and voltage range to Commercial

VCCI_2.5_VOLTR:COM Sets VCCI to 2.5 and voltage range to Commercial

VCCI_3.3_VOLTR:COM Sets VCCI to 3.3 and voltage range to Commercial

VOLTR:COM Sets your voltage range; can be COM (Commercial), MIL
(Military) or IND (industrial).

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

Exceptions
None

Example
Set your device to Fusion, your die to AFS600, and your package to 484 FBGA
set_device [-family fusion] [-die afs600] [-package "484 FBGA"]

See Also
Project Manager Tcl Command Reference

set_live_probe
Tcl command; set_live_probe channels A and/or B to the specified probe point(s). At least one probe point
must be specified. Only exact probe name is allowed (i.e. no search pattern that may return multiple points).

set_live_probe [-deviceName device_name] [–probeA probe_name] [–probeB probe_name]

Arguments
-deviceName device_name

Parameter is optional if only one device is available in the current configuration or set for debug (see
SmartDebug user guide for details).

-probeA probe_ name

Specifies target probe point for the probe channel A.
-probeB probe_ name

 Specifies target probe point for the probe channel B.

Supported Families
SmartFusion2

set_modelsim_options

Libero User's Guide 225

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Exceptions
• You must set a debug file
• The array must be programmed and active
• Active probe read or write operation will affect current settings of Live probe since they use same

probe circuitry inside the device
• Setting only one Live probe channel affects the other one, so if both channels need to be set, they

must be set from the same call to set_live_probe
• Security locks may disable this function
• In order to be available for Live probe, ProbeA and ProbeB I/O's must be reserved for Live probe

respectively

Example
Sets the Live probe channel A to the probe point A12 on device sf2.
set_live_probe [-deviceName sf2] [–probeA A12]

See Also
Project Manager Tcl Command Reference

set_modelsim_options
Tcl command; sets your ModelSim simulation options.

set_modelsim_options
[-use_automatic_do_file value]
[-user_do_file {path}]
[-sim_runtime {value}]
[-tb_module_name {value}]
[-tb_top_level_name {value}]
[-include_do_file value
[-included_do_file {value}]
[-type {value}]
[-resolution {value}]
[-add_vsim_options {value}]
[-display_dut_wave value]
[-log_all_signals value]
[-do_file_args value]
[-dump_vcd "TRUE | FALSE"]
[-vcd_file "VCD file name"]

Arguments
-use_automatic_do_file value

Uses an automatic.do file in your project. Possible values are:

Value Description

TRUE Uses the default automatic.do file in your project.

FALSE Uses a different *.do file; use the other simulation options to specify it.

-user_do_file {path}

Specifies the location of your user-defined *.do file.
-sim_runtime {value}

226 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Sets your simulation runtime. Value is the number and unit of time, such as {1000ns}.
-tb_module_name {value}

Specifies your testbench module name, where value is the name.
-tb_top_level_name {value}

Sets the top-level instance name in the testbench, where value is the name.
-include_do_file value

Includes a *.do file; possible values are:

Value Description

TRUE Includes the *.do file.

FALSE Does not include the *.do file

-included_do_file {value}

Specifies the name of the included *.do file, where value is the name of the file.
-type {value}

Resolution type; possible values are:

Value Description

min Minimum

typ Typical

max Maximum

-resolution {value}
Sets your resolution value, such as {1ps}.
-add_vsim_options {value}

Adds more Vsim options, where value specifies the option(s).
-display_dut_wave value
Enables ModelSim to display signals for the tested design; possible values are:

Value Description

0 Displays the signal for the top_level_testbench

1 Enables ModelSim to display the signals for the tested design

-log_all_signals value
Enables you to log all your signals during simulation; possible values are:

Value Description

TRUE Logs all signals

FALSE Does not log all signals

-do_file_args value

Specifies *.do file command parameters.
-dump_vcd value

set_option

Libero User's Guide 227

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Dumps the VCD file when simulation is complete; possible values are:

Value Description

TRUE Dumps the VCD file

FALSE Does not dump the VCD file

-vcd_file {value}

Specifies the name of the dumped VCD file, where value is the name of the file.

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

Exceptions
None

Example
Sets ModelSim options to use the automatic *.do file, sets simulation runtime to 1000ns, sets the
testbench module name to "testbench", sets the testbench top level to <top>_0, sets simulation type to
"max", resolution to 1ps, adds no vsim options, does not log signals, adds no additional DO file
arguments, dumps the VCD file with a name power.vcd.
set_modelsim_options -use_automatic_do_file 1 -sim_runtime {1000ns} -tb_module_name
{testbench} -tb_top_level_name {<top>_0} -include_do_file 0 -type {max} -resolution
{1ps} -add_vsim_options {} -display_dut_wave 0 -log_all_signals 0 -do_file_args {} -
dump_vcd 0 -vcd_file {power.vcd}

See Also
Project Manager Tcl Command Reference

set_option
Tcl command; sets your synthesis options on a module.

set_option [-synth "TRUE | FALSE"] [-module module]

Arguments
-synth "TRUE | FALSE"

Runs synthesis (for a value of TRUE).
-module module

Identifies the module on which you will run synthesis.

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

Exceptions
None

228 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Example
Run synthesis on the module test1.vhd:
set_option [-synth TRUE] [-module test1.vhd]

See Also
Project Manager Tcl Command Reference

set_user_lib_options
Tcl command; sets your user library options during simulation. If you do not use a custom library these
options are not available.

set_user_lib_options
-name {value}
-path {path}
-option {value}

Arguments
-name {value}

Sets the name of your user library.
-path {path}

Sets the pathname of your user library.
-option {value}

Sets your default compile options on your user library; possible values are:

Value Description

do_not_compile User library is not compiled

refresh User library is refreshed

compile User library is compiled

recompile User library is recompiled

refresh_and_compile User library is refreshed and compiled

Supported Familes
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

Exceptions
None

Example
The example below sets the name for the user library to "test1", the path to
c:/actel_des_files/libraries/test1, and the compile option to "do not compile".
set_user_lib_options -name {test1} -path {c:/actel_des_files/libraries/test1} -option
{do_not_compile}

set_user_lib_options

Libero User's Guide 229

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

See Also
Project Manager Tcl Command Reference

230 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

set_root
Tcl command; sets the module you specify as the root.

set_root module_name

Arguments
set_root module_name

Specifies the name the module you want to set as root.

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

Exceptions
None

Example
Set the module mux8 as root:
set_root mux8

See Also
Project Manager Tcl Command Reference

synplify
Tcl command; runs Synplify in batch mode and executes a Tcl script.

synplify –batch -licensetype synplify_acteloem <Tcl_script>.tcl

Arguments
-batch

Runs Synplify in batch mode.
-licensetype synplify_acteloem <Tcl_script>.tcl

Runs Synplify and executes the Tcl script identified in the brackets; omit the brackets in the final script, as
in the example below.

Exceptions
None

Example
The following example runs Synplify in batch mode and executes the Tcl script 'mytcl.tcl'.
synplify –batch -licensetype synplify_acteloem mytcl.tcl

See Also
Project Manager Tcl Command Reference

synplify_pro

Libero User's Guide 231

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

synplify_pro
Tcl command; runs Synplify Pro in batch mode and executes a Tcl script.

synplify_pro –batch -licensetype synplifypro_acteloem <Tcl_script>.tcl

Arguments
-batch

Runs Synplify Pro in batch mode.
-licensetype synplifypro_acteloem <Tcl_script>.tcl

Runs Synplify Pro and executes the Tcl script identified in the brackets; omit the brackets in the final
script, as in the example below.

Exceptions
None

Example
The following example runs Synplify Pro in batch mode and executes the Tcl script 'mytcl.tcl':
synplify_pro –batch -licensetype synplifypro_acteloem mytcl.tcl

See Also
Project Manager Tcl Command Reference

unlink
Tcl command; removes a link to a file in your project.

unlink -file filename [-local local_filename]

Arguments
-file filename

Name of the linked (remote) file you want to unlink.
-local local_filename

Name of the local file that you want to unlink.

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

Exceptions
None

Example
Unlink the file hdl1.vhd from my local file test.vhd
unlink -file hdl1.vhd [-local test.vhd]

See Also
Project Manager Tcl Command Reference

232 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

use_file
Tcl command; specifies which file in your project to use.

use_file
-file value
 -module value
 -designer_view value

Arguments
-filevalue

Specifies the EDIF or ADB file you wish to use in the project. Value is the name of the file you wish use
(including the full pathname).
-module value

Specifies the module in which you want to use the file.
-designer_view value

Specifies the Designer View in which you wish to use the file.

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

Exceptions
None

Example
Specify file1.edn in the ./project/synthesis directory, in the module named top, in the Designer View
named impl1.
use_file –file “./project/synthesis/file1.edn” –module “top” –designer_view “Impl1”

See Also
use_source_file

Project Manager Tcl Command Reference

use_source_file
Tcl command; defines a module for your project.

use_source_file
-file value
 -module value

Arguments
-file value

Specifies the Verilog or VHDL file. Value is the name of the file you wish use (including the full pathname).
-module value

Specifies the module in which you want to use the file.

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

write_active_probe

Libero User's Guide 233

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Exceptions
None

Example
Specify file1.vhd in the ./project/hdl directory, in the module named top.
use_source_file –file “./project/hdl/file1.vhd” –module “top"

See Also
use_file

Project Manager Tcl Command Reference

write_active_probe
Tcl command; sets the target probe point on the device to the specified value; the target probe point name
must be specified.

write_active_probe [-deviceName device_name] –name probe_name -value true|false

Arguments
-deviceName device_name

Parameter is optional if only one device is available in the current configuration or set for debug (see
SmartDebug user guide for details).

-name probe_name

Specifies the name for the target probe point.
-value true|false

Specifies values to be written.

Supported Families
SmartFusion2

Exceptions
• You must set a debug file
• Array must be programmed and active
• This command will affect any previously set Live probe channels
• Security locks may disable this function
• If the user clock is running, the target flip-flop keeps the state set by this command for one clock cycle

only

Example
Sets the target probe point probe1 on device sf2 to true.
write_active_probe [-deviceName sf2] -name probe1 -value true

See Also
Project Manager Tcl Command Reference

write_lsram
Tcl command; writes a seven bit word into the specified large SRAM location.

234 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

write_lsram [-deviceName device_name] –block block_name] –offset offset_value –value value

-deviceName device_name

Parameter is optional if only one device is available in the current configuration or set for debug (see
SmartDebug help for details).

-block block_name

Specifies the name for the target block.
-offset offset_value

Offset (address) of the target word within the memory block.
-value value

Value to be written to the target location.

Supported Families
SmartFusion2

Exceptions
• You must set a debug file
• Array must be programmed and active
• The maximum value that can be written is 0x1FF
• Security locks may disable this function

Example
Writes a value of 0x1A to the device sf2 in the block sram_block1 with an offset of 16.
write_lsram [-deviceName sf2] –block sram_block1 -offset 16 -value 0x1A

See Also
Project Manager Tcl Command Reference

write_usram
Tcl command; writes a seven bit word into the specified uSRAM location.

write_usram [-deviceName device_name] –block block_name] –offset offset_value –value value

-deviceName device_name

Parameter is optional if only one device is available in the current configuration or set for debug (see
SmartDebug help for details).

-block block_name

Specifies the name for the target block.
-offset offset_value

Offset (address) of the target word within the memory block.
-value value

Seven bit value to be written.

Supported Families
SmartFusion2

Exceptions
• You must set a debug file

Designer Tcl Command Reference

Libero User's Guide 235

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

• Array must be programmed and active
• The maximum value that can be written is 0x1FF
• Security locks may disable this function

Example
Writes a value of 0x1A to the device sf2 in the block usram_block2 with an offset of 16.
write_usram [-deviceName sf2] –block usram_block2 -offset 16 -value 0x1A

See Also
Project Manager Tcl Command Reference

Designer Tcl Command Reference
A Tcl (Tool Command Language) file contains scripts for simple or complex tasks. You can run scripts from
either the Windows or UNIX command line or store and run a series of Tcl commands in a “.tcl” batch file.
You can also run scripts from within Designer.
Designer supports the following Tcl scripting commands:

Command Action

add_probe Adds a probe to an internal net in
your design, using the original name
from the optimized netlist in your
design. Also, this command must be
used in conjunction with the
generate_probes command to
generate a probed ADB file (see
example below).

all_inputs Returns an object representing all
input and inout pins in the current
design

all_outputs Returns an object representing all
output and inout pins in the current
design

all_registers Returns an object representing
register pins or cells in the current
scenario based on the given
parameters

are_all_source_files_current Audits all source files and
determines whether or not they are
out of date / imported into the
workspace

backannotate Extracts timing delays from your
post layout data

check_timing_constraints Checks all timing constraints in the
current timing scenario for validity

clone_scenario Creates a new timing scenario by
duplicating an existing one

236 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Command Action

close_design Closes the current design

compile Performs design rule check and
optimizes the input netlist before
translating the source code into
machine code

create_clock Creates a clock constraint on the
specified ports/pins, or a virtual
clock if no source is specified

create_generated_clock Creates an internally generated
clock constraint on the ports/pins
and defines its characteristics

create_scenario Creates a new timing scenario with
the specified name

delete_probe Deletes a probe on nets in a probed
ADB file

delete_scenario Deletes the specified timing
scenario

export Converts a file from its current
format into the specified file format,
usually for use in another program

extended_run_shell Runs multiple iterations of layout
through Designer

generate_probes Executes the probing and creates a
new ADB file. This command is
used in conjunction with the
add_probe Tcl command (see
example below).

get_cells Returns an object representing the
cells (instances) that match those
specified in the pattern argument

get_clocks Returns an object representing the
clock(s) that match those specified
in the pattern argument in the
current timing scenario

get_current_scenario Returns the name of the current
timing scenario

get_defvar Returns the value of the Designer
internal variable you specify

get_design_filename Returns the fully qualified path of
the specified design file

Designer Tcl Command Reference

Libero User's Guide 237

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Command Action

get_design_info Returns detailed information about
your design, depending on which
arguments you specify

get_nets Returns an object representing the
nets that match those specified in
the pattern argument

get_out_of_date_files Audits all files returns a list of
filenames that are out of date

get_pins Returns an object representing the
pin(s) that match those specified in
the pattern argument

get_ports Returns an object representing the
port(s) that match those specified in
the pattern argument

import_aux Imports the specified file as an
auxiliary file, which are not audited
and do not require you to re-compile
the design

import_source Imports the specified file as a
source file, which include your
netlist and design constraints

ioadvisor_apply_suggestion Applies the suggestions for the
selected attribute to the selected
I/O(s)

ioadvisor_commit Saves all changes in the I/O Advisor

ioadvisor_restore Restores the I/O Advisor to the
initial state

ioadvisor_restore_initial_value Sets the current value for the
selected attribute and I/Os to the
initial value

ioadvisor_set_outdrive Sets the outdrive for the selected
I/Os

ioadvisor_set_outputload Sets the output load for the selected
I/Os

ioadvisor_set_slew Sets the slew for the selected I/Os

is_design_loaded Returns True if the design is loaded
into Designer; otherwise, returns
False

is_design_modified Returns True if the design has been
modified since it was last compiled;

238 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Command Action

otherwise, returns False

is_design_state_complete Returns True if the specified design
state is complete (for example, you
can inquire as to whether a die and
package has been selected for the
design); otherwise, returns False

is_source_file_current Audits the source file and
determines whether or not the file is
out of date / imported into the
workspace

layout Place-and-route your design

list_clocks Returns details about all of the clock
constraints in the current timing
constraint scenario

list_clock_latencies Returns details about all of the clock
latencies in the current timing
constraint scenario

list_clock_uncertainties Returns the list of clock-to-clock
uncertainty constraints for the
current scenario.

list_disable_timings Returns the list of disable timing
constraints for the current scenario

list_false_paths Returns details about all of the false
paths in the current timing constraint
scenario

list_generated_clocks Returns details about all of the
generated clock constraints in the
current timing constraint scenario

list_input_delays Returns details about all of the input
delay constraints in the current
timing constraint scenario

list_max_delays Returns details about all of the
maximum delay constraints in the
current timing constraint scenario

list_min_delays Returns details about all of the
minimum delay constraints in the
current timing constraint scenario

list_multicycle_paths Returns details about all of the
multicycle paths in the current
timing constraint scenario

list_objects Returns a list of names of the
objects in the specified list

Designer Tcl Command Reference

Libero User's Guide 239

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Command Action

list_output_delays Returns details about all of the
output delay constraints in the
current timing constraint scenario

list_scenarios Returns a list of names of all of the
available timing scenarios

new_design Creates a new design (.adb) file in a
specific location for a particular
design family such ProASIC3

open_design Opens an existing design in the
Designer software

pin_assign Assigns the named pin to the
specified port but does not lock its
assignment.

pin_commit Saves the pin assignments to the
design (*.adb) file.

pin_fix Locks the pin assignment for the
specified port, so the pin cannot be
moved during place-and-route.

pin_fix_all Locks all the assigned pins on the
device so they cannot be moved
during place-and-route.

pin_unassign Unassigns a specific pin from a
specific port. The unassigned pin
location is then available for other
ports.

pin_unassign_all Unassigns all pins from a specific
port.

pin_unfix Unlocks the specified pin from its
port.

remove_clock Removes the specified clock
constraint from the current timing
scenario

remove_clock_latency Removes a clock source latency
from the specified clock and from all
edges of the clock

remove_clock_uncertainty Removes a clock-to-clock
uncertainty from the current timing
scenario by specifying either its
exact arguments or its ID

remove_disable_timing Removes a disable timing constraint
by specifying its arguments, or its ID

240 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Command Action

remove_false_path Removes a false path from the
current timing scenario by
specifying either its exact
arguments or its ID

remove_generated_clock Removes the specified generated
clock constraint from the current
scenario

remove_input_delay Removes an input delay a clock on
a port by specifying both the clocks
and port names or the ID of the
input_delay constraint to remove

remove_max_delay Removes a maximum delay
constraint in the current timing
scenario by specifying either its
exact arguments or its ID.

remove_min_delay Removes a minimum delay
constraint in the current timing
scenario by specifying either its
exact arguments or its ID

remove_multicycle_path Removes a multicycle path
constraint in the current timing
scenario by specifying either its
exact arguments or its ID

remove_output_delay Removes an ouput delay by
specifying both the clocks and port
names or the ID of the output_delay
constraint to remove

rename_scenario Renames the specified timing
scenario with the new name
provided

report Generates the type of report you
specify: Status, Timing, Timer
Violations, Flip-flop, Power, Pin, or
I/O Bank

report (Activity and Hazards Power Report) Reads a VCD file and reports
transitions and hazards for each
clock cycle of the VCD file.

report (Bottleneck) using SmartTime Creates a bottleneck report

report (Cycle Accurate Power Report) Reports a power waveform with one
power value per clock period or half-
period instead of an average power
for the whole simulation

Report (Data History) Reports new features and

Designer Tcl Command Reference

Libero User's Guide 241

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Command Action

enhancements, bug fixes and
known issues for the current release
that may impact the power
consumption of the design

report (Datasheet) using SmartTime Creates a datasheet report

Report (Power) Creates a Power report, which
enables you to determine if you
have any power consumption
problems in your design

Report (Power Scenario) Creates a scenario power report,
which enables you to enter a
duration for a sequence of
previously defined power modes
and calculate the average power
consumption and the excepted
battery life for this sequence.

report (Timing) using SmartTime Creates a timing report

report (Timing violations) using SmartTime Creates a timing violations report

set_clock_latency Defines the delay between an
external clock source and the
definition pin of a clock within
SmartTime

set_clock_uncertainty Specifies a clock-to-clock
uncertainty and returns the ID of the
created constraint if the command
succeeded

set_current_scenario Specifies the timing scenario for the
Timing Analyzer to use

save_design Writes the design to the specified
filename

set_defvar Sets the value of the Designer
internal variable you specify >

set_design Specifies the design name, family
and path in which Designer will
process the design

set_device Specifies the type of device and its
parameters

set_disable_timing Disables timing arcs within a cell
and returns the ID of the created
constraint

set_false_path Identifies paths that are considered
false and excluded from the timing

242 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Command Action

analysis in the current timing
scenario

set_input_delay Creates an input delay on a port list
by defining the arrival time of an
input relative to a clock in the
current scenario

set_max_delay Specifies the maximum delay for the
timing paths in the current scenario

set_min_delay Specifies the minimum delay for the
timing paths in the current scenario

set_multicycle_path Defines a path that takes multiple
clock cycles in the current scenario

set_output_delay Defines the output delay of an
output relative to a clock in the
current scenario

smartpower_add_new_custom_mode Creates a new custom mode

smartpower_add_new_scenario Creates a new scenario

smartpower_add_pin_in_domain Adds a pin to either a Clock or Set
domain

smartpower_change_clock_statistics Changes the default frequencies
and probabilities for a specific
domain

smartpower_change_setofpin_statistics Changes the default frequencies
and probabilities for a specific set

smartpower_commit Saves the changes made in
SmartPower to the design file (.adb)
in Designer

smartpower_create_domain Creates a new clock or set domain

smartpower_edit_custom_mode Edits a custom mode

smartpower_edit_scenario Edits a scenario

smartpower_initialize_clock_with_constraints Initializes the clock frequency and
the data frequency of a single clock
domain with a specified clock name
and the initialization options

smartpower_init_do Initializes the frequencies and
probabilities for clocks, registers,
set/reset nets, primary inputs,
combinational outputs, enables and
other sets of pins, and selects a

Designer Tcl Command Reference

Libero User's Guide 243

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Command Action

mode for initialization

smartpower_init_set_clocks_options Initializes the clock frequency of all
clock domains

smartpower_init_set_combinational_options Initializes the frequency and
probability of all combinational
outputs

smartpower_init_set_enables_options Initializes the clock frequency of all
enable clocks with the initialization
options

smartpower_init_set_othersets_options Initializes the frequency and
probability of all other sets

smartpower_init_set_primaryinputs_options Initializes the frequency and
probability of all primary inputs

smartpower_init_set_registers_options Initializes the frequency and
probability of all register outputs

smartpower_init_set_set_reset_options Initializes the frequency and
probability of all set/reset nets

smartpower_init_setofpins_values Initializes the frequency and
probability of all sets of pins

smartpower_remove_all_annotations Removes all initialization
annotations for the specified mode

smartpower_remove_custom_mode Removes a custom mode

smartpower_remove_domain Removes an existing domain

smartpower_remove_file Removes a VCD file from the
specified mode

smartpower_remove_pin_enable_rate This command is obsolete and it is
replaced by
smartpower_remove_pin_probability

smartpower_remove_pin_frequency Removes the frequency of an
existing pin

smartpower_remove_pin_of_domain Removes a clock pin or a data pin
from a Clock or Set domain,
respectively.

smartpower_remove_pin_probability Enables you to annotate the
probability of a pin driving an enable
pin

smartpower_remove_scenario Removes a scenario from the
current design

244 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Command Action

smartpower_remove_vcd Removes an existing VCD file from
a mode or entire design

smartpower_restore Restores previously committed
constraints

smartpower_set_battery_capacity Sets the battery capacity

smartpower_set_cooling Sets the cooling style to one of the
predefined types, or a custom value

smartpower_set_mode_for_analysis Sets the mode for cycle-accurate
power analysis

smartpower_set_operating_condition Sets the operating conditions used
in SmartPower to best, typical, or
worst case

smartpower_set_pin_enable_rate This command is obsolete and it is
now replaced by
smartpower_set_pin_probability

smartpower_set_pin_frequency Sets the frequency of an existing pin

smartpower_set_pin_probability Enables you to annotate the
probability of a pin driving an enable
pin

smartpower_set_preferences Sets SmartPower preferences such
as power unit, frequency unit,
operating mode, operating
conditions, and toggle

smartpower_set_scenario_for_analysis Sets the scenario for cycle-accurate
power analysis

smartpower_set_temperature_opcond Sets the temperature in the
operating conditions used in
SmartPower

smartpower_set_thermalmode Sets the mode of computing
junction temperature

smartpower_set_voltage_opcond Sets the voltage in the operating
conditions used in SmartPower

smartpower_temperature_opcond_set_design_wide Sets the temperature for
SmartPower design-wide operating
conditions

smartpower_temperature_opcond_set_mode_specific Sets the temperature for
SmartPower mode-specific
operating conditions

smartpower_voltage_opcond_set_design_wide Sets the voltage settings for

Designer Tcl Command Reference

Libero User's Guide 245

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Command Action

SmartPower design-wide operating
conditions

smartpower_voltage_opcond_set_mode_specific Sets the voltage settings for
SmartPower mode-specific use
operating conditions

st_create_set Creates a set of paths to be
analyzed

st_commit Saves the changes made in
SmartTime to the design (.adb) file

st_edit_set Modifies the paths in a user set

st_expand_path Displays expanded path information
(path details) for paths

st_list_paths Displays the list of paths in the
same tabular format shown in
SmartTime

st_remove_set Deletes a user set from the design

st_restore Restores constraints previously
committed in SmartTime

st_set_options Sets options for timing analysis

timer_get_path Displays the Timer path information
in the Log window

timer_get_clock_actuals Displays the actual clock frequency
in the Log window

timer_get_clock_constraints Displays the clock constraints
(period/frequency and dutycycle) in
the Log window

timer_get_maxdelay Displays the maximum delay
constraint between two pins of a
path in the Log window

timer_get_path_constraints Displays the path constraints set for
maxdelay in the Timer in the Log
window

timer_remove_stop Removes the path stop constraint
on the specified pin

timer_restore Restores previously committed
constraints

timer_remove_all_constraints Removes all the timing constraints
previously entered in the Designer

246 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Command Action

system

Note: Note: Tcl commands are case sensitive. However, their arguments are not.

See Also
Introduction to Tcl scripting
Basic syntax

Tcl Command Documentation Conventions
The following table shows the typographical conventions used for the Tcl command syntax.

Syntax Notation Description

command -
argument

Commands and arguments appear in Courier New typeface.

variable Variables appear in blue, italic Courier New
typeface. You must substitute an appropriate value
for the variable.

[-argumentvalue]
[variable]+

Optional arguments begin and end with a square bracket with
one exception: if the square bracket is followed by a plus sign
(+), then users must specify at least one argument. The plus
sign (+) indicates that items within the square brackets can
be repeated. Do not enter the plus sign character.

Note: Note: All Tcl commands are case sensitive. However, their arguments are not.

Examples
Syntax for the get_defvar command followed by a sample command:

get_defvar variable

get_defvar “DESIGN”

Syntax for the backannotate command followed by a sample command:

backannotate -name file_name -format format_type -language language -dir directory_name [-
netlist] [-pin]

backannotate -dir \

 {..\design} -name "fanouttest_ba.sdf" -format "SDF" -language "VERILOG" \

-netlist

Wildcard Characters
You can use the following wildcard characters in names used in Tcl commands:

Wildcard What it Does

\ Interprets the next character literally

? Matches any single character

add_probe

Libero User's Guide 247

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Wildcard What it Does

* Matches any string

[] Matches any single character among those listed between brackets
(that is, [A-Z] matches any single character in the A-to-Z range)

Note: Note: The matching function requires that you add a slash (\) before each slash in the port, instance,
or net name when using wildcards in a PDC command and when using wildcards in the Find feature
of the MultiView Navigator. For example, if you have an instance named “A/B12” in the netlist, and
you enter that name as “A\\/B*” in a PDC command, you will not be able to find it. In this case, you
must specify the name as A\\\\/B*.

Special Characters [], { }, and \
Sometimes square brackets ([]) are part of the command syntax. In these cases, you must either enclose
the open and closed square brackets characters with curly brackets ({ }) or precede the open and closed
square brackets ([]) characters with a backslash (\). If you do not, you will get an error message.
For example:
pin_assign -port {LFSR_OUT[0]} -pin 15

or

pin_assign -port LFSR_OUT\[0\] -pin 180

Note: Note: Tcl commands are case sensitive. However, their arguments are not.

Entering Arguments on Separate Lines
To enter an argument on a separate line, you must enter a backslash (\) character at the end of the
preceding line of the command as shown in the following example:
backannotate -dir \

{..\design} -name "fanouttest_ba.sdf" -format "SDF" -language "VERILOG" \

-netlist

See Also
Introduction to Tcl scripting
Basic syntax
About Designer Tcl commands

add_probe
Tcl command; adds a probe to an internal net in your design, using the original name from the optimized
netlist in your design. Also, this command must be used in conjunction with the generate_probes command
to generate a probed ADB file (see example below).
You must complete layout before you use this command.

add_probe –net <net_name> [-pin <pin_name>] [-port <port_name>] [-assign_to_used_pin
<TRUE|FALSE>]

Arguments
-net <net_name>

Name of the net you want to probe. You cannot probe HARDWIRED, POWER, or INTRINSIC nets.
-pin <pin_name>

Name of the package pin at which you want to put the net to be probed. Argument is optional; if
unspecified the net is routed to any free package pin.

248 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

-port <port_name>

Name of the port you are adding. Argument is optional; if unspecified the default value is PROBE_<n>.
-assign_to_used_pin <TRUE|FALSE>

Probes a net on an already used pin. The net on the existing pin will be disconnected. Argument is
optional; if unspecified the net can be only routed on unused pin.

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
None

Example
The example below adds a probe to the net Count8_0/INV_0_Y on pin 7 and uses the port name PROBE_1,
then generates the probe ADB file named test1.adb.
Note that generate_probes is a separate Tcl command.
add_probe -net Count8_0/INV_0_Y -assign_to_used_pin {FALSE} -pin {7} -port {PROBE_1}

generate_probes –save test1.adb

See Also
delete_probe

generate_probes

Generating a Probed Design
Generate Probed Design - Add Probe(s) Dialog Box
Designer Tcl Command Reference

all_inputs
Tcl command; returns an object representing all input and inout pins in the current design.

all_inputs

Arguments
None

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

Exceptions
You can only use this command as part of a –from, -to, or –through argument in the following Tcl
commands: set_min_delay, set_max_delay, set_multicycle_path, and set_false_path.

Examples
set_max_delay -from [all_inputs] -to [get_clocks ck1]

See Also
Tcl documentation conventions
Designer Tcl Command Reference

all_outputs

Libero User's Guide 249

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

all_outputs
Tcl command; returns an object representing all output and inout pins in the current design.

all_outputs

Arguments
None

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

Exceptions
You can only use this command as part of a –from, -to, or –through argument in the following Tcl
commands: set_min_delay, set_max_delay, set_multicycle_path, and set_false_path.

Examples
set_max_delay -from [all_inputs] -to [all_outputs]

See Also
Tcl documentation conventions
Designer Tcl Command Reference

all_registers
Tcl command; returns an object representing register pins or cells in the current scenario based on the
given parameters.

all_registers [-clock clock_name]
[-async_pins][-output_pins][-data_pins][-clock_pins]

Arguments
-clock clock_name
Specifies the name of the clock domain to which the registers belong. If no clock is specified, all registers
in the design will be targeted.
-async_pins
Lists all register pins that are async pins for the specified clock (or all registers asynchronous pins in the
design).
-output_pins
Lists all register pins that are output pins for the specified clock (or all registers output pins in the design).
-data_pins
Lists all register pins that are data pins for the specified clock (or all registers data pins in the design).
-clock_pins
Lists all register pins that are data pins for the specified clock (or all registers clock pins in the design).

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

250 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Exceptions
You can only use this command as part of a –from, -to, or –through argument in the following Tcl
commands: set_min_delay, set_max_delay, set_multicycle_path, and set_false_path.

Examples
set_max_delay 2.000 -from { ff_m:CLK ff_s2:CLK } -to [all_registers -clock_pins -clock {
ff_m:Q }]

See Also
Tcl documentation conventions
Designer Tcl Command Reference

are_all_source_files_current
Tcl command; audits all source files and determines whether or not they are out of date / imported into the
workspace. Returns '1' if all source files are current Returns '0' if all source files are not current This
command ignores the Audit settings in your ADB file.

are_all_source_files_current

Arguments
None

Supported Family
SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
• The command will return an error if arguments are passed.

Example
The following code will determine if your source files are current.
are_all_source_files_current

See Also
get_out_of_date_files

is_source_file_current

Designer Tcl Command Reference

backannotate
Tcl command; equivalent to executing the Back-Annotate command from the Tools menu. You can export
an SDF file, after layout, along with the corresponding netlist in the VHDL or Verilog format. These files
are useful in backannotated timing simulation.
Best practice is to export both SDF and the corresponding VHDL/Verilog files. This will avoid name
conflicts in the simulation tool.
Designer must have completed layout before this command can be invoked, otherwise the command will
fail.

backannotate -name file_name -format format_type -language language-dir directory_name [-
netlist] [-pin] [-use_emd]

backannotate

Libero User's Guide 251

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Arguments
-name file_name

Use a valid file name with this option. You can attach the file extension .sdf to the File_Name, otherwise
the tool will append .sdf for you.
-format format_type

Only SDF format is available for back annotation
-language language

The supported Language options are:

Value Description

VHDL93 For VHDL-93 style naming in SDF

VERILOG For Verilog style naming in SDF

-dir directory_name

Specify the directory in which all the files will be extracted.
-netlist

Forces a netlist to be written. The netlist will be either in Verilog or VHDL.
-pin

Designer exports the pin file with this option. The .pin file extension is appended to the design name to
create the pin file.
-use_emd

Enables Export Enhanced Min Delays for Best Case option in your backannotated file. .

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
None

Examples
Example 1 uses default arguments and exports SDF file for back annotation:
backannotate

Example 2 uses some of the options for VHDL:
backannotate -dir \

 {..\my_design_dir} -name "fanouttest_ba.sdf" -format "SDF" –language \ "VHDL93" –netlist

Example 3 uses some of the options for Verilog:
backannotate -dir \

 {..\design} -name "fanouttest_ba.sdf" -format "SDF" -language "VERILOG" \

-netlist

Example 4 enables you to catch exceptions and respond based on the success of backannotate operation:
If { [catch { backannotate -name "fanouttest_ba" -format "SDF" }]} {

 Puts “Back annotation failed”

 # Handle Failure

} else {

 Puts “Back annotation successful”

 # Proceed with other operations

}

Example 5 enables Export Enhanced Min Delays for Best Case:

252 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

backannotate -dir \ {..\my_design_dir} -name "fanouttest_ba.sdf" -format "SDF"

–language \ "VHDL93" –netlist -use_emd

See Also
Tcl command documentation conventions
Designer Tcl Command Reference

check_timing_constraints
Tcl command; checks all timing constraints in the current timing scenario for validity.

check_timing_constraints

Arguments
None

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

Exceptions
None

Examples
check_timing_constraints

See Also
Tcl documentation conventions
Designer Tcl Command Reference

clone_scenario
Tcl command; creates a new timing scenario by duplicating an existing one. You must provide a unique
name (that is, it cannot already be used by another timing scenario).

clone_scenario name -source origin

Arguments
name

Specifies the name of the new timing scenario to create.
-source origin

Specifies the source of the timing scenario to clone (copy). The source must be a valid, existing timing
scenario.

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

Description
This command creates a timing scenario with the specified name, which includes a copy of all constraints
in the original scenario (specified with the -source parameter). The new scenario is then added to the list
of scenarios.

close_design

Libero User's Guide 253

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Example
clone_scenario scenario_A –source {Primary}

See Also
create_scenario

delete_scenario

Tcl documentation conventions
Designer Tcl Command Reference

close_design
Tcl command; closes the current design and brings Designer to a fresh state to work on a new design.
This is equivalent to selecting the Close command from the File menu.

close_design

Arguments
None

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
None

Example
if { [catch { close_design }] {

 Puts “Failed to close design”

 # Handle Failure

} else {

 puts “Design closed successfully”

 # Proceed with processing a new design

}

See Also
open_design

close_design

new_design

Designer Tcl Command Reference

compile
Tcl command; compile Tcl arguments available for SmartFusion, IGLOO, ProASIC3 and Fusion families.

compile
-pdc_abort_on_error value

-pdc_eco_display_unmatched_objects value

-pdc_eco_max_warnings value

-demote_globals value

-demote_globals_max_fanout value

-promote_globals value

254 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

-promote_globals_min_fanout value

-promote_globals_max_limit value

-localclock_max_shared_instances value

-localclock_buffer_tree_max_fanout value

-combine_register value

-delete_buffer_tree value

-delete_buffer_tree_max_fanout value

-report_high_fanout_nets_limit value

Block creation mode only:

-block_remove_ios value

-block_add_interface value

-block_add_interface_fanout value

Block instantiation mode only:

-block_placement_conflicts value

-block_routing_conflicts value

Arguments
-pdc_abort_on_error value

Changes the “Abort on PDC error” behavior. The following table shows the values for this argument:

Value Description

ON Stops the flow if any error is reported in reading your PDC file

OFF Skips errors in reading your PDC file and just report them as warnings.

Default: ON
Note: Note: The flow always stops in the following two cases (even if this option is OFF):
• If there is a Tcl error (for example, the command does not exist or the syntax of the command is

incorrect)
• The assign_local_clock command for assigning nets to LocalClocks fails. This may happen if any floor

planning DRC check fails, such as, region resource check, fix macro check (one of the load on the net
is outside the LocalClock region). If such an error occurs, then the Compile command fails. Correct
your PDC file to proceed.

-pdc_eco_display_unmatched_objects value

Displays netlist objects in PDC that are not found in the imported netlist during Compile ECO mode.The
following table shows the values for this argument:

Value Description

ON Reports netlist objects not found in the current netlist when reading the internal
ECO PDC constraints

OFF Specifies not to report netlist objects not found in the current netlist when
reading the internal ECO PDC constraints

Default: OFF
-pdc_eco_max_warnings value

compile

Libero User's Guide 255

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Defines the maximum number of errors/warnings in Compile ECO mode.
The value is the maximum number of error/warning messages to be displayed in the case of reading ECO
constraints.
Default: 10000
-demote_globals value

Enables/disables global clock demotion of global nets to regular nets. The following table shows the
values for this argument:

Value Description

OFF Disables global demotion of global nets to regular nets

ON Enables global demotion of global nets to regular nets

Default: OFF
-demote_globals_max_fanout value

Defines the maximum fanout value of a demoted net;where value is the maximum value
Default: 12
Note: A global net is not automatically demoted (assuming the option is on) if the resulting fanout of the
demoted net (if it was demoted) is greater than the max fanout value. Best practice is to set the automatic
global demotion so that it only acts on small fanout nets. Drive high fanout nets with a clock network in the
design to improve routability and timing.
-promote_globals value

Enables/disables global clock promotion. The following table shows the values for this argument:

Value Description

ON Enables global promotion of nets to global clock network

OFF Disables global promotion of nets to global clock network

Default: OFF
-promote_globals_min_fanout value

Defines the minimum fanout of a promoted net; where value is the minimum fanout of a promoted net.
Default:200
-promote_globals_max_limit value

Defines the maximum number of nets to be automatically promoted to global The default value is 0. This
is not the total number as nets need to satisfy the minimum fanout constraint to be promoted. The
promote_globals_max_limit value does not include globals that may have come from either the netlist or
PDC file (quadrant clock assignment or global promotion).
Note: Note: Demotion of globals through PDC or Compile is done before automatic global promotion is

done.
Note: You may exceed the number of globals present in the device if you have nets already assigned to

globals or quadrants from the netlist or by using a PDC file. The automatic global promotion adds
globals on what already exists in the design.

-localclock_max_shared_instances value

Defines the maximum number of shared instances allowed to perform the legalization. This option is also
available for quadrant clocks.
value is the maximum number of instances allowed to be shared by 2 LocalClock nets assigned to
disjoint regions to perform the legalization (default is 12, range is 0-1000). If the number of shared
instances is set to 0, no legalization is performed.
Note: Note: If you assign quadrant clocks to nets using MultiView Navigator, no legalization is performed.

256 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

-localclock_buffer_tree_max_fanout value

Defines the maximum fanout value used during buffer insertion for clock legalization. This option is also
available for quadrant clocks.
Set value to 0 to disable this option and prevent legalization (default value is 12, range is 0-1000). If the
value is set to 0, no buffer insertion is performed. If the value is set to 1, there will be one buffer inserted
per pin.
-combine_register value

Combines registers at the I/O into I/O-Registers. The following table shows the values for this argument:

Value Description

ON Combines registers at the I/O into I/O-Registers

OFF Does not optimize and combine registers at the I/O.

Default: OFF
-delete_buffer_tree value

Enables/disables buffer tree deletion on the global signals. The buffer and inverter are deleted. The
following table shows the values for this argument:

Value Description

ON Enables buffer tree deletion from the netlist

OFF Disables buffer tree deletion from the netlist

Default: OFF
-delete_buffer_tree_max_fanout value

Defines the maximum fanout of a net after buffer tree deletion;
value is the maximum value; the default value is 12.
Note: Note: A net does not automatically remove its buffer tree (assuming the option is on) if the resulting

fanout of the net (if the buffer tree was removed) is greater than the max fanout value. Best
practice is to set the automatic buffer tree deletion only so that acts on small fanout nets. Drive high
fanout nets with a clock network in the design to improve routability and timing.

-report_high_fanout_nets_limit value

Enables flip-flop net sections in the compile report and defines the number of nets to be displayed in the
high fanout.
Default: 10

Block creation mode only:
-block_remove_ios value

Removes I/Os, if any in the design. Possible values are shown in the table below:

Value Description

ON Removes I/Os from the block (if possible)

OFF Leaves I/Os (if any) unchanged

-block_add_interface value

Adds buffers on ports in the block, no fanout limit. Values shown in the table below:

compile

Libero User's Guide 257

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Value Description

ON Adds buffers on ports

OFF Does not add any buffers to ports

-block_add_interface_fanout value

Adds buffers on ports in the block whose fanout is greater than <value>. This option is used in conjunction
with the -block_add_interface option above.

Block instantiation mode only:
-block_placement_conflicts value

If there multiple blocks instantiated in your design, Designer uses the placement options to resolve the
conflicts. Values shown in the table below:

Value Description

ERROR Compile errors out if any instance from a designer block is unplaced. This
is the default option.

RESOLVE If some instances get unplaced for any reason, the remaining non-
conflicting elements are unplaced. In other words, if there are any conflicts,
nothing from the block is kept.

KEEP If some instances get unplaced for any reason, the non-conflicting
elements remaining are preserved but not locked (you can move them).

LOCK If some instances get unplaced for any reason, the remaining non-
conflicting elements are preserved and locked.

-block_routing_conflicts value

If there multiple blocks instantiated in your design, Designer uses the routing options to resolve the
conflicts. Values shown in the table below:

Value Description

ERROR Compile errors out if any preserved net routing in a designer block is
deleted.

RESOLVE If a nets' routing is removed for any reason, the routing for non-conflicting
nets is also removed. In other words, if there are any conflicts, no routing
from the block is kept

KEEP If a nets routing is removed for any reason, the routing for the non-
conflicting nets is preserved but not locked (so that they can be rerouted).

LOCK If the routing is removed for any reason, the remaining non-conflicting nets
are preserved and locked; they cannot be rerouted. This is the default
option.

258 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Exceptions
You cannot instantiate an ARM design and create a User Block.

Examples
compile \

 -pdc_abort_on_error "ON" \

 -pdc_eco_display_unmatched_objects "OFF" \

 -pdc_eco_max_warnings 10000 \

 -demote_globals "OFF" \

 -demote_globals_max_fanout 12 \

 -promote_globals "OFF" \

 -promote_globals_min_fanout 200 \

 -promote_globals_max_limit 0 \

 -localclock_max_shared_instances 12 \

 -localclock_buffer_tree_max_fanout 12 \

 -combine_register "OFF" \

 -delete_buffer_tree "OFF" \

 -delete_buffer_tree_max_fanout 12 \

 -report_high_fanout_nets_limit 10

See Also
Setting Compile Options
Designer Tcl Command Reference

create_clock
Tcl command; creates a clock constraint on the specified ports/pins, or a virtual clock if no source other
than a name is specified.

create_clock -period period_value [-name clock_name]
[-waveform> edge_list][source_objects]

Arguments
-period period_value

Specifies the clock period in nanoseconds. The value you specify is the minimum time over which the
clock waveform repeats. The period_value must be greater than zero.
-name clock_name

Specifies the name of the clock constraint. You must specify either a clock name or a source.
-waveform edge_list

Specifies the rise and fall times of the clock waveform in ns over a complete clock period. There must be
exactly two transitions in the list, a rising transition followed by a falling transition. You can define a clock
starting with a falling edge by providing an edge list where fall time is less than rise time. If you do not
specify -waveform option, the tool creates a default waveform, with a rising edge at instant 0.0 ns and a
falling edge at instant (period_value/2)ns.
source_objects

Specifies the source of the clock constraint. The source can be ports, pins, or nets in the design. If you
specify a clock constraint on a pin that already has a clock, the new clock replaces the existing one. You
must specify either a source or a clock name.

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

create_generated_clock

Libero User's Guide 259

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Description
Creates a clock in the current design at the declared source and defines its period and waveform. The
static timing analysis tool uses this information to propagate the waveform across the clock network to the
clock pins of all sequential elements driven by this clock source.
The clock information is also used to compute the slacks in the specified clock domain that drive
optimization tools such as place-and-route.

Exceptions
• None

Examples
The following example creates two clocks on ports CK1 and CK2 with a period of 6, a rising edge at 0,
and a falling edge at 3:
create_clock -name {my_user_clock} -period 6 CK1

create_clock -name {my_other_user_clock} –period 6 –waveform {0 3} {CK2}

The following example creates a clock on port CK3 with a period of 7, a rising edge at 2, and a falling
edge at 4:
create_clock –period 7 –waveform {2 4} [get_ports {CK3}]

See Also
create_generated_clock

Tcl Command Documentation Conventions
Designer Tcl Command Reference

create_generated_clock
Tcl command; creates an internally generated clock constraint on the ports/pins and defines its
characteristics.

create_generated_clock [-name name] -source reference_pin [-divide_by divide_factor] [-
multiply_by multiply_factor] [-invert] source

Arguments
-name name

Specifies the name of the clock constraint.
-source reference_pin

Specifies the reference pin in the design from which the clock waveform is to be derived.
-divide_by divide_factor

Specifies the frequency division factor. For instance if the divide_factor is equal to 2, the generated clock
period is twice the reference clock period.
-multiply_by multiply_factor

Specifies the frequency multiplication factor. For instance if the multiply_factor is equal to 2, the generated
clock period is half the reference clock period.
-invert

Specifies that the generated clock waveform is inverted with respect to the reference clock.
source

Specifies the source of the clock constraint on internal pins of the design. If you specify a clock constraint
on a pin that already has a clock, the new clock replaces the existing clock. Only one source is accepted.
Wildcards are accepted as long as the resolution shows one pin.

260 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

Description
Creates a generated clock in the current design at a declared source by defining its frequency with
respect to the frequency at the reference pin. The static timing analysis tool uses this information to
compute and propagate its waveform across the clock network to the clock pins of all sequential elements
driven by this source.
The generated clock information is also used to compute the slacks in the specified clock domain that
drive optimization tools such as place-and-route.

Examples
The following example creates a generated clock on pin U1/reg1:Q with a period twice as long as the
period at the reference port CLK.
create_generated_clock -name {my_user_clock} –divide_by 2 –source [get_ports {CLK}]
 U1/reg1:Q

The following example creates a generated clock at the primary output of myPLL with a period ¾ of the
period at the reference pin clk.
create_generated_clock –divide_by 3 –multiply_by 4 -source clk [get_pins {myPLL:CLK1}]

See Also
create_clock

Tcl Command Documentation Conventions
Designer Tcl Command Reference

create_scenario
Tcl command; creates a new timing scenario with the specified name. You must provide a unique name
(that is, it cannot already be used by another timing scenario).

create_scenario name

Arguments
name

Specifies the name of the new timing scenario.

Supported Families
IGLOO, ProASIC3, SmartFusion2, SmartFusion, Fusion

Description
A timing scenario is a set of timing constraints used with a design. Scenarios enable you to easily refine
the set of timing constraints used for Timing-Driven Place-and-Route, so as to achieve timing closure
more rapidly.
This command creates an empty timing scenario with the specified name and adds it to the list of
scenarios.

Exceptions
None

delete_probe

Libero User's Guide 261

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Example
create_scenario scenario_A

See Also
clone_scenario

Tcl Command Documentation Conventions
Designer Tcl Command Reference

delete_probe
Tcl command; deletes a probe on nets in a probed ADB file.

delete_probe –net <net_name>

Arguments
-net <net_name>

Name of the net you want to delete.

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
None

Example
The example below deletes the probe on the net Count8_0/INV_0_Y.
delete_probe -net Count8_0/INV_0_Y

See Also
add_probe

Generating a Probed Design
Generate Probed Design - Add Probe(s) Dialog Box
Designer Tcl Command Reference

delete_scenario
Tcl command; deletes the specified timing scenario.

delete_scenario name

Arguments
name

Specifies the name of the timing scenario to delete.

Supported Families
IGLOO, ProASIC3, SmartFusion2, SmartFusion, Fusion

Description
This command deletes the specified timing scenario and all the constraints it contains.

262 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Exceptions
• At least one timing scenario must always be available. If the current scenario is the only one that

exists, you cannot delete it.
• Scenarios that are linked to the timing analysis or layout cannot be deleted.

Example
delete_scenario scenario_A

See Also
create_scenario

Tcl Command Documentation Conventions
Designer Tcl Command Reference

export
Tcl command; saves your design to a file in the specified file format. The required and optional arguments
this command takes depends on which file format you specify.

export
[-format value]
[-feature value]
[-secured_device value]
[-signature value]
[-pass_key value]
[-aes_key value]
[-from_config_file value]
[-number_of_devices value]
[-from_progfile_type value]
[-target_programmer value]
[-custom_security value]
[-fpga_security_level value]
[-from_security_level value]
[-security_permanent value]{filename}
[-from_program_pages value]
[-from_content value]
[-set_io_state value]
[-efm_block_security {location:X;security_level: value}]
[-efm_content {location:X;source:value}]
[-efm_block {location:X;config_file:{value}}]
[-efm_client {location:X;client: value;mem_file: value}}]

Arguments
-format value

Specifies the file format of the file to export. The exported files vary from one device family to another; see
the Export help topic for a description of each file type and the list of supported families.
You can export the files listed in the table below using the value.

File Types Value

Netlist Files adl

afl

edn

export

Libero User's Guide 263

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

File Types Value

v

vhd

Constraint Files crt

dcf

gcf

sdc

pdc

pin

Programming Files afm

bit

bts_stp

dc (exports a *.dat programming file)

fus

isc

pdb

1532

svf

FlashPro Data File fdb

Debugging Files bsd

prb

Timing Files mod

sdf

stf

tcl

Script Files tcl

Log Files log

IBIS Files ibs

Other Files cob

264 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

File Types Value

loc

seg

Block Files cdb

cxf

v

vhd

-feature {value}

Select the silicon feature(s) you want to program. Possible values for this option are listed in the table
below, or the instance-specific program options available only for specific families (as shown in the table
below). Best practice is to specify your program parameters for each Embedded Flash Memory Block
(EFMB) instance, from 0-3. The instance specific program options replace [-feature {value}].

value Family

{setup_security:on/off} SmartFusion

{prog_fpga:on/off} SmartFusion

{prog_from:on/off} SmartFusion

{prog_nvm:on/off} SmartFusion

{setup_security} Fusion

{prog_from} Fusion

{all} IGLOO; ProASIC3

In Tcl mode for Fusion, programming all features are turned off by default. If there is -feature
{setup_security} or -feature {prog_from} the programming for the corresponding feature is activated.
In Tcl mode for SmartFusion, the programming option is read from the loaded PDB and then updated from
the command if the is parameter specified. If programming of specific features is disabled, other
parameters related to the feature programming are ignored. For example, if -feature {prog_fpga:off}, then -
fdb_file and -fdb_source are ignored.
-secured_device value

Specifies whether the device you are programming is secured. You can specify yes or no to enable or
disable secured programming.
-signature value

Optional argument that identifies and tracks Microsemi SoC designs and devices.
-pass_key value

Protects all the security settings for FPGA Array, FlashROM, and Embedded Flash Memory Block. The
maximum length of this value is 32 characters. You must use hexadecimal characters for the pass key
value.
-aes_key value

Decrypts FPGA Array and/or FlashROM and Embedded Flash Memory Block programming file content.
Max length is 32 HEX characters.

export

Libero User's Guide 265

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

-from_config_file value

Specifies the location of the FlashROM configuration file.
-number_of_devices value

Specifies the number of devices you want to program. Applicable only when FlashROM has serialization
regions.
-from_progfile_type value

Applicable only when FlashROM has serialization regions and STAPL file generation. Possible values:

Value Description

single Generates one programming file with all the generated incremental
value(s) in the external source file

multiple Generates one individual programming file for each generated
incremental value(s) in the external source file

-target_programmer value

Applicable only when FlashROM has serialization regions and STAPL file generation. Possible values:

Value Description

specific Silicon Sculptor, BP Auto Programmer, or FlashPro

generic Generic STAPL player

-custom_security value

Possible values:

Value Description

yes Custom security level

no Standard security level

-fpga_security_level value

Possible values:

Value Description

write_verify_protect The security level is medium (standard) and
the FPGA Array cannot be written or verified
without a Pass Key

write_protect The security level is write protected. The
FPGA Array cannot be written without a Pass
Key, but it is open for verification (custom
FPGA)

encrypted The security level is high (standard) and uses
a 128-bit AES encryption

none The FPGA Array can be written and verified
without a Pass Key

266 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

-from_security_level value

Possible values:

Value Description

write_verify_protect The security level is medium (standard) and the
FlashROM cannot be read, written or verified
without a Pass Key

write_protect The security level is write protected. The
FlashROM cannot be written without a Pass
Key, but it is open for reading and verification
(custom FlashROM)

encrypted The security level is high (standard) and uses a
128-bit AES encryption

none The FlashROM can be written and verified
without a Pass Key

-security_permanent value

Specifies whether the security settings for this file are permanent or not. Possible values:

Value Description

yes Permanently disable future modification of security settings for FPGA
Array and FlashROM

no Enable future modifications for FPGA Array and FlashROM

-from_program_pages "value"

Specifies FROM program pages in FlashPoint. If you use FlashROM content from an ADB file and do not
specify a value, FlashPoint uses the same pages that were selected for programming in the previous
FlashPoint session. Value may be a sequence of page numbers ("123") without a delimiter, or you can
use any character or space as a delimiter, as in -from_program_pages "1 2 3".
You must specify pages for programming if you want FlashROM content from the UFC file.
-from_content "value"

Identifies the source file for the FlashROM content- a UFC or ADB file.
If this Tcl parameter is missing, FlashPoint tries to use the ADB as a source of FROM configuration and
content data.
Values are shown in table below:

Value Description

adb (default)FROM content is taken from your ADB. Configurations from your
UFC and ADB files are not compared.

ufc FlashPoint uses FROM configuration and FROM content from the
specified UFC file

-set_io_state value

Sets the I/O state during programming by port name or pin number. You can also use this argument to
save or load an IOS file.

export

Libero User's Guide 267

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

To set the I/O by port name, use -set_io_state {portName:<name>; state:<state>}. To set the
I/O port by pin number, use -set_io_state {pinNumber:<number>; state:<state>}. To set all
I/Os to the specified state, use -set_io_state {all; state:<state>}.
To set BSR values for an I/O, use -set_io_state { pinNumber:<pin>; input:<state>;
output_enable:<state>;output:<state> }. See the Boundary Scan Registers - Show BSR Details
section of the FlashPoint help for more information on setting Boundary Scan Registers in your device.
The following table shows the possible values for this option if you have NOT set BSR values.

Value Description

Z Tri-State - Sets the I/O state to tristate

Last Known State Sets the I/O to the last known state

1 High - Sets the I/O state to high

0 Low - Sets the I/O state to low

The following table shows the possible values for this option if you have set custom BSR values.

Value Description

Last State Sets the I/O to the last known state

1 High - Sets the I/O state to high

0 Low - Sets the I/O state to low

To save an IOS file use the argument -set_io_state { save:<filepath> }
To load an IOS file, use the argument -set_io_state { load:<filepath> }
-efm_block_security{location:X;security_level: value}

This option is available only for Fusion; this argument only applies when programming the security
settings (setup_security) or programming previously secured devices.
'X' identifies an Embedded Flash Memory Block instance from 0-3.
Possible values for security_level:

Value Description

clients_jtag_protect Enables eNVM client JTAG protection; a pass key is required for
this option

write_verify_protect The security level is medium (standard) and the Embedded Flash
Memory Block cannot be read, written or verified without a Pass
Key

write_protect The security level is write protected. The Embedded Flash
Memory Block cannot be written without a Pass Key, but it is open
for reading (custom FB)

encrypted The security level is high (standard) and uses a 128-bit AES
encryption

none The Embedded Flash Memory Block can be written and read
without a Pass Key

268 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

-efm_content {location:X;source: value}

This option is available only for Fusion; X identifies an Embedded Flash Memory Blockinstance from 0-3.
Option identifies the source file for the Embedded Flash Memory Block content, either an EFC or ADB file.
If you wish to program the entire Embedded Flash Memory Block including all its clients that were
programmed in previous sessions, and use ADB content for this client, this is the only parameter you must
specify. If you wish to program the entire Embedded Flash Memory Block including all its clients and use
the Embedded Flash Memory Block map file (EFC) you also have to specify the –efm_block parameter.
Possible values:

Value Description

adb (default) Embedded Flash Memory Block content is taken from your ADB

efc FlashPoint uses the Embedded Flash Memory Block instance
configuration and content from the EFC file specified in -
efm_block_parameter

-efm_block {location:X;source: value}

This option is available only for Fusion; X identifies an Embedded Flash Memory Block (EFMB) instance
from 0-3.
Config_file specifies the location of the EFMB instance configuration file (must be an EFC file with full
pathname).
-efm_client {location:X;client:value; mem_file: value}

This option is available only for Fusion; X identifies an EFMB instance from 0-3.
You must specify the client name and its memory content file for each client of EFMB you wish to
program.
Mem_file specifies the file with the memory content for the client. If a mem_file path is specified, the
memory content from this file will overwrite the client content in ADB or EFC (as defined by the -
efm_content argument). If the client memory file is not specified, the client memory content from the
ADB or EFC file is used instead (as defined by the -efm_content argument).
{filename}

Specifies the path and name of the file you are exporting.

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Notes
• None

Exceptions
• None

Examples
export -format "bts_stp"

-feature "all"

-secured_device “no”

-signature "123"

-pass_key "FB318707864EC889AE2ED8904B8EB30D"

-custom_security "no"

-fpga_security_level "write_verify_protect"

export

Libero User's Guide 269

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

-from_security_level "write_verify_protect"

-from_config_file {.\g3_test\from.ufc}

-number_of_devices "1"

-from_progfile_type "single"

-target_programmer "specific" \

 {.\flp4.stp}

The following example uses the -set_io_state argument:
export \

-format "pdb " \

-feature "setup_security" \

-secured_device "no" \

-custom_security "no" \

-security_level "write_verify_protect" \

-security_permanent "no" \

-pass_key "012EB311B02E4C9A150B0F2BD8861CA0" \

-set_io_state { portName:AG9; state:Low} \

-set_io_state { pinNumber:AG10; state:High} \

-set_io_state { pinNumber:197; state:Tri-State} \

-set_io_state { pinNumber:198; state:Low} \

-set_io_state { pinNumber:199; state:Last Known State} \

{D:/designs/Fusion/DESIGN77}

The following example exports a DAT file for programming:
export -format "dc" -feature "prog_fpga" {./top.dat}

Fusion example 1:
Export soc.pdb file that includes programming data for three clients of EFM block 0. EFM block configuration
file ./fus_new/nvm_simple/nvm_simple.efc and clients memory files are used for generating the
programming file. Clients specified as TCL parameters must be included in EFC file.
export -format "pdb "

-efm_content {location:0; source:efc} \

-efm_block {location:0; config_file:{./fus_new/nvm_simple/nvm_simple.efc}} \

-efm_client {location:0; client:cfiData;

mem_file:{./fus_new/nvm_exmp/input_memfiles/ram1_block_0_ram1_R0C0.mem}} \

-efm_client {location:0; client:dataStorage;

mem_file:{./fus_new/nvm_exmp/input_memfiles/datast2_asb1_smtr_ram.hex}} \

-efm_client {location:0; client:init1;

mem_file:{./fus_new/nvm_exmp/input_memfiles/datast1_asb1_acm_rtc_ram.hex}} \

 {./soc}

Fusion example 2:
Export soc.stp and soc.pdb files that include programming data for EFM block 0. Information regarding block
configuration, which clients to program, and their memory content is taken from ADB file.
export -format "pdb bts_stp"

-efm_content {location:0; source:adb} \

 {./soc}

Fusion example 3:
Export soc.stp and soc.pdb files that include programming data for client cfiData of EFM block 0. Other
clients of block 0 are not selected to be programmed. ADB file is a source for block configuration and
content; EFC is ignored.
export -format "pdb"

-efm_content {location:0; source:adb} \

-efm_block {location:0; config_file:{./fus_new/nvm_simple/nvm_simple.efc}} \

270 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

-efm_client {location:0; client:cfiData;} \

 {./soc}

See Also
Exporting files
Importing files
Tcl documentation conventions
Designer Tcl Command Reference

export (Designer Block support for IGLOO, Fusion and ProASIC3
Families)

Tcl command; exports (publishes) the Designer Block files to a specified directory, includes any added
comments.

export -format "block"
-export_directory {value} \
-export_name "blockname" \
-placement "value"\
-routing "value"\
-comment "value" \
-export_language "value"\
-region "value"

Arguments
-export_directory {value}

Specifies the directory name for the exported *.v, *.vhd, *.cxf and *.cdb files. Value is the path and name
of the directory
-export_name "blockname"

Specifies the prefix of the exported *.v, *.vhd, *.cxf, and *.cdb files, where blockname is the name of the
prefix.
-placement "value"

Exports placement information. Possible values:

Value Description

yes Exports the placement information. Specify "yes" only if the placer state is
valid and -placement is specified as "yes."

no Do not export the placement information.

-routing "value"

Exports placement information. Possible values:

Value Description

yes Exports routing information. Specify "yes" only if the routing state is valid
and -placement is specified as "yes."

no Do not export the routing information.

-comment "value"

Adds comments to document the block.

generate_probes

Libero User's Guide 271

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

-export_language "value"

Specifies the export format of the CXF file for Libero SoC. Possible values:

Value Description

VERILOG CXF file is Verilog.

VHDL CXF file is VHDL.

-region "value"

Option to publish all the user regions and make them available when you instantiate the block. Possible
values:

Value Description

YES Publishes all the user regions, makes them available when you instantiate
your block.

NO Disables region publishing

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
None
Example
export -format "block" -export_directory {.} -export_name "test_core" -placement "yes" -
routing "yes" -comment "toto" -export_language "VERILOG"

See Also
Exporting files
Importing files
Tcl documentation conventions
Designer Tcl Command Reference

generate_probes
Tcl command; executes the probing and creates a new ADB file. This command is used in conjunction with
the add_probe Tcl command (see example below).

generate_probes –save <ADB_file_name>

Arguments
-save <ADB_file_name>

Name of the new ADB file with your probed nets.

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

272 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Exceptions
None

Example
The example below adds a probe to the net net2 on pin 4 and port prb2 with the add_probe command, and
generates the new ADB file test1.adb.
add_probe –net net2 –pin 4 –port prb2
generate_probes –save test1.adb

See Also
add_probe

Generating a Probed Design
Generate Probed Design - Add Probe(s) Dialog Box
Designer Tcl Command Reference

get_cells
Tcl command; returns an object representing the cells (instances) that match those specified in the
pattern argument.

get_cells pattern

Arguments
pattern

Specifies the pattern to match the instances to return. For example, "get_cells U18*" returns all instances
starting with the characters "U18", where “*” is a wildcard that represents any character string.

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

Description
This command returns a collection of instances matching the pattern you specify. You can only use this
command as part of a –from, -to, or –through argument in the following Tcl commands: set_max delay,
set_multicycle_path, and set_false_path.

Exceptions
None

Examples
set_max_delay 2 -from [get_cells {reg*}] -to [get_ports {out}]

set_false_path –through [get_cells {Rblock/muxA}]

See Also
get_clocks

get_nets

get_pins

get_ports

Tcl Command Documentation Conventions
Designer Tcl Command Reference

get_clocks

Libero User's Guide 273

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

get_clocks
Tcl command; returns an object representing the clock(s) that match those specified in the pattern
argument in the current timing scenario.

get_clocks pattern

Arguments
pattern

Specifies the pattern to use to match the clocks set in SmartTime or Timer.

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

Description
• If this command is used as a –from argument in either the set maximum (set_max_delay), or set

minimum delay (set_min_delay), false path (set_false_path), and multicycle constraints
(set_multicycle_path), the clock pins of all the registers related to this clock are used as path start
points.

• If this command is used as a –to argument in either the set maximum (set_max_delay), or set
minimum delay (set_min_delay), false path (set_false_path), and multicycle constraints
(set_multicycle_path), the synchronous pins of all the registers related to this clock are used as path
endpoints.

Exceptions
None

Example
set_max_delay -from [get_ports datal] -to \

[get_clocks ck1]

See Also
create_clock

create_generated_clock

Tcl Command Documentation Conventions
Designer Tcl Command Reference

get_current_scenario
Tcl command; returns the name of the current timing scenario.

get_current_scenario

Arguments
None

Supported Families
IGLOO, ProASIC3, SmartFusion2, SmartFusion, Fusion

274 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Exceptions
None

Examples
get_current_scenario

See Also
set_current_scenario

Tcl documentation conventions
Designer Tcl Command Reference

get_defvar
Tcl command; provides access to the internal variables within Designer and returns its value. This
command also prints the value of the Designer variable on the Log window.

get_defvar variable

Arguments
variable

The Designer internal variable.

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
None

Example
Example 1: Prints the design name on the log window.
 get_defvar “DESIGN”

set variableToGet "DESIGN"

set valueOfVariable [get_defvar $variableToGet]

puts "The value is $valueOfVariable"

See Also
set_defvar

Designer Tcl Command Reference

get_design_filename
Tcl command; retrieves the full qualified path of the design file. The result will be an empty string if the
design has not been saved to disk. This command is equivalent to the command “get_design_info
DESIGN_PATH.” This command predates get_design_info and is supported for backward-compatibility.

get_design_filename

Arguments
None

get_design_info

Libero User's Guide 275

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
• The command will return an error if a design is not loaded.
• The command will return an error if arguments are passed.

Example

if { [is_design_loaded] } {

 set design_location [get_design_filename]

 if {$design_location != "" } {

 puts “Design is at $design_location.”

 } else {

 puts “Design has not been saved to a file on disk.”

 }

} else {

 puts "No design is loaded."

}

See Also
get_design_info

is_design_loaded

is_design_modified

is_design_state_complete

Designer Tcl Command Reference

get_design_info
Tcl command; retrieves some basic details of your design. The result value of the command will be a
string value.

get_design_info value

Arguments
value

Must be one of the valid string values summarized in the table below:

Value Description

name Design name. The result is set to the design name
string.

family Silicon family. The result is set to the family name.

design_path Fully qualified path of the design file. The result is set
to the location of the .adb file. If a design has not
been saved to disk, the result will be an empty string.
 This command replaces the command
get_design_filename.

design_folder Directory (folder) portion of the design_path.

276 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Value Description

design_file Filename portion of the design_path.

cwdir Current working directory. The result is set to the
location of the current working directory

die Die name. The result is set to the name of the
selected die for the design. If no die is selected, this
is an empty string.

Package Package. The result is set to the name of the selected
package for the design. If no package is selected,
this is an empty string.

Speed Speed grade. The result is set to the speed grade for
the design. If no speed grade is selected, this is an
empty string.

Supported Family
SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
• Returns an error if a design is not loaded.
• Returns an error if more than one argument is passed.
• Returns an error if the argument is not one of the valid values.

Example
The following example uses get_design_info to display the various values to the screen.
if { [is_design_loaded] } {

 puts "Design is loaded."

 set bDesignLoaded 1

} else {

 puts "No design is loaded."

 set bDesignLoaded 0

}

if { $bDesignLoaded != 0 } {

 set var [get_design_info NAME]

 puts " DESIGN NAME:\t$var"

 set var [get_design_info FAMILY]

 puts " FAMILY:\t$var"

 set var [get_design_info DESIGN_PATH]

 puts " DESIGN PATH:\t$var"

 set var [get_design_info DESIGN_FILE]

 puts " DESIGN FILE:\t$var"

 set var [get_design_info DESIGN_FOLDER]

 puts " DESIGN FOLDER:\t$var"

 set var [get_design_info CWDIR]

 puts " WORKING DIRECTORY: $var"

 set var [get_design_info DIE]

get_nets

Libero User's Guide 277

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

 puts " DIE:\t$var"

 set var [get_design_info PACKAGE]

 puts " PACKAGE:\t'$var'"

 set var [get_design_info SPEED]

 puts " SPEED GRADE:\t$var"

 if { [is_design_modified] } {

 puts "The design is modified."

 } else {

 puts "The design is unchanged"

 }

}

puts "get_design.tcl done"

See Also
get_design_filename

is_design_loaded

is_design_modified

is_design_state_complete

Designer Tcl Command Reference

get_nets
Tcl command; returns an object representing the nets that match those specified in the pattern argument.

get_nets pattern

Arguments
pattern

Specifies the pattern to match the names of the nets to return. For example, "get_nets N_255*" returns all
nets starting with the characters "N_255", where “*” is a wildcard that represents any character string.

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

Description
This command returns a collection of nets matching the pattern you specify. You can only use this
command as source objects in create clock (create_clock) or create generated clock
(create_generated_clock) constraints and as -through arguments in the set false path, set minimum
delay, set maximum delay, and set multicycle path constraints.

Exceptions
None

Examples
set_max_delay 2 -from [get_ports RDATA1] -through [get_nets {net_chkp1 net_chkqi}]

set_false_path –through [get_nets {Tblk/rm/n*}]

create_clock -name mainCLK -period 2.5 [get_nets {cknet}]

See Also
create_clock

create_generated_clock

278 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

set_false_path

set_min_delay

set_max_delay

set_multicycle_path

Tcl documentation conventions
Designer Tcl Command Reference

get_out_of_date_files
Tcl command; audits all files returns a list of filenames that are out of date; each filename is separated by
a space. The command returns a string of file names that are out of date separated by a space
i.e. file1 file2 ...
It returns empty string if all files are current.
This command ignores the Audit settings in your ADB file.

get_out_of_date_files

Arguments
None

Supported Family
SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
None

Example
The following code returns a list of filenames that are out of date.
get_out_of_date_files

See Also
are_all_source_files_curent

is_source_file_current

Designer Tcl Command Reference

get_pins
Tcl command; returns an object representing the pin(s) that match those specified in the pattern
argument.

get_pins pattern

Arguments
pattern

Specifies the pattern to match the pins to return. For example, "get_pins clock_gen*" returns all pins
starting with the characters "clock_gen", where “*” is a wildcard that represents any character string.

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

get_ports

Libero User's Guide 279

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Exceptions
None

Example
create_clock -period 10 [get_pins clock_gen/reg2:Q]

See Also
create_clock

create_generated_clock

set_clock_latency

set_false_path

set_min_delay

set_max_delay

set_multicycle_path

Tcl documentation conventions
Designer Tcl Command Reference

get_ports
Tcl command; returns an object representing the port(s) that match those specified in the pattern
argument.

get_portspattern

Argument
pattern

Specifies the pattern to match the ports.

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

Exceptions
None

Example
create_clock -period 10 [get_ports CK1]

See Also
create_clock

set_clock_latency

set_input_delay

set_output_delay

set_min_delay

set_max_delay

set_false_path

set_multicycle_path

Tcl documentation conventions
Designer Tcl Command Reference

280 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

import_aux
Tcl command; imports the specified auxiliary file into the design. Equivalent to executing the Import
Auxiliary Files command from the File menu.

import_aux
-format file_type-partial_parse value
-start_time value
-end_time value
-auto_detect_top_level_name value
-top_level_name value
-glitch_filtering value
-glitch_threshold value
filename

Arguments
-format file_type

Specifies the file format of the file to import. You can import one of the following types of files: pdc, sdc,
pin, dcf, saif, vcd, or crt.
-partial_parse {value}

Specifies whether to partially parse the *.vcd file. The following table shows the acceptable values for this
argument:

Value Description

true Partially parses the *.vcd file

false Does not partially parse the *.vcd file

-start_time {value}

This option is available only if -partially_parse is set to true. Specifies the start time (in ns) to partially
parse the *.vcd file.
-end_time {value}

This option is available only if -partially_parse is set to true. Specifies the end time (in ns) to partially
parse the *.vcd file.
-auto_detect_top_level_name {value}

Specifies whether to automatically detect the top-level name. The following table shows the acceptable
values for this argument:

Value Description

true Automatically detects the top-level name

false Does not automatically detect the top-level name

-top_level_name top_level_name

Specifies the instance name of your design in the simulation testbench when you import a VCD or SAIF
file.
When importing a VCD file, the automatic top_level_name detection is available. If the -top_level_name
option is not specified, SmartPower will try to automatically detect the top level name.
When importing a SAIF file, the automatic top_level_name detection is not available and -top_level_name
is a required argument.
To identify the top_level_name for SAIF and VCD files manually, refer to Importing a VCD file and
Importing a SAIF file.

import_source

Libero User's Guide 281

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

-glitch_filtering {value}

Specifies whether to use glitch filtering. The following table shows the acceptable values for this
argument:

Value Description

true Glitch filtering is on

auto Enables automatic glitch filtering. This option will
ignore any value specified in -glitch_threshold

false Glitch filtering is off

-glitch_threshold {value}

This option is only available when -glitch_filtering is set to true. Specifies the glitch filtering value in
ps.
filename

Specifies the name of the auxiliary file to import.

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Description
• Auxiliary files are not audited and are handled as one-time data-entry or data-change events, similar to

entering data using one of the interactive editors (for example, PinEditor or Timer).
• If you import the SDC file as an auxiliary file, you do not have to re-compile your design. However,

auditing is disabled when you import auxiliary files, and Designer cannot detect the changes to your
SDC file(s) if you import them as auxiliary files.

Exceptions
None

Examples
import_aux -format sdc file.sdc

import_aux -format pdc file.pdc

import_aux -format vcd file.vcd // automatic detection of top level name

import_aux -format vcd -glitch_filter 10 // filter out glitches that are 10 ps or less

import_aux -format saif -top_level_name "top" file.saif

See Also
import_source

Importing auxiliary files
Importing source files
Importing files
Tcl documentation conventions
Designer Tcl Command Reference

import_source
Tcl command; imports the specified source file into the design. Equivalent to executing the Import Source
Filecommand from the File menu in Designer.

282 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

All source files must be specified on one command line.

import_source [-merge_timing value][-merge_physical value][-merge_all value][-format
file_type][-abort_on_error value][-top_entity][-edif -edif_flavor value]filename

Arguments
-merge_timing value

Specifies whether to preserve all existing timing constraints when you import an SDC file. Same as
selecting or unselecting the "Keep existing timing constraints" check box in the Import Files dialog box.
 The following table shows the acceptable values for this option:

Value Description

yes Designer merges the timing constraints from the imported SDC file with the
existing constraints saved in the constraint database. If there is a conflict,
the new constraint has priority over the existing constraint.

no All existing timing constraints are replaced by the constraints in the newly
imported SDC file.

-merge_physical value

Specifies whether to preserve all existing physical constraints when you import a GCF or PDC file. Same
as selecting or unselecting the "Keep existing physical constraints" check box in the Import Files dialog
box. The following table shows the acceptable values for this option:

Value Description

yes Designer preserves all existing physical constraints that you have entered
either using one of the MVN tools (ChipPlanner, PinEditor, or the I/O
Attribute Editor) or a previous GCF or PDC file. The software resolves any
conflicts between new and existing physical constraints and displays the
appropriate message.

no All existing physical constraints are replaced by the constraints in the
newly imported GCF or PDC file.

-merge_all value

Specifies whether to preserve all existing physical and timing constraints when you import an SDC and/or
a PDC file. Same as selecting or unselecting the "Keep existing physical constraints" and "Keep existing
timing constraints" check boxes in the Import Files dialog box. The following table shows the acceptable
values for this option:

Value Description

yes Designer preserves all existing physical constraints that you have entered
either using one of the MVN tools (ChipPlanner, PinEditor, or the I/O
Attribute Editor) or a previous GCF or PDC file. The software resolves any
conflicts between new and existing physical constraints and displays an
appropriate message. Any existing timing constraints from your ADB are
merged with the new information from your imported files. New constraints
override any existing timing constraints whenever there is a conflict

no All the physical constraints in the newly imported GCF or PDC files are

import_source

Libero User's Guide 283

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Value Description

used. All pre-existing physical constraints are lost. Existing timing
constraints from the ADB are replaced by the new timing constraints from
your imported file.

-format file_type

Specifies the file format of the file to import. You can import one of the following types of files: adl, edif,
verilog, vhdl, gcf, pdc, sdc, or crt.
Note: Note: Refer to Importing source files to know the formats supported for each family.

-abort_on_error value

Aborts a PDC file if it encounters an error during import. Possible values are

Value Description

yes Designer aborts on error.

no Designer ignores the error and continues.

-top_entity

Specifies the top entity to a VHDL file.

-edif edif_flavor value

Specifies the type of netlist. It can be edif, viewlogic, or mgc.

filename

Specifies the name of the source file to import.

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
Your script -merge options vary according to family as shown below:

• The -merge_timing, -merge_physical, and -merge_all arguments are available for IGLOO, Fusion and
ProASIC3 families.

• For IGLOO, Fusion, ProASIC3:
 import_source -merge_physical yes/no -merge_timing yes/no ...

 import_source -merge_all yes/no ...

 import_source -merge yes/no ...

The -merge_all and -merge options map to both -merge_physical and -merge_timing options for these
families.

Examples
Consider the following sample scripts:

import_source \

284 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

 -merge_physical "no" \

 -merge_timing "yes"

 -format "EDIF" -edif_flavor "GENERIC" \

 {.\designs\mydesign.edn} \

 -format "sdc" \

 {.\designs\mydesign.sdc} \

 -format "pdc" -abort_on_error "no" \

 {.\designs\mydesign.pdc}

import_source \

 -merge_physical "no" \

 -format "verilog" \

 {mydesign.v}

import_source \

 -merge_physical "no" \

 -merge_timing "no" \

 -format "vhdl" -top_entity "aclass" \

 {C:/mynetlist.vhd}

import_source \

 -merge_physical "no" \

 -merge_timing "no" \

 -format "adl" {mydesign.adl}

See Also
import_aux

Importing auxiliary files
Importing source files
Importing files
Tcl documentation conventions
Designer Tcl Command Reference

ioadvisor_apply_suggestion
Tcl command; applies the suggestions for the selected attribute to the selected I/O(s).

ioadvisor_apply_suggestion -attribute {value} -io {value}

Arguments
-attribute{value}

 This specifies the attribute for which the values will be applied. The following table shows the acceptable
values for this argument:

Value Description

outdrive Applies suggested outdrive values

slew Applies suggested slew values

-io {value}

ioadvisor_commit

Libero User's Guide 285

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

 This selects the I/Os for which the suggestion will be applied. To select multiple I/Os, use -io {value}
for each I/O.

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
None

Example
The following code applies the suggested outdrive values for two I/Os.
ioadvisor_apply_suggestion -attribute{outdrive} -io{nPWM_out_pad} -io{PWM_out_pad}

See Also
ioadvisor_commit

ioadvisor_restore

ioadvisor_restore_initial_value

ioadvisor_set_outdrive

ioadvisor_set_outputload

ioadvisor_set_slew

Designer Tcl Command Reference

ioadvisor_commit
Tcl command; saves all changes in the I/O Advisor.

ioadvisor_commit

Arguments
None

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
None

Example
The following code saves all changes in the I/O Advisor:
ioadvisor_commit

See Also
ioadvisor_apply_suggestion

ioadvisor_restore

ioadvisor_restore_initial_value

ioadvisor_set_outdrive

ioadvisor_set_outputload

ioadvisor_set_slew

Designer Tcl Command Reference

286 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

ioadvisor_restore
Tcl command; restores the I/O Advisor to the initial state. All changes not committed will be lost.

ioadvisor_restore

Arguments
None

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
None

Example
The following code restores the I/O Advisor to the initial state:
ioadvisor_restore

See Also
ioadvisor_apply_suggestion

ioadvisor_commit

ioadvisor_restore_initial_value

ioadvisor_set_outdrive

ioadvisor_set_outputload

ioadvisor_set_slew

Designer Tcl Command Reference

ioadvisor_restore_initial_value
Tcl command; sets the current value for the selected attribute and I/Os to the initial value.

ioadvisor_restore_initial_value -attribute {value} -io {value}

Arguments
-attribute{value}

 This specifies the attribute for which the values will be restored. The following table shows the acceptable
values for this argument:

Value Description

outdrive Restores initial outdrive values

output_load Restores initial output load values

slew Restores initial slew values

-io {value}

 This selects the I/Os for which the initial values will be restored. To select multiple I/Os, use -io {value}
for each I/O.

ioadvisor_set_outdrive

Libero User's Guide 287

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
None

Example
The following code restores the initial outdrive values for two I/Os.
ioadvisor_restore_initial_value -attribute{outdrive} -io{nPWM_out_pad} -io{PWM_out_pad}

See Also
ioadvisor_apply_suggestion

ioadvisor_commit

ioadvisor_restore

ioadvisor_set_outdrive

ioadvisor_set_outputload

ioadvisor_set_slew

Designer Tcl Command Reference

ioadvisor_set_outdrive
Tcl command; sets the outdrive for the selected I/Os.

ioadvisor_set_outdrive -io {value} -outdrive {value}

Arguments
-io {value}

 This selects the I/Os for which the outdrive will be set. To select multiple I/Os, use -io {value} for each
I/O.
-outdrive {value}

 This specifies the outdrive for the selected I/Os.The outdrive must be a positive integer value within the
list of possible outdrives of the I/Os.

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
None

Example
The following code sets the outdrive for two I/Os.
ioadvisor_set_outdrive -io{nPWM_out_pad} -io{PWM_out_pad} -outdrive{5}

See Also
ioadvisor_apply_suggestion

ioadvisor_commit

ioadvisor_restore

ioadvisor_restore_initial_value

ioadvisor_set_outputload

ioadvisor_set_slew

288 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Designer Tcl Command Reference

ioadvisor_set_outputload
Tcl command; sets the output load for the selected I/Os.

ioadvisor_set_outputload -io {value} -outload {value}

Arguments
-io {value}

 This selects the I/Os for which the output load will be set. To select multiple I/Os, use -io {value} for
each I/O.
-outload {value}

 This specifies the output load for the selected I/Os.The output load must be a positive integer value.

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
None

Example
The following code sets the output load for two I/Os.
ioadvisor_set_outputload -io{nPWM_out_pad} -io{PWM_out_pad} -outload{5}

See Also
ioadvisor_apply_suggestion

ioadvisor_commit

ioadvisor_restore

ioadvisor_restore_initial_value

ioadvisor_set_outdrive

ioadvisor_set_slew

Designer Tcl Command Reference

ioadvisor_set_slew
Tcl command; sets the slew for the selected I/Os.

ioadvisor_set_slew -io {value} -slew {value}

Arguments
-io {value}

 This selects the I/Os for which the slew will be set. To select multiple I/Os, use -io {value} for each I/O.
-set_slew {value}

 This specifies the slew for the selected I/Os.The following table shows the acceptable values for this
argument:

Value Description

high The slew is set to high.

is_design_loaded

Libero User's Guide 289

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Value Description

low The slew is set to low. This option is not available for all I/Os.

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
None

Example
The following code sets the slew for two I/Os.
ioadvisor_set_slew -io{nPWM_out_pad} -io{PWM_out_pad} -slew{high}

See Also
ioadvisor_apply_suggestion

ioadvisor_commit

ioadvisor_restore

ioadvisor_restore_initial_value

ioadvisor_set_outdrive

ioadvisor_set_outputload

Designer Tcl Command Reference

is_design_loaded
Tcl command; returns a Boolean value (0 for false, 1 for true) indicating if a design is loaded in the
Designer software. True is returned if a design is currently loaded.

is_design_loaded

Arguments
None

Supported Family
SmartFusion, IGLOO, ProASIC3 and Fusion

Description
Some Tcl commands are valid only if a design is currently loaded in Designer. Use the ‘is_design_loaded’
command to prevent runtime errors by checking for this before invoking the commands.

Exceptions
The command will return an error if arguments are passed.

Example
The following code will determine if a design has been loaded.
set bDesignLoaded [is_design_loaded]

if { $bDesignLoaded == 0 } {

 puts “No design is loaded.”

290 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

}

See Also
get_design_filename

get_design_info

is_design_modified

is_design_state_complete

Designer Tcl Command Reference

is_design_modified
Tcl command; returns a Boolean value (0 for false, 1 for true) indicating if a design has been modified in
the Designer software. True is returned if a design has been modified.

is_design_modified

Arguments
None

Supported Family
SmartFusion, IGLOO, ProASIC3 and Fusion

Description
Some Tcl commands are valid only if a design has been modified in Designer. Use the
is_design_modified command to prevent runtime errors by checking for this before invoking the
commands.

Exceptions
Returns an error if arguments are passed.

Example
The following code will determine if a design has been modified.
set bDesignModified [is_design_modified]

if { $bDesignModified == 0 } {

 puts “Design has not been modified.”

}

See Also
get_design_filename

get_design_info

is_design_loaded

is_design_state_complete

Designer Tcl Command Reference

is_design_state_complete
Tcl command; returns a Boolean value (0 for false, 1 for true) indicating if a specific design state is valid.
True is returned if the specified design state is valid.

is_design_state_complete value

is_design_state_complete

Libero User's Guide 291

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Arguments
value

Must be one of the valid string values summarized in the table below:

Value Description

SETUP_DESIGN The design is loaded and the family has been specified
for the design

DEVICE_SELECTION The design has completed device selection (die and
package). This corresponds to having successfully
called the set_device command to set the die and
package

NETLIST_IMPORT The design has imported a netlist

COMPILE The design has completed the compile command

LAYOUT The design has completed the layout command

BACKANNOTATE The design has exported a post-layout timing file
(e.g.SDF)

PROGRAMMING_FILES The design has exported a programming file (e.g. AFM)

Supported Family
SmartFusion, IGLOO, ProASIC3 and Fusion

Description
Certain commands can only be used after Compile or Layout has been completed. The
is_design_state_complete command allows a script to check the design state before calling one of these
state-limited commands.

Exceptions
The command will return an error if a design is not loaded.
The command will return an error if more than one argument is passed.
The command will return an error if the argument is not one of the valid values.

Example
The following code runs layout, but checks that the design state for layout is complete before calling
backannotate.
layout –timing_driven

set bLayoutDone [is_design_state_complete LAYOUT]

if { $bLayoutDone != 0 } {

 backannotate -name {mydesign_ba} -format "SDF" -language "verilog"

 }

}

See Also
compile

get_design_filename

292 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

get_design_info

is_design_loaded

is_design_modified

layout

set_design

set_device

Designer Tcl Command Reference

is_source_file_current
Tcl command; audits the source file and determines whether or not the file is out of date / imported into
the workspace. Returns '0' if file_name is out of date or has not been imported into the workspace, and
returns '1' if file_name is current.
This command ignores the Audit settings in your ADB file.

is_source_file_current(filename)

Arguments
filename is the path to the source file

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
None

Example
The following code determines whether or not the file has been imported into the workspace.
is_source_file_current (./hdl/adder.vhd)

See Also
are_all_source_files_curent

get_out_of_date_files

Designer Tcl Command Reference

layout - SmartFusion, IGLOO, ProASIC3 and Fusion
Tcl command is identical to the layout command in the Designer GUI. Refer to the Advanced Layout Options
below for more information.

layout
[-timing_driven | -standard]
[–power_driven value]
[-run_placer value]
[–place_incremental value]
[–run_router value]
[–route_incremental value]

Arguments
-timing_driven|-standard

layout - SmartFusion, IGLOO, ProASIC3 and Fusion

Libero User's Guide 293

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Sets layout mode to be timing driven or standard (non-timing driven). The default is -timing_driven or the
mode used in the previous layout command.
-power_driven value

 The following table shows the acceptable values for this argument:

Value Description

off Does not run power-driven layout. This is the default.

on Enables power-driven layout

-place_incremental value

The following table shows the acceptable values for this argument:

Value Description

off Discards previous placement. This is the default.

on Sets the previous placement as the initial starting point

fix Sets the previously placed macros' locations as "fixed" and continues
to place the remaining ones

-route_incremental value

The following table shows the acceptable values for this argument:

Value Description

off Skips incremental mode, discards previous information. This is the
default.

on Invokes incremental routing and sets the previous routing information
as the initial starting point

-run_placer value

The following table shows the acceptable values for this argument:

Value Description

on Invokes placement. This is the default.

off Skips placement

-run_router value

The following table shows the acceptable values for this argument:

Value Description

on Invokes routing if placement is successful. This is the
default.

off Skips routing

294 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

layout - Advanced Options for SmartFusion, IGLOO, ProASIC3 and Fusion
This is equivalent to executing commands within the Advanced Layout Options dialog box.

[-placer_high_effort value]
[–seq_opt value]
[–mindel_repair value]
[–placer_seed value]
[–show_placer_seed]

Arguments
-placer_high_effort value

The following table shows the acceptable values for this argument:

Value Description

off Disables physical synthesis of combinational logic. This is the
default.

on Enables physical synthesis of combinational logic

-seq_opt value

The following table shows the acceptable values for this argument:

Value Description

off Disables physical synthesis of sequential logic. This is the default.

on Enables physical synthesis of sequential logic in high-effort mode

-mindel_repair value

The following table shows the acceptable values for this argument:

Value Description

off Does not run minimum delay violations repair. This is the default.

on Enables repair of minimum delay violations during route

-placer_seed value

An integer value that you can set to change the initial random seed number for the placement.
-show_placer_seed value

Causes Layout to display the initial random seed number used for the placement.

Exceptions
• None

Example
layout
layout –place_incremental FIX –route_incremental ON
layout –placer_high_effort ON

list_clocks

Libero User's Guide 295

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

layout –run_placer OFF –route_incremental ON –mindel_repair ON
layout –timing_driven –power_driven ON
layout –placer_seed 120

See Also
Place and Route (Layout)
SmartFusion, IGLOO, ProASIC3 and Fusion Advanced Place and Route (Layout) Options
Designer Tcl Command Reference

list_clocks
Tcl command; returns details about all of the clock constraints in the current timing constraint scenario.

list_clocks

Arguments
None

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
None

Examples
puts [list_clocks]

See Also
create_clock

remove_clock

Tcl documentation conventions
Designer Tcl Command Reference

list_clock_latencies
Tcl command; returns details about all of the clock latencies in the current timing constraint scenario.

list_clock_latencies

Arguments
None

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
None

Examples
puts [list_clock_latencies]

296 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

See Also
set_clock_latency

remove_clock_latency

Tcl documentation conventions
Designer Tcl Command Reference

list_clock_uncertainties
Tcl command; returns details about all of the clock uncertainties in the current timing constraint scenario.

list_clock_uncertainties

Arguments
None

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

Exceptions
None

Examples
list_clock_uncertainties

See Also
set_clock_uncertainty

remove_clock_uncertainty

Designer Tcl Command Reference

list_disable_timings
Tcl command; returns the list of disable timing constraints for the current scenario.

list_disable_timings

Arguments

• None

Supported Families

SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

Exceptions
None

Example
list_disable_timings

See Also
Designer Tcl Command Reference

list_false_paths

Libero User's Guide 297

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

list_false_paths
Tcl command; returns details about all of the false paths in the current timing constraint scenario.

list_false_paths

Arguments
None

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
None

Examples
puts [list_false_paths]

See Also
set_false_path

remove_false_path

Tcl documentation conventions
Designer Tcl Command Reference

list_generated_clocks
Tcl command; returns details about all of the generated clock constraints in the current timing constraint
scenario.

list_generated_clocks

Arguments
None

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
None

Examples
puts [list_generated_clocks]

See Also
create_generated_clock

remove_generated_clock

Tcl documentation conventions
Designer Tcl Command Reference

298 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

list_input_delays
Tcl command; returns details about all of the input delay constraints in the current timing constraint
scenario.

list_input_delays

Arguments
None

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
None

Examples
puts [list_input_delays]

See Also
set_input_delay

remove_input_delay

Tcl documentation conventions
Designer Tcl Command Reference

list_max_delays
Tcl command; returns details about all of the maximum delay constraints in the current timing constraint
scenario.

list_max_delays

Arguments
None

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
None

Examples
puts [list_max_delays]

See Also
set_max_delay

remove_max_delay

Tcl documentation conventions
Designer Tcl Command Reference

list_min_delays

Libero User's Guide 299

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

list_min_delays
Tcl command; returns details about all of the minimum delay constraints in the current timing constraint
scenario.

list_min_delays

Arguments
None

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
None

Examples
puts [list_min_delays]

See Also
set_min_delay

remove_min_delay

Tcl documentation conventions
Designer Tcl Command Reference

list_multicycle_paths
Tcl command; returns details about all of the multicycle paths in the current timing constraint scenario.

list_multicycle_paths

Arguments
None

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
None

Examples
puts [list_multicycle_paths]

See Also
set_multicycle_path

remove_multicycle_path

Tcl documentation conventions
Designer Tcl Command Reference

300 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

list_objects
Tcl command; returns a list of object matching the parameter. Objects can be nets, pins, ports, clocks or
instances.

list_objects <object>

Arguments
Any timing constraint parameter.

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

Exceptions
None

Example
The following example lists all the inputs in your design:
list_objects [all_inputs]

You can also use wildcards to filter your list, as in the following command:
list_objects [get_ports a*]

See Also
Tcl documentation conventions
Designer Tcl Command Reference

list_output_delays
Tcl command; returns details about all of the output delay constraints in the current timing constraint
scenario.

list_output_delays

Arguments
None

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
None

Examples
puts [list_output_delays]

See Also
set_output_delay

remove_output_delay

Tcl documentation conventions
Designer Tcl Command Reference

list_scenarios

Libero User's Guide 301

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

list_scenarios
Tcl command; returns a list of names of all of the available timing scenarios.

list_scenarios

Arguments
None

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

Exceptions
None

Examples
list_scenarios

See Also
get_current_scenario

Tcl documentation conventions
Designer Tcl Command Reference

LOGFILE
The LOGFILE command is not a Tcl script. It runs in conjunction with your Tcl script and enables you to
specify a filename to which Designer will record/save a copy of the log messages generated in batch-mode
(SCRIPT:...).
It is useful if you want to view the log after you run scripts in batch-mode on Windows.
For example, to run the script 'myscript.tcl' for Designer and save the log messages to a LOGFILE named
'mylog.txt', use the command:
designer.exe SCRIPT:myscript.tcl LOGFILE:mylog.txt

See Also
Introduction to Tcl scripting

new_design
Tcl command; creates a new design. You need all three arguments for this command. This command will
set up the Designer software for importing design source files

new_design -name design_name -family family_name –path pathname–block value

Arguments
-name design_name

The name of the design. This is used as the base name for most of the files generated from Designer.
-family family_name

The Microsemi SoC device family for which the design is being targeted.
-path path_name

The physical path of the directory in which the design files will be created.
block value

302 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Enables or disables Block mode.The following table shows the acceptable values for this option:

Value Description

on Enables Block mode

off Disables Block mode

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
None

Example
Example 1: Creates a new ACT3 design with the name “test” in the current folder.
new_design -name "test" -family "ACT3" -path {.}

Example 2: These set of commands create a new design through variable substitution.
set desName “test

set famName “ACT3”

set path {d:/examples/test}

new_design -name $desName -family $famName -path $path

Example 3: Design creation and catch failures
if { [catch { new_design -name $desName -family $famName -path $path }] {

 Puts “Failed to create a new design”

 # Handle Failure

} else {

 puts “New design creation successful”

 # Proceed to Import source files

}

See Also
close_design

open_design

save_design

set_design

Designer Tcl Command Reference

open_design
Tcl command; opens an existing design into the Designer software.

open_design file_name

Note: Note: All previously open designs must be closed before opening a new design.

Arguments
file_name

The complete .adb file path. If the complete path is not provided, then the directory is assumed to be the
current working directory.

pin_assign

Libero User's Guide 303

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
None

Example
Example 1: Opens an existing design from the file “test.adb” in the current folder.
open_design {test.adb}

Example 2: Design creation and catch failures.
set designFile {d:/test/my_design.adb}

if { [catch { open_design $designFile }] {

 Puts “Failed to open design”

 # Handle Failure

} else {

 puts “Design opened successfully”

 # Proceed to further processing

}

See Also
close_design

new_design

save_design

Designer Tcl Command Reference

pin_assign
Tcl command; use to either assign the named pin to the specified port or assign attributes to the specified
port. This command has two syntax formats. The one you use depends on what you are trying to do. The
first syntax format assigns the named pin to the specified port . The second one assigns attributes to the
specified port.

pin_assign [-nofix] -port portname -pin pin_number

pin_assign -port portname [-iostd value][-iothresh value][-outload value][-slew value][-
res_pull value]

Arguments
-nofix

Unlocks the pin assignment (by default, assignments are locked).
-port portname

Specifies the name of the port to which the pin is assigned.
-pin pin_number

Specifies the alphanumeric number of the pin to assign.
-iostd value

Sets the I/O standard for this pin. Choosing a standard allows the software to set other attributes such as
the slew rate and output loading. If the voltage standard used with the I/O is not compatible with other I/Os
in the I/O bank, then assigning an I/O standard to a port will invalidate its location and automatically
unassign the I/O. The following table shows the acceptable values for the supported devices:
I/O Standards table

Use the I/O Standards table to see which I/O standards can be applied to each family:

304 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

I/O Standard IGLOO Fusion ProASIC3

CMOS

CUSTOM

GTLP25 IGLOOe only X ProASIC3E and ProASIC3L only

GTLP33 IGLOOe only X ProASIC3E and ProASIC3L only

GTL33 IGLOOe only X ProASIC3E and ProASIC3L only

GTL25 IGLOOe only X ProASIC3E and ProASIC3L only

HSTL1 IGLOOe only X ProASIC3E and ProASIC3L only

HSTLII IGLOOe only X ProASIC3E and ProASIC3L only

LVCMOS33 X X X

LVCMOS25 IGLOOe only X X

LVCMOS25_50 X X X

LVCMOS18 X X X

LVCMOS15 X X X

LVCMOS12 X ProASIC3L only

LVTTL X X X

TTL X X X

PCI X X X

PCIX X X X

SSTL2I IGLOOe only X ProASIC3E and ProASIC3L only

SSTL2II IGLOOe only X ProASIC3E and ProASIC3L only

SSTL3I IGLOOe only X ProASIC3E and ProASIC3L only

SSTL3II IGLOOe only X ProASIC3E and ProASIC3L only

See Also
I/O standard
Note: Note: The LVDS and LVPECL I/O standards cannot be set through a script.
-iothresh value

Sets the compatible threshold level for inputs and outputs. The default I/O threshold is based upon the I/O
standard. You can set the I/O Threshold independently of the I/O specification in the PinEditor tool by
selecting CUSTOM in the I/O Standard cell. The following table shows the acceptable values for the
supported devices:

pin_assign

Libero User's Guide 305

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Valu
e

Description

CM
OS

RTSX-S devices only. An advanced integrated circuit (IC) manufacturing
process technology for logic and memory, characterized by high integration,
low cost, low power, and high performance. CMOS logic uses a
combination of p-type and n-type metal-oxide-semiconductor field effect
transistors (MOSFETs) to implement logic gates and other digital circuits
found in computers, telecommunications, and signal processing equipment.

LVT
TL

(Low-Voltage TTL) A general purpose standard (EIA/JESDSA) for 3.3V
applications. It uses an LVTTL input buffer and a push-pull output buffer.

PCI A computer bus for attaching peripheral devices to a computer motherboard
in a local bus. This standard supports both 33 MHz and 66 MHz PCI bus
applications. It uses an LVTTL input buffer and a push-pull output buffer.
With the aid of an external resistor, this I/O standard can be 5V-compliant
for most families, excluding SmartFusion, IGLOO, ProASIC3 and Fusion
families.

Note: Note: The -iothresh attribute is also referred to as "Loading" in some families.
-slew value

Sets the output slew rate. Slew control affects only the falling edges. Rising edges are not affected. This
attribute is only available for LVTTL, PCI, and PCI outputs. For LVTTL, it can either be high or low. For
PCI and PCIX, it can only be set to high. The following table shows the acceptable values for the
supported devices (IGLOO, ProASIC3, SmartFusion, Fusion):

Val
ue

Description

high Sets the I/O slew to high

low Sets the I/O slew to low

-res_pull value

Allows you to include a weak resistor for either pull-up or pull-down of the input buffer. The following table
shows the acceptable values for the supported devices (IGLOO, ProASIC3, SmartFusion, Fusion):

Valu
e

Description

up Includes a weak resistor for pull-up of the input buffer

dow
n

Includes a weak resistor for pull-down of the input buffer

non
e

Does not include a weak resistor

-out_load value

Indicates the output-capacitance value based on the I/O standard selected. This option is not available in
software. This attribute determines what Timer will use as the loading on the output pin and applies only
to outputs. You can enter a capacitive load as an integral number of picofarads (pF). The default is 35pF.
This attribute is available only for the following devices: SmartFusion, Fusion, ProASIC3.

306 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
None

Examples
You must use pin_commit after the pin_assign command to save the changes to your design:
pin_assign -port usw0 -pin A2

pin_commit

pin_assign -port usw0 -iostd LVTTL -slew low -res_pull down

pin_commit

Note: Note: To use a name with special characters such as square brackets [], you must put the entire
name between curly braces { } or put a slash character \ immediately before each square bracket
as shown in the following examples.

Note: The following example shows a port name enclosed with curly braces:
Note: The next example shows each square bracket preceded by a slash:
pin_assign -port LFSR_OUT\[15\] -iostd lvttl -slew High

See Also
pin_commit

pin_fix

pin_unassign

Tcl documentation conventions
Designer Tcl Command Reference

pin_commit
Tcl command; saves the pin assignments to the design (.adb) file.

pin_commit

Arguments
None

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
None

Examples
To save pin assignments in your design, you must add the pin_commit command to the end of the script:
pin_commit

See Also
pin_fix

pin_unfix

pin_assign

pin_fix

Libero User's Guide 307

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

pin_unassign

Tcl documentation conventions
Designer Tcl Command Reference

pin_fix
Tcl command; locks the pin assignment for the specified port, so the pins cannot be moved during place-
and-route.

pin_fix -port portname

Arguments
-port portname

Specifies the name of the port to which the pin must be locked at its assigned location.
Note: Note: You can assign only one pin to a port

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Description
Fixed pins are locked pins. You cannot move locked pins during place-and-route.

Exceptions
None

Examples
You must use pin_commit after the pin_fix command to save the changes to your design:
pin_fix –port clk

pin_commit

See Also
pin_commit

pin_unfix

pin_assign

pin_unassign

Tcl documentation conventions
Designer Tcl Command Reference

pin_fix_all
Tcl command; locks all the assigned pins on the device so they cannot be moved during place-and-route.

pin_fix_all

Arguments
• None

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

308 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Description
Fixed pins are locked pins. This command locks all the pins in your design. You cannot move locked pins
during place-and-route.

Exceptions
None

Example
You must use pin_commit after the pin_fix_all command to save the changes to your design:
pin_fix_all

pin_commit

See Also
pin_commit

pin_fix

pin_unfix

pin_assign

pin_unassign

Tcl documentation conventions
Designer Tcl Command Reference

pin_unassign
Tcl command; unassigns the pin from the specified port. The unassigned pin location is then available for
other ports. (Only one pin can be assigned to a port.)

pin_unassign -port portname

Arguments
-port portname

Specifies the name of the port for which the pin must be unassigned.

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
None

Examples
You must use pin_commit after the pin_assign command to save the changes to your design:
pin_unassign –port “clk”

pin_commit

See Also
pin_commit

pin_fix

pin_fix_all

pin_unfix

pin_assign

pin_unassign

pin_unassign_all

Libero User's Guide 309

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Tcl documentation conventions
Designer Tcl Command Reference

pin_unassign_all
Tcl command; unassigns all the pins from all the ports so that all pin locations are available for
assignment.

pin_unassign_all

Arguments
None

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
None

Examples
You must use pin_commit after the pin_assign_all command to save the changes to your design:
pin_unassign_all

pin_commit

See Also
pin_commit

pin_fix

pin_unfix

pin_assign

pin_unassign

Tcl documentation conventions
Designer Tcl Command Reference

pin_unfix
Tcl command; unlocks the pins assigned to the specified port, so the pins can be moved during place-
and-route.

pin_unfix -port portname

Arguments
-port portname

Specifies the name of the port containing pins to unlock.

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
None

310 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Examples
You must use pin_commit command after the pin_unfix command to save the changes to your design:
pin_unfix –port rst

pin_commit

See Also
pin_commit

pin_fix

pin_assign

pin_unassign

Tcl documentation conventions
Designer Tcl Command Reference

remove_clock
Tcl command; removes the specified clock constraint from the current timing scenario.

remove_clock {-name clock_name| -id constraint_ID

Arguments
-name clock_name

Specifies the name of the clock constraint to remove from the current scenario. You must specify either a
clock name or an ID.
-id constraint_ID

Specifies the ID of the clock constraint to remove from the current scenario. You must specify either an
ID or a clock name that exists in the current scenario.

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

Description
Removes the specified clock constraint from the current scenario. If the specified name does not match a
clock constraint in the current scenario, or if the specified ID does not refer to a clock constraint, this
command fails.
Do not specify both the name and the ID.

Exceptions
You cannot use wildcards when specifying a clock name.

Examples
The following example removes the clock constraint named "my_user_clock":
remove_clock -name my_user_clock

The following example removes the clock constraint using its ID:
set clockId [create_clock –name my_user_clock –period 2]

remove_clock –id $clockId

See Also
create_clock

Tcl Command Documentation Conventions
Designer Tcl Command Reference

remove_clock_latency

Libero User's Guide 311

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

remove_clock_latency
Tcl command; removes a clock source latency from the specified clock and from all edges of the clock.

remove_clock_latency {-source clock_name_or_source |-id constraint_ID}

Arguments
-source clock_name_or_source

Specifies either the clock name or source name of the clock constraint from which to remove the clock
source latency. You must specify either a clock or source name or its constraint ID.
-id constraint_ID

Specifies the ID of the clock constraint to remove from the current scenario. You must specify either a
clock or source name or its constraint ID.

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

Description
Removes a clock source latency from the specified clock in the current scenario. If the specified source
does not match a clock with a latency constraint in the current scenario, or if the specified ID does not
refer to a clock with a latency constraint, this command fails.
Do not specify both the source and the ID.

Exceptions
You cannot use wildcards when specifying a clock name.

Examples
The following example removes the clock source latency from the specified clock.
remove_clock_latency -source my_clock

See Also
set_clock_latency

Tcl Command Documentation Conventions
Designer Tcl Command Reference

remove_clock_uncertainty
 Tcl command; removes a clock-to-clock uncertainty from the current timing scenario by specifying either
its exact arguments or its ID.

remove_clock_uncertainty -from | -rise_from | -fall_from from_clock_list -to | -rise_to| -
fall_to to_clock_list -setup {value} -hold {value}

remove_clock_uncertainty -id constraint_ID

Arguments
-from

 Specifies that the clock-to-clock uncertainty applies to both rising and falling edges of the source clock
list. Only one of the -from, -rise_from, or -fall_from arguments can be specified for the constraint to
be valid.
-rise_from

312 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Specifies that the clock-to-clock uncertainty applies only to rising edges of the source clock list. Only one
of the -from, -rise_from, or -fall_from arguments can be specified for the constraint to be valid.
-fall_from

Specifies that the clock-to-clock uncertainty applies only to falling edges of the source clock list. Only one
of the -from, -rise_from, or -fall_from arguments can be specified for the constraint to be valid.
from_clock_list

Specifies the list of clock names as the uncertainty source.
-to

Specifies that the clock-to-clock uncertainty applies to both rising and falling edges of the destination clock
list. Only one of the -to, -rise_to , or -fall_to arguments can be specified for the constraint to be valid.
-rise_to

Specifies that the clock-to-clock uncertainty applies only to rising edges of the destination clock list. Only
one of the -to, -rise_to , or -fall_to arguments can be specified for the constraint to be valid.
-fall_to

Specifies that the clock-to-clock uncertainty applies only to falling edges of the destination clock list. Only
one of the -to, -rise_to , or -fall_to arguments can be specified for the constraint to be valid.
to_clock_list

Specifies the list of clock names as the uncertainty destination.
-setup

Specifies that the uncertainty applies only to setup checks. If none or both -setup and -hold are present,
the uncertainty applies to both setup and hold checks.
-hold

Specifies that the uncertainty applies only to hold checks. If none or both -setup and -hold are present,
the uncertainty applies to both setup and hold checks.
-id constraint_ID

Specifies the ID of the clock constraint to remove from the current scenario. You must specify either the
exact parameters to set the constraint or its constraint ID.

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

Description
Removes a clock-to-clock uncertainty from the specified clock in the current scenario. If the specified
arguments do not match clocks with an uncertainty constraint in the current scenario, or if the specified ID
does not refer to a clock-to-clock uncertainty constraint, this command fails.
Do not specify both the exact arguments and the ID.

Exceptions
None

Examples
remove_clock_uncertainty -from Clk1 -to Clk2

remove_clock_uncertainty -from Clk1 -fall_to { Clk2 Clk3 } -setup

remove_clock_uncertainty 4.3 -fall_from { Clk1 Clk2 } -rise_to *

remove_clock_uncertainty 0.1 -rise_from [get_clocks { Clk1 Clk2 }] -fall_to { Clk3
Clk4 } -setup

remove_clock_uncertainty 5 -rise_from Clk1 -to [get_clocks {*}]

remove_clock_uncertainty -id $clockId

See Also
remove_clock

remove_disable_timing

Libero User's Guide 313

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

remove_generated_clock

set_clock_uncertainty

Designer Tcl Command Reference

remove_disable_timing
Tcl command; removes a disable timing constraint by specifying its arguments, or its ID. If the arguments
do not match a disable timing constraint, or if the ID does not refer to a disable timing constraint, the
command fails.

remove_disable_timing -from value -to value name -id name

Arguments
-from from_port

Specifies the starting port. The –from and –to arguments must either both be present or both omitted for
the constraint to be valid.
-to to_port

Specifies the ending port. The –from and –to arguments must either both be present or both omitted for
the constraint to be valid.
name

Specifies the cell name where the disable timing constraint will be removed. It is an error to supply both a
cell name and a constraint ID, as they are mutually exclusive. No wildcards are allowed when specifying a
clock name, either alone or in an accessor command1.
-id name

Specifies the constraint name where the disable timing constraint will be removed. It is an error to supply
both a cell name and a constraint ID, as they are mutually exclusive. No wildcards are allowed when
specifying a clock name, either alone or in an accessor command1.

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

Exceptions
None

Example
remove_disable_timing -from port1 -to port2 -id new_constraint

Designer Tcl Command Reference

remove_false_path
Tcl command; removes a false path from the current timing scenario by specifying either its exact
arguments or its ID.

remove_false_path [-from from_list] [-to to_list] [-through through_list] [-id constraint_ID]

remove_false_path -id constraint_ID

Arguments
-from from_list

Specifies a list of timing path starting points. A valid timing starting point is a clock, a primary input, an
inout port, or a clock pin of a sequential cell.
-through through_list

314 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Specifies a list of pins, ports, cells, or nets through which the disabled paths must pass.
-to to_list

Specifies a list of timing path ending points. A valid timing ending point is a clock, a primary output, an
inout port, or a data pin of a sequential cell.
 -id constraint_ID

Specifies the ID of the false path constraint to remove from the current scenario. You must specify either
the exact false path to remove or the constraint ID that refers to the false path constraint to remove.

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

Description
Removes a false path from the specified clock in the current scenario. If the arguments do not match a
false path constraint in the current scenario, or if the specified ID does not refer to a false path constraint,
this command fails.
Do not specify both the false path arguments and the constraint ID.

Exceptions
• You cannot use wildcards when specifying a clock name, either alone or in an Accessor command

such as get_pins or get_ports.

Examples
The following example specifies all false paths to remove:
remove_false_path -through U0/U1:Y

The following example removes the false path constraint using its id:
set fpId [set_false_path –from [get_clocks c*] –through {topx/reg/*} –to [get_ports
out15]]

remove_false_path –id $fpId

See Also
set_false_path

Tcl Command Documentation Conventions
Designer Tcl Command Reference

remove_generated_clock
Tcl command; removes the specified generated clock constraint from the current scenario.

remove_generated_clock {-name clock_name | -id constraint_ID }

Arguments
-name clock_name

Specifies the name of the generated clock constraint to remove from the current scenario. You must
specify either a clock name or an ID.
-id constraint_ID

Specifies the ID of the generated clock constraint to remove from the current scenario. You must specify
either an ID or a clock name that exists in the current scenario.

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

remove_input_delay

Libero User's Guide 315

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Description
Removes the specified generated clock constraint from the current scenario. If the specified name does
not match a generated clock constraint in the current scenario, or if the specified ID does not refer to a
generated clock constraint, this command fails.
Do not specify both the name and the ID.

Exceptions
You cannot use wildcards when specifying a generated clock name.

Examples
The following example removes the generated clock constraint named "my_user_clock":
remove_generated_clock -name my_user_clock

See Also
create_generated_clock

Tcl Command Documentation Conventions
Designer Tcl Command Reference

remove_input_delay
Tcl command; removes an input delay a clock on a port by specifying both the clocks and port names or
the ID of the input_delay constraint to remove.

remove_input_delay -clock clock_name port_pin_list

remove_input_delay -id constraint_ID

Arguments
-clock clock_name

Specifies the clock name to which the specified input delay value is assigned.
port_pin_list

Specifies the port names to which the specified input delay value is assigned.
-id constraint_ID

Specifies the ID of the clock with the input_delay value to remove from the current scenario. You must
specify either both a clock name and list of port names or the input_delay constraint ID .

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

Description
Removes an input delay from the specified clocks and port in the current scenario. If the clocks and port
names do not match an input delay constraint in the current scenario, or if the specified ID does not refer
to an input delay constraint, this command fails.
Do not specify both the clock and port names and the constraint ID.

Exceptions
You cannot use wildcards when specifying a clock name, either alone or in an accessor command.

Examples
The following example removes the input delay from CLK1 on port data1:

316 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

remove_input_delay -clock [get_clocks CLK1] [get_ports data1]

See Also
set_input_delay

Tcl Command Documentation Conventions
Designer Tcl Command Reference

remove_library
Tcl command; removes a VHDL library from your project.

remove_library
-library name

Arguments
-library name

Specifies the name of the library you wish to remove.

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

Exceptions
None

Example
Remove (delete) a library called 'my_lib'.
remove_library –library my_lib

See Also
Project Manager Tcl Command Reference
add_library

rename_library

remove_max_delay
Tcl command; removes a maximum delay constraint from the current timing scenario by specifying either
its exact arguments or its ID.

remove_max_delay [-from from_list] [-to to_list] [-through through_list]

remove_max_delay -id constraint_ID

Arguments
-from from_list

Specifies a list of timing path starting points. A valid timing starting point is a clock, a primary input, an
inout port, or a clock pin of a sequential cell.
-through through_list

Specifies a list of pins, ports, cells, or nets through which the disabled paths must pass.
-to to_list

Specifies a list of timing path ending points. A valid timing ending point is a clock, a primary output, an
inout port, or a data pin of a sequential cell.

remove_min_delay

Libero User's Guide 317

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

-id constraint_ID

Specifies the ID of the maximum delay constraint to remove from the current scenario. You must specify
either the exact maximum delay arguments to remove or the constraint ID that refers to the maximum
delay constraint to remove.

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

Description
Removes a maximum delay value from the specified clock in the current scenario. If the arguments do not
match a maximum delay constraint in the current scenario, or if the specified ID does not refer to a
maximum delay constraint, this command fails.
Do not specify both the maximum delay arguments and the constraint ID.

Exceptions
You cannot use wildcards when specifying a clock name, either alone or in an Accessor command.

Examples
The following example specifies a range of maximum delay constraints to remove:
remove_max_delay -through U0/U1:Y

See Also
set_max_delay

Tcl Command Documentation Conventions
Designer Tcl Command Reference

remove_min_delay
Tcl command; removes a minimum delay constraint in the current timing scenario by specifying either its
exact arguments or its ID.

remove_min_delay [-from from_list] [-to to_list] [-through through_list]

remove_min_delay -id constraint_ID

Arguments
-from from_list

Specifies a list of timing path starting points. A valid timing starting point is a clock, a primary input, an
inout port, or a clock pin of a sequential cell.
-through through_list

Specifies a list of pins, ports, cells, or nets through which the disabled paths must pass.
-toto_list

Specifies a list of timing path ending points. A valid timing ending point is a clock, a primary output, an
inout port, or a data pin of a sequential cell.
-id constraint_ID

Specifies the ID of the minimum delay constraint to remove from the current scenario. You must specify
either the exact minimum delay arguments to remove or the constraint ID that refers to the minimum delay
constraint to remove.

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

318 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Description
Removes a minimum delay value from the specified clock in the current scenario. If the arguments do not
match a minimum delay constraint in the current scenario, or if the specified ID does not refer to a
minimum delay constraint, this command fails.
Do not specify both the minimum delay arguments and the constraint ID.

Exceptions
You cannot use wildcards when specifying a clock name, either alone or in an accessor command.

Examples
The following example specifies a range of minimum delay constraints to remove:
remove_min_delay -through U0/U1:Y

See Also
set_min_delay

Tcl Command Documentation Conventions
Designer Tcl Command Reference

remove_multicycle_path
Tcl command; removes a multicycle path constraint in the current timing scenario by specifying either its
exact arguments or its ID.

remove_multicycle_path [-from from_list] [-to to_list] [-through through_list]

remove multicycle_path -id constraint_ID

Arguments
-from from_list

Specifies a list of timing path starting points. A valid timing starting point is a clock, a primary input, an
inout port, or a clock pin of a sequential cell.
-through through_list

Specifies a list of pins, ports, cells, or nets through which the disabled paths must pass.
-toto_list

Specifies a list of timing path ending points. A valid timing ending point is a clock, a primary output, an
inout port, or a data pin of a sequential cell.
-id constraint_ID

Specifies the ID of the multicycle path constraint to remove from the current scenario. You must specify
either the exact multicycle path arguments to remove or the constraint ID that refers to the multicycle path
constraint to remove.

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

Description
Removes a multicycle path from the specified clock in the current scenario. If the arguments do not match
a multicycle path constraint in the current scenario, or if the specified ID does not refer to a multicycle path
constraint, this command fails.
Do not specify both the multicycle path arguments and the constraint ID.

remove_output_delay

Libero User's Guide 319

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Exceptions
You cannot use wildcards when specifying a clock name, either alone or in an accessor command.

Examples
The following example removes all paths between reg1 and reg2 to 3 cycles for setup check.
remove_multicycle_path -from [get_pins {reg1}] –to [get_pins {reg2}]

See Also
set_multicycle_path

Tcl Command Documentation Conventions
Designer Tcl Command Reference

remove_output_delay
Tcl command; removes an ouput delay by specifying both the clocks and port names or the ID of the
output_delay constraint to remove.

remove_output_delay -clock clock_name port_pin_list

remove_output_delay -id constraint_ID

Arguments
-clock clock_name

Specifies the clock name to which the specified output delay value is assigned.
port_pin_list

Specifies the port names to which the specified output delay value is assigned.
-id constraint_ID

Specifies the ID of the clock with the output_delay value to remove from the current scenario. You must
specify either both a clock name and list of port names or the output_delay constraint ID .

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

Description
Removes an output delay from the specified clocks and port in the current scenario. If the clocks and port
names do not match an output delay constraint in the current scenario, or if the specified ID does not refer
to an output delay constraint, this command fails.
Do not specify both the clock and port names and the constraint ID.

Exceptions
You cannot use wildcards when specifying a clock name, either alone or in an accessor command.

Examples
The following example removes the output delay from CLK1 on port out1:
remove_output_delay -clock [get_clocks CLK1] [get_ports out1]

See Also
set_output_delay

Tcl Command Documentation Conventions
Designer Tcl Command Reference

320 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

rename_library
Tcl command; renames a VHDL library in your project.

rename_library
-library name
 -name name

Arguments
-library name

Identifies the current name of the library that you wish to rename.
-name name

Specifies the new name of the library.

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

Exceptions
None

Example
Rename a library from 'my_lib' to 'test_lib1'
rename_library –library my_lib -name test_lib1

See Also
Project Manager Tcl Command Reference
add_library

remove_library

rename_scenario
Tcl command; renames the specified timing scenario with the new name provided. You must provide a
unique new name (that is, it cannot already be used by another timing scenario).

rename_scenario oldname -new newname

Arguments
oldname

Specifies the current name of the timing scenario.
-new newname

Specifies the new name to give to the timing scenario.

Supported Families
IGLOO, ProASIC3, SmartFusion2, SmartFusion, Fusion

Description
This command changes the name of the timing scenario in the list of scenarios.

report

Libero User's Guide 321

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Example
rename_scenario scenario_A -new scenario_B

See Also
create_scenario

delete_scenario

Tcl documentation conventions
Designer Tcl Command Reference

report
The report command provides you with frequently-used information in a convenient format.
You can generate several different types of reports using this command, including:
• report (Status)
• report (Timing) for IGLOO, ProASIC3, SmartFusion2, SmartFusion, Fusion families
• report (Timing violations) for IGLOO, ProASIC3, SmartFusion2, SmartFusion, Fusion families
• report (Pin)
• report (Flip-flop)
• report (I/O Bank)
• report (Global Usage)
• report (Power)

report (Bottleneck) using SmartTime
Tcl command; creates a bottleneck report.

report -type bottleneck
 [-cost_type {value}]
 [-use_slack_threshold{value}]
 [-slack_threshold {value}]
 [-set_name {value}]
 [-clock clock_id -set_type value]
 [-source_clock clock_id -sink_clock clock_id]
 [-source {pin_list}]
 [-sink {pin_list}]
 [-max_instances {value}]
 [-max_paths {value}]
 [-max_parallel_paths {value}]
 [-analysis_type {value}]
 {filename} \
 [−format value]

Arguments
-cost_type value

Specifies the type of bottleneck cost. The default option is path_count.

Value Description

path_count Instances with the greatest number of path violations will
have the highest bottleneck cost

path_cost Instances with the largest combined timing violations will
have the highest bottleneck cost

322 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

-use_slack_threshold value

Specifies whether to consider the slack threshold when computing the bottlenecks in the report.

Value Description

yes Includes slack threshold in the bottleneck report

no Excludes slack threshold in the bottleneck report

-slack_threshold value

Specifies that paths whose slack is larger than this given threshold will be considered. Only instances that
lie on these violating paths are reported. The default option is 0.
-set_name value

Displays the bottleneck information for the named set. You can either use this option or use both –clock
and –type. This option allows pruning based on a given set. Only paths that lie within the named set will
be considered towards bottleneck.
-clock value

This option allows pruning based on a given clock domain. Only instances that lie on these violating paths
are reported.
-set_type value

This option can only be used in combination with the –clock option, and not by itself. The options allow to
filter which type of paths should be considered towards the bottleneck.

Value Description

reg_to_reg Paths between registers in the design

async_to_reg Paths from asynchronous pins to registers

reg_to_async Paths from registers to asynchronous pins

external_recovery The set of paths from inputs to asynchronous pins

external_removal The set of paths from inputs to asynchronous pins

external_setup Paths from input ports to registers

external_hold Paths from input ports to registers

clock_to_out Paths from registers to output ports

-source_clock clock_id

Reports only bottleneck instances that lie on violating timing paths of the inter-clock domain that starts at
the source clock specified by this option. This option can only be used in combination with -sink_clock,
and not by itself.
-sink_clock clock_id

Reports only bottleneck instances that lie on violating timing paths of the inter-clock domain that ends at
the sink clock specified by this option. This option can only be used in combination with -source_clock,
and not by itself.
-source value

Reports only instances that lie on violating paths that start at locations specified by this option.
-sink value

Reports only instances that lie on violating paths that end at locations specified by this option.

report (Cycle Accurate Power Report)

Libero User's Guide 323

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

-max_instances value

Specifies the maximum number of instances to be reported. Defaults to 10.
-max_paths value

Specifies the maximum number of paths to be considered per path set type. Allowed values are 1 to
2000000. Defaults to 100.
-max_parallel_paths value

Specifies the maximum number of paths allowed per end point pair. Only instances that lie on these
violating paths are reported. Defaults to 1 (No parallel paths).
-analysis_type value

Specifies the analysis types (max or min) under which the violations are reported. Defaults to max
analysis.

Value Description

max_delay Sets the analysis type to maximum delay

min_delay Sets the analysis type to minimum delay

−format value

Specifies the output format of the generated report.

Value Description

text Generates a text report; text is the default value

csv Generates the report in a comma-separated value format
that you can import into a spreadsheet

filename
Specifies the name and destination of the bottleneck report.

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

Exceptions
None

Examples
The following example generates a bottleneck report named bottleneck.txt.
report -type bottleneck -cost-type path_count -slack_threshold 0 -set_name set1 -
max_cells 10 -max_paths 10 -max_parallel_paths 10 -analysis_type max -format text
bottleneck.txt

See Also
Tcl documentation conventions
Designer Tcl Command Reference

report (Cycle Accurate Power Report)
Tcl command; creates a cycle accurate power report, which reports a power waveform with one power
value per clock period or half-period instead of an average power for the whole simulation.

324 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

report -type power_peak_analyzer \
[-vcd_file {path}] \
[-style {value}] \
[-partial_parse {value}] \
[-start_time {value}] \
[-end_time {value}] \
[-auto_detect_top_level_name {value}] \
[-top_level_name {name}] \
[-glitch_filtering {value}] \
[-glitch_threshold {value}] \
[-auto_detect_sampling_period {value}] \
[-sampling_clock { }] \
[-sampling_rate_per_period {value}] \
[-sampling_offset {value}] \
[-sampling_period {value}] \
[-use_only_local_extrema {value}] \
[-use_power_threshold {value}] \
[-power_threshold {value}] \
[-opmode {value}] \
{filename}

Arguments
-type power_peak_analyzer

Specifies the type of report to generate is a cycle accurate power report.
-vcd_file {path}

Specifies the path to the *.vcd file that you want to import.
-style {value}

Specifies the format in which the report will be exported. The following table shows the acceptable values
for this argument:

Value Description

Text The report will be exported as Text file

CSV The report will be exported as CSV file

-partial_parse {value}

Specifies whether to partially parse the *.vcd file. The following table shows the acceptable values for this
argument:

Value Description

true Partially parses the *.vcd file

false Does not partially parse the *.vcd file

-start_time {value}

This option is available only if -partially_parse is set to true. Specifies the start time (in ns) to partially
parse the *.vcd file.
-end_time {value}

This option is available only if -partially_parse is set to true. Specifies the end time (in ns) to partially
parse the *.vcd file.
-auto_detect_top_level_name {value}

report (Cycle Accurate Power Report)

Libero User's Guide 325

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Specifies whether to automatically detect the top-level name. The following table shows the acceptable
values for this argument:

Value Description

true Automatically detects the top-level name

false Does not automatically detect the top-level name

-top_level_name {name}

Specifies the top-level name.
-glitch_filtering {value}

Specifies whether to use glitch filtering. The following table shows the acceptable values for this
argument:

Value Description

true Glitch filtering is on

auto Enables automatic glitch filtering. This option will ignore
any value specified in -glitch_threshold

false Glitch filtering is off

-glitch_threshold {value}

This option is only available when -glitch_filtering is set to true. Specifies the glitch filtering value
(in ps).
-power_summary {value}

Specifies whether to include the power summary, which shows the static and dynamic values in the
report. The following table shows the acceptable values for this argument:

Value Description

true Includes the power summary in the report

false Does not include the power summary in the report

-auto_detect_sampling_period {value}

Specifies whether to automatically detect the sampling period. The following table shows the acceptable
values for this argument:

Value Description

true Automatically detects the sampling period

false Does not automatically detect the sampling period

-sampling_clock {}

Specifies the sampling clock.
-sampling_rate_per_period {value}

Specifies whether to set the sampling rate per period. The following table shows the acceptable values for
this argument:

326 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Value Description

true Specifies the sampling rate per period

false Specifies the sampling rate per half period

 -sampling_offset {value}

Specifies the offset used to calculate the sampling offset (in ps).
-sampling_period {value}

Specifies the offset used to calculate the sampling period (in ps).
-use_only_local_extrema {value}

Specifies whether to limit the history size by keeping only local extrema. The following table shows the
acceptable values for this argument:

Value Description

true Limits the history size by keeping only local extrema

false Does not limit the history size by keeping only local
extrema

-use_power_threshold {value}

Specifies whether to limit the history size by setting a power threshold. The following table shows the
acceptable values for this argument:

Value Description

true Limits the history size by setting a power threshold

false Does not limit the history size by setting a power threshold

-power_threshold {value}

Sets the power threshold value.
-opmode {value}

Use this option to specify the mode from which the operating conditions are extracted to generate the
report.
{filename}

Specifies the name of the report.

Supported Families
IGLOO, ProASIC3, SmartFusion, Fusion

Exceptions
None

Examples
This example generates a cycle accurate power report named report_power_cycle_based.txt.
report -type "power_cycle_based" -vcd_file "D:/FPU/mul.vcd" -style "Text" -partial_parse
"TRUE" -start_time "0.05" -end_time "1.00" -auto_detect_top_level_name "TRUE" -
glitch_filtering "FALSE" -glitch_threshold "100" -auto_detect_sampling_period "TRUE" -
sampling_clock "clk" -sampling_rate_per_period "TRUE" -sampling_offset "0.00" -

report (Datasheet) using SmartTime

Libero User's Guide 327

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

sampling_period "10000.00" -use_only_local_extrema "TRUE" -use_power_threshold "TRUE" -
power_threshold "0.00" -opmode "Active" \ {D:/FPU/report_power_cycle_based.txt}

See Also
Tcl documentation conventions
Designer Tcl Command Reference

report (Datasheet) using SmartTime
Tcl command; creates a datasheet report.

report -type datasheet filename \
[−format value]

Arguments
filename

Specifies the name and destination of the datasheet report.
−format value

Specifies the output format of the generated the report.

Value Description

text Generates a text report; text is the default value

csv Generates the report in a comma-separated value format
which you can import into a spreadsheet

Supported Families
IGLOO, ProASIC3, SmartFusion2, SmartFusion, Fusion

Exceptions
None

Examples
The following example generates a datasheet report named datasheet.txt.
report -type datasheet -format Text datasheet.txt

See Also
Tcl documentation conventions
report (Timing) using SmartTime

report (Timing violations) using SmartTime

Designer Tcl Command Reference

report (Power Scenario)
Tcl command; creates a scenario power report for a previously defined scenario. It includes information
about the global device and SmartPower preferences selection, and the average power consumption and
the excepted battery life for this sequence.

report -type power_scenario \
[-powerunit {value}] \

328 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

[-frequnit {value}] \
[-opcond {value}] \
[-toggle {value}] \
[-scenario {value}] \
[-style {value}] \
[-battery_life {value}] \
[-battery_capacity {value}] \
[-rail_breakdown {value}] \
[-type_breakdown {value}] \
[-mode_breakdown {value}] \
[-opcond_summary {value}] \
{filename}

Arguments
-type power_scenario

Specifies the type of report to generate is a scenario power report.
-powerunit {value}

Specifies the unit in which power is set. The following table shows the acceptable values for this
argument:

Value Description

W The power unit is set to watts

mW The power unit is set to milliwatts

uW The power unit is set to microwatts

-frequnit {value}

Specifies the unit in which frequency is set. The following table shows the acceptable values for this
argument:

Value Description

Hz The frequency unit is set to hertz

kHz The frequency unit is set to kilohertz

MHz The frequency unit is set to megahertz

-toggle {value}

Specifies the toggle. The following table shows the acceptable values for this argument:

Value Description

true The toggle is set to true

false The toggle is set to false

-scenario{value}

Specifies a scenario that the report is generated from.
 -style {value}

Specifies the format in which the report will be exported. The following table shows the acceptable values
for this argument:

report (Power Scenario)

Libero User's Guide 329

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Value Description

Text The report will be exported as Text file

CSV The report will be exported as CSV file

-battery_life {value}

Specifies whether to include the battery life summary in the report. The following table shows the
acceptable values for this argument:

Value Description

true Includes the battery life summary in the report

false Does not include the battery life summary in the report

-battery_capacity {value}

Specifies the battery capacity in A*H.
-rail_breakdown {value}

Specifies whether to include the breakdown by rail summary in the report. The following table shows the
acceptable values for this argument:

Value Description

true Includes the breakdown by rail summary in the report

false Does not include the breakdown by rail summary in the
report. This is the default value.

-type_breakdown {value}

Specifies whether to include the breakdown by type summary in the report. The following table shows the
acceptable values for this argument:

Value Description

true Includes the breakdown by type summary in the report

false Does not include the breakdown by type summary in the
report. This is the default value.

-mode_breakdown {value}

Specifies whether to include a breakdown by mode in the report. The following table shows the
acceptable values for this argument:

Value Description

true Includes the breakdown by mode in the report

false Does not include the breakdown by mode in the report.
This is the default value.

 -opcond_summary {value}

330 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Specifies whether to include the operating conditions summary in the report. The following table shows
the acceptable values for this argument:

Value Description

true Includes the operating conditions summary in the report

false Does not include the operating conditions summary in the
report

 {filename.rpt}

Specifies the name of the report.

Supported Families
IGLOO, ProASIC3, SmartFusion, Fusion

Notes
• Flash*Freeze, Sleep, and Shutdown are available only for certain families and devices.
• Worst and Best are available only for certain families and devices.

Exceptions
None

Examples
This example generates a scenario power report named report.txt for my_scenario
report -type power_scenario -scenario my_scenario -rail_breakdown true -type_breakdown
true -mode_breakdown true -style text -battery_capacity 10 report.txt

See Also
Scenario Power Report

report (Timing) using SmartTime
Tcl command; creates a timing report.

report -type timing \
[−print_summary value]\
[−analysis value]\
[−use_slack_threshold value]\
[−slack_threshold value]\
[−print_paths value]\
[−max_paths value]\
[−max_expanded_paths value]\
[−include_user_sets value]\
[−include_pin_to_pin value]\
[-include_clock_domains value]\
[−select_clock_domains value]\
[−clock_domain clock_domain_list]
[−format value]
filename

report (Timing) using SmartTime

Libero User's Guide 331

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Arguments
-type timing

Specifies the type of report to generate.
−print_summary value

Specifies whether to print the summary section in the timing report.

Value Description

yes Includes summary section in the timing report (the default
value).

no Excludes summary section in the timing report

−analysis value

Specifies whether the report will consider minimum analysis or maximum analysis.

Value Description

min Timing report considers minimum analysis

max Timing report considers maximum analysis (the default
value)

−use_slack_threshold value

Specifies whether the report will consider slack threshold.

Value Description

yes Includes slack threshold in the timing report.

no Excludes slack threshold in the timing report (the default
value)

−slack_threshold value

Specifies the threshold to consider when reporting path slacks. This is a floating-point number in
nanoseconds (ns). By default, there is no threshold (all slacks are reported).
−print_paths value

Specifies whether the path section (clock domains and in-to-out paths) will be printed in the timing report.

Value Description

yes Includes path section in the timing report (the default value)

no Excludes path sections from the timing report

−max_paths value

Defines the maximum number of paths to display for each set. This is a positive integer value greater than
zero. The default is 5.
−max_expanded_paths value

Defines the number of paths to expand per set. This is a positive integer value greater than zero. The
default is 1.
−include_user_sets value

332 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Defines whether to include the user defined sets in the timing report.

Value Description

yes Includes user defined sets in the timing report (the default
value)

no Excludes user defined sets from the timing report

−include_pin_to_pin value

Specifies whether to show pin-to-pin paths in the timing report.

Value Description

yes Includes pin-to-pin paths in the timing report (the default
value).

no Excludes pin-to-pin paths from the timing report

−include_clock_domains value

Defines whether to include clock domains in the timing report.

Value Description

yes Includes clock domains

no Excludes clock domains from the timing report

−select_clock_domains value

Specifies whether to show the clock domain list in the timing report.

Value Description

yes Includes the clock domain list in the timing report

no Excludes the clock domain list from the timing report (the
default value)

−clock_domain clock_domain_list

Defines the clock domain to be considered in the clock domain section. The domain list is a series of
strings with domain names separated by spaces. Both the summary and the path sections in the timing
report display only the listed clock domains.
−format value

Specifies the output format of the generated the report.

Value Description

text Generates a text report; text is the default value

csv Generates the report in a comma-separated value format
which you can import into a spreadsheet

filename

report (Timing violations) using SmartTime

Libero User's Guide 333

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Specifies the name and destination of the timing report.

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

Exceptions
None

Examples
The following example generates a timing report named timing_report.txt. The report does not print the
summary section. It includes a max-delay analysis and only reports paths with a slack value less than
0.50 ns. It reports a maximum of 3 paths per section and does not report any expanded paths. It only
reports timing information for the clock domains count8_clock and count2_clk.
report -type timing -print_summary no \

-analysis max \

-use_slack_threshold yes \

-slack_threshold 0.50 \

-print_paths yes -max_paths 3 \

-max_expanded_paths 0 \

-include_user_sets yes \

-include_pin_to_pin yes \

-select_clock_domains yes \

-clock_domain {count8_clock count2_clk} \

timing_report.txt

See Also
Tcl documentation conventions
report (Timing violations) using SmartTime

report (Datasheet) using SmartTime

Designer Tcl Command Reference

report (Timing violations) using SmartTime
Tcl command; creates a timing violations report.

report -type timing_violations \
[−analysis value]\
[−use_slack_threshold value]\
[−slack_threshold value]\
[–limit_max_paths value]\
[−max_paths value]\
[−max_expanded_paths value] \
[−format value]
filename

Arguments
-type timing_violations

Specifies the type of report to generate.
−analysis value

Specifies whether to consider minimum analysis or maximum analysis in the timing violations report.

Value Description

334 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Value Description

min Timing report considers minimum analysis

max Timing report considers maximum analysis (the default
value)

−use_slack_threshold value

Specifies whether to consider the slack threshold in the timing violations report.

Value Description

yes Includes slack threshold in the timing violations report

no Excludes slack threshold in the timing violations report (the
default value)

−slack_threshold value

Specifies the threshold to consider when reporting path slacks. This value is a floating-point number in
nanoseconds (ns). By default, there is no threshold (all slacks reported).
–limit_max_paths value

Specifies if the paths are limited by the number of paths.

Value Description

yes Limits the maximum number of paths to report

no Specifies that there is no limit to the number of paths to
report (the default value)

−max_paths value

Specifies the maximum number of paths to display for each set. This value is a positive integer value
greater than zero. Default is 100.
−max_expanded_paths value

Specifies the number of paths to expand per set. This value is a positive integer value greater than zero.
 The default is 0.
−format value

Specifies the output format of the generated report.

Value Description

text Generates a text report; text is the default value

csv Generates the report in a comma-separated value format
which you can import into a spreadsheet

filename

Specifies the name and destination of the timing violations report.

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

save_design

Libero User's Guide 335

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Exceptions
None

Examples
The following example generates a timing violations report named timg_viol.txt. The report considers an
analysis using maximum delays and does not filter paths based on slack threshold. It reports 2 paths per
section and 1 expanded path per section.
report -type timing_violations \

-analysis max -use_slack_threshold no \

-limit_max_paths -yes \

-max_paths 2 \

-max_expanded_paths 1 \

timg_viol.txt

See Also
Tcl documentation conventions
report (Timing) using SmartTime

report (Datasheet) using SmartTime

Designer Tcl Command Reference

save_design
Tcl command; the save_design command saves the current design in Designer to a file. If filename is not
a complete path name, the ADB file is written into the current working directory.

save_design filename

Arguments
The design is written to a file denoted by the variable filename as an ADB file.

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
None

Example
Example 1: Saves the design to a file “test.adb” in the current folder.
save_design {test.adb}

Example 2: Save design and check if it saved successfully.
set designFile {d:/test/my_design.adb}

if { [catch { save_design $designFile }] {

 Puts “Failed to save design”

 # Handle Failure

} else {

 puts “Design saved successfully”

 # Proceed to make further changes

}

336 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

See Also
close_design

new_design

open_design

Designer Tcl Command Reference

set_clock_latency
Tcl command; defines the delay between an external clock source and the definition pin of a clock within
SmartTime.

set_clock_latency -source [-rise][-fall][-early][-late] delay clock

Arguments
-source

Specifies the source latency on a clock pin, potentially only on certain edges of the clock.
-rise

Specifies the edge for which this constraint will apply. If neither or both rise are passed, the same latency
is applied to both edges.
-fall

Specifies the edge for which this constraint will apply. If neither or both rise are passed, the same latency
is applied to both edges.
-invert

Specifies that the generated clock waveform is inverted with respect to the reference clock.
-late

Optional. Specifies that the latency is late bound on the latency. The appropriate bound is used to provide
the most pessimistic timing scenario. However, if the value of "-late" is less than the value of "-early",
optimistic timing takes place which could result in incorrect analysis. If neither or both "-early" and "-late"
are provided, the same latency is used for both bounds, which results in the latency having no effect for
single clock domain setup and hold checks.
-early

Optional. Specifies that the latency is early bound on the latency. The appropriate bound is used to
provide the most pessimistic timing scenario. However, if the value of "-late" is less than the value of "-
early", optimistic timing takes place which could result in incorrect analysis. If neither or both "-early" and
"-late" are provided, the same latency is used for both bounds, which results in the latency having no
effect for single clock domain setup and hold checks.
delay

Specifies the latency value for the constraint.
clock

Specifies the clock to which the constraint is applied. This clock must be constrained.

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

Description
Clock source latency defines the delay between an external clock source and the definition pin of a clock
within SmartTime. It behaves much like an input delay constraint. You can specify both an "early" delay
and a"late" delay for this latency, providing an uncertainty which SmartTime propagates through its
calculations. Rising and falling edges of the same clock can have different latencies. If only one value is
provided for the clock source latency, it is taken as the exact latency value, for both rising and falling
edges.

set_clock_uncertainty

Libero User's Guide 337

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Exceptions
None

Examples
The following example sets an early clock source latency of 0.4 on the rising edge of main_clock. It also
sets a clock source latency of 1.2, for both the early and late values of the falling edge of main_clock. The
late value for the clock source latency for the falling edge of main_clock remains undefined.
set_clock_latency –source –rise –early 0.4 { main_clock }

set_clock_latency –source –fall 1.2 { main_clock }

See Also
create_clock

create_generated_clock

Tcl Command Documentation Conventions
Designer Tcl Command Reference

set_clock_uncertainty
Tcl command; specifies a clock-to-clock uncertainty between two clocks (from and to) and returns the ID
of the created constraint if the command succeeded.

set_clock_uncertainty uncertainty -from | -rise_from | -fall_from from_clock_list -to | -
rise_to | -fall_to to_clock_list -setup {value} -hold {value}

Arguments
uncertainty

Specifies the time in nanoseconds that represents the amount of variation between two clock edges.
-from

 Specifies that the clock-to-clock uncertainty applies to both rising and falling edges of the source clock
list. Only one of the -from, -rise_from, or -fall_from arguments can be specified for the constraint to
be valid.
-rise_from

Specifies that the clock-to-clock uncertainty applies only to rising edges of the source clock list. Only one
of the -from, -rise_from, or -fall_from arguments can be specified for the constraint to be valid.
-fall_from

Specifies that the clock-to-clock uncertainty applies only to falling edges of the source clock list. Only one
of the -from, -rise_from, or -fall_from arguments can be specified for the constraint to be valid.
from_clock_list

Specifies the list of clock names as the uncertainty source.
-to

Specifies that the clock-to-clock uncertainty applies to both rising and falling edges of the destination clock
list. Only one of the -to, -rise_to , or -fall_to arguments can be specified for the constraint to be valid.
-rise_to

Specifies that the clock-to-clock uncertainty applies only to rising edges of the destination clock list. Only
one of the -to, -rise_to , or -fall_to arguments can be specified for the constraint to be valid.
-fall_to

Specifies that the clock-to-clock uncertainty applies only to falling edges of the destination clock list. Only
one of the -to, -rise_to , or -fall_to arguments can be specified for the constraint to be valid.
 to_clock_list

Specifies the list of clock names as the uncertainty destination.
-setup

338 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Specifies that the uncertainty applies only to setup checks. If none or both -setup and -hold are present,
the uncertainty applies to both setup and hold checks.
-hold

Specifies that the uncertainty applies only to hold checks. If none or both -setup and -hold are present,
the uncertainty applies to both setup and hold checks.

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

Description
The set_clock_uncertainty command sets the timing uncertainty between two clock waveforms or
maximum clock skew. Timing between clocks have no uncertainty unless you specify it.

Exceptions
None

Examples
set_clock_uncertainty 10 -from Clk1 -to Clk2

set_clock_uncertainty 0 -from Clk1 -fall_to { Clk2 Clk3 } -setup

set_clock_uncertainty 4.3 -fall_from { Clk1 Clk2 } -rise_to *

set_clock_uncertainty 0.1 -rise_from [get_clocks { Clk1 Clk2 }] -fall_to { Clk3 Clk4 }
-setup

set_clock_uncertainty 5 -rise_from Clk1 -to [get_clocks {*}]

See Also
create_clock

create_generated_clock

remove_clock_uncertainty

Designer Tcl Command Reference

set_current_scenario
Tcl command; specifies the timing scenario for the Timing Analyzer to use. All commands that follow this
command will apply to the specified timing scenario.

set_current_scenario name

Arguments
name

Specifies the name of the timing scenario to which to apply all commands from this point on.

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

Description
A timing scenario is a set of timing constraints used with a design. If the specified scenario is already the
current one, this command has no effect.
After setting the current scenario, constraints can be listed, added, or removed, the checker can be
invoked on the set of constraints, and so on.
This command uses the specified timing scenario to compute timing analysis.

set_defvar (Designer Only)

Libero User's Guide 339

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Exceptions
None

Example
set_current_scenario scenario_A

See Also
get_current_scenario

Tcl Command Documentation Conventions
Designer Tcl Command Reference

set_defvar (Designer Only)
Tcl command; the set_defvar command sets an internal variable in the Designer system. You must
specify at least one argument for this command.

set_defvar variable value

Arguments
Variable must be a valid Designer internal variable and could be accompanied by an optional value. If
the value is provided, the variable is set the value. If the value is null the variable is reset.

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
None.

Example
Example 1:
set_defvar “FORMAT” “VHDL”

Sets the FORMAT internal variable to VHDL.

Example 2:
set variableToSet "DESIGN"

set valueOfVariable “VHDL”

set_defvar $variableToSet $valueOfVariable

These commands set the FORMAT variable to VHDL, shows the use of variables for this command.

See Also
get_defvar

Designer Tcl Command Reference

set_design
Tcl command; this set_design command specifies the design name, family and path in which Designer will
process the design. This step is absolutely required before importing the source files.

set_design -name design_name -family family_name –pathpath_name

Note: Note: You need all three arguments for this command to set up your design.

340 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Arguments
-name design_name

The name of the design. This is used as the base name for most of the files generated from Designer.
-family family_name

The device family for which the design is being targeted.
-path path_name

The physical path of the directory in which the design files will be created.

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Example
Example 1: Sets up the design and checks if there are any errors
set_design -name "test" -family "Axcelerator" -path {.}

set desName “test

set famName “ACT3”

set path {d:/examples/test}

if { [catch { set_design -name $desName -family $famName -path $path }] {

 Puts “Failed setup design”

 # Handle Failure

} else {

 puts “Design setup successful”

 # Proceed to Import source files

}

See Also
new_design

set_device

Designer Tcl Command Reference

set_device
Tcl command; the set_device command specifies the type of device and its parameters. You must specify
at least one option for this command. Some of the options may not apply for certain families that do not
support the features.

set_device -family family_name -die die_name -package package_name -speed speed_grade -voltage
voltage -voltrange volt_range -temprange temp_range -iostd default_io_std -pci value -jtag value
-probe value -trst value -radexp value -vcci_1.2_voltrange value -vcci_1.2_widerange value -
vcci_1.5_voltrange value -vcci_1.8_voltrange value -vcci_2.5_voltrange value -
vcci_3.3_voltrange value -vcci_3.3_widerange value

Arguments
-family family_name

Specifies the name of the FPGA device family.
-die die_name

Specifies the part name.
-package package_name

Specifies the selected package for the device.
-speed speed_grade

set_device

Libero User's Guide 341

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Specifies the speed grade of the part.

-voltage voltage

Specifies the core voltage of the device. You can also use it to define the I/O voltage of the part. For
example, if you are using a RTSX with a 3.3 to 2.5 voltage, you can use
 -voltage 3.3/2.5
-voltrange volt_range

Specifies the voltage range to be applied for the device. It is generally MIL, COM and IND denoting
Military, Commercial and Industrial respectively.
Alternatively, you can also specify custom values for Best, Typical, and Worst: -voltrange "1.60 1.50
1.40"
-temprange temp_range

Specifies the temperature range to be applied for the device. Temperature ranges are MIL, COM and IND
denoting Military, Commercial and Industrial respectively. Automotive applications generally use the
Automotive, TGrade1, or TGrade2 temperature range.
-iostd default_io_std

Specifies the default I/O standard of the part.
-pci value

Used if the device needs to configure the I/Os for PCI specification. This parameter is equivalent to setting
your I/O attributes to PCI in the Project Settings. Values are summarized in the table below.

Value Description

yes Device is configured for PCI specification

no Device is not configured for PCI specification

-jtag value

Specifies if pins need to be reserved for JTAG. Values are summarized in the table below.

Value Description

yes Pins are reserved for JTAG

no Pins are not reserved for JTAG

-probe value

Specifies if the pins need to be preserved for probing. Values are summarized in the table below.

Value Description

yes Pins are preserved for probing

no Pins not preserved for probing

-trst value

Specifies if the pins need to be reserved for JTAG test reset. Values are summarized in the table below.

Value Description

yes Pins are preserved for JTAG test reset

no Pins are not preserved for JTAG test reset

342 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

-radexp value

Specifies the radiation value (in Krad) for radiation tolerant devices.
-vcci_1.2_voltrange value -vcci_1.5_voltrangevalue -vcci_1.8_voltrangevalue -
vcci_2.5_voltrangevalue-vcci_3.3_voltrangevalue

Specifies the voltage range for VCCIx.x. Values are summarized in the table below.

Value Description

MIL Sets the voltage range for VCCIx.x to Military

COM Sets the voltage range for VCCIx.x to Commercial

IND Sets the voltage range for VCCIx.x to Industrial

Alternatively, you can also specify custom values for Best, Typical, and Worst: -vcci_x.x_voltrange
"1.26 1.20 1.14"
-vcci_1.2_widerange value

Specifies the voltage range for VCCI1.2 as wide range. Values are summarized in the table below.

Value Description

yes Specifies the voltage range for VCCI1.2 as wide range and sets the
def variable IS_VCCI_1.2_WR as "1"

no Does not specify the voltage range for VCCI1.2 as wide range

-vcci_3.3_widerange value

Specifies the voltage range for VCCI3.3 as wide range. Values are summarized in the table below.

Value Description

yes Specifies the voltage range for VCCI3.3 as wide range and sets the
def variable IS_VCCI_3.3_WR as "1"

no Does not specify the voltage range for VCCI3.3 as wide range

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Example
Example 1: Setting up a design.
set_device -die "APA075" -package "208 PQFP" -speed "STD" -voltage "2.5" \

-jtag "yes" -trst "yes" -temprange "COM" -voltrange "COM"\

-vcci_1.2_voltrange "COM" -vcci_1.2_widerange "no" -vcci_1.5_voltrange "1.60 1.50 1.40"

See Also
new_design

set_design

Designer Tcl Command Reference

set_disable_timing

Libero User's Guide 343

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

set_disable_timing
Tcl command; disables timing arcs within a cell and returns the ID of the created constraint if the
command succeeded.

set_disable_timing -from value -to value name

Arguments
-from from_port

Specifies the starting port. The –from and –to arguments must either both be present or both omitted for
the constraint to be valid.
-to to_port

Specifies the ending port. The –from and –to arguments must either both be present or both omitted for
the constraint to be valid.
name

Specifies the cell name where the timing arcs will be disabled.

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

Exceptions
None

Example
set_disable_timing -from A -to Y a2

See Also
Tcl documentation conventions
Designer Tcl Command Reference

set_false_path
Tcl command; identifies paths that are considered false and excluded from the timing analysis in the
current timing scenario.

set_false_path [-from from_list] [-through through_list] [-to to_list]

Arguments
-from from_list

Specifies a list of timing path starting points. A valid timing starting point is a clock, a primary input, an
inout port, or a clock pin of a sequential cell.
-through through_list

Specifies a list of pins, ports, cells, or nets through which the disabled paths must pass.
-to to_list

Specifies a list of timing path ending points. A valid timing ending point is a clock, a primary output, an
inout port, or a data pin of a sequential cell.

Supported Families
IGLOO, ProASIC3, SmartFusion, Fusion

344 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Description
The set_false_path command identifies specific timing paths as being false. The false timing paths are
paths that do not propagate logic level changes. This constraint removes timing requirements on these
false paths so that they are not considered during the timing analysis. The path starting points are the
input ports or register clock pins, and the path ending points are the register data pins or output ports.
This constraint disables setup and hold checking for the specified paths.
The false path information always takes precedence over multiple cycle path information and overrides
maximum delay constraints. If more than one object is specified within one -through option, the path can
pass through any objects.
You must specify at least one of the –from, -to, or –through arguments for this constraint to be valid.

Examples
The following example specifies all paths from clock pins of the registers in clock domain clk1 to data pins
of a specific register in clock domain clk2 as false paths:
set_false_path –from [get_clocks {clk1}] –to reg_2:D

The following example specifies all paths through the pin U0/U1:Y to be false:
set_false_path -through U0/U1:Y

See Also
Tcl Command Documentation Conventions
Designer Tcl Command Reference

set_input_delay
Tcl command; creates an input delay on a port list by defining the arrival time of an input relative to a
clock in the current scenario.

set_input_delay delay_value -clock clock_ref [–max] [–min] [–clock_fall] input_list

Arguments
delay_value

Specifies the arrival time in nanoseconds that represents the amount of time for which the signal is
available at the specified input after a clock edge.
-clock clock_ref

Specifies the clock reference to which the specified input delay is related. This is a mandatory argument.
If you do not specify -max or -min options, the tool assumes the maximum and minimum input delays to
be equal.
-max

Specifies that delay_value refers to the longest path arriving at the specified input. If you do not specify -
max or -min options, the tool assumes maximum and minimum input delays to be equal.
-min

Specifies that delay_value refers to the shortest path arriving at the specified input. If you do not specify -
max or -min options, the tool assumes maximum and minimum input delays to be equal.
-clock_fall

Specifies that the delay is relative to the falling edge of the clock reference. The default is the rising edge.
input_list

Provides a list of input ports in the current design to which delay_value is assigned. If you need to specify
more than one object, enclose the objects in braces ({}).

set_max_delay

Libero User's Guide 345

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion and IGLOOe, except ProASIC3 nano and
ProASIC3L

Description
The set_input_delay command sets input path delays on input ports relative to a clock edge. This usually
represents a combinational path delay from the clock pin of a register external to the current design. For
in/out (bidirectional) ports, you can specify the path delays for both input and output modes. The tool adds
input delay to path delay for paths starting at primary inputs.
A clock is a singleton that represents the name of a defined clock constraint. This can be:
• a single port name used as source for a clock constraint
• a single pin name used as source for a clock constraint; for instance reg1:CLK. This name can be

hierarchical (for instance toplevel/block1/reg2:CLK)
• an object accessor that will refer to one clock: [get_clocks {clk}]

Examples
The following example sets an input delay of 1.2ns for port data1 relative to the rising edge of CLK1:
set_input_delay 1.2 -clock [get_clocks CLK1] [get_ports data1]

The following example sets a different maximum and minimum input delay for port IN1 relative to the
falling edge of CLK2:
set_input_delay 1.0 -clock_fall -clock CLK2 –min {IN1}

set_input_delay 1.4 -clock_fall -clock CLK2 –max {IN1}

See Also
set_output_delay

Tcl Command Documentation Conventions
Designer Tcl Command Reference

set_max_delay
Tcl command; specifies the maximum delay for the timing paths in the current scenario.

set_max_delay delay_value [-from from_list] [-to to_list] [-through through_list]

Arguments
delay_value

Specifies a floating point number in nanoseconds that represents the required maximum delay value for
specified paths.

• If the path starting point is on a sequential device, the tool includes clock skew in the
computed delay.

• If the path starting point has an input delay specified, the tool adds that delay value to
the path delay.

• If the path ending point is on a sequential device, the tool includes clock skew and
library setup time in the computed delay.

• If the ending point has an output delay specified, the tool adds that delay to the path
delay.

-from from_list

346 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Specifies a list of timing path starting points. A valid timing starting point is a clock, a primary input, an
inout port, or a clock pin of a sequential cell.
-to to_list

Specifies a list of timing path ending points. A valid timing ending point is a clock, a primary output, an
inout port, or a data pin of a sequential cell.
-through through_list

Specifies a list of pins, ports, cells, or nets through which the timing paths must pass.

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

Description
This command specifies the required maximum delay for timing paths in the current design. The path
length for any startpoint in from_list to any endpoint in to_list must be less than delay_value.
The timing engine automatically derives the individual maximum delay targets from clock waveforms and
port input or output delays.
The maximum delay constraint is a timing exception. This constraint overrides the default single cycle
timing relationship for one or more timing paths. This constraint also overrides a multicycle path
constraint.
You must specify at least one of the –from, -to, or –through arguments for this constraint to be valid.

Examples
The following example sets a maximum delay by constraining all paths from ff1a:CLK or ff1b:CLK to
ff2e:D with a delay less than 5 ns:
set_max_delay 5 -from {ff1a:CLK ff1b:CLK} -to {ff2e:D}

The following example sets a maximum delay by constraining all paths to output ports whose names start
by “out” with a delay less than 3.8 ns:
set_max_delay 3.8 -to [get_ports out*]

See Also
set_min_delay

remove_max_delay

Tcl Command Documentation Conventions
Designer Tcl Command Reference

set_min_delay
Tcl command; specifies the minimum delay for the timing paths in the current scenario.

set_min_delay delay_value [-from from_list] [-to to_list] [-through through_list]

Arguments
delay_value

Specifies a floating point number in nanoseconds that represents the required minimum delay value for
specified paths.

• If the path starting point is on a sequential device, the tool includes clock skew in the
computed delay.

• If the path starting point has an input delay specified, the tool adds that delay value to
the path delay.

set_multicycle_path

Libero User's Guide 347

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

• If the path ending point is on a sequential device, the tool includes clock skew and
library setup time in the computed delay.

• If the ending point has an output delay specified, the tool adds that delay to the path
delay.

-from from_list

Specifies a list of timing path starting points. A valid timing starting point is a clock, a primary input, an
inout port, or a clock pin of a sequential cell.
-to to_list

Specifies a list of timing path ending points. A valid timing ending point is a clock, a primary output, an
inout port, or a data pin of a sequential cell.
-through through_list
Specifies a list of pins, ports, cells, or nets through which the timing paths must pass.

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

Description
This command specifies the required minimum delay for timing paths in the current design. The path
length for any startpoint in from_list to any endpoint in to_list must be less than delay_value.
The timing engine automatically derives the individual minimum delay targets from clock waveforms and
port input or output delays.
The minimum delay constraint is a timing exception. This constraint overrides the default single cycle
timing relationship for one or more timing paths. This constraint also overrides a multicycle path
constraint.
You must specify at least one of the –from, -to, or –through arguments for this constraint to be valid.

Examples
The following example sets a minimum delay by constraining all paths from ff1a:CLK or ff1b:CLK to ff2e:D
with a delay less than 5 ns:
set_min_delay 5 -from {ff1a:CLK ff1b:CLK} -to {ff2e:D}

The following example sets a minimum delay by constraining all paths to output ports whose names start
by “out” with a delay less than 3.8 ns:
set_min_delay 3.8 -to [get_ports out*]

See Also
set_max_delay

remove_min_delay

Tcl Command Documentation Conventions
Designer Tcl Command Reference

set_multicycle_path
Tcl command; defines a path that takes multiple clock cycles in the current scenario.

set_multicycle_path ncycles [-setup] [-hold] [-from from_list[–through through_list[-to
to_list

Arguments
ncycles

348 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Specifies an integer value that represents a number of cycles the data path must have for setup or hold
check. The value is relative to the starting point or ending point clock, before data is required at the ending
point.
-setup

Optional. Applies the cycle value for the setup check only. This option does not affect the hold check. The
default hold check will be applied unless you have specified another set_multicycle_path command for the
hold value.
-hold

Optional. Applies the cycle value for the hold check only. This option does not affect the setup check.
Note: Note: If you do not specify "-setup" or "-hold", the cycle value is applied to the setup check and the

default hold check is performed (ncycles -1).
-from from_list

Specifies a list of timing path starting points. A valid timing starting point is a clock, a primary input, an
inout port, or a clock pin of a sequential cell.
-through through_list

Specifies a list of pins or ports through which the multiple cycle paths must pass.
-to to_list

Specifies a list of timing path ending points. A valid timing ending point is a clock, a primary output, an
inout port, or a data pin of a sequential cell.

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

Description
Setting multiple cycle paths constraint overrides the single cycle timing relationships between sequential
elements by specifying the number of cycles that the data path must have for setup or hold checks. If you
change the multiplier, it affects both the setup and hold checks.
False path information always takes precedence over multiple cycle path information. A specific maximum
delay constraint overrides a general multiple cycle path constraint.
If you specify more than one object within one -through option, the path passes through any of the
objects.
You must specify at least one of the –from, -to, or –through arguments for this constraint to be valid.

Exceptions
• Multiple priority management is not supported in Microsemi SoC designs. All multiple cycle path

constraints are handled with the same priority.

Examples
The following example sets all paths between reg1 and reg2 to 3 cycles for setup check. Hold check is
measured at the previous edge of the clock at reg2.
set_multicycle_path 3 -from [get_pins {reg1}] –to [get_pins {reg2}]

The following example specifies that four cycles are needed for setup check on all paths starting at the
registers in the clock domain ck1. Hold check is further specified with two cycles instead of the three
cycles that would have been applied otherwise.
set_multicycle_path 4 -setup -from [get_clocks {ck1}]

set_multicycle_path 2 -hold -from [get_clocks {ck1}]

See Also
remove_multicycle_path

Tcl Command Documentation Conventions
Designer Tcl Command Reference

set_output_delay

Libero User's Guide 349

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

set_output_delay
Tcl command; defines the output delay of an output relative to a clock in the current scenario.

set_output_delay delay_value -clock clock_ref [–max] [–min] [–clock_fall] output_list

Arguments
delay_value

Specifies the amount of time before a clock edge for which the signal is required. This represents a
combinational path delay to a register outside the current design plus the library setup time (for maximum
output delay) or hold time (for minimum output delay).
-clock clock_ref

Specifies the clock reference to which the specified output delay is related. This is a mandatory argument.
If you do not specify -max or -min options, the tool assumes the maximum and minimum input delays to
be equal.
-max

Specifies that delay_value refers to the longest path from the specified output. If you do not specify -max
or -min options, the tool assumes the maximum and minimum output delays to be equal.
-min

Specifies that delay_value refers to the shortest path from the specified output. If you do not specify -max
or -min options, the tool assumes the maximum and minimum output delays to be equal.
-clock_fall

Specifies that the delay is relative to the falling edge of the clock reference. The default is the rising edge.
output_list

Provides a list of output ports in the current design to which delay_value is assigned. If you need to
specify more than one object, enclose the objects in braces ({}).

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

Description
The set_output_delay command sets output path delays on output ports relative to a clock edge. Output
ports have no output delay unless you specify it. For in/out (bidirectional) ports, you can specify the path
delays for both input and output modes. The tool adds output delay to path delay for paths ending at
primary outputs.

Examples
The following example sets an output delay of 1.2ns for port OUT1 relative to the rising edge of CLK1:
set_output_delay 1.2 -clock [get_clocks CLK1] [get_ports OUT1]

The following example sets a different maximum and minimum output delay for port OUT1 relative to the
falling edge of CLK2:
set_output_delay 1.0 -clock_fall -clock CLK2 –min {OUT1}

set_output_delay 1.4 -clock_fall -clock CLK2 –max {OUT1}

See Also
remove_output_delay

set_input_delay

Tcl Command Documentation Conventions
Designer Tcl Command Reference

350 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

smartpower_add_new_custom_mode
Tcl command; creates a new custom mode.

smartpower_add_new_custom_mode -name {mode_name} -base_mode {base_mode} -description
{mode_description}

Arguments
-name {mode_name}

Specifies the name of the new custom mode.
-base_mode {base_mode}

Specifies the name of the base mode used to create the new custom mode.
-description {mode_description}

Specifies the description of the new custom mode.

Supported Families
IGLOO, ProASIC3, SmartFusion, Fusion

Exceptions
None

Examples
This example creates a new custom mode "Cust_1" based on the Active mode:
smartpower_add_new_custom_mode -name {Cust_1} -base_mode {Active} -description
{frequency 10 MHz}

See Also
smartpower_remove_custom_mode

Designer Tcl Command Reference

smartpower_add_new_scenario
Tcl command; creates a new scenario.

smartpower_add_new_scenario -name {value} -description {value} -mode {value}

Arguments
-name {value}

Specifies the name of the new scenario.
-description {value}

Specifies the description of the new scenario.
-mode {<operating mode>:<duration>}+

Specifies the mode(s) and duration(s) for the specified scenario.

Supported Families
IGLOO, ProASIC3, SmartFusion, Fusion

Exceptions
None

smartpower_add_pin_in_domain

Libero User's Guide 351

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Examples
This example creates a new scenario called myscenario:
smartpower_add_new_scenario -name myscenario -description mynewscenario -mode active:30
+ shutdown:30 + active:40

See Also
Tcl documentation conventions
Designer Tcl Command Reference

smartpower_add_pin_in_domain
Tcl command; adds a pin into a clock or set domain.

smartpower_add_pin_in_domain -pin_name {pin_name} -pin_type {value} –domain_name
{domain_name} -domain_type {value}

Arguments
-pin_name {pin_name}

Specifies the name of the pin to add to the domain.
-pin_type {value}

Specifies the type of the pin to add. The following table shows the acceptable values for this argument:

Value Description

clock The pin to add is a clock pin

data The pin to add is a data pin

-domain_name {domain_name}

Specifies the name of the domain in which to add the specified pin.
-domain_type {value}

Specifies the type of domain in which to add the specified pin. The following table shows the acceptable
values for this argument:

Value Description

clock The domain is a clock domain

set The domain is a set domain

Supported Families
IGLOO, ProASIC3, SmartFusion, Fusion

Notes
• The domain_name must be a name of an existing domain.
• The pin_name must be a name of a pin that exists in the design.

Exceptions
None

352 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Examples
The following example adds a clock pin to an existing Clock domain:
smartpower_add_pin_in_domain -pin_name { XCMP3/U0/U1:Y } -pin_type {clock} –domain_name
{clk1} -domain_type {clock}

The following example adds a data pin to an existing Set domain:
smartpower_add_pin_in_domain -pin_name {XCMP3/U0/U1:Y} -pin_type {data} -domain_name
{myset} -domain_type {set}

See Also
Tcl documentation conventions
Designer Tcl Command Reference
smartpower_remove_pin_of_domain

smartpower_change_clock_statistics
Tcl command; changes the default frequencies and probabilities for a specific domain.

smartpower_change_clock_statistics -domain_name {value} -clocks_freq {value} -
clocks_proba {value} -registers_freq {value} -registers_proba {value} -set_reset_freq
{value} -set_reset_proba {value} -primaryinputs_freq {value} -primaryinputs_proba {value} -
combinational_freq {value} -combinational_proba {value}

Arguments
-domain_name{value}

Specifies the domain name in which to initialize frequencies and probabilities.
-clocks_freq {value}

Specifies the user input frequency in Hz, KHz, or MHz for all clocks.
-clocks_proba {value}

Specifies the user input probability in % for all clocks.
-registers_freq {value}

Specifies the user input frequency (in Hz, KHz, or MHz) or the toggle rate (in %). If the unit is not provided
and toggle rate is active, the value is handled as a toggle rate; if toggle rate is not active, the value is
handled as a frequency.
-registers_proba {value}

Specifies the user input probability in % for all registers.
-set_reset_freq {value}

Specifies the user input frequency (in Hz, KHz, or MHz) or the toggle rate (in %). If the unit is not provided
and toggle rate is active, the value is handled as a toggle rate; if toggle rate is not active, the value is
handled as a frequency.
-set_reset_proba {value}

Specifies the user input probability in % for all set/reset nets.
-primaryinputs_freq {value}

Specifies the user input frequency (in Hz, KHz, or MHz) or the toggle rate (in %). If the unit is not provided
and toggle rate is active, the value is handled as a toggle rate; if toggle rate is not active, the value is
handled as a frequency.
-primaryinputs_proba {value}

Specifies the user input probability in % for all primary inputs.
-combinational_freq {value}

Specifies the user input frequency (in Hz, KHz, or MHz) or the toggle rate (in %). If the unit is not provided
and toggle rate is active, the value is handled as a toggle rate; if toggle rate is not active, the value is
handled as a frequency.
-combinational_proba {value}

smartpower_change_setofpin_statistics

Libero User's Guide 353

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Specifies the user input probability in % for all combinational combinational output.

Supported Families
IGLOO, ProASIC3, SmartFusion, Fusion

Notes
This command is associated with the functionality of Initialize frequencies and probabilities dialog box.

Exceptions
None

Examples
The following example initializes all clocks withs:
smartpower_change_clock_statistics -domain_name {my_domain} -clocks_freq {10 MHz} -
clocks_proba {20} -registers_freq {10 MHz} -registers_proba {20} -set_reset_freq {10
MHz} -set_reset_proba {20} -primaryinputs_freq {10 MHz} -primaryinputs_proba {20} -
combinational_freq {10 MHz} -combinational_proba {20}

See Also
Tcl documentation conventions
Designer Tcl Command Reference

smartpower_change_setofpin_statistics
Tcl command; changes the default frequencies and probabilities for a specific set.

smartpower_change_setofpin_statistics -domain_name {value} -data_freq {value} -
data_proba {value}

Arguments
-domain_name{value}

Specifies the domain name in which to initialize data frequencies and probabilities.
-data_freq {value}

Specifies the user input data frequency in Hz, KHz, or MHz for all sets of pins.
-data_proba {value}

Specifies the user input data probability in % for all sets of pins.

Supported Families
IGLOO, ProASIC3, SmartFusion, Fusion

Notes
This command is associated with the functionality of Initialize frequencies and probabilities dialog box.

Exceptions
None

Examples
The following example initializes all clocks withs:

354 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

smartpower_change_setofpin_statistics -domain_name {my_domain} -data_freq {10 MHz} -
data_proba {20}

See Also
Tcl documentation conventions
Designer Tcl Command Reference

smartpower_commit
Tcl command; saves the changes to the design (.adb) file.

smartpower_commit

Arguments
None

Supported Families
IGLOO, ProASIC3, SmartFusion, Fusion

Exceptions
None

Examples
smartpower_commit

See Also
Tcl documentation conventions
Designer Tcl Command Reference
smartpower_restore

smartpower_create_domain
Tcl command; creates a new clock or set domain.

smartpower_create_domain -domain_type {value} -domain_name {domain_name}

Arguments
-domain_type {value}

Specifies the type of domain to create. The following table shows the acceptable values for this argument:

Value Description

clock The domain is a clock domain

set The domain is a set domain

-domain_name {domain_name}

Specifies the name of the new domain.

Supported Families
IGLOO, ProASIC3, SmartFusion, Fusion

smartpower_edit_custom_mode

Libero User's Guide 355

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Notes
The domain name cannot be the name of an existing domain.
The domain type must be either clock or set.

Exceptions
None

Examples
The following example creates a new clock domain named "clk2":
smartpower_create_domain -domain_type {clock} -domain_name {clk2}

The following example creates a new set domain named "myset":
smartpower_create_domain -domain_type {set} -domain_name {myset}

See Also
Tcl documentation conventions
Designer Tcl Command Reference
smartpower_remove_domain

smartpower_edit_custom_mode
Tcl command; edits a custom mode.

smartpower_edit_custom_mode -name {old_mode_name} new_name {new_mode_name} -description
{mode_description}

Arguments
-name {old_mode_name}

Specifies the name of the custom mode you want to edit.
-new_name {new_mode_name}

Specifies the new name of the custom mode.
-description {mode_description}

Specifies the description of the new custom mode.

Supported Families
IGLOO, ProASIC3, SmartFusion, Fusion

Exceptions
None

Examples
This example edits custom mode "Cust_1" and renames it "Cust_2":
smartpower_edit_custom_mode -name {Cust_1} -new_name {Cust_2} -description {frequency 10
MHz}

See Also
Tcl documentation conventions
Designer Tcl Command Reference
smartpower_remove_custom_mode

smartpower_add_custom_mode

356 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

smartpower_edit_scenario
Tcl command; edits a scenario.

smartpower_edit_scenario -name {value} -description {value} -mode {value} -new_name {value}

Arguments
-name {value}

Specifies the name of the scenario.
-description {value}

Specifies the description of the scenario.
-mode {<operating mode>:<duration>}

Specifies the mode(s) and duration(s) for the specified scenario.
 -new_name {value}

Specifies the new name for the scenario

Supported Families
IGLOO, ProASIC3, SmartFusion, Fusion

Exceptions
None

Examples
This example edits the name of myscenario to finalscenario:
smartpower_edit_scenario -name myscenario -new_name finalscenario

See Also
Tcl documentation conventions
Designer Tcl Command Reference

smartpower_init_do
Tcl command; initializes the frequencies and probabilities for clocks, registers, set/reset nets, primary
inputs, combinational outputs, enables and other sets of pins, and selects a mode for initialization.

smartpower_init_do -with {value} -opmode {value} -clocks {value} -registers {value} -
set_reset {value} -primaryinputs {value} -combinational {value} -enables {value} -othersets
{value}

Arguments
-with{value}

This sets the option of initializing frequencies and probabilities with vectorless analysis or with fixed
values. The following table shows the acceptable values for this argument:

Value Description

vectorless Initializes frequencies and probabilities with vectorless analysis

fixed Initializes frequencies and probabilities with fixed values

-opmode {value}

smartpower_init_do

Libero User's Guide 357

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Specifies the mode in which to initialize frequencies and probabilities. The mode needs to be based on an
Active mode.
-clocks {value}

This sets the option of initializing frequencies and probabilities for all clocks. The following table shows the
acceptable values for this argument:

Value Description

true Initializes frequencies and probabilities for all clocks

false Does not initialize frequencies and probabilities for all clocks

-registers {value}

This sets the option of initializing frequencies and probabilities for all registers. The following table shows
the acceptable values for this argument:

Value Description

true Initializes frequencies and probabilities for all registers

false Does not initialize frequencies and probabilities for all registers

-set_reset {value}

This sets the option of initializing frequencies and probabilities for all set/reset nets. The following table
shows the acceptable values for this argument:

Value Description

true Initializes frequencies and probabilities for all set/reset nets

false Does not initialize frequencies and probabilities for all set/reset nets

-primaryinputs{value}

This sets the option of initializing frequencies and probabilities for all primary inputs. The following table
shows the acceptable values for this argument:

Value Description

true Initializes frequencies and probabilities for all primary inputs

false Does not initialize frequencies and probabilities for all primary inputs

-combinational {value}

This sets the option of initializing frequencies and probabilities for all combinational outputs. The following
table shows the acceptable values for this argument:

Value Description

true Initializes frequencies and probabilities for all combinational outputs

false Does not initialize frequencies and probabilities for all combinational
outputs

-enables {value}

358 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

This sets the option of initializing frequencies and probabilities for all enable sets of pins. The following
table shows the acceptable values for this argument:

Value Description

true Initializes frequencies and probabilities for all enable sets of pins

false Does not initialize frequencies and probabilities for all enable sets of
pins

-othersets {value}

This sets the option of initializing frequencies and probabilities for all other sets of pins. The following table
shows the acceptable values for this argument:

Value Description

true Initializes frequencies and probabilities for all other sets of pins

false Does not initialize frequencies and probabilities for all other sets of
pins

Supported Families
IGLOO, ProASIC3, SmartFusion, Fusion

Notes
This command is associated with the functionality of Initialize frequencies and probabilities dialog box.

Exceptions
None

Examples
The following example initializes all clocks with:
smartpower_init_do -with {vectorless} -opmode {my_mode} -clocks {true} -registers {true}
-asynchronous {true} -primaryinputs {true} -combinational {true} -enables {true} -
othersets {true}

See Also
Tcl documentation conventions
Designer Tcl Command Reference

smartpower_init_set_clocks_options
Tcl command; initializes the clock frequency options of all clock domains.

smartpower_init_set_clocks_options -with_clock_constraints {value} -
with_default_values {value} -freq {value} -duty_cycle {value}

Arguments
-with_clock_constraints {value}

This sets the option of initializing the clock frequencies with frequency constraints from SmartTime. The
following table shows the acceptable values for this argument:

smartpower_init_set_combinational_options

Libero User's Guide 359

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Value Description

true Sets initialize clock frequencies with clock constraints ON

false Sets initialize clock frequencies with clock constraints OFF

-with_default_values {value}

This sets the option of initializing the clock frequencies with a user input default value. The following table
shows the acceptable values for this argument:

Value Description

true Sets initialize clock frequencies with default values ON

false Sets initialize clock frequencies with default values OFF

-freq {value}

Specifies the user input frequency in Hz, KHz, or MHz.
-duty_cycle {value}

Specifies the user input duty cycles in %.

Supported Families
IGLOO, ProASIC3, SmartFusion, Fusion

Notes
This command is associated with the functionality of Initialize frequencies and probabilities dialog box.

Exceptions
None

Examples
The following example initializes all clocks after executing smartpower_init_do with -clocks {true}:
smartpower_init_set_clocks_options -with_clock_constraints {true} -with_default_values
{true} -freq {10 MHz} -duty_cycle {20}

See Also
Tcl documentation conventions
Designer Tcl Command Reference

smartpower_init_set_combinational_options
Tcl commands; initializes the frequency and probability of all combinational outputs.

smartpower_init_set_combinational_options -freq {value} -proba {value}

Arguments
-freq {value}

Specifies the user input frequency (in Hz, KHz, or MHz) or the toggle rate (in %). If the unit is not provided
and toggle rate is active, the value is handled as a toggle rate; if toggle rate is not active, the value is
handled as a frequency.

360 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

-proba {value}

Specifies the user input probability in %.

Supported Families
IGLOO, ProASIC3, SmartFusion, Fusion

Notes
This command is associated with the functionality of Initialize frequencies and probabilities dialog box.

Exceptions
None

Examples
The following example initializes all combinational signals after executing smartpower_init_do with -
combinational {true}:
smartpower_init_set_combinational_options -freq {10 MHz} -proba {20}

See Also
Tcl documentation conventions
Designer Tcl Command Reference

smartpower_init_setofpins_values
Tcl command; initializes the frequency and probability of all sets of pins.

smartpower_init_setofpins_values -domain_name {name} -freq {value} -proba {value}

Arguments
-domain_name{name}

Specifies the set of pins that will be initialized. The following table shows the acceptable values for this
argument:

Value Description

IOsEnableSet Specifies that the IOsEnableSet set of pins will be
initialized

MemoriesEnableSet Specifies that the MemoriesEnableSet set of pins will
be initialized

-freq {value}

Specifies the user input frequency in Hz, MHz, or KHz.
-proba {value}

Specifies the user input probability in %.

Supported Families
IGLOO, ProASIC3, SmartFusion, Fusion

Notes
This command is associated with the functionality of Initialize frequencies and probabilities dialog box.

smartpower_init_set_enables_options

Libero User's Guide 361

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Exceptions
None

Examples
The following example initializes all primary inputs after executing smartpower_init_do with -
othersets {true}:
smartpower_init_setofpins_values -domain_name {IOsEnableSet} -freq {10 MHz} -proba {20}

See Also
Tcl documentation conventions
Designer Tcl Command Reference

smartpower_init_set_enables_options
Tcl command; initializes the clock frequency of all enable clocks with the initialization options.

smartpower_init_set_enables_options -freq {value} -proba {value}

Arguments
-freq {value}

Specifies the user input frequency (in Hz, KHz, or MHz).
-proba {value}

Specifies the user input probability in %.

Supported Families
IGLOO, ProASIC3, SmartFusion, Fusion

Notes
This command is associated with the functionality of Initialize frequencies and probabilities dialog box.

Exceptions
None

Examples
The following example initializes all clocks after executing smartpower_init_do with -enables {true}:
smartpower_init_set_enables_options -freq {10 MHz} -proba {20}

See Also
Tcl documentation conventions
Designer Tcl Command Reference

smartpower_init_set_othersets_options
Tcl command; initializes the frequency and probability of all other sets.

smartpower_init_set_othersets_options [-freq "decimal value [unit { Hz | KHz | MHz }]"]
[-proba "decimal value"]
[-with "vectorless | default"]
[-input_freq "decimal value [unit { Hz | KHz | MHz }]"]
[-input_proba "decimal value"]

362 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Arguments
-freq "decimal value [unit {Hz | KHz| MHz}"

Specifies the default frequency and units.
-proba {decimal value}

Specifies the default probability.
-with "vectorless | default"

Specifies vectorless or default analysis.
-input_freq "decimal value [unit {Hz | KHz| MHz}"

Specifies the input frequency and units.
-input_proba {decimal value}

Specifies the input probability.

Supported Families
IGLOO, ProASIC3, SmartFusion, Fusion

Notes
This command is associated with the functionality of Initialize Frequencies and Probabilities dialog box.

Exceptions
None

Examples
The following example initializes all other sets after executing smartpower_init_do with -othersets
{true}:
smartpower_init_set_othersets_options -freq {10 MHz} -proba {20} [-with default]

See Also
Tcl documentation conventions
Designer Tcl Command Reference

smartpower_init_set_primaryinputs_options
Tcl command; initializes the frequency and probability of all primary inputs.

smartpower_init_set_primaryinputs_options -freq {value} -proba {value}

Arguments
-freq {value}

Specifies the user input frequency (in Hz, KHz, or MHz) or the toggle rate (in %). If the unit is not provided
and toggle rate is active, the value is handled as a toggle rate; if toggle rate is not active, the value is
handled as a frequency.
-proba {value}

Specifies the user input probability in %.

Supported Families
IGLOO, ProASIC3, SmartFusion, Fusion

smartpower_init_set_registers_options

Libero User's Guide 363

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Notes
This command is associated with the functionality of Initialize frequencies and probabilities dialog box.

Exceptions
None

Examples
The following example initializes all primary inputs after executing smartpower_init_do with -
primaryinputs {true}:
smartpower_init_set_primaryinputs_options -freq {10 MHz} -proba {20}

See Also
Tcl documentation conventions
Designer Tcl Command Reference

smartpower_init_set_registers_options
Tcl command; initializes the frequency and probability of all register outputs.

smartpower_init_set_registers_options -freq {value} -proba {value}

Arguments
-freq {value}

Specifies the user input frequency (in Hz, KHz, or MHz) or the toggle rate (in %). If the unit is not provided
and toggle rate is active, the value is handled as a toggle rate; if toggle rate is not active, the value is
handled as a frequency.
-proba {value}

Specifies the user input probability in %.

Supported Families
IGLOO, ProASIC3, SmartFusion, Fusion

Notes
This command is associated with the functionality of Initialize frequencies and probabilities dialog box.

Exceptions
None

Examples
The following example initializes all register outputs after executing smartpower_init_do with -
registers {true}:
smartpower_init_set_registers_options -freq {10 MHz} -proba {20}

See Also
Tcl documentation conventions
Designer Tcl Command Reference

364 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

smartpower_init_set_set_reset_options
Tcl command; initializes the frequency and probability of all set and reset nets.

smartpower_init_set_set_reset_options -freq {value} -proba {value}

Arguments
-freq {value}

Specifies the user input frequency (in Hz, KHz, or MHz) or the toggle rate (in %). If the unit is not provided
and toggle rate is active, the value is handled as a toggle rate; if toggle rate is not active, the value is
handled as a frequency.
-proba {value}

Specifies the user input probability in %.

Supported Families
IGLOO, ProASIC3, SmartFusion, Fusion

Notes
This command is associated with the functionality of Initialize frequencies and probabilities dialog box.

Exceptions
None

Examples
The following example initializes all set/reset nets after executing smartpower_init_do with -set_reset
{true}:
smartpower_init_set_set_reset_options -freq {10 MHz} -proba {20}

See Also
Tcl documentation conventions
Designer Tcl Command Reference

smartpower_remove_all_annotations
Tcl command; removes all initialization annotations for the specified mode.

smartpower_remove_all_annotations -opmode {value}

Arguments
-opmode {value}

Removes all initialization annotations for the specified mode.

Supported Families
IGLOO, ProASIC3, SmartFusion, Fusion

Notes
This command is associated with the functionality of Initialize frequencies and probabilities dialog box.

smartpower_remove_custom_mode

Libero User's Guide 365

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Exceptions
None

Examples
The following example initializes all clocks withs:
smartpower_remove_all_annotations -opmode {my_mode}

See Also
Tcl documentation conventions
Designer Tcl Command Reference

smartpower_remove_custom_mode
Tcl command; removes a custom mode.

smartpower_remove_custom_mode -name {deleted_mode_name}

Arguments
-name {deleted_mode_name}

Specifies the name of the custom mode you want to delete.

Supported Families
IGLOO, ProASIC3, SmartFusion, Fusion

Exceptions
None

Examples
This example delets custom mode "Cust_1":
smartpower_delete_custom_mode -name {Cust_1}

See Also
Tcl documentation conventions
Designer Tcl Command Reference
sp_add_custom_mode

sp_edit_custom_mode

smartpower_remove_domain
Tcl command; removes an existing clock or set domain.

smartpower_remove_domain -domain_type {value} -domain_name {domain_name}

Arguments
-domain_type {value}

 This specifies the type of domain to remove.The following table shows the acceptable values for this
argument:

Value Description

366 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Value Description

clock The domain is a clock domain

set The domain is a set domain

-domain_name {domain_name}

This specifies the name of the domain to remove

Supported Families
IGLOO, ProASIC3, SmartFusion, Fusion

Notes
The domain name must be the name of an existing domain.
The domain type must be either clock or set.

Exceptions
None

Examples
The following example removes the clock domain named "clk2":
smartpower_remove_domain -domain_type {clock} -domain_name {clk2}

The following example removes the set domain named "myset":
smartpower_remove_domain -domain_type {set} -domain_name {myset}

See Also
Tcl documentation conventions
Designer Tcl Command Reference
smartpower_create_domain

smartpower_remove_pin_enable_rate
This command was obsoleted in SmartPower v8.5. Update your script to use
smartpower_remove_pin_probability to remove the pin probability.

Note: Note: The information below is obsolete and should only be used as reference when executing
previously-created scripts. Update your scripts to use smartpower_remove_pin_probability.

Removes the probability value associated with a specific pin. This pin will have a default probability based
on the domain set it belongs to.

smartpower_remove_pin_enable_rate –pin_name {pin_name}

Arguments
-pin_name {pin_name}

Specifies the name of the pin with the probability to remove. This pin must be the direct driver of an
enable pin.

Supported Families
IGLOO, ProASIC3, SmartFusion, Fusion

smartpower_remove_pin_frequency

Libero User's Guide 367

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Exceptions
None

Examples
The following example removes the probability of the pin driving the enable pin of a bidirectional I/O:
Smartpower_remove_pin_enable_rate –pin_name mybibuf/U0/U1:EOUT

smartpower_remove_pin_frequency
Tcl command; removes the frequency associated with a specific pin. This pin will have a default frequency
based on its domain.

smartpower_remove_pin_frequency -pin_name {pin_name}

Arguments
-pin_name {pin_name}

Specifies the name of the pin for which the frequency will be removed.

Supported Families
IGLOO, ProASIC3, SmartFusion, Fusion

Notes
The pin_name must be the name of a pin that already exists in the design and already belongs to a domain.

Exceptions
None

Examples
The following example removes the frequency from the pin named "count8_clock":
smartpower_remove_pin_frequency -pin_name {count8_clock}

See Also
Tcl documentation conventions
Designer Tcl Command Reference
smartpower_set_pin_frequency

smartpower_remove_pin_of_domain
Tcl command; removes a clock pin or a data pin from a clock or set domain, respectively.

smartpower_remove_pin_of_domain -pin_name {pin_name} -pin_type {value} -domain_name
{domain_name} -domain_type {value}

Arguments
-pin_name {pin_name}

Specifies the name of the pin to remove from the domain.
-pin_type {value}

Specifies the type of the pin to remove. The following table shows the acceptable values for this
argument:

368 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Value Description

clock The pin to remove is a clock pin

data The pinto remove is a data pin

-domain_name {domain_name}

Specifies the name of the domain from which to remove the pin.
-domain_type {value}

Specifies the type of domain from which the pin is being removed. The following table shows the
acceptable values for this argument:

Value Description

clock The domain is a clock domain

set The domain is a set domain

Supported Families
IGLOO, ProASIC3, SmartFusion, Fusion

Notes
The domain name must be the name of an existing domain.
The pin name must be the name of an existing pin.

Exceptions
None

Examples
The following example removes the clock pin named "XCMP3/UO/U1:Y" from the clock domain named
"clockh":
smartpower_remove_pin_of_domain -pin_name {XCMP3/U0/U1:Y}

-pin_type {clock} -domain_name {clockh} -domain_type {clock}

The following example removes the data pin named "count2_en" from the set domain named "InputSet":
smartpower_remove_pin_of_domain -pin_name {count2_en} -pin_type

{data} -domain_name {InputSet} -domain_type {set}

See Also
Tcl documentation conventions
Designer Tcl Command Reference
smartpower_add_pin_in_domain

smartpower_remove_pin_probability
Tcl command; removes the probability value associated with a specific pin. This pin will have a default
probability based on the domain set it belongs to.

smartpower_remove_pin_probability –pin_name {pin_name}

smartpower_remove_scenario

Libero User's Guide 369

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Arguments
-pin_name {pin_name}

Specifies the name of the pin with the probability to remove. This pin must be the direct driver of an
enable pin.

Supported Families
IGLOO, ProASIC3, SmartFusion, Fusion

Exceptions
None

Examples
The following example removes the probability of the pin driving the enable pin of a bidirectional I/O:
Smartpower_remove_pin_probability –pin_name mybibuf/U0/U1:EOUT

See Also
Tcl documentation conventions
Designer Tcl Command Reference
smartpower_set_pin_probability

smartpower_remove_scenario
Tcl command; removes a scenario from the current design.

smartpower_remove_scenario -name {value}

Arguments
-name {value}

Specifies the name of the scenario.

Supported Families
IGLOO, ProASIC3, SmartFusion, Fusion

Exceptions
None

Examples
This example removes a scenario from the current design:
smartpower_remove_scenario -name myscenario

See Also
Tcl documentation conventions
Designer Tcl Command Reference

smartpower_remove_vcd
Tcl command; removes an existing VCD file from a mode or entire design.

smartpower_remove_vcd -from {value} -mode {value} -file

370 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Arguments
-from {value}

 This specifies the if the VCD is removed for a specific mode or for the entire project. The following table
shows the acceptable values for this argument:

Value Description

mode The VCD file is removed for a mode

project The VCD file is removed from the project

-mode {value}

This specifies the name of the mode for which the VCD will be removed
-filename

This specifies the name of the VCD file to be removed

Supported Families
IGLOO, ProASIC3, SmartFusion, Fusion

Exceptions
None

Examples
The following example removes the VCD file named my_vcd.vcd from the active mode
smartpower_remove_vcd -from {mode} -mode {active} -my_vcd.vcd

See Also
Tcl documentation conventions
Designer Tcl Command Reference
smartpower_create_domain

smartpower_restore
Tcl command; restores all power information previously committed in SmartPower.

smartpower_restore

Arguments
None

Supported Families
IGLOO, ProASIC3, SmartFusion, Fusion

Exceptions
None

Examples
smartpower_restore

smartpower_set_battery_capacity

Libero User's Guide 371

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

See Also
Tcl documentation conventions
Designer Tcl Command Reference
smartpower_commit

smartpower_set_battery_capacity
Tcl command; sets the battery capacity.

smartpower_set_battery_capacity {value}

Arguments
value

Sets the battery capacity to a value in mA/h.

Supported Families
IGLOO, ProASIC3, SmartFusion, Fusion

Exceptions
None

Examples
The following example sets the battery capacity to 40 A/h:
smartpower_set_battery_capacity {40}

See Also
Tcl documentation conventions
Designer Tcl Command Reference

smartpower_set_cooling
Tcl command; sets the cooling style to one of the predefined types, or a custom value.

smartpower_set_cooling -style {value} -teta {value}

Arguments
-style {value}

Specifies the cooling style to custom value or to one of the predefined types with a default thermal
resistance value. The following table shows the acceptable values for this argument:

Value Description

300_lfm Predefined cooling style

case_cooling Predefined cooling style

still_air Predefined cooling style

custom Cooling style defined by user input

-teta {value}

372 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Specifies the thermal resistance in °C/W. This argument is only available when style is set to Custom.

Supported Families
IGLOO, ProASIC3, SmartFusion, Fusion

Notes
To compute the junction temperature, set the following three commands: smartpower_set_thermalmode,
smartpower_set_tambient and smartpower_set_cooling. The junction temperature will be updated when an
output command is executed, such as report(Power).

Exceptions
None

Examples
The following example sets the cooling style to still air:
smartpower_set_cooling -style {still_air}

See Also
Tcl documentation conventions
Designer Tcl Command Reference

smartpower_set_mode_for_analysis
Tcl command; sets the mode for cycle-accurate power analysis.

smartpower_set_mode_for_analysis -mode {value}

Arguments
-mode {value}

Specifies the mode for cycle-accurate power analysis.

Supported Families
IGLOO, ProASIC3, SmartFusion, Fusion

Exceptions
None

Examples
The following example sets the mode for analysis to active:
smartpower_set_mode_for_analysis -mode {active}

See Also
Tcl documentation conventions
Designer Tcl Command Reference

smartpower_set_operating_condition
Tcl command; sets the operating conditions used in SmartPower to one of the pre-defined types.

smartpower_set_operating_condition

Libero User's Guide 373

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

smartpower_set_operating_condition -opcond {value}

Arguments
-opcond {value}

Specifies the value of the operating condition. The following table shows the acceptable values for this
argument:

Value Description

best Sets the operating conditions to best

typical Sets the operating conditions to typical

worst Sets the operating conditions to worst

Supported Families
IGLOO, ProASIC3, SmartFusion, Fusion

Exceptions
None

Examples
This example sets the operating conditions to best:
smartpower_set_operating_condition -opcond {best}

See Also
Tcl documentation conventions
Designer Tcl Command Reference

smartpower_set_pin_enable_rate
This command was obsoleted in SmartPower v8.5. Update your script to use smartpower_set_pin_probability
to set the pin probability.

Note: Note: The information below is obsolete and should only be used as reference when executing
previously-created scripts. Update your scripts to use smartpower_set_pin_probability.

Enables you to set the probability value of a pin driving an enable pin. For I/Os, if you do not use this
command, the probability of the IOEnableSet is used. For memories, if you do not use this command, the
probability of the MemoriesEnableSet is used.

smartpower_set_pin_enable_rate -pin_name {pin_name} –pin_enable_rate {value}

Arguments
-pin_name {pin_name}

Specifies the name of a pin for which the probability will be set. This pin must be the direct driver of an
enable pin.
-pin_enable_rate {value}

Specifies the value of the pin probability as a percentage, which can be any positive decimal between 0
and 100, inclusive.

374 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Supported Families
IGLOO, ProASIC3, SmartFusion, Fusion

Exceptions
None

Examples
The following example sets the probability of the pin driving the enable pin of a bidirectional I/O
smartpower_set_pin_enable_rate -pin_name mybibuf/U0/U1:EOUT \

–pin_enable_rate 50.4

smartpower_set_pin_frequency
Tcl command; sets the frequency of a pin in megahertz (MHz). If you do not use this command, each pin
will have default frequency based on its domain.

smartpower_set_pin_frequency -pin_name {pin_name} -pin_freq {value}

Arguments
-pin_name {pin_name}

Specifies the name of the pin for which the frequency will be set.
-pin_freq {value}

Specifies the value of the frequency in MHz, which can be any positive decimal number.

Supported Families
IGLOO, ProASIC3, SmartFusion, Fusion

Notes
The pin_name must be the name of a pin that already exists in the design and already belongs to a domain.
When specifying the unit, a space must be between the frequency value and the unit.

Exceptions
None

Examples
This example sets the frequency of the pin named "count8_clock" to 100 MHz:
smartpower_set_pin_frequency -pin_name {count8_clock} -pin_freq {100}

See Also
Tcl documentation conventions
Designer Tcl Command Reference
smartpower_remove_pin_frequency

smartpower_set_preferences
Tcl command; sets the following preferences: power unit, frequency unit, operating mode, operating
conditions, and toggle. These preferences can also be set from the preferences dialog box.

smartpower_set_preferences

Libero User's Guide 375

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

smartpower_set_preferences -powerunit {value} -frequnit {value} -opmode {value} -opcond
{value} -toggle {value}

Arguments
-powerunit {value}

Specifies the unit in which power is set. The following table shows the acceptable values for this
argument:

Value Description

W The power unit is set to watts

mW The power unit is set to milliwatts

uW The power unit is set to microwatts

-frequnit {value}

Specifies the unit in which frequency is set. The following table shows the acceptable values for this
argument:

Value Description

Hz The frequency unit is set to hertz

kHz The frequency unit is set to kilohertz

MHz The frequency unit is set to megahertz

-opmode {value}

Specifies the operating mode. The following table shows the acceptable values for this argument:

Value Description

active The operating mode is set to active

static The operating mode is set to static

sleep The operating mode is set to sleep

Flash*Freeze The operating mode is set to Flash*Freeze

shutdown The operating mode is set to shutdown

-opcond {value}

Specifies the operating condition. The following table shows the acceptable values for this argument:

Value Description

worst The operating condition is set to worst case

typical The operating condition is set to typical case

best The operating condition is set to best case

376 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

-toggle {value}

Specifies the toggle. The following table shows the acceptable values for this argument:

Value Description

true The toggle is set to true

false The toggle is set to false

Supported Families
IGLOO, ProASIC3, SmartFusion, Fusion

Notes
• The following arguments have been removed. Running the script will trigger a warning message:

Warning: Invalid argument: -argname "argvalue" Ignored. Ignore the warning.
-maxblocks {integer > 0}
-maxpins [{integer > 0}
-sortorder {ascending, descending}
-sortby {powervalues, alphabetical}

• Flash*Freeze, Sleep, and Shutdown are available only for certain families and devices.
• Worst and Best operating conditions are available only for certain families and devices.

Exceptions
None

Examples
This example sets the frequency of the power unit to "watts", the frequency unit to "Hz", the operating
mode to "active", the operating condition to "typical", and the toggle to "true":
smartpower_set_setpreferences -powerunit {w} -frequnit {hz} -opmode {active} -opcond
{typical} -toggle {true}

See Also
Tcl documentation conventions
Designer Tcl Command Reference
SmartPower Preferences

smartpower_set_scenario_for_analysis
Tcl command; sets the scenario for cycle-accurate power analysis.

smartpower_set_scenario_for_analysis -scenario{value}

Arguments
-scenario {value}

Specifies the mode for cycle-accurate power analysis.

smartpower_set_temperature_opcond

Libero User's Guide 377

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Supported Families
IGLOO, ProASIC3, SmartFusion, Fusion

Exceptions
None

Examples
The following example sets the scenario for analysis to my_scenario:
smartpower_set_scenario_for_analysis -scenario {my_scenario}

See Also
Tcl documentation conventions
Designer Tcl Command Reference

smartpower_set_temperature_opcond
Tcl command; sets the temperature in the operating conditions to one of the pre-defined types.

smartpower_set_temperature_opcond -use{value}

Arguments
-use{value}

Specifies the temperature in the operating conditions. The following table shows the acceptable values for
this argument:

Value Description

oprange Sets the temperature in the operating conditions as
specified in your Project Settings.

design Sets the temperature in the operating conditions as
specified in the SmartPower design-wide operating range.
Applies to SmartPower only.

mode Sets the temperature in the operating conditions as
specified in the SmartPower mode-specific operating
range. Applies to SmartPower only.

Supported Families
IGLOO, ProASIC3, SmartFusion, Fusion

Exceptions
None

Examples
This example sets the temperature in the operating conditions as specified in the custom mode-settings:
smartpower_set_temperature_opcond -use{mode}

See Also
Tcl documentation conventions

378 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Designer Tcl Command Reference

smartpower_set_thermalmode
Tcl command; sets the mode of computing junction temperature.

smartpower_set_thermalmode -mode {value}

Arguments
-mode {value}

Specifies the mode in which the junction temperature is computed. The following table shows the
acceptable values for this argument:

Value Description

ambient The junction temperature will be iteratively computed with
total static power

opcond The junction temperature will be given as one of the
operating condition range values specified in the device
selection

Supported Families
IGLOO, ProASIC3, SmartFusion, Fusion

Notes
To compute the junction temperature, set the following three commands: smartpower_set_thermalmode,
smartpower_set_tambient and smartpower_set_cooling. The junction temperature will be updated when an
output command is executed, such as report(Power).

Exceptions
None

Examples
The following example sets the computing of the junction temperature to ambient mode:
smartpower_set_thermalmode -mode {ambient}

See Also
Tcl documentation conventions
Designer Tcl Command Reference

smartpower_set_voltage_opcond
Tcl command; sets the voltage in the operating conditions.

smartpower_set_voltage_opcond -voltage{value} -use{value}

Arguments
-voltage{value}

smartpower_set_voltage_opcond

Libero User's Guide 379

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Specifies the voltage supply in the operating conditions. The following table shows the acceptable values
for this argument:

Value Description

VCCA Sets the voltage operating conditions for VCCA

VCCI 3.3 Sets the voltage operating conditions for VCCI 3.3

VCCI 2.5 Sets the voltage operating conditions for VCCI 2.5

VCCI 1.8 Sets the voltage operating conditions for VCCI 1.8

VCCI 1.5 Sets the voltage operating conditions for VCCI 1.5

VCC33A Sets the voltage operating conditions for VCC33A

VCCDA Sets the voltage operating conditions for VCCDA

-use{value}

Specifies the voltage in the operating conditions for each voltage supply. The following table shows the
acceptable values for this argument:

Value Description

oprange Sets the voltage in the operating conditions as specified in
your Project Settings.

design Sets the voltage in the operating conditions as specified in
the SmartPower design-wide operating range. Applies to
SmartPower only.

mode Sets the voltage in the operating conditions as specified in
the SmartPower mode-specific operating range. Applies to
SmartPower only.

Supported Families
IGLOO, ProASIC3, SmartFusion, Fusion

Exceptions
None

Examples
This example sets the VCCA as specified in the SmartPower mode-specific settings:
smartpower_set_voltage_opcond -voltage{vcca} -use{mode}

See Also
Tcl documentation conventions
Designer Tcl Command Reference

380 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

smartpower_temperature_opcond_set_design_wide
Tcl command; sets the temperature for SmartPower design-wide operating conditions.

smartpower_temperature_opcond_set_design_wide -best{value} -typical{value} -worst{value} -
thermal_mode{value}

Arguments
-best{value}

Specifies the best temperature (in degrees Celsius) used for design-wide operating conditions.
-typical{value}

Specifies the typical temperature (in degrees Celsius) used for design-wide operating conditions.
-worst{value}

Specifies the worst temperature (in degrees Celsius) used for design-wide operating conditions.
-thermal_mode{value}

Specifies the mode in which the junction temperature is computed. The following table shows the
acceptable values for this argument:

Value Description

ambient The junction temperature will be iteratively computed with
total static power

opcond The junction temperature will be given as one of the
operating condition range values specified in the device
selection

Supported Families
IGLOO, ProASIC3, SmartFusion, Fusion

Exceptions
None

Examples
This example sets the temperature for design-wide operating conditions to Best 20, Typical 30, and Worst
60:
smartpower_temperature_opcond_set_design_wide -best{20} -typical{30} -worst{60}

See Also
Tcl documentation conventions
Designer Tcl Command Reference

smartpower_temperature_opcond_set_mode_specific
Tcl command; sets the temperature for SmartPower mode-specific operating conditions.

smartpower_temperature_opcond_set_mode_specific -mode{value} -best{value} -typical{value} -
worst{value} -thermal_mode{value}

Arguments
-mode{value}

smartpower_voltage_opcond_set_design_wide

Libero User's Guide 381

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Selects the mode to which apply the operating condition settings. You can select a pre-defined mode or
any custom mode in your design.
-best{value}

Specifies the best temperature (in degrees Celsius) for the selected mode.
-typical{value}

Specifies the typical temperature (in degrees Celsius) for the selected mode.
-worst{value}

Specifies the worst temperature (in degrees Celsius) for the selected mode.
-thermal_mode{value}

Specifies the mode in which the junction temperature is computed. The following table shows the
acceptable values for this argument:

Value Description

ambient The junction temperature will be iteratively computed with
total static power

opcond The junction temperature will be given as one of the
operating condition range values specified in the device
selection

Supported Families
IGLOO, ProASIC3, SmartFusion, Fusion

Exceptions
None

Examples
This example sets the temperature for mode-specific operating conditions for mode1:
smartpower_temperature_opcond_set_mode_specific -mode{mode1} -best{20} -typical{30} -
worst{60}

See Also
Tcl documentation conventions
Designer Tcl Command Reference

smartpower_voltage_opcond_set_design_wide
Tcl command; sets the voltage settings for SmartPower design-wide operating conditions.

smartpower_voltage_opcond_set_design_wide -voltage{value} -best{value} -typical{value} -
worst{value}

Arguments
-voltage{value}

Specifies the voltage supply in the operating conditions. The following table shows the acceptable values
for this argument:

Value Description

VCCA Sets the voltage operating conditions for VCCA

382 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Value Description

VCCI 3.3 Sets the voltage operating conditions for VCCI 3.3

VCCI 2.5 Sets the voltage operating conditions for VCCI 2.5

VCCI 1.8 Sets the voltage operating conditions for VCCI 1.8

VCCI 1.5 Sets the voltage operating conditions for VCCI 1.5

VCC33A Sets the voltage operating conditions for VCC33A

VCCDA Sets the voltage operating conditions for VCCDA

 -best{value}

Specifies the best voltage used for design-wide operating conditions.
-typical{value}

Specifies the typical voltage used for design-wide operating conditions.
-worst{value}

Specifies the worst voltage used for design-wide operating conditions.

Supported Families
IGLOO, ProASIC3, SmartFusion, Fusion

Exceptions
None

Examples
This example sets VCCA for design-wide to best 20, typical 30 and worst 40:
smartpower_voltage_opcond_set_design_wide -voltage{VCCA} -best{20} -typical{30} -
worst{40}

See Also
Tcl documentation conventions
Designer Tcl Command Reference

smartpower_voltage_opcond_set_mode_specific
Tcl command; sets the voltage settings for SmartPower mode-specific use operating conditions.

smartpower_voltage_opcond_set_mode_specific -opmode{value} -voltage{value} -best{value} -
typical{value} -worst{value}

Arguments
 -opmode{value}

Selects the mode to which apply the operating condition settings. You can select a pre-defined mode or
any custom mode in your design.
-voltage{value}

Specifies the voltage in the operating conditions. The following table shows the acceptable values for this
argument:

st_commit

Libero User's Guide 383

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Value Description

VCCA Sets the voltage operating conditions for VCCA

VCCI 3.3 Sets the voltage operating conditions for VCCI 3.3

VCCI 2.5 Sets the voltage operating conditions for VCCI 2.5

VCCI 1.8 Sets the voltage operating conditions for VCCI 1.8

VCCI 1.5 Sets the voltage operating conditions for VCCI 1.5

VCC33A Sets the voltage operating conditions for VCC33A

VCCDA Sets the voltage operating conditions for VCCDA

 -best{value}

Specifies the best voltage used for mode-specific operating conditions.
-typical{value}

Specifies the typical voltage used for mode-specific operating conditions.
-worst{value}

Specifies the worst voltage used for mode-specific operating conditions.

Supported Families
IGLOO, ProASIC3, SmartFusion, Fusion

Exceptions
None

Examples
This example sets the voltage for the static mode and sets best to 20, typical to 30 and worst to 40:
smartpower_voltage_opcond_set_mode_specific -opmode{active} -voltage{VCCA} -best{20} -
typical{30} -worst{40}

See Also
Tcl documentation conventions
Designer Tcl Command Reference

st_commit
Tcl command; saves the changes made in SmartTime to the design (.adb) file

st_commit

Arguments
None

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

384 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Exceptions
None

Examples
st_commit

See Also
st_restore

Tcl documentation conventions
Designer Tcl Command Reference

st_create_set
Tcl command; creates a set of paths to be analyzed. Use the arguments to specify which paths to
include. To create a set that is a subset of a clock domain, specify it with -clock and -type. To create a
set that is a subset of an inter-clock domain set, specify it with -source_clock and -sink_clock. To
create a set that is a subset (filter) of an existing named set, specify the set to be filtered with -from_set.
To create a set that is not derived from an existing set, you must provide both the -source pin_list and
-sinkpin_list derived. Otherwise, the -source and -sink arguments act as filters on the pins from
the parent set. You must give each new set a unique name in the design.

st_create_set -name name
[-parent_set name]
[-clockclock_id -type value]
[-in_to_out]
[-source_clock clock_id -sink_clock clock_id]
[-source pin_list] -sink pin_list]

Arguments
-name name

Specifies a unique name for the newly create path set.
-parent_set name
Specifies the name of the set to filter.
-clock clock_id
Specifies that the set is to be a subset of the given clock domain. This argument is valid only if you also
specify the -type argument.
-type value

Specifies the predefined set type on which to base the new path set. You can only use this argument with
the -clock argument, not by itself.

Value Description

reg_to_reg Paths between registers in the design

async_to_reg Paths from asynchronous pins to registers

reg_to_async Paths from registers to asynchronous pins

external_recovery The set of paths from inputs to asynchronous pins

external_removal The set of paths from inputs to asynchronous pins

external_setup Paths from input ports to registers

st_edit_set

Libero User's Guide 385

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Value Description

external_hold Paths from input ports to registers

clock_to_out Paths from registers to output ports

-in_to_out

Specifies that the set is based on the “Input to Output” set, which includes paths that start at input ports
and end at output ports.
-source_clock clock_id

Specifies that the set will be a subset of an inter-clock domain set with the given source clock.
You can only use this option with the -sink_clock option, not by itself.
-sink_clock clock_id

Specifies that the set will be a subset of an inter-clock domain set with the given sink clock.
You can only use this option with the -source_clock option, not by itself.
-source pin_list

Specifies a filter on the source pins of the parent set. If you do not specify a parent set, this option filters
all pins in the current design.
-sink pin_list

Specifies a filter on the sink pins of the parent set. If you do not specify a parent set, this option filters all
pins in the current design.

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

Exceptions
None

Examples
st_create_set –name { my_user_set } –source { C* } –sink { D* }

st_create_set –name { my_other_user_set } –from_set { my_user_set } –source { CL* }

st_create_set –name { adder } –clock { ALU_CLOCK } –type { REG_TO_REG } -sink { ADDER*
}

st_create_set –name { another_set } –source_clock { EXTERN_CLOCK } –sink_clock {
MY_GEN_CLOCK }

st_create_set –name { some_p2p } –pin2pin –to { T* }

See Also
Designer Tcl Command Reference
Tcl documentation conventions
st_remove_set

st_edit_set
Tcl command; modifies the paths in a user set.

st_edit_set -name name
 [-source pin_list] [-sink pin_list]
 [-rename_to name]

386 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Arguments
-name name

Specifies the name of the set to modify.
-source pin_list

If the set is a subset of another set, specifies a filter on the source pins from the parent set. Otherwise,
this option specifies the source pins of the set.
-sink pin_list

If the set is a subset of another set, specifies a filter on the sink pins from the parent set. Otherwise, this
option specifies the sink pins of the set.
-rename_to name

Specifies a new name for the set.

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

Exceptions
None

Examples
st_edit_set –name { my_user_set} –rename_to { my_critical_pins }

st_edit_set –name { adder } –sink { ADD* }

See Also
Designer Tcl Command Reference
Tcl documentation conventions
st_create_set
st_remove_set

st_expand_path
Tcl command; displays expanded path information (path details) for paths. The paths to be expanded are
identified by the parameters required to display these paths with st_list_paths. For example, to expand the
first path listed with st_list_paths -clock {MYCLOCK} -type {register_to_register}, use the command
st_expand_path -clock {MYCLOCK} -type {register_to_register}. Path details contain the pin name, type,
net name, cell name, operation, delay, total delay, and edge as well as the arrival time, required time, and
slack. These details are the same as details available in the SmartTime Expanded Path window.

st_expand_path [-set name]
[-clock clock_id -type value]
[-in_to_out]
[-source_clock clock_id -sink_clock clock_id]
[-source pin_list] [-sink pin_list]
[-analysis value]
[-index list_of_indices]
[-format value]

Arguments
-set name
Displays a list of paths from the named set. You can either use the -set option to specify a set name, or
use both -clock and -type to specify a set. A list of valid set names includes "in_to_out", as well as any
user set names.

st_expand_path

Libero User's Guide 387

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

-clock clock_id
Displays the set of paths belonging to the specified clock domain. You can either use this option along
with -type to specify a set or use the -set option to specify the name of the set to display.
-in_to_out

Specifies that the paths should be from the set "Input to Output, which includes paths that start at input
ports and end at output ports.
-type value

Specifies the type of paths in the clock domain to display in a list. You can only use this option with the -
clock option, not by itself. You can either use this option along with -clock to specify a set or use the -set
option to specify a set name.

Value Description

reg_to_reg Paths between registers in the design

async_to_reg Paths from asynchronous pins to registers

reg_to_asyn Paths from registers to asynchronous pins

external_recovery The set of paths from inputs to asynchronous pins

external_removal The set of paths from inputs to asynchronous pins

external_setup Paths from input ports to registers

 Paths from input ports to registers

clock_to_out Paths from registers to output ports

-source_clock clock_id

Displays a list of timing paths for an inter-clock domain set belonging to the source clock specified. You
can only use this option with the -sink_clock option, not by itself.
-sink_clock clock_id

Displays a list of timing paths for an inter-clock domain set belonging to the sink clock specified. You can
only use this option with the -source_clock option, not by itself.
-source pin_list

Specifies a filter on the source pins of the paths to be listed.
-sink pin_list

Specifies a filter on the sink pins of the paths to be listed.
-analysis name

Specifies the analysis type for the paths to be listed. The following table shows the acceptable values for
this argument:

Value Description

maxdelay Maximum delay analysis

mindelay Minimum delay analysis

-index list_of_indices

Specifies which paths to display. The index starts at 1 and defaults to 1. Only values lower than the
max_paths option will be expanded.
-format value

388 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Specifies the file format of the output. The following table shows the acceptable values for this argument:

Value Description

text ASCII text format

csv Comma separated value fie format

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

Exceptions
None

Examples
Note: The following example returns a list of five paths:
st_expand_path –clock { myclock } –type {reg_to_reg }

st_expand_path –clock {myclock} –type {reg_to_reg} –index { 1 2 3 } –format text

See Also
Designer Tcl Command Reference
Tcl documentation conventions
st_list_paths

st_list_paths
Tcl command; displays the list of paths in the same tabular format shown in SmartTime.

st_list_paths [-set name]
[-clock clock_id -type value]
 [-in_to_out]
 [-source_clock clock_id -sink_clock clock_id]
 [-source pin_list] [-sink pin_list]
 [-analysis value]
 [-format value]

Arguments
-set name

Displays a list of paths from the named set. You can either use the –set option to specify a set name, or
use both –clock and –type to specify a set. A list of valid set names includes “in_to_out”, as well as any
user set names.
-clock clock_id
Displays the set of paths belonging to the specified clock domain. You can either use this option along
with -type to specify a set or use the -set option to specify the name of the set to display.
-in_to_out

Specifies that the paths should be from the set “Input to Output”, which includes paths that start at input
ports and end at output ports.
-type value

Specifies the type of paths in the clock domain to display in a list. You can only use this option with the -
clock option, not by itself. You can either use this option along with -clock to specify a set or use the -set
option to specify a set name.

st_list_paths

Libero User's Guide 389

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Value Description

reg_to_reg Paths between registers in the design

async_to_reg Paths from asynchronous pins to registers

reg_to_asyn Paths from registers to asynchronous pins

external_recovery The set of paths from inputs to asynchronous pins

external_removal The set of paths from inputs to asynchronous pins

external_setup Paths from input ports to registers

 Paths from input ports to registers

clock_to_out Paths from registers to output ports

-source_clock clock_id

Displays a list of timing paths for an inter-clock domain set belonging to the source clock specified. You
can only use this option with the -sink_clock option, not by itself.
-sink_clock clock_id

Displays a list of timing paths for an inter-clock domain set belonging to the sink clock specified. You can
only use this option with the -source_clock option, not by itself.
-source pin_list

Specifies a filter on the source pins of the paths to be listed.
-sink pin_list

Specifies a filter on the sink pins of the paths to be listed.
-analysis name

Specifies the analysis type for the paths to be listed. The following table shows the acceptable values for
this argument:

Value Description

maxdelay Maximum delay analysis

mindelay Minimum delay analysis

-format value

Specifies the file format of the output. The following table shows the acceptable values for this argument:

Value Description

text ASCII text format

csv Comma separated value fie format

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

390 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Exceptions
None

Examples
st_list_paths –set { myset }

st_list_paths –analysis mindelay –clock { myclock } –type { reg_to_reg } –format csv

The list of paths can be written to a file with the following Tcl commands:
set outfile [open “pathlisting.csv” w]

puts $outfile [st_list_paths –format csv –set { myset}]

close $outfile

See Also
Designer Tcl Command Reference
Tcl documentation conventions
st_expand_path

st_remove_set
Tcl command; deletes a user set from the design.

st_remove_set -name name

Arguments
 -name name

Specifies the name of the set to delete.

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

Exceptions
None

Examples
st_remove_set { clockset1 }

See Also
Designer Tcl Command Reference
Tcl documentation conventions
st_create_set

st_restore
Tcl command; restores constraints previously committed in SmartTime.

st_restore

Arguments
None

st_set_options

Libero User's Guide 391

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Supported Families
IGLOO, ProASIC3, SmartFusion2, SmartFusion, Fusion

Exceptions
None

Examples
st_restore

See Also
st_commit

Tcl documentation conventions
Designer Tcl Command Reference

st_set_options
Tcl command; sets options for timing analysis. With no parameters given, it will display the current
settings of the options. For IGLOO, ProASIC3, SmartFusion, Fusion families, these options also affect
timing-driven place-and-route.

st_set_options [-max_opcond value]
 [-min_opcond value]
 [-interclockdomain_analysis value]
 [-use_bibuf_loopbacks value]
 [-enable_recovery_removal_checks value]
 [-break_at_async value]
 [-filter_when_slack_below value]
 [-filter_when_slack_above value]
 [-remove_slack_filters]
 [-limit_max_paths value]
 [-expand_clock_network value]
 [-expand_parallel_paths value]
 [-analysis_scenario value]
 [-tdpr_scenario value]
 [-reset]

Arguments
-max_opcond value
Sets the operating condition to use for Maximum Delay Analysis. The following table shows the
acceptable values for this argument:

Value Description

worst Use Worst Case conditions for Maximum Delay Analysis

typ Use Typical conditions for Maximum Delay Analysis

best Use Best Case conditions for Maximum Delay Analysis

-min_opcond value
Sets the operating condition to use for Minimum Delay Analysis. The following table shows the acceptable
values for this argument:

392 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Value Description

best Use Best Case conditions for Minimum Delay Analysis

typ Use Typical conditions for Minimum Delay Analysis

worst Use Worst Case conditions for Minimum Delay Analysis

-interclockdomain_analysis value
Enables or disables inter-clock domain analysis.

Value Description

yes Enables inter-clock domain analysis

no Disables inter-clock domain analysis

-use_bibuf_loopbacks value
Enables or disables loopback in bibufs.

Value Description

yes Enables loopback in bibufs

no Disables loopback in bibufs

-enable_recovery_removal_checks value
Enables or disables recovery and removal checks.

Value Description

yes Enables recovery and removal checks

no Disables recovery and removal checks

-break_at_async value
Enables or disables breaking paths at asynchronous ports.

Value Description

yes Enables breaking paths at asynchronous ports

no Disables breaking paths at asynchronous ports

-filter_when_slack_below value
Do not show paths with slack below x.
-filter_when_slack_above value
Do not show paths with slack above y.
-remove_slack_filters
Remove all existing slack filters.
-limit_max_paths value

timer_get_path

Libero User's Guide 393

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Limit path reporting commands to a maximum of <n> paths, where n is a value of 0 or higher.
-expand_clock_network value
Enables or disables expanded clock network information in expanded paths.

Value Description

yes Enables expanded clock network information in paths

no Disables expanded clock network information in paths

-expand_parallel_paths value
Expand a maximum of <n> parallel paths, where n is a value of 0 or higher. If n is 0 or 1, only one path
will be expanded when viewing expanded paths.
 -analysis_scenario value
Set the timing constraints scenario to be used for both maximum delay and minimum delay analysis. The
argument must be a valid scenario name.

Note: Note: This option does not affect the timing scenario used for TDPR.
 -tdpr_scenario value
Set the timing constraints scenario to be used by the place and route engine. The argument must be a
valid scenario name.

Note: Note: This option does not affect the timing scenario used for analysis.
-reset
Reset all options to their default values, except for scenarios used for analysis and TDPR that remain
unchanged.

Supported Families
IGLOO, ProASIC3, SmartFusion2, SmartFusion, Fusion

Exceptions
None

Examples
st_set_options –max_opcond worst \

-min_opcond best \

-interclockdomain_analysis true \

-enable_removal_recovery_checks true

st_set_options –limit_max_paths 50 –remove_slack_filters \

–filter_when_slack_above 3

See Also
Tcl documentation conventions
Designer Tcl Command Reference

timer_get_path
Tcl command; displays the path between the specified pins in the Log window.

timer_get_path -from source_pin -to destination_pin
[-exp value]\
[-sort value]\
[-order value]\

394 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

[-case value]\
[-maxpath maximum_paths]\
[-maxexpath maximum_paths_to_expand]\
[-mindelay minimum_delay]\
[-maxdelay maximum_delay]\
[-breakatclk value]\
[-breakatclr value]

Arguments
-from source_pin

Specifies the name of the source pin for the path.
-to destination_pin

Specifies the name of the destination pin for the path.
-exp value

Specifies whether to expand the path. The following table shows the acceptable values for this argument:

Value Description

yes Expands the path

no Does not expand the path

-sort value

Specifies whether to sort the path by either the actual delay or slack value. The following table shows the
acceptable values for this argument:

Value Description

actual Sorts the path by the actual delay value

slack Sorts the path by the slack value

-order value

Specifies whether the list is based on maximum or minimum delay analysis. The following table shows the
acceptable values for this argument:

Value Description

long The paths are listed based on the maximum delay analysis

short The paths are listed based on the minimum delay analysis

-case value

Specifies whether the report will include the worst, typical, or best case timing numbers. The following
table shows the acceptable values for this argument:

Value Description

worst Includes worst case timing numbers

typ Includes typical case timing numbers

best Includes best case timing numbers

timer_get_path

Libero User's Guide 395

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

-maxpath maximum_paths

Specifies the maximum number of paths to display.
-maxexpath maximum_paths_to_expand

Specifies the maximum number of paths to expand.
-mindelay minimum_delay

Specifies the path delay in the minimum delay analysis mode.
-maxdelay maximum_delay

Specifies the path delay in the maximum delay analysis mode.
-breakatclk value

Specifies whether to break the paths at the register clock pins. The following table shows the acceptable
values for this argument:

Value Description

yes Breaks the paths at the register clock pins

no Does not break the paths at the register clock pins

-breakatclr value

Specifies whether to break the paths at the register clear pins. The following table shows the acceptable
values for this argument:

Value Description

yes Breaks the paths at the register clear pins

no Does not break the paths at the register clear pins

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
None

Examples
The following example returns the paths from input port headdr_dat<31> to the input pin of register
u0_headdr_data1_reg/data_out_t_31 under typical conditions.
timer_get_path -from "headdr_dat<31>" \

-to "u0_headdr_data1_reg/data_out_t_31/U0:D" \

-case typ \

-exp "yes" \

-maxpath "100" \

-maxexpapth "10"

The following example returns the paths from the clock pin of register gearbox_inst/bits64_out_reg<55> to
the output port pma_tx_data_64bit[55]
timer_get_path -from "gearbox_inst/bits64_out_reg<55>/U0:CLK" \

 -to {pma_tx_data_64bit[55]} \

 -exp "yes"

396 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

See Also
Tcl documentation conventions
Designer Tcl Command Reference

timer_get_clock_actuals
Tcl command; displays the actual clock frequency in the Log window, when the timing analysis tool is
initiated.

timer_get_clock_actuals -clock clock_name

Arguments
-clock clock_name
Specifies the name of the clock with the frequency (or period) to display.

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
None

Examples
This example displays the actual clock frequency of clock clk1 in the Log window:
timer_get_clock_actuals -clock clk1

See Also
timer_get_clock_constraints

Tcl documentation conventions
Designer Tcl Command Reference

timer_get_clock_constraints
Tcl command; returns the constraints (period, frequency, and duty cycle) on the specified clock.

timer_get_clock_constraints -clock clock_name

Arguments
-clock clock_name
Specifies the name of the clock with the constraint to display.

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
None

Examples
The following example displays the clock constraints on the clock clk in the Log window:
timer_get_clock_constraints -clock clk

timer_get_maxdelay

Libero User's Guide 397

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

See Also
timer_get_clock_actuals

Tcl documentation conventions
Designer Tcl Command Reference

timer_get_maxdelay
Tcl command; displays the maximum delay constraint between two pins in a path in the Log window.

timer_get_maxdelay -from source_pin -to destination_pin

Arguments
-from source_pin

Specifies the name of the source pin in the path.
-to destination_pin

Specifies the name of the destination pin in the path.

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
None

Examples
The following example displays the maximum delay constraint from the pin clk166 to the pin
reg_q_a_9_/U0:CLK in the Log window:
timer_get_maxdelay -from {clk166} -to {reg_q_a_9_/U0:CLK}

See Also
timer_set_maxdelay

Tcl documentation conventions
Designer Tcl Command Reference

timer_get_path_constraints
Tcl command; displays the path constraints that were set as the maximum delay constraint in the timing
analysis tool.

timer_get_path_constraints

Arguments
None

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Description
This command lists the paths constrained by maximum delay values. The information is displayed in the
Log window. If no maximum delay constraints are set, this command does not report anything.

398 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Exceptions
None

Examples
Invoking timer_get_path_constraints displays the following paths and their delay constraints in the Log
window:
max_delay -from [all_inputs] -to [all_outputs] = 12 ns

max_delay -from p_f_testwdata0 p_f_testwdata1 -to p_f_dacuwdata0 p_f_dacuwdata1
r_f_dacuwdata0 r_f_dacuwdata1 = 8 ns

See Also
Tcl documentation conventions
Designer Tcl Command Reference

timer_remove_stop
Tcl command; removes the previously entered path stop constraint on the specified pin.

timer_remove_stop -pin pin_name

Arguments
-pin pin_name

Specifies the name of the pin from which to remove the path stop constraint.

Supported Families
All

Description
If you remove a path stop constraint using the Timer GUI, and then export a script using File > Export >
Script files, the resulting script will contain timer_remove_pass -pin pin_name instead of
timer_remove_stop -pin pin_name.

Exceptions
• For the IGLOO, ProASIC3, SmartFusion2, SmartFusion, Fusion families, best practice is to use the

following flow:
1. Open SmartTime > Set False Path Constraint dialog box.

2. Look for the pin name in the Through: list (Note: You must not have any entry
selected in the From or To lists).

3. Delete this pin.

Examples
The following example removes the path stop constraint on the clear pin reg_q_a_0_:CLR:
timer_remove_stop -pin {reg_q_a_0_:CLR}

See Also
Tcl documentation conventions
Set False Path Constraint dialog box
Designer Tcl Command Reference

timer_restore

Libero User's Guide 399

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

timer_restore
Tcl command; restores constraints previously committed in Timer.

timer_restore

Arguments
None

Supported Families
SmartFusion, IGLOO, ProASIC3 and Fusion

Exceptions
None

Examples
timer_restore

See Also
Tcl documentation conventions
Designer Tcl Command Reference

timer_remove_all_constraints
Tcl command; removes all timing constraints in the current design.

timer_remove_all_constraints

Arguments
None

Supported Families
All

Exceptions
None

Examples
The following example removes all of the constraints from the design and then commits the changes:
timer_remove_all_constraints

timer_commit

See Also
Tcl documentation conventions
Designer Tcl Command Reference

use_file
Tcl command; specifies which file in your project to use.

400 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

use_file
-file value
 -module value
 -designer_view value

Arguments
-filevalue

Specifies the EDIF or ADB file you wish to use in the project. Value is the name of the file you wish use
(including the full pathname).
-module value

Specifies the module in which you want to use the file.
-designer_view value

Specifies the Designer View in which you wish to use the file.

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

Exceptions
None

Example
Specify file1.edn in the ./project/synthesis directory, in the module named top, in the Designer View
named impl1.
use_file –file “./project/synthesis/file1.edn” –module “top” –designer_view “Impl1”

See Also
use_source_file

Project Manager Tcl Command Reference

use_source_file
Tcl command; defines a module for your project.

use_source_file
-file value
 -module value

Arguments
-file value

Specifies the Verilog or VHDL file. Value is the name of the file you wish use (including the full pathname).
-module value

Specifies the module in which you want to use the file.

Supported Families
SmartFusion2, SmartFusion, IGLOO, ProASIC3, Fusion

Exceptions
None

Application Notes

Libero User's Guide 401

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Example
Specify file1.vhd in the ./project/hdl directory, in the module named top.
use_source_file –file “./project/hdl/file1.vhd” –module “top"

See Also
use_file

Project Manager Tcl Command Reference

Application Notes
Application notes are available for all Microsemi SoC devices. A full list of application notes is available at
the Microsemi SoC website.
Application notes are organized by product or type. For example, you can view a full list of application notes
for SmartFusion, or you can view a list of application notes on Design Entry that includes documents for all
available families.
The following is a short list of popular application notes covering a range of applications and devices.

• AC333: Connecting User Logic to the SmartFusion Microcontroller Subsystem App Note (design files
required - 23 MB) - Describes how to create AHB Lite or APB3 wrapper on custom logic and how to
connect it to the MSS System via the Fabric Interface Controller.

• AC225 Programming Antifuse Devices App Note - Provides an overview of the programming options
available for the antifuse families.

• AC362: SmartFusion cSoC: Programming FPGA Fabric and eNVM Using In-Application Programming
Interface App Note (design files required - 50 MB)

• AC335: Building an APB3 Core for SmartFusion cSoC FPGAs App Note (design files required - 13
MB) - Describes how to create an APB3 wrapper interface for your logic or IP and connect it to the
MSS via the Fabric Interface Controller.

• AC265: Clock Generation and Distribution Design Example App Note (design files required - 1 MB) -
Demonstrates the use of the IGLOO and ProASIC3 clock conditioning circuits and phase-locked loops
(PLLs) to generate multiple clock signals with different phases and frequencies.

•

Tutorials and Training Modules
Software tutorials, webcasts and online training modules are available on the Microsemi website. See the
website for a full list.
The following list is an example of the tutorials available. Training modules may require you to register to
enter the Microsemi Training Portal. Registration is free.

Example Tutorials
ARM Cortex M1-Embedded Processor Tutorial (design files required - 105 MB) - Describes how to create a
Cortex-M1 processor system that runs on the Fusion development kit board available from Microsemi SoC.
SmartFusion cSoC Webserver Demo Using uIP and FreeRTOS - Demonstrates the SmartFusion device
capabilities using the SmartFusion Development Kit Board. Requires the following design files and the
SmartFusion Development Kit Board.
• Design files using Softconsole (RAR, 15.2 MB, 5/12)
• Design files using IAR (RAR, 11.9 MB, 5/12)
• Design files using Keil (RAR, 13.5 MB, 5/12)
• Programming File (RAR, 226 KB, 5/12)

Using Keil µVision and Microsemi SmartFusion (programming files required - 91 KB)- Describes the process
of operating an ARM Keil MDL Toolkit featuring µVision and Microsemi's SmartFusion family.

http://www.microsemi.com/soc/techdocs/appnotes/default.aspx
http://www.actel.com/techdocs/appnotes/smartfusion.aspx
http://www.actel.com/techdocs/appnotes/smartfusion.aspx
http://www.actel.com/techdocs/appnotes/design_entry.aspx
http://www.actel.com/documents/User_Logic_MSS_AN.pdf
http://www.microsemi.com/soc/download/rsc?f=A2F_AC333_DF
http://www.microsemi.com/soc/download/rsc?f=A2F_AC333_DF
http://www.actel.com/documents/AntifuseProgram_AN.pdf
http://www.actel.com/documents/A2F_AC362_AN.pdf
http://www.actel.com/documents/A2F_AC362_AN.pdf
http://www.microsemi.com/soc/download/rsc?f=A2F_AC362_DF
http://www.actel.com/documents/SmartFusion_Build_APB3core_AN.pdf
http://www.microsemi.com/soc/download/rsc?f=A2F_AC335_DF
http://www.actel.com/documents/Clock_Generation_Distribution_AN.pdf
http://www.actel.com/download/rsc?f=Clock_Generation_Distribution_DF
http://www.actel.com/products/software/libero/docs.aspx
http://www.actel.com/support/webcasts/default.aspx
http://mscctraining.com/
http://www.actel.com/documents/CortexM1-Processor_Tutorial_UG.pdf
http://www.microsemi.com/soc/download/rsc?f=CortexM1_Proc_Tutorial_DF
http://www.actel.com/documents/SmartFusion_Webserver_uIPRTOS_UG.pdf
http://www.actel.com/download/rsc?f=A2F_Webserver_uIPRTOS_SoftConsole_DF
http://www.actel.com/download/rsc?f=A2F_Webserver_uIPRTOS_IAR_DF
http://www.actel.com/download/rsc?f=A2F_Webserver_uIPRTOS_Keil_DF
http://www.actel.com/download/rsc?f=A2F_Webserver_uIPRTOS_PF
http://www.actel.com/documents/Keil_SmartFusion_tutorial.pdf
http://www.actel.com/download/rsc?f=Keil_SmartFusion_tutorial_PF

402 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Catalog
In the Libero SoC, from the View menu choose Windows > Catalog.
The Catalog displays a list of available cores, busses and macros (see image below).

Figure 84 · Libero SoC Catalog

From the Catalog, you can create a component from the list of available cores, add a processor or
peripheral, add a bus interface to your SmartDesign component, instantiate simulation cores or add a macro
(Arithmetic, Basic Block, etc.) to your SmartDesign component.
 Double-click a core to configure it and add it to your design. Configured cores are added to your list of
Components/Modules in the Design Explorer.
Click the Simulation Mode checkbox to instantiate simulation cores in your SmartDesign Testbench.
Simulation cores are basic cores that are useful for stimulus, such as driving clocks, resets, and pulses.

Viewing Cores in the Catalog
The font indicates the status of the core:
• Plain text - In vault and available for use
• Asterisk after name (*) - Newer version of the core (VLN) available for download
• Italics - Core is available for download but not in your vault
• Strikethrough - core is not valid for this version of Libero SoC

The colored icons indicate the license status. Blank means that the core is not license protected in any way.
Colored icons mean that the core is license protected, with the following meanings:

Green Key - Fully licensed; supports the entire design flow.
Yellow Key - Has a limited or evaluation license only. Precompiled simulation libraries are provided,
enabling the core to be instantiated and simulated within Libero SoC. Using the Evaluation version of the
core it is possible to create and simulate the complete design in which the core is being included. The
design is not synthesizable (RTL code is not provided). No license feature in the license.dat file is needed
to run the core in evaluation mode.You can purchase a license to generate an obfuscated or RTL netlist.
Yellow Key with Red Circle - License is protected; you are not licensed to use this core.

Right-click any item in the Catalog and choose Show Details for a short summary of the core specifications.
Choose Open Documentation for more information on the Core. Right-click and choose Configure Core to
open the core generator.
Click the Name column heading to sort the cores alphabetically.

Catalog Options Dialog Box

Libero User's Guide 403

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

You can filter the cores according to the data in the Name and Description fields. Type the data into the filter
field to view the cores that match the filter. You may find it helpful to set the Catalog Display Options to List
cores alphabetically when using the filters to search for cores. By default the filter contains a beginning
and ending ‘*’, so if you type ‘controller’ you get all cores with controller in the core name (case insensitive
search) or in the core description. For example, to list all the Accumulator cores, in the filter field type:
accu

Catalog Options
Click the Options button to customize the Catalog Display Options. Click the Catalog Options drop-down
arrow to import a core, reload the Catalog, or enter advanced download mode.
You may want to import a core from a file when:
• You do not have access to the internet and cannot download the core, or
• A core is not complete and has not been posted to the web (you have an evaluation core)

See Also
Project Manager - Cores Dialog Box (Advanced Download Mode)

Catalog Options Dialog Box
The Catalog Options dialog box (as shown below) enables you to customize your Catalog display. You can
add a repository, set the location of your vault, and change the View Settings for the Catalog. To display this
dialog box, click the Catalog Options button .

Figure 85 · Catalog Display Options Dialog Box

Vault/Repositories Settings
Repositories

A repository is a location on the web that contains cores that can be included in your design.
The Catalog Options dialog box enables you to specify which repositories you want to display in your Vault.
The Vault displays a list of cores from all your repositories, and the Catalog displays all the cores in your
Vault.
The default repository cannot be permanently deleted; it is restored each time you open the Manage
Repositories dialog box.
Any cores stored in the repository are listed by name in your Vault and Catalog; repository cores displayed
in your Catalog can be filtered like any other core.
Type in the address and click the Add button to add new repositories. Click the Remove button to remove a
repository (and its contents) from your Vault and Catalog. Removing a repository from the list removes the
repository contents from your Vault.

404 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Vault location
Use this option to choose a new vault location on your local network. Enter the full domain pathname in the
Select new vault location field. Use the format:
\\server\share

and the cores in your Vault will be listed in the Catalog.

View Settings
Display

Group cores by function - Displays a list of cores, sorted by function. Click any function to expand the list
and view specific cores.
List cores alphabetically - Displays an expanded list of all cores, sorted alphabetically. Double click a core
to configure it. This view is often the best option if you are using the filters to customize your display.
Show core version - Shows/hides the core version.

Filters
Filter field - Type text in the Filter Field to display only cores that match the text in your filter. For example,
to view cores that include 'sub' in the name, set the Filter Field to Name and type sub.
Display only latest version of a core - Shows/hides older versions of cores; this feature is useful if you are
designing with an older family and wish to use an older core.
Show all local and remote cores - Displays all cores in your Catalog.
Show local cores only - Displays only the cores in your local vault in your Catalog; omits any remote cores.
Show remote cores that are not in my vault - Displays remote cores that have not been added to your
vault in your Catalog.

Changing Device Information
Device and package information, device variations, and operating conditions are set when you import a
netlist and compile a new design. However, you can change this information for existing designs.

To change device information for existing designs:
1. In the Project menu, choose Project Settings. The Project Settings dialog box opens.
2. Select your updated options, such as Die, Package, and Speed.
3. Click Close.

Refer to the Microsemi FPGA Data Book or call your local Microsemi Sales Representative for information
about device, package, speed grade, variations, and operating conditions.

Compatible Die Change
When you change the device, some design information can be preserved depending on the type of change.

Changing Die Revisions
If you change the die from one technology to another, all information except timing is preserved. An example
is changing an A1020A (1.2µm) to an A1020B (1.0µm) while keeping the package the same.

Device Change Only
Constraint and pin information is preserved, when possible. An example is changing an A1240A in a PL84
package to an A1280A in a PL84 package.

Repackager Function
When the package is changed (for the same device), the Repackager automatically attempts to preserve the
existing pin and Layout information by mapping external pin names based on the physical bonding
diagrams. This always works when changing from a smaller package to a larger package (or one of the
same size). When changing to a smaller package, the Repackager determines if any of the currently

Core Manager

Libero User's Guide 405

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

assigned I/Os are mapped differently on the smaller package. If any of the I/Os are mapped differently, then
the layout is invalidated and the unassigned pins identified.

Core Manager
The Core Manager only lists cores that are in your current project. If any of the cores in your current project
are not in your vault, you can use the Core Manager to download them all at once.
For example, if you download a sample project and open it, you may not have all the cores in your local
vault. In this instance you can use the Core Manager to view and download them with one click. Click
Download All to add any missing cores to your vault. To add any individual core, click the green download
button.
To view the Core Manager, from the View menu choose Windows > Cores.
The column headings in the Core Manager are:
• Name - Core name.
• Vendor - Source of the core.
• Core Type - Core type.
• Version - Version of the core used in your project; it may be a later version than you have in your

vault. If so, click Download All to download the latest version.

Deleting Files
Files can be deleted from the current project or from the disk.

To delete a file from the project:
1. Select the Files tab in the Design Explorer window.
2. Right-click the file and choose Delete from Project. The file remains on your disk.

To delete a file from your project and the disk:
1. Select the Files tab in the Design Explorer window.
2. Right-click the file and choose Delete from Disk and Project. The file is deleted from your disk and

is no longer part of any project.

Design Hierarchy in the Design Explorer
The Design Hierarchy tab displays a hierarchical representation of the design based on the source files in
the project. The software continuously analyzes and updates source files and updates the content. The
Design Hierarchy tab (see figure below) displays the structure of the modules and components as they
relate to each other.

Figure 86 · Design Hierarchy

406 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

You can change the display mode of the Design Hierarchy by selecting Components or Modules from the
Show drop-down list. The components view displays the entire design hierarchy; the modules view displays
only schematic and HDL modules.
The file name (the file that defines the block) appears next to the block name in parentheses.
To view the location of a component, right-click and choose Properties. The Properties dialog box displays
the pathname, created date, and last modified date.
All integrated source editors are linked with the SoC software. If a source is modified and the modification
changes the hierarchy of the design, the Design Hierarchy automatically updates to reflect the change.
If you want to update the Design Hierarchy, from the View menu, choose Refresh Design Hierarchy.

To open a component:
Double-click a component in the Design Hierarchy to open it. Depending on the block type and design state,
several possible options are available from the right-click menu. You can instantiate a component from the
Design Hierarchy to the Canvas in SmartDesign.
Icons in the Hierarchy indicate the type of component and the state, as shown in the table below.

Table 13 · Design Hierarchy Icons

Icon Description

 SmartDesign component

 SmartDesign component with HDL netlist not generated

 IP core was instantiated into SmartDesign but the HDL netlist has not been
generated

Core

 Error during core validation

 Updated core available for download

 HDL netlist

Design Menu - Libero SoC

Command Icon Function

Configure Firmware Opens the firmware view

Export Back
Annotated Files

 Runs the push-button flow from synthesis through layout,
compile, and place and route.

Reports Creates and/or opens the Datasheet Reports for your
project

Edit Core Definition - Ports and Parameters Dialog Box

Libero User's Guide 407

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Designer in Libero SoC

Microsemi's Designer software is integrated with the Libero SoC Project Manager. The Designer interface
opens only when you choose not to use the default settings in the push-button design flow.
To implement your design, click the Build button in the Libero SoC Design Flow window. If you wish to
change the default settings for any element in the design flow, right-click the function and choose Open
Interactively.
The following tools are available to run interactively:
SmartTime
SmartPower
NetlistViewer
PinEditor
ChipPlanner
I/O Attribute Editor

Edit Core Definition - Ports and Parameters Dialog Box
This dialog box appears when you add a core you created with HDL+.
Click to select any Extracted Parameter and click the Delete button to remove it from the list. Extracted
Parameters may be configured if you add the HDL+ core to the Canvas.
If you delete an Extracted Parameter and want to re-add it to the list click the Re-extract ports and
parameters from HDL button.
Click Add/Edit bus interfaces to open the Edit Core Definition - Bus Interfaces dialog box.

Figure 87 · Edit Core Definition - Ports and Parameters Dialog Box

Edit Menu - Libero SoC

408 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Command Icon Shortcut Function

Undo

CTRL +
Z

Reverses your last action

Redo

CTRL +
Y

Reverses the action of your last Undo command

Find CTRL +
F

Displays the Find dialog box, which you use to locate
instances, nets, ports, and regions

Find Next F3 Finds the next occurrence of the text in the Find field

Replace CTRL +
H

Displays the Replace dialog box; enables you to search
and replace content in your files (files must be open and
selected to use this feature)

Execute Script Dialog box
You can use the Execute Script dialog box to run Tcl scripts from within Libero SoC. You do not need to
have a design open in order to run a script.
Specify a script file, enter Arguments (if necessary), and click Run to execute.

Figure 88 · Execute Script Dialog Box

Script file
Specify a script file. Browse to Select a script file with a valid extension (*.tcl or *.dsf).
Arguments
Input your arguments for your script file (if necessary).

Export Script Dialog Box
The Export Script Files dialog box enables you to export Tcl script file, useful if you want to run Libero SoC
in batch mode or run operations from the command line.

Figure 89 · Export Script Dialog Box

Script file
Specifies the location of the file you are about to save.

File Menu - Libero SoC

Libero User's Guide 409

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Include commands from current session only limits your commands to the current session. De-select if
you wish to include commands from other sessions.
File name formatting
Relative file names (relative to the script file location) truncates all the directories in the script with
relative filenames. Select this option if you do not plan to move the script file.
Qualified file names (full path; including directory name) includes the full pathname for all the files and
directories. Select this option if you want to move the file to a different directory.

File Menu - Libero SoC

Command Icon Shortcut Sub-menu Function

New SmartDesign Opens the appropriate New file
dialog box and prompts you to
enter a name and specify
additional options (if necessary)

HDL

SmartDesign
Testbench

HDL Testbench

SDC (sdc)

Physical
Design
Constraint
(PDC)

Simulation
Script (do)

Open Opens the Open dialog box;
enables you to select a file to open

Close
<filename>

 Closes the current file; the Project
Manager remains open

Save
<filename>

Ctrl + S Saves the current file

Save
<filename>
As

 Saves the current file as a different
type (such as a TXT file)

Import Files Opens the Import Files dialog box;
enables you to import project files
into the Project Manager

Link Files Create Link Opens the Create Link dialog box;
browse to select the file you wish to
link. Linked files are added to the
Design Explorer in the Modules
defined in multiple files list.

410 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Command Icon Shortcut Sub-menu Function

 Change All
Links

Opens the Change All Links dialog
box; enables you to update/change
all the links for the files in your
project at once.

 Unlink All: Copy
Files Locally

Copies all linked files to your local
project.

VHDL
Library >

 Add Library Adds VHDL library to your Design
Hieararchy

 Rename
Library

Renames an existing VHDL library

 Remove Library Removes an existing VHDL library
from your project

Print

 Displays the Print dialog box (if
available); allows you to print
whatever element of the project
you are working on

Files Tab and File Types
The Files tab displays all the files associated with your project, listed in the directories in which they appear.
Right-clicking a file in the Files tab provides a menu of available options specific to the file type. You can
also delete files from the project by selecting Delete from Project from the right-click menu. You can delete
files from the project and the disk by selecting Delete from Disk and Project from the right-click menu.
You can instantiate a component by dragging the component to a SmartDesign Canvas or by selecting
Instantiate in SmartDesign from the right-click menu.
You can configure a component by double-clicking the component or by selecting Open Component from
the right-click menu.

File Types
When you create a new project in the Libero SoC it automatically creates new directories and project files.
Your project directory contains all of your 'local' project files. If you import files from outside your current
project, the files must be copied into your local project folder. (The Project Manager enables you to manage
your files as you import them.)
Depending on your project preferences and the version of Libero SoC you installed, the software creates
directories for your project.
The top level directory (<project_name>) contains your PRJ file; only one PRJ file is enabled for each Libero
SoC project.
component directory - Stores your SmartDesign components (SDB and CXF files) for your Libero SoC
project.
constraint directory - All your constraint files (SDC, PDC, GCF, DCF, etc.)
designer directory - ADB files (Microsemi Designer project files), -_ba.SDF, _ba.v(hd), STP, PRB (for
Silicon Explorer), TCL (used to run designer), impl.prj_des (local project file relative to revision), designer.log
(logfile)

HDL Templates in the Libero SoC

Libero User's Guide 411

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Note: Note: The Microsemi ADB file memory requirement is equivalent to 2x the size of the ADB file. If your
computer does not have 2x the size of your ADB file's memory available, please make memory
available on your hard drive.

hdl directory - all hdl sources. *.vhd if VHDL, *.v and *.h if Verilog
phy_synthesis directory - _palace.edn, _palace.gcf, palace_top.rpt (palace logfile) and other files
generated by PALACE
simulation directory - meminit.dat, modelsim.ini files
smartgen directory - GEN files and LOG files from generated cores
stimulus directory - BTIM and VHD stimulus files
synthesis directory - *.edn, *_syn.prj (Synplify log file), *.psp (Precision project file), *.srr (Synplify logfile),
precision.log (Precision logfile), *.tcl (used to run synthesis) and many other files generated by the tools (not
managed by Libero SoC)
viewdraw directory - viewdraw.ini files

HDL Templates in the Libero SoC
Use the templates in the Libero SoC Project Manager to create HDL.
To use the templates included with the Project Manager, from the View menu, choose Windows > HDL
Templates. Find the template you want to use and double-click to add it to your HDL file.
Place the cursor where you want to add the template, browse the list of VHDL and Verilog templates, and
double-click the template to add it to your design.
The VHDL and Verilog templates are useful if you want to modify your netlist but are unfamiliar with the
language. The templates facilitate the writing of HDL files by inserting predefined language constructs. You
can also save your own template files to reuse in other designs (for example, if you wanted to add the same
header in all your files).

To create a user template:
• Import an HDL file as a template, or
• Save an open HDL file from the text editor as a template. To do so, right-click in the text editor and

choose Export as Template.

 Help Menu - Libero SoC
The Help menu enables you to access the Libero SoC online help, reference manuals, check for updates,
and view your license and version information.

Command Function

Help Topics Opens the Libero Project Manager online help

Core Displays a list of PDF files associated with the cores in your
project

Microsemi Technical
Support

Displays the Microsemi customer support web page in your
default browser

Microsemi Web Site Displays the main Microsemi page in your default browser

Check for Software
Updates

Checks for updates to the Libero Project Manager software

License Details Displays detailed license information for your version of
Libero SoC

412 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Command Function

About Libero Displays version and release numbers for Libero SoC

Import Files Dialog Box (Project Manager)
Use the Import Files dialog box to add new files to your project in the Libero SoC Project Manager.
You can import schematics, VHDL or Verilog source files, stimulus files, SDC, PDC, VCD, and SAIF files,
cores, and even tool profiles (from other Libero SoC projects).
Browse to and select the file you wish to add and click Import, or click Cancel to return to the Project
Manager.

Look in
Specifies your current directory. Browse to find your file if it is not listed here. If you are in the correct
directory and your file is not listed here, select the File of type extension to match it.
File name
Type the file name, or browse to its location and select it.
File of type
Specify the file type displayed in the dialog box.
To access this dialog: from the File menu, choose Import Files.

Importing Schematics
You can import any schematic created with ViewDraw AE.

License Details

Libero User's Guide 413

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

To import a schematic file:
1. From the File menu, choose Import Files.
2. In Files of type, choose Schematics.
3. In Look in, navigate to the drive/folder where the file is located.
4. Select the file to import and click Open. The schematic is imported into your project and appears in the

Files tab, under Schematic files.

To open the schematic, click ViewDraw AE in the Design Flow window, or right-click the file in the File
Manager and select Open Schematic.

License Details
To display information about your license:
From the Help menu, choose License Details. The software displays your complete license configuration,
all Microsemi-installed software and versions, as well as your HostID and disk volume serial number.

Link Files
You can add or change links for individual files in your project, or change all the links in your files at once.
To add a link to an individual file, right-click the file in the Files list and choose Create Link From File.
Navigate to the file you wish to link to your project and click Create Link. The Project Manager adds the file
to your Files list; a small link icon indicates that the source file is not stored with the project.

If you have a single project file with a broken link , right-click the file and choose Change Link. This
opens the Change Link dialog box and enables you to specify a new file location.
You can update all the links in your project at once. This is useful when you are linking to shared network
folders that may have been renamed or moved. To change links for your entire project, from the File menu,
choose Change All Links. This opens the Change All Links dialog box. Enter (or browse) your old and new
paths to update the links for your project.

Figure 90 · Change All Links Dialog Box

To unlink a file, right-click the file in the Files tab and choose Unlink: copy file locally. This copies the file
to the directory in your project folder that corresponds to the file type.
To unlink all files and copy them to your local project, from the File menu choose Unlink All: Copy files
locally.
You can also change/remove links from the Design Explorer; to do so, right-click the file in the Design
Explorer > Modules defined in multiple files and choose Change Link.

Log Window
Colors and Symbols
The log window displays Messages, Errors, Warnings, and Information. Messages are represented by
symbols and color-coded. The default colors are:

414 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Type Color

Error Red

Warning Blue

Information Black

The colors can be changed by using the Preferences dialog box.

Linked Messages
Error and warning messages that are dark blue and underlined are linked to online help to provide you with
more details or helpful workarounds. Click them to open online help.

New Project Dialog Box
The New Project dialog box sets your Project and Device settings and select your Design Template (if
necessary).
Device information (such as Family, Die and Package) can be modified later in the Project Settings dialog
box.
The Project Description appears in your Reports. You cannot edit your Description after you create your
project.

New Project Dialog Box

Libero User's Guide 415

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Libero SoC New Project Dialog Box

Project
Name - Identifies your project name; use Project > Save As to change the name of your project at any time.
Location - Project location; use Project > Save As to change the location of your project and preserve the
pathnames of linked files.
Preferred HDL type - Sets your HDL type; Libero SoD supports mixed-HDL designs.
Description - Appears in your Datasheet Report View; you cannot edit your Description after you create a
new project.

Device
Family - Sets your device family.
Die / Package / Speed - Sets your device die / package / speed grade, respectively.

416 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Core Voltage - Two numbers separated by a "/" are shown if mixed voltages are supported. Two numbers
separated by a "~" are shown if a wide range voltage is supported. If two voltages are shown, the first
number is the I/O voltage and the second number is the core (array) voltage.
Ramp Rate - Sophisticated power-up management circuitry is designed into every SmartFusion2 SoC
FPGA. These circuits ensure easy transition from the powered-off state to powered-up state of the device.
The SmartFusion2 system controller is responsible for systematic power-on reset whenever the device is
powered on or reset. All the I/Os are held in a high-impedance state by the system controller until all power
supplies are at their required levels and the system controller has completed the reset sequence.
The power-on reset circuitry in SmartFusion2 devices requires the VDD and VPP supplies to ramp
monotonically from 0 V to the minimum recommended operating voltage within a predefined time. There is
no sequencing requirement on VDD and VPP. Four ramp rate options are available during design
generation: 50 μs, 1 ms, 10 ms, and 100 ms. Each selection represents the maximum ramp rate to apply to
VDD and VPP.

Operating Conditions

Operating Conditions enable you to define the voltage and temperature ranges a device encounters in a
working system. The operating condition range entered here is used by SmartTime, the timing report, and
the back-annotation function. These tools enable you to analyze worst-, typical-, and best-case timing.
Supported ranges include:
• Commercial (COM)
• Industrial (IND)
• Military (MIL)
• Custom

Consult the Microsemi Data Sheet for your device, available at http://www.actel.com/techdocs/ds/, to find out
which temperature range you should use.
The temperature range represents the junction temperature of the device. For commercial and industrial
devices, the junction temperature is a function of ambient temperature, air flow, and power consumption.
For military devices, the junction temperature is a function of the case temperature, air flow, and power
consumption. Because Microsemi devices are CMOS, power consumption must be calculated for each
design. For most low power applications (e.g. 250mW), the default conditions are adequate.
Performance decreases approximately 2.5% for every 10 degrees C that the temperature values increase.
Refer to the SmartPower online help for more information about power consumption.
If you select Custom, you may enter the values for Best, Typical, and Worst.
Wide range voltage for die voltage (VCCA) and VCCI is available for ProASIC3L and 1.2V IGLOO devices.
To specify the wide range voltage for VCCI check the Wide Range option and enter the values for Best,
Typical, and Worst.

New File Dialog Box
The New File dialog box opens when you choose to create any of the following new files:

• SmartDesign
• SmartDesign Testbench - Use a SmartDesign to instantiate and connect stimulus cores or modules to

drive your Root design.
• HDL
• HDL Testbench - Creates a new HDL testbench in your project. You can use a testbench to apply

stimulus, analyze results or to compare the results of two different simulations.
• SDC (sdc)
• Physical Design Constraint (pdc)
• Simulation Script (do)

http://www.actel.com/techdocs/ds

Open Project Dialog Box

Libero User's Guide 417

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

To create a new file:
1. From the File menu, choose New > <file type>.
2. Set any additional options (if necessary) and enter a name.
3. Click OK. The saved file is added to your Libero SoC project.

Open Project Dialog Box
Use the Open Project dialog box to navigate to and open existing projects in the Project Manager. Browse to
your project and click Open, or click Cancel to return to the Project Manager.

Look in
Specifies the directory that contains your project.
File name
Type the file name, or browse to its location and select it.
File of type
Specify the file type displayed in the dialog box.
To access this dialog: from the Project menu, select Open Project.

Opening your Libero SoC project
Libero SoC does not open your most recent project automatically. You can change your default startup
preferences in the Startup tab.

To open a project in Libero SoC:
From the File menu, choose Open Project or New Project. If you create a new project the Project Manager
opens the New Project dialog box.
Tip: Recent saved projects are available from the Project menu. From the Project menu, choose Recent
Projects, and then select the project to open.

418 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

You can open an existing project by double-clicking the *.prj file or dragging the *.prj file over the Libero SoC
desktop icon.

See Also
open_project

Organize Constraint Files
The Organize Constraint Files dialog box enables you to set the constraint file and order in the Libero SoC.
Click the Use list of files organized by User radio button to add or remove Associated Constraint files.

To specify the constraint file order:
1. In the Design Flow window under Implement Design, right-click Compile and choose Organize Input

Files > Organize Constraint Files. The Organize Constraint Files dialog box appears.
2. Click the Use list of files organized by User radio button to Add/Remove source files for the selected

tool.
3. Select a file and click the Add or Remove buttons as necessary. Use the Up and Down arrows to

change the order.
4. Click OK.The files appear in the Design Flow window under Implement Design > Compile >

Constraints with a green check mark to indicate that they are being used in the project.

Figure 91 · Organize Constraint Files Dialog Box

Organize Simulation Files
The Organize Simulation files dialog box enables you to set the constraint file order in the Libero SoC.
Click the Use list of files organized by User radio button to add or remove Associated Simulation files.

To specify the simulation file order:
1. In the Design Flow window under Implement Design > Verify Post Layout Implementation, right-click

Simulate and choose Organize Input Files > Organize Simulation Files. The Organize Simulation
Files dialog box appears.

2. Click the Use list of files organized by User radio button to Add/Remove source files for the selected
tool.

3. Select a file and click the Add or Remove buttons as necessary. Use the Up and Down arrows to
change the order.

4. Click OK.

Organize Source Files

Libero User's Guide 419

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 92 · Organize Simulation Files Dialog Box

Organize Source Files
The Organize Source Files dialog box enables you to set the source file order in the Libero SoC.
Click the Use list of files organized by User radio button to Add/Remove source files for the selected tool.

To specify the file order:
1. In the Design Flow window under Implement Design, right-click Synthesize and choose Organize

Input Files > Organize Source Files. The Organize Source Files dialog box appears.
2. Click the Use list of files organized by User radio button to Add/Remove source files for the selected

tool.
3. Select a file and click the Add or Remove buttons as necessary. Use the Up and Down arrows to

change the order of the Associated Source files.
4. Click OK.

Figure 93 · Organize Source Files Dialog Box

420 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Organize Stimulus Files Dialog Box
The Organize Stimulus files dialog box enables you to set the stimulus file order in the Libero SoC.
Click the Use list of files organized by User radio button to add or remove Associated Stimulus files.

To specify the stimulus file order:
1. In the Design Flow window under Create Design > Verify Pre-Synthesized Design, right-click Simulate

and choose Organize Input Files > Organize Stimulus Files. The Organize Stimulus Files dialog box
appears.

2. Click the Use list of files organized by User radio button to Add/Remove source files for the selected
tool.

3. Select a file and click the Add or Remove buttons as necessary. Use the Up and Down arrows to
change the order.

4. Click OK.

Figure 94 · Organize Stimulus Files Dialog Box

Physical Synthesis and the Libero SoC
If you want to run physical synthesis on your design (such as with PALACE) you must run it manually.
Automatic physical synthesis is not supported from within the Libero SoC.

Preferences Dialog Box

Libero User's Guide 421

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Preferences

Preferences Dialog Box
Use the Preferences dialog to customize the Libero SoC Project Manager.

To set your preferences:
1. From the Project menu, choose Preferences.
2. Specify your preferences.

Software update

Log window

Vault update

Startup (File association)

Text Editor

IP Cores

Proxy

PDF reader (UNIX only)

Web browser (UNIX only)

3. Click OK.

Note: Note: These preferences are stored on a per-user basis; they are not project specific.

Project Menu - Libero SoC

Command Sub-
menu

Icon Function

New Project

Starts the New Project Wizard

Open Project

Opens the Open Project dialog box

Close <project
name>

 Closes the current active project; the Project
Manager remains open

Save <project
name>

Saves the current project

Save <project
name>

 Saves the current project in a new directory;
prompts you to enter a new project name

Project Settings Opens the Project Settings dialog box, enables
you to set your Device, HDL Type, Design Flow,

422 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Command Sub-
menu

Icon Function

Simulation and Simulation Library options.

Tool Profiles Opens the Project Profile dialog box; enables
you to specify locations for your third-party
synthesis, stimulus, and simulation tools. Libero
SoC includes tools for synthesis, stimulus, and
simulation.

Vault/Repositories
Settings

 Opens the Vault/Repositories Settings dialog
box; enables you to view/change the location of
your vault and repositories.

Preferences Opens the Preferences dialog box

Execute Script Opens Execute Script dialog box; enables you
to run Tcl script from the Project Manager

Export Script Opens the Export Script dialog box; enables you
to export a Tcl script

Recent Projects Opens list of recent projects.

Exit Closes Libero SoC

Project Settings Dialog Box
The Project Settings dialog box enables you to modify your Device, HDL, and Design Flow settings and your
Simulation Options.

Figure 95 · Libero SoC Project Settings Dialog Box

Device
Sets the device settings for your project. See the New Project dialog box for a detailed description of the
options.

Project Settings: Simulation

Libero User's Guide 423

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Device I/O Settings
Reserve Pins for Probes - Reserve your pins for probing if you intend to debug using SmartDebug.
Default I/O Technology - Sets all your I/Os to a default value. You can change the values for individual I/Os
in the I/O Attribute Editor.
Default I/O Voltage Range displays your possible voltages based on your specified Operating Conditions;
change your Operating Conditions to change the voltage range.

Preferred HDL Type
Sets your HDL type to VHDL or Verilog.

Design Flow

Block Flow
Enable Designer Block creation - Enables you to create Designer Blocks in the Libero SoC. Designer
Blocks are useful if you want to create a block and re-use it in several designs. See the Block help for more
information.

File Detection
Detect new files on disk automatically - Libero SoC checks and adds any new files that appear in your
project directory. This feature is useful if you work on constraint files outside of the Project Manager and
copy the files into your project directory when you are done.
Root <filename>
Enable Synthesis - Option to enable or disable synthesis for your root file; useful if you wish to skip
synthesis on your root file by default.

ViewDraw
Click the checkbox to enable ViewDraw in the Design Flow window.
Generate HDL netlist after a Save&Check in ViewDraw - Useful if you wish to eliminate the manual step
of generating your HDL netlist after a Save&Check.
Update viewdraw.ini automatically - May be useful if the Project Manager does not create a valid
viewdraw.ini file. Click the checkbox to enable.

File Detection
Detect new files on disk automatically enables the software to see new files when you add them to your
project. If you deselect this option, you must add the new files manually.

Root Datasheet
Enable Synthesis - Set this option to run synthesis on your root datasheet.

Compile
Default I/O Attribute sets your default global I/O attribute; useful if you are working with a device that has a
unique I/O attribute.

Simulation Options and Simulation Libraries
Sets your simulation options; see the Simulation Options topic for a full summary.

Project Settings: Simulation
To access this dialog box, from the Project menu choose Project Settings and click Simulation Options >
DO File.

424 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Use the Simulation tab to set your simulation values in your project. You can set change how Libero SoC
handles Do files in simulation, import your own Do files, set simulation run time, and change the resolution of
your simulation. You can also change your library mapping in this dialog box.

Figure 96 · Project Settings: Simulation Options - DO File

DO file

Use automatic DO file
 Select if you want the Project Manager to automatically create a DO file that will enable you to simulate your
design.
Simulation Run Time - Specify how long the simulation should run. If the value is 0, or if the field is empty,
there will not be a run command included in the run.do file.
Testbench module name - Specify the name of your testbench entity name. Default is “testbench,” the
value used by WaveFormer Pro.
Top Level instance name - Default is <top_0>, the value used by WaveFormer Pro. The Project Manager
replaces <top> with the actual top level macro when you run ModelSim.
Generate VCD file - Click the checkbox to generate a VCD file.
VCD file name - Specifies the name of your generated VCD file. The default is power.vcd; click power.vcd
and type to change the name.

Select Verilog Language Syntax
Sets your DO file Verilog language syntax.

Select VHDL Language Syntax
VHDL 2008 - Select if you wish to use VHDL 2008 for your DO file.

User defined DO file - Enter the DO file name or click the browse button to navigate to it.
DO command parameters - Text in this field is added to the DO command.

Waveforms
Include DO file - Including a DO file enables you to customize the set of signal waveforms that will be
displayed in ModelSim.
Display waveforms for - You can display signal waveforms for either the top-level testbench or for the
design under test. If you select top-level testbench then Project Manager outputs the line 'add wave
/testbench/*' in the DO file run.do. If you select DUT then Project Manager outputs the line 'add wave
/testbench/*' in the run.do file.

Project Sources

Libero User's Guide 425

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Log all signals in the design - Saves and logs all signals during simulation.

Vsim Commands
SDF timing delays - Select Minimum (Min), Typical (Typ), or Maximum (Max) timing delays in the back-
annotated SDF file.
Resolution
The default is family specific (review the dialog box for your default setting), but you can customize it to fit
your needs.
Additional options - Text entered in this field is added to the vsim command.

Simulation Libraries
Use default library path - Sets the library path to the default from your Libero SoC installation.
Library path - Enables you to change the mapping for your VHDL library. Type in the pathname or click the
Browse button to navigate to your library directory.

Project Sources
Project sources are any design files that make up your design. These can include schematics, HDL files,
simulation files, testbenches, etc. Anything that describes your design or is needed to program the device is
a project source.
Source files appear in the Project Flow window. The Design Hierarchy tab displays the structure of the
design modules as they relate to each other, while the Files tab displays all the files that make up the
project.
The design description for a project is contained within the following types of sources:
• Schematics
• HDL Files (VHDL or Verilog)
• SmartDesign components

One source file in the project is the top-level source for the design. The top-level source defines the inputs
and outputs that will be mapped into the devices, and references the logic descriptions contained in lower-
level sources. The referencing of another source is called an instantiation. Lower-level sources can also
instantiate sources to build as many levels of logic as necessary to describe your design.

File Linking
The Project Manager enables you to link to files not managed in your Libero project. Linked files are useful if
you want to preserve a file in an archive, or if more than one person is using a file and it is impractical to
store it on your local machine. If you link to external files and rename your project, the Project Manager asks
if you want to copy the external files into your project or continue using the link. Note that some files (such
as schematics) cannot be linked.
Some project sources can be imported.
Sources for your project can include:

Source File Extension

Schematic *.1-9

Verilog Module *.v

VHDL Entity *.vhd

426 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Source File Extension

SmartDesign Component *.vhd

Testbench *.vhd

Stimulus *.tim

Programming Files *.afm; *.prb

See Also
Creating HDL Sources
Generating a Bitstream file
Generating Programming files

Reserved Microsemi Keywords
For a complete list of reserved Microsemi keywords, see the online help.

Right-Click (Shortcut) Menu Options in Libero SoC Design
Hierarchy

Right-click menu options vary depending on your design state.
The option in bold the right-click menu is the action performed when you double-click the tool. For example,
if you expand Implement Design and right-click Synthesize, Run is bold, indicating that it is the default
action when you double-click the tool in the Design Hierarchy.
• Run - Runs the current tool. If any predecessor tools are required to be in the PASSED state, then

they will be run as well.
• Clean and Run All- Clean all predecessor tools (deletes Report and output files) and run up to this

tool.
• Clean - Delete report and output files of this tool. Subsequent tools become OUT OF DATE.
• Open Interactively - Open the tool to set/change the tool options.
• Update and Run -- Available if a tool is in the OUT OF DATE state; it cleans all predecessor tools that

are in the OUT OF DATE state and runs up to this tool.
• Run Synthesize > Compile > Place and Route > Verify Timing > Generate Programming Data >

Program Device - Enables you to bypass the Fabric portion of the design flow.

For example, in SmartFusion you can go directly from MSS configuration to Program Device by just using the .EFC file. For
users who are not using any of the FPGA fabric, this is useful because you can skip the entire FPGA flow. In that instance you can
select Run MSS Configurator > Program Device.

• Organize Input Files - Enables you to customize which project files are used by the tool.
• Import Files - Shortcut to import files that are relevant to that tool. For example, the relevant files for

the Compile tool are PDC and SDC files, so the dialog is pre-filtered to only allow importing of those
types

• Edit Profile - Shortcut to open the Tool Profiles dialog box.
• View Report - Opens the report of that tool in the Reports view.
• Configure Options- - Opens the Libero SoC tool options specific to that tool.

Save Project As Dialog Box

Libero User's Guide 427

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Save Project As Dialog Box
The Save Project As dialog box enables you to save your entire project with a new name and location.
Enter the name and location for your modified project and click OK to continue.

Figure 97 · Save Project As Dialog Box

Project Name
Type the project name for your modified project.
Project Location
Accept the default location or Browse to the new location where you can save and store your project. All
files for your project are saved in this directory.
Content
Copy Links locally - Select this checkbox to copy the links from your current project into your new project.
If you do not select this checkbox, the links will not be copied and you must add them manually.
Files

• All - Includes all your project and source files in your new project.
• Project files only - Copies only your project files into your new project (only the files listed in the Files

window). Note that pin mapping files, PDC files created in MVN and other generated files are not
preserved when you select Project files only.

• Source files only - Copies only your source files into your new project; for example, simulation files are
not preserved.

• None - Saves a new empty project.
To access this dialog, from the Project menu, choose Save Project As.

Saving Files
Files and projects are saved when you close them.

To save an active file:
• From the Project menu, choose Save or Save As.

428 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

• Click the Save button in the toolbar.

Script Export Options Dialog Box
If you export a Tcl script in the Project Manager, the Script Export Options dialog box appears.

Figure 98 · Script Export Options Dialog Box

Include commands from current project only - Select this option if you want to include all the commands
from your current project.
Filename Formatting - Choose Relative filenames if you do not intend to move the Tcl script from the
saved location, or Qualified filenames if you plan to move the Tcl script on your machine.

Search in Libero SoC
Search options vary depending on your search type.

To find a file:
1. Use CTRL + F to open the Search window.

2. Enter the name or part of name of the object you wish to find in the Find field. '*' indicates a wildcard,
and [*-*] indicates a range, such as if you search for a1, a2, ... a5 with the string a[1-5].

3. Set the Options for your search (see below for list); options vary depending on your search type.
4. Click Find All (or Next if searching Text).

Searching an open text file, Log window or Reports highlights search results in the file itself.
All other results appear in the Search Results window (as shown in the figure below).

Match case: Select to search for case-sensitive occurrences of a word or phrase. This limits the search so it
only locates text that matches the upper- and lowercase characters you enter.
Match whole word: Select to match the whole word only.

Search in Libero SoC

Libero User's Guide 429

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Figure 99 · Search Results

Current Open SmartDesign
Searches your open SmartDesign, returns results in the Search window.
Type: Choose Instance, Net or Pin to narrow your search.
Query: Query options vary according to Type.

Type Query Option Function

Instance Get Pins Search restricted to all pins

Get Nets Search restricted to all nets

Get Unconnected Pins Search restricted to all unconnected pins

Net Get Instances Searches all instances

Get Pins Search restricted to all pins

Pin Get Connected Pins Search restricted to all connected pins

Get Associated Net Search restricted to associated nets

Get All Unconnected Pins Search restricted to all unconnected pins

Current Open Text Editor
Searches the open text file. If you have more than one text file open you must place the cursor in it and click
CTRL + F to search it.
Find All: Highlights all finds in the text file.
Next: Proceed to next instance of found text.
Previous: Proceed to previous instance of found text.
Replace with: Replaces the text you searched with the contents of the field.
Replace: Replaces a single instance.
Replace All: Replaces all instances of the found text with the contents of the field.

Design Hierarchy
Searches your Design Hierarchy; results appear in the Search window.
Find All: Displays all finds in the Search window.

430 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Stimulus Hierarchy
Searches your Stimulus Hierarchy; results appear in the Search window.
Find All: Displays all finds in the Search window.

Log Window
Searches your Log window; results are highlighted in the Log window - they do not appear in the Search
Results window.
Find All: Highlights all finds in the Log window.
Next: Proceed to next instance of found text.
Previous: Proceed to previous instance of found text.

Reports
Searches your Reports; returns results in the Reports window.
Find All: Highlights all finds in the Reports window.
Next: Proceed to next instance of found text.
Previous: Proceed to previous instance of found text.

Files
Searches your local project file names for the text in the Search field; returns results in the Search window.
Find All: Lists all search results in the Search window.

Files on disk
Searches the files' content in the specified directory and subdirectories for the text in the Search field;
returns results in the Search window.
Find All: Lists all finds in the Search window.
File type: Select a file type to limit your search to specific file extensions, or choose *.* to search all file
types.

Select a Workspace Dialog Box
This dialog box enables you to choose which processor you want to open when you have two or more
processors in your design.
It is only available if you have two or more processors and double-click Develop Firmware > Write
Application Code.

Figure 100 · Select a Workspace Dialog Box

Organize Source Files
The Organize Source Files dialog box enables you to set the source file order in the Libero SoC.
Click the Use list of files organized by User radio button to Add/Remove source files for the selected tool.

Stimulus Hierarchy

Libero User's Guide 431

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

To specify the file order:
1. In the Design Flow window under Implement Design, right-click Synthesize and choose Organize

Input Files > Organize Source Files. The Organize Source Files dialog box appears.
2. Click the Use list of files organized by User radio button to Add/Remove source files for the selected

tool.
3. Select a file and click the Add or Remove buttons as necessary. Use the Up and Down arrows to

change the order of the Associated Source files.
4. Click OK.

Figure 101 · Organize Source Files Dialog Box

Stimulus Hierarchy
To view the Stimulus Hierarchy, from the View menu choose Windows > Stimulus Hierarchy.
The Stimulus Hierarchy tab displays a hierarchical representation of the stimulus and simulation files in the
project. The software continuously analyzes and updates files and content. The tab (see figure below)
displays the structure of the modules and component stimulus files as they relate to each other.

Figure 102 · Stimulus Hierarchy Dialog Box

Expand the hierarchy to view stimulus and simulation files. Right-click an individual component and choose
Show Module to view the module for only that component.

432 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Seelct Components or Modules from the Show drop-down list to change the display mode. The
Components view displays the stimulus hierarchy; the modules view displays HDL modules and stimulus
files.
The file name (the file that defines the module or component) appears in parentheses.
Click Show Root Testbenches to view only the root-level testbenches in your design.
Right-click and choose Properties; the Properties dialog box displays the pathname, created date, and last
modified date.
All integrated source editors are linked with the SoC software; if you modify a stimulus file the Stimulus
Hierarchy automatically updates to reflect the change.

To open a stimulus file:
Double-click a stimulus file to open it in the HDL text editor.
Right-click and choose Delete from Project to delete the file from the project. Right-click and choose Delete
from Disk and Project to remove the file from your disk.
Icons in the Hierarchy indicate the type of component and the state, as shown in the table below.

Table 14 · Design Hierarchy Icons

Icon Description

 SmartDesign component

 SmartDesign component with HDL netlist not generated

 SmartDesign testbench

 SmartDesign testbench with HDL netlist not generated

 IP core was instantiated into SmartDesign but the HDL netlist has not been
generated

 HDL netlist

Text Editor
You can use the Libero IDE HDL text editor or another text editor.

To set your text editor preferences:
1. From the Project menu, choose Preferences.
2. Click Text Editor.
2. Set your options and click OK.

Libero SoC text editor options:
• Use Libero text editor: Select to use the Libero HDL text editor.
• Replace tab with spaces: Enter the number of spaces you want entered when using the tab key.
• Open programming/debugging files as read-only:Select to specify read-only permission to .stp and

.prb files.
User defined text editor
• User defined text editor: Deselect Use Libero text editor to activate this area. Enter the location of the

the EXE for your alternative text editor.
• Additional parameters: Use to specify other settings to pass to the text editor. Typically, it is not

necessary to modify this field.
User Template Location - Sets the path where your user templates are exported

Tool Profiles Dialog Box

Libero User's Guide 433

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Tool Profiles Dialog Box
The Tool Profiles dialog box enables you to add, edit, or delete your project tool profiles.
Each Libero SoC project can have a different profile, enabling you to integrate different tools with different
projects.

To set or change your tool profile:
1. From the File menu, choose Tool Profiles. Select the type of tool you wish to add.
• To add a tool: Select the tool type and click the Add button . Fill out the tool profile and click OK.
• To change a tool profile: After selecting the tool, click the Edit button to select another tool, change

the tool name, or change the tool location.
• To remove a tool from the project:After selecting a tool, click the Remove button.

2. When you are done, click OK.

Figure 103 · Libero SoC Tool Profiles Dialog Box

Tools Menu - Libero SoC

Command Function

SmartDesign Opens the Create New SmartDesign dialog box. Enter a filename
and click OK to open SmartDesign.

HDL Opens the Create a new HDL file dialog box. Enter a filename and
click OK to open the editor.

ViewDraw Opens the New file dialog box and defaults to Schematic. Enter a
filename and click OK to open ViewDraw.

Synthesis Starts synthesis

Simulation Starts the simulation software and opens any existing simulation
files in your project

FlashPro Starts the FlashPro programming tool

Identify Debugger Opens the Identify Debugger (from Synplify)

434 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Command Function

Write Application
Code

Enables you to use a third-party IDE tool, such as Keil or IAR.

Vault/Repositories Settings Dialog Box
The Vault/Repositories Settings dialog box enables you to add, remove, or reset your repositories to default
settings.
Use Vault location to specify a new location for your local vault.

Figure 104 · Vault/Repositories Settings Dialog Box

Videos - Libero SoC
There are short videos available that explain a variety of elements in Libero SoC. The maximum video
length is 60 seconds, unless otherwise noted. See the SoC website for a complete list of the latest video
content, as well as tutorials and online training.

Video Links
SoC Work Area Description - The SoC Work Window displays the HDL Editor, Report view, and
SmartDesign Canvas.
Design Hierarchy Tab and Files Tab - Introduces the Design Hierarchy and Files tabs in the SoC GUI.
Design Flow Tab and Catalog - Introduces the Design Flow tab and the Catalog.
AutoConnect in SmartDesign - Demonstrates the Autoconnect feature in SmartDesign.
Connection Mode in SmartDesign - Demonstrates the manual Connection mode feature in SmartDesign.

View Design Datasheet/Report
The Design Datasheet/Report lists all the reports available for your design.
Reports are added automatically when you move through design development. For example, Timing reports
are added when you run timing analysis on your design. The reports are updated each time you run timing
analysis.
If a report is not listed you may have to open it manually. For example, you must double-click Export IBIS
Model to display the IBIS Model report in the Design Datasheet.
You can view the following reports from here:
• Analyze Timing - Lists the following delay reports:

http://www.actel.com/support/training/tutorials.aspx
http://mscctraining.com/
http://media-content.s3.amazonaws.com/soc_work_area_description/soc_work_area_description.html
http://media-content.s3.amazonaws.com/dh_and_files_tabs/dh_and_files_tabs.html
http://media-content.s3.amazonaws.com/design_flow_and_catalog_tabs/design_flow_and_catalog_tabs.html
http://media-content.s3.amazonaws.com/sdesign_autoconnect_example/sdesign_autoconnect_example.html
http://media-content.s3.amazonaws.com/sdesign_connection_mode/sdesign_connection_mode.html

View Menu - Libero SoC

Libero User's Guide 435

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

• Timing violations report - Flat Slack report provides information about constraint
violations.

• Timing Report - Displays the timing information organized by clock domain.

• Compile - Summarizes your compile parameters and lists any related warnings, errors, PDC
commands, device utilization and net information.

• Synthesize - Lists the following synthesis reports:
• synplify.log - Outputs the Synplify log file output; identical to log file content in

Synplify Pro AE if you run synthesis manually.

• datasheet.srr - Lists the Pin Description, DC Electrical Characteristics, and AC
electrical characteristics.

• run_options.txt - Lists all the run options organized by category: project files;
implementation; device options; compile/mapping options; mapper options.

• Export Pin Report - Lists the pins in your device sorted by I/O signal name and by package number.
• Place-and-Route - Lists the following reports:

• Place-and-Route - Lists Compile and netlist information.

• Global Net and Global Usage- Contains information about the net(s) that are assigned
or routed using Global or LocalClock resources

• I/O bank reports - Provides information on the I/O functionality, I/O technologies,
I/O banks and I/O voltages.

• Export IBIS Model - Exports the IBIS model report, which provides a standard file format for recording
parameters like driver output impedance, rise/fall time, and input loading, which may then be used by
any software application.

• Programming - Lists the programming information for your design.

View Menu - Libero SoC

Command Sub-menu Shortcut Function

Windows > Catalog Shows/hides the Catalog

Cores Shows/hides the list of cores used in your
design

Design Flow Shows/hides the Design Flow window

Design
Hierarchy

 Shows/hides the Design Hierarchy

Files Shows/hides the Files window

HDL
Templates

 Shows/hides the HDL Templates window

Log Shows/hides the Log window

Search Shows/hides Search results

436 Libero User's Guide

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Command Sub-menu Shortcut Function

Results

Stimulus
Hierarchy

 Shows/hides the Stimulus Hierarchy

Start Page Displays the Welcome to Libero SoC page;
the page includes links to help and other
pages that may be helpful for new users.

Refresh
Design
Hierarchy

 F5 Updates the Hierarchy tab. Useful if you add
files to the project and the software does not
show them in the Hierarchy.

Maximize
Work Area

 CTRL+W Hides the Catalog, Log Window, and Design
Explorer windows (if open) and expands the
selected tab in the Project Flow or
SmartDesign work area.

Reset Layout Returns the Libero SoC window layout to
default.

VHDL Library - Add, Remove, or Rename
Libero SoC enables you to manage your VHDL libraries from within the Project Manager.
From the File menu, select VHDL Library and Add, Rename, or Remove to update your library.
When you add a library it appears in your Hierarchy.

Libero User's Guide 437

NOTE: Links and cross-references in this PDF file may point to external files and generate an error
when clicked. View the online help included with software to enable all linked content.

Product Support

The Microsemi SoC Products Group backs its products with various support services including a Customer
Technical Support Center and Non-Technical Customer Service. This appendix contains information about
contacting the SoC Products Group and using these support services.

Contacting the Customer Technical Support Center
Microsemi staffs its Customer Technical Support Center with highly skilled engineers who can help answer
your hardware, software, and design questions. The Customer Technical Support Center spends a great
deal of time creating application notes and answers to FAQs. So, before you contact us, please visit our
online resources. It is very likely we have already answered your questions.

Technical Support
Microsemi customers can receive technical support on Microsemi SoC products by calling Technical
Support Hotline anytime Monday through Friday. Customers also have the option to interactively submit and
track cases online at My Cases or submit questions through email anytime during the week.
Web: www.actel.com/mycases
Phone (North America): 1.800.262.1060
Phone (International): +1 650.318.4460
Email: soc_tech@microsemi.com

ITAR Technical Support
Microsemi customers can receive ITAR technical support on Microsemi SoC products by calling ITAR
Technical Support Hotline: Monday through Friday, from 9 AM to 6 PM Pacific Time. Customers also have
the option to interactively submit and track cases online at My Cases or submit questions through email
anytime during the week.
Web: www.actel.com/mycases
Phone (North America): 1.888.988.ITAR
Phone (International): +1 650.318.4900
Email: soc_tech_itar@microsemi.com

Non-Technical Customer Service
Contact Customer Service for non-technical product support, such as product pricing, product upgrades,
update information, order status, and authorization.
Microsemi’s customer service representatives are available Monday through Friday, from 8 AM to 5 PM
Pacific Time, to answer non-technical questions.
Phone: +1 650.318.2470

5-02-9124-29/03.13

Microsemi Corporate Headquarters
One Enterprise Drive, Aliso Viejo CA 92656
Within the USA: (800) 713-4113
Outside the USA: (949) 221-7100
Fax: (949) 756-0308 · www.microsemi.com

Microsemi Corporation (NASDAQ: MSCC) offers a comprehensive portfolio of semiconductor
solutions for: aerospace, defense and security; enterprise and communications; and industrial
and alternative energy markets. Products include high-performance, high-reliability analog and
RF devices, mixed signal and RF integrated circuits, customizable SoCs, FPGAs, and
complete subsystems. Microsemi is headquartered in Aliso Viejo, Calif. Learn more at
www.microsemi.com.

© 2013 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of
Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.

http://www.microsemi.com/
http://www.microsemi.com/

	Welcome to Microsemi's Libero® SoC v11.0
	Design Flow - Libero SoC
	Design Flow Window Updates for SmartFusion2 Only
	Libero SoC Design Flow - SmartFusion2 ONLY
	Supported Families
	File Types in Libero SoC
	Software Tools - Libero SoC
	Frequently Asked Questions - Libero SoC
	Firmware Cores Frequently Asked Questions
	Software IDE Integration
	System Builder
	SmartFusion Design Flow Overview
	Create a SmartFusion Project
	Configure SmartFusion Microcontroller Subsystem (MSS) Peripherals
	Generate SmartFusion Files
	Completing a Design Using the Libero SoC Tool Suite
	Create ViewDraw Schematic
	About SmartDesign
	SmartDesign Design Flow
	Using Existing Projects with SmartDesign
	SmartDesign Frequently Asked Questions
	General Questions
	Instantiating into your SmartDesign
	Working in SmartDesign
	Working with Processor-Based Designs in SmartDesign
	Making your Design Look Nice
	Generating your Design
	General Questions
	Instantiating Into Your SmartDesign
	Working in SmartDesign
	Working with Processor-Based Designs in SmartDesign
	Making your Design Look Nice
	Generating your Design

	Getting Started with SmartDesign
	Creating a New SmartDesign Component
	Opening an Existing SmartDesign Component
	Saving/Closing a SmartDesign Component
	Generating a SmartDesign Component
	Importing a SmartDesign Component
	Deleting a SmartDesign Component from the Libero SoC Project
	Memory Maps / Data Sheet
	Modify Memory Map Dialog Box

	Canvas View
	Canvas Overview
	Displaying Connections on the Canvas
	Making Connections Using the Canvas
	Simplifying the Display of Pins on an Instance using Pin Groups
	Bus Instances
	Adding Graphic Objects
	Auto-Arranging Instances
	Replace Component for Instance
	Replace Instance Version
	Slicing
	Rename Net
	Organizing Your Design on the Canvas

	Creating a SmartDesign
	Adding Components and Modules (Instantiating)
	Adding or Modifying Top Level Ports

	Connecting Instances
	Automatic Connections
	QuickConnect
	Manual Connections
	Deleting Connections
	Top-Level Connections

	Bus Interfaces
	About Bus Interfaces
	Using Bus Interfaces in SmartDesign
	Adding or Modifying Bus Interfaces in SmartDesign
	Bus Interfaces
	DirectCore Bus Interfaces
	Show/Hide Bus Interface Pins
	Default Tie-offs with Bus Interfaces
	Tying Off (Disabling) Unused Bus Interfaces
	Required vs. Optional Bus Interfaces
	Promoting Bus Interfaces to Top-level

	Incremental Design
	Reconfiguring a Component
	Fixing an Out-of-Date Instance
	Replacing Component Version
	Design State Management
	 XE "Design Rules Check" Design Rules Check
	Generating a SmartDesign Component

	Reference
	SmartDesign Menu
	SmartDesign Glossary
	Canvas Icons
	Create Core from HDL
	Create HDL and Create HDL Stimulus
	Using the HDL Editor
	Importing HDL Source Files
	Mixed-HDL Support in Libero SoC
	SmartDesign Testbench
	HDL Testbench
	View/Configure Firmware Cores
	Project Sources

	Designing with Designer Block Components
	Designer Blocks and Synthesis
	Managing I/Os in a Designer Block Component
	Globals and Designer Block Components
	Designer Block Compile Report
	Designer Block Component Limitations

	Creating a Designer Block Component in Libero SoC
	Creating a Designer Block Component in Libero SoC
	Instantiating a Designer Block in Libero SoC
	RTL Simulation
	Simulation Options
	Selecting a Stimulus File for Simulation
	Selecting Additional Modules for Simulation
	Performing Functional Simulation
	Performing DirectCore Functional Simulation
	I/O Constraints - SmartFusion2
	Timing Constraints
	Floorplan Constraints - SmartFusion2
	Constrain Design - Import I/O Constraints and Import Timing Constraints
	Synthesize
	Synplify Pro ME
	Precision RTL
	Instrument Design with the Identify Debugger
	Verify Post-Synthesis Implementation - Simulate
	Compile
	Compile Options
	Configure Flash*Freeze

	Place and Route
	Place and Route - SmartFusion2
	SmartFusion, IGLOO, ProASIC3 and Fusion Place and Route Advanced Options
	Simulate - Opens ModelSim AE
	Generate Back Annotated Files - SmartFusion2 Only
	Export Back Annotated Files
	Generate Fabric Programming Data - SmartFusion2 Only

	Device Programming
	Programming Connectivity and Interface - SmartFusion2 Only
	Programmer Settings - SmartFusion2 Only
	Device I/O States During Programming
	Security Features Frequently Asked Questions
	Security Programming Files
	Security Policy Manager (SPM)
	Update Policy - Programming
	Debug Security Policy
	Protocol Policy
	Operational Integrity Policy
	Programming Features
	Update eNVM Memory Content
	Program Device
	SmartFusion2 Programming - Default Settings
	SmartFusion2 Programming - Custom Settings
	Exit Codes
	SmartFusion2 Programming Authentication Error Codes (AUTHERRCODE)
	SmartFusion2 Programming Error Codes (ERRORCODE)
	Programming File Actions - SmartFusion2
	Export Programming Files - SmartFusion2
	SmartFusion2 Programming Tutorial
	MSS Configuration - eNVM
	Generate Fabric Programming Data - SmartFusion2 Only
	Edit Design Hardware Configuration - Device I/O States During Programming
	Configure Security Policy Manager
	Programming Features
	Update eNVM Memory Content
	Program Design - Program Device
	Handoff Design for Production
	Programming SmartFusion in the Libero SoC

	Generating Programming Files
	Generate a Programming File in FlashPoint
	Programming File Types
	Generate a Programming File for SmartFusion
	Generate a Programming File for AFS Device Support - Designer Only
	Generate a Programming File for Serialization Support in In House Programming (IHP)
	Creating a Programming Database (PDB) File in Designer
	Programming Embedded Flash Memory Block
	Programming the FlashROM
	Silicon Signature
	Programming Security Settings
	Custom Security Levels
	Reprogramming a Secured Device
	Custom Serialization Data for FlashROM Region
	Custom Serialization Data File Format
	Specifying I/O States During Programming
	Custom I/O Settings and Boundary Scan Registers
	Specifying I/O States During Programming - I/O States and BSR Details
	Specify I/O States During Programming Dialog Box
	Generate a DAT file
	 XE "FlashLock" FlashLock®
	 XE "Files:Generating a Bitstream file" Generating Bitstream and STAPL files
	Export Programming File
	Export Pin Report
	Export BSDL File
	Export IBIS Model
	Develop Firmware - Write Application Code
	Running Libero SoC from your Software Tool Chain
	Project Manager Tcl Command Reference

	TCL Command Reference
	Introduction to Tcl Scripting
	Basic Syntax
	Types of Tcl commands
	Variables
	Command substitution
	Quotes and braces
	Lists and arrays
	Control structures
	Handling Exceptions (Tcl Scripting)
	Print statement and Return values
	Running Tcl Scripts from the GUI
	Running Tcl scripts from the Command Line
	Exporting Tcl Scripts
	extended_run_gui - Designer Only
	extended_run_shell - Designer Only
	Sample Tcl Script - Project Manager
	Tcl Flow in the Libero SoC
	Project Manager Tcl Command Reference
	Tcl Command Documentation Conventions

	Project Manager Tcl Commands
	add_file_to_library
	add_library
	add_modelsim_path
	add_profile
	associate_stimulus
	change_link_source
	check_hdl
	close_project
	check_schematic
	create_links
	create_symbol
	defvar_get
	defvar_set
	delete_files
	edit_profile
	export_as_link
	export_io_constraints_from_adb
	export_profiles
	generate_ba_files
	generate_hdl_from_schematic
	generate_hdl_netlist
	import_files (Libero SoC)
	new_project
	open_project
	organize_cdbs
	organize_constraints
	organize_sources
	project_settings
	read_active_probe
	read_lsram
	read_usram
	refresh
	remove_core
	remove_library
	remove_profile
	rename_library
	rollback_constraints_from_adb
	run_designer
	run_drc
	run_simulation
	run_synthesis
	save_log
	save_project
	save_project_as
	select_active_probe
	select_profile
	set_actel_lib_options
	set_debug_data_file
	set_device (Project Manager)
	set_live_probe
	set_modelsim_options
	set_option
	set_user_lib_options
	set_root
	synplify
	synplify_pro
	unlink
	use_file
	use_source_file
	write_active_probe
	write_lsram
	write_usram
	Designer Tcl Command Reference
	Tcl Command Documentation Conventions
	add_probe
	all_inputs
	all_outputs
	all_registers
	are_all_source_files_current
	backannotate
	check_timing_constraints
	clone_scenario
	close_design
	compile
	create_clock
	create_generated_clock
	create_scenario
	delete_probe
	delete_scenario
	export
	export (Designer Block support for IGLOO, Fusion and ProASIC3 Families)
	generate_probes
	get_cells
	get_clocks
	get_current_scenario
	get_defvar
	get_design_filename
	get_design_info
	get_nets
	get_out_of_date_files
	get_pins
	get_ports
	import_aux
	import_source
	ioadvisor_apply_suggestion
	ioadvisor_commit
	ioadvisor_restore
	ioadvisor_restore_initial_value
	ioadvisor_set_outdrive
	ioadvisor_set_outputload
	ioadvisor_set_slew
	is_design_loaded
	is_design_modified
	is_design_state_complete
	is_source_file_current
	layout - SmartFusion, IGLOO, ProASIC3 and Fusion
	list_clocks
	list_clock_latencies
	list_clock_uncertainties
	list_disable_timings
	list_false_paths
	list_generated_clocks
	list_input_delays
	list_max_delays
	list_min_delays
	list_multicycle_paths
	list_objects
	list_output_delays
	list_scenarios
	LOGFILE
	new_design
	open_design
	pin_assign
	pin_commit
	pin_fix
	pin_fix_all
	pin_unassign
	pin_unassign_all
	pin_unfix
	remove_clock
	remove_clock_latency
	remove_clock_uncertainty
	remove_disable_timing
	remove_false_path
	remove_generated_clock
	remove_input_delay
	remove_library
	remove_max_delay
	remove_min_delay
	remove_multicycle_path
	remove_output_delay
	rename_library
	rename_scenario
	report
	report (Bottleneck) using SmartTime
	report (Cycle Accurate Power Report)
	report (Datasheet) using SmartTime
	report (Power Scenario)
	report (Timing) using SmartTime
	report (Timing violations) using SmartTime
	save_design
	set_clock_latency
	set_clock_uncertainty
	set_current_scenario
	set_defvar (Designer Only)
	set_design
	set_device
	set_disable_timing
	set_false_path
	set_input_delay
	set_max_delay
	set_min_delay
	set_multicycle_path
	set_output_delay
	smartpower_add_new_custom_mode
	smartpower_add_new_scenario
	smartpower_add_pin_in_domain
	smartpower_change_clock_statistics
	smartpower_change_setofpin_statistics
	smartpower_commit
	smartpower_create_domain
	smartpower_edit_custom_mode
	smartpower_edit_scenario
	smartpower_init_do
	smartpower_init_set_clocks_options
	smartpower_init_set_combinational_options
	smartpower_init_setofpins_values
	smartpower_init_set_enables_options
	smartpower_init_set_othersets_options
	smartpower_init_set_primaryinputs_options
	smartpower_init_set_registers_options
	smartpower_init_set_set_reset_options
	smartpower_remove_all_annotations
	smartpower_remove_custom_mode
	smartpower_remove_domain
	smartpower_remove_pin_frequency
	smartpower_remove_pin_of_domain
	smartpower_remove_pin_probability
	smartpower_remove_scenario
	smartpower_remove_vcd
	smartpower_restore
	smartpower_set_battery_capacity
	smartpower_set_cooling
	smartpower_set_mode_for_analysis
	smartpower_set_operating_condition
	smartpower_set_pin_frequency
	smartpower_set_preferences
	smartpower_set_scenario_for_analysis
	smartpower_set_temperature_opcond
	smartpower_set_thermalmode
	smartpower_set_voltage_opcond
	smartpower_temperature_opcond_set_design_wide
	smartpower_temperature_opcond_set_mode_specific
	smartpower_voltage_opcond_set_design_wide
	smartpower_voltage_opcond_set_mode_specific
	st_commit
	st_create_set
	st_edit_set
	st_expand_path
	st_list_paths
	st_remove_set
	st_restore
	st_set_options
	timer_get_path
	timer_get_clock_actuals
	timer_get_clock_constraints
	timer_get_maxdelay
	timer_get_path_constraints
	timer_remove_stop
	timer_restore
	timer_remove_all_constraints
	use_file
	use_source_file
	Application Notes
	Tutorials and Training Modules
	Catalog XE "Catalog" XE "Project Manager:Catalog"
	Catalog Options Dialog Box XE "Catalog:Options" XE "Vault:Settings" XE "Repository:Settings"
	Changing Device Information
	Core Manager
	 XE "Projects" XE "Menu" XE "Files:Deleting files" Deleting Files
	 XE "Projects" XE "Files:Design Hierarchy" Design Hierarchy in the Design Explorer
	Design Menu - Libero SoC

	Designer in Libero SoC
	Edit Core Definition - Ports and Parameters Dialog Box
	Edit Menu - Libero SoC
	Execute Script Dialog box
	Export Script Dialog Box
	File Menu - Libero SoC
	 XE "Projects" XE "Files:File manager" Files Tab and File Types
	HDL Templates in the Libero SoC
	 Help Menu - Libero SoC
	Import Files Dialog Box (Project Manager)
	Importing Schematics
	License Details
	Link Files
	 XE "Libero:Log Window" XE "Log window" Log Window
	New Project Dialog Box
	New File Dialog Box
	Open Project Dialog Box
	 XE "Files:Opening a project" Opening your Libero SoC project
	Organize Constraint Files
	Organize Simulation Files
	Organize Source Files
	Organize Stimulus Files Dialog Box
	Physical Synthesis and the Libero SoC

	Preferences
	 XE "Preferences, setting in Libero" XE "Libero:Preferences" Preferences Dialog Box
	Project Menu - Libero SoC
	Project Settings Dialog Box
	Project Settings: Simulation
	Project Sources
	 XE "Keywords, reserved" XE "Reserved keywords" Reserved Microsemi Keywords
	Right-Click (Shortcut) Menu Options in Libero SoC Design Hierarchy
	Save Project As Dialog Box
	 XE "Files:Saving" Saving Files
	Script Export Options Dialog Box
	Search in Libero SoC
	Select a Workspace Dialog Box
	Organize Source Files
	Stimulus Hierarchy
	Text Editor
	Tool Profiles Dialog Box
	Tools Menu - Libero SoC
	Vault/Repositories Settings Dialog Box
	Videos - Libero SoC
	View Design Datasheet/Report
	View Menu - Libero SoC
	VHDL Library - Add, Remove, or Rename

	Product Support
	Contacting the Customer Technical Support Center

