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Abstract

This paper describes STEVE, a syntax-directed editor
for VHDL, which uses auto-completion and auto-
matic template insertion to accelerate the entry of
syntactically correct VHDL models.  It is part of a
larger project, VIDE, which integrates textual and
graphical tools for HDL design entry. STEVE ex-
tends the SAVANT intermediate representation to
deal with representation of templates and the on-
screen presentation of a VHDL model. STEVE dem-
onstrates the advantages of SAVANT’s extensible
object-oriented structure, and shows how it facilitates
the integration of a new tool into an existing CAD
tool framework.

1. Introduction

STEVE is a syntax-directed editor for VHDL.  It uses
the SAVANT extensible object-oriented intermediate
representation developed jointly by the University of
Cincinnati and MTL Systems [6]. SAVANT has been
designed as an extensible means for representing
Hardware Description Languages (HDLs) and as a
standard intermediate representation in hardware de-
sign tools. The use of a standard intermediate repre-
sentation allows tools to be easily combined and
integrated, producing more powerful and flexible
design environments.

The aims of the SAVANT project are to build a suite
of software tools to analyse VHDL programs, con-
struct an intermediate representation and to output
C++ suitable for execution with the TyVIS VHDL
simulation kernel [10], also being developed at the
University of Cincinnati and MTL Systems. The
SAVANT project also aims to encourage research
within the VHDL community.

The VIDE suite of tools [5] explores possible exten-
sions of the SAVANT intermediate representation
required to support the creation and manipulation of
VHDL programs. STEVE [5],  a syntax-directed
editor within the VIDE framework, extends the
SAVANT intermediate representation to support en-
try, editing and display of text. STEVE also explores
the possibility of embedding  semantic information
into the intermediate representation, enabling pro-
grams to verify both their syntactic and their seman-
tic correctness upon program entry.

2. VIDE

Hardware design of digital systems is becoming in-
creasingly complex and so tools and design methods
have been developed to overcome and reduce this
complexity.

CAD tools traditionally used by designers of hard-
ware components are graphically oriented. This al-
lows designers to view their design structurally,
which is more intuitive than a textual representation.
This graphical notation represents the structural as-
pects of a design well at the expense of the behav-
ioural aspects. HDLs, such as VHDL [2] and Verilog
[9], attempt to rectify this inadequacy by providing a
means of defining both the structure and behaviour of
hardware designs through a textual language. Textual
languages, however, abandon the intuitive graphical
design of the structural aspects.

VIDE (VHDL Integrated Design Environment) is a
hardware design environment for VHDL under de-
velopment at the University of Adelaide. VIDE at-
tempts to overcome the inadequacies of many
hardware design tools by providing both graphical
and textual design tools, which operate over a com-
mon intermediate representation. This combination of
tools permits the user to select which method of de-



sign entry they wish to use while operating on a sin-
gle integrated design. The use of a common interme-
diate representation ensures that the user’s program
may be viewed consistently and concurrently through
both tools.

STEVE is an integrated textual design tool for the
development of VHDL descriptions. Textual design
tools bring many benefits to the user. Such tools
range from simple text editors to syntax-directed
editors such as SED [1] and tools that have facilities
for partial semantic analysis and incremental compi-
lation [8]. STEVE is a syntax-directed editor ensuring
syntactic correctness of VHDL programs as they are
entered. An example of STEVE’s user interface is
shown in Figure 1.

VGE [4], or the VIDE Graphical Editor, is the
graphical editing tool for VHDL in the VIDE frame-
work. It has been developed with the same design
goals as STEVE.

3. Automatic Template Insertion

Syntax-directed editors help decrease the number of
programming errors and reduce development time by
preventing errors or by informing the user of mistakes
as the program is entered. A syntax-directed editor
performs this error detection by parsing the text and
user’s commands as it is entered, and by ensuring that
an incomplete program conforms with the syntax
rules of the language.

STEVE employs automatic template insertion as its
method of program entry. This technique does not
require the user to learn any complex editor com-
mands (as is necessary in some syntax-directed edi-
tors), nor does it require the user to be fully
conversant with the language syntax thereby assisting

code development by novices. STEVE has knowl-
edge of VHDL syntax and uses place-holders to
identify insertion points. When a user selects a place-
holder and commences typing, the input shown is
parsed and once a valid, unique language construct is
determined its template is inserted at the entry point.
This process is termed automatic template insertion.
If the user enters an identifier (eg. left hand side of an
assignment statement) then auto-completion is used
to insert the complete identifier once it can uniquely
determined from the set of valid identifiers in scope.

Such techniques exploit knowledge of the syntax and
the structure of the target language (VHDL) and in-
crease the efficiency and ease of design of programs.
The insertion of a template guarantees syntactic cor-
rectness and admits limited semantic checking (eg.
declaration of identifiers and type consistency).

Each template in the language is derived from the
syntax rule of a language construct. It contains all
key-words, punctuation, non-terminal symbols
(place-holders) and layout information including in-
dentation levels and carriage returns. STEVE displays
the distinction between tokens and place-holders by
displaying their textual representations in different
colours. This distinction identifies expansion posi-
tions clearly to the user. STEVE also provides sup-
port for optional tokens and for template positions in
which a choice has to be made between tokens. Sup-
port is also provided for expandable lists of state-
ments.

To illustrate the way in which templates are derived
from syntax rules, Figure 2 shows the simplified
syntax rule for an entity declaration used by STEVE.
Figure 3 shows the template constructed for the syn-
tax rule.  It contains place-holders for an identifier
and a port clause.

entity_declaration ::=
entity identifier is

port_clause;
end entity identifier;

Figure 2.  Syntax rule for an entity declaration.

entity identifier is
port_clause;

end entity identifier;

Figure 3.  Template for an entity declaration.

Syntax-directed editors use an internal representation
of the user’s program. This may be either a concrete
syntax tree or an abstract syntax tree (AST). A con-

Figure 1.  User interface of Steve.



crete syntax tree is a hierarchal representation of the
user’s program corresponding to the expansion of the
language’s grammar rules. The concrete syntax tree is
accordingly made up of parent nodes, which corre-
spond to non-terminal symbols of the language, and
leaf nodes, which correspond to terminal symbols.
This representation is expensive as it requires the
storage of redundant information (key-word and
punctuation symbols) in the tree. An abstract syntax
tree deletes this redundant information and stores
only the non-terminal  nodes, and identifier and lit-
eral information.

Syntax-directed editors require special techniques for
text entry, editing and display. These operations are
more complex than those required for a basic text
editor due to the internal representation of a program
and constraints placed on their manipulation.

Automatic template insertion works by inserting a
valid template into the position previously occupied
by a place-holder, ie., replacing a non-terminal sym-
bol in the syntax rule. These insertions correspond to
manipulations of the program’s intermediate repre-
sentation, the abstract syntax tree. Expanding a place-
holder or modifying a key-word corresponds to ex-
pansions in the abstract syntax tree. Furthermore,
traversal of the abstract syntax tree corresponds to
traversal of the program.

The concept of auto-completion used in automatic
template insertion can be extended beyond comple-
tion of templates and key-words to auto-completion
of identifiers. Identifier auto-completion can be per-
formed by matching the characters the user enters
against declared identifiers that are visible. This
matching requires a symbol tree to be maintained,
holding information on all declared identifiers. Iden-
tifier nodes in the AST contain references into the
symbol tree and are able to update and obtain infor-
mation from their references.

Auto-completion applied to identifiers is useful in
indicating undeclared identifiers so that the user is
informed of any spelling mistakes or errors made.

3.1 Semantic Analysis

STEVE supports rudimentary semantic analysis of
programs by embedding semantic information into
the intermediate representation. Semantic aspects

considered by STEVE include identifier declarations,
semantic analysis for an entity declaration and cases
where there are restrictions on token choice. STEVE
performs symbol tree management to support this
semantic analysis.

STEVE maintains references to all declarations
within a symbol tree. This symbol tree contains refer-
ences to all identifiers declared within the VHDL
program and also all identifiers that have been in-
cluded in the program using ‘library’ statements and
‘use clauses’.

A library statement contains a list of library names
that are to be included within the program. Visible
library names must be pre-loaded into the symbol tree
when STEVE is initialised. By including a library
into a VHDL program, subsequent ‘use clauses’ can
include packages and design units contained within
the library. Hence, including a library requires that its
contents must be loaded into the symbol tree. Use
clauses are able to include specific contents of a de-
sign unit contained within a library.

The symbol tree maintains a list of pointers to identi-
fiers that reference a declaration, so if a user changes
a declaration, references to identifiers can be easily
highlighted as invalid references.

4. The SAVANT IR

The AST structure internal to SAVANT is known as
its Internal Intermediate Representation (IIR).
SAVANT also provides methods to produce a File
Intermediate Representation (FIR) of a program. The
development of a common intermediate form, utilised
by different VHDL development tools, ensures port-
ability between different tools.

The SAVANT intermediate representation is imple-
mented through a C++ [7] class hierarchy, which is
derived from the hierarchy of the VHDL grammar.
Figure 4 illustrates the class hierarchy used by
SAVANT. The base class in SAVANT is the class
Base. It contains basic information that is common to
all nodes in the intermediate representation. Every
subsequent class inherits from the Final_Base class.
Each node in the tree is identified by an enumerated
value, which states the type of the node, and a string,
which duplicates this information in a printable for-
mat.



Each node in the intermediate representation has a
base class and a final class which serves to encapsu-
late additional classes required by a CAD tool based
on SAVANT. The base class for each node, for ex-
ample class Base_Entity_declaration, is similar in
purpose to mixin classes as described by Booch [3].
A mixin class is a non-instantiable class which de-
fines attributes and behaviour which may be inherited
by a class to extend another class. The base classes in
the SAVANT hierarchy have a similar purpose but
are not implemented through multiple inheritance
mechanisms. Base classes form part of the SAVANT
hierarchy, defining relevant attributes for each node.

Base classes provide the mechanism for granting ex-
tension classes access to node attributes, whilst a
standard method for instantiation of a node is ob-
tained through the use of the final class. This tech-
nique defines clearly the tool-specific class insertion
points. Each node is modelled by an object instantia-
tion of the node’s corresponding final class.

This mechanism is illustrated in Figure 5. The base
class for a design unit node contains a pointer to the
instantiable final class for an entity declaration. This
structure allows any extension classes for a design
unit node to have access to the entity node attribute
whilst other classes that contain design unit nodes as
attributes can do so by instantiating its corresponding
final class. Instantiation of this final class provides
access, through inheritance, to any attributes added to
the node through extension classes.

The class hierarchy follows VHDL’s grammar
closely. For example, an entity declaration inherits

from a library unit, which in turn inherits from a
declaration (see Figure 5). As can also be seen in
Figure 5, a design unit node contains pointers to ob-
ject instances of its children nodes, in this case, an
entity declaration node. As an identifier value is
common to all declaration nodes, this class member
has been moved upwards within the hierarchy to re-
side in the declaration class, taking full advantage of
the object-oriented nature of the intermediate repre-
sentation.

4.1 Extending the SAVANT IR

The SAVANT hierarchy design is the basis of
STEVE’s design. The main concept of the SAVANT
design is that nodes are modelled by objects; any
extensions made by STEVE to SAVANT must
maintain this concept and implant any extra informa-
tion required, such as template information and the
knowledge to manipulate these templates, into each
node. Figure 6 shows the design of STEVE integrated
with SAVANT.

Extension classes added by STEVE are prefixed by
“MIR_”. Symbols are represented by a MIR_symbol
class, and are instantiated as either a MIR_token, a
MIR_placeholder or as any of the child classes of
MIR_symbol. Templates are represented as a list of
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Extension Classes.  .  .  .  .  .
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Figure 4.  SAVANT IR design.

Figure 5.  SAVANT IR for an entity declaration.
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MIR_symbol objects.

Each node has access to its own template through the
inheritance of the template class at Final_Base. The
template class provides methods for creating, access-
ing and manipulating templates. The classes inserted
at the predefined extension positions for each node in
the intermediate representation, for example Dis-
play_Entity_declaration, use these methods to create
their own templates and perform any template opera-
tions that the node requires. The extension classes
also contain methods to respond to requests by the
user, passed on by the user interface.

Many of the methods required in the extension
classes are very similar in behaviour and content.
Nodes can be classed into groups according to their
template contents. For example, templates that con-
tain lists form one group; similarly, templates that
contain identifiers may form another group. STEVE
uses template frameworks to enable easy class devel-
opment for a node. A template framework is a class
template which contains many of the methods re-
quired by a specific type of node. A framework will
typically require minimal modification to make it
suitable for a particular node. An example template
framework for a basic node is shown in Figure 7.
This framework includes methods for display, a
template method for creation, methods for each child,
and methods for editing and automatic template in-
sertion.

/* -------------------------------------------------------------------
*/
/* Framework : base */
/** Specification for the base framework. Framework includes
 ** general methods required by any node that has a template.
 ** Many templates require only this framework. These templates
 ** contain only tokens, placeholder, terminal and layout symbols.
 ** Child constructs do not start with an identifier.
 **/

/* constructor function */
Display_<class_name>(Final_base*, long);

/* destructor function */
~Display_<class_name>();

/* create children functions*/
void create_<child_name>(Final_base*, long);

/* return automatic template insertion information
using template method */

ati_return_data* get_ati(MIR_symbol*);

/* remove and cut function for children */
void remove(Final_base*);
/* ------------------------------------------------------------------------ */

Figure 7.  Base framework.

The use of frameworks supports the concept of ex-
tensibility, hence, it is easy to modify existing nodes
and to add nodes to the intermediate representation.
Any special requirements for a node can be imple-
mented as modifications to the framework that it
uses. Frameworks can be organised into a hierarchy
showing the additional methods required for each
new level of complexity in the hierarchy. An example
hierarchy used by STEVE is illustrated in Figure 8.

In many cases a node belongs to many framework
groups and hence requires methods from multiple
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Figure 6.   SAVANT hierarchy with STEVE extensions.
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frameworks. For example, a node whose template
consists of a list of interface declarations, such as a
port_interface_list, may also start each of its interface
declarations with an identifier. A port_interface_list
extension class requires methods from the basic
framework, the list framework and the initial identi-
fier framework.

The MIR_symbol class contains information and
methods common to all symbols. This information
includes a position number in the graphical display, a
text value and a name. The text value is used for dis-
playing the symbol in the user interface. Methods
provided by the MIR_symbol class include methods
to create a symbol, to modify a symbol’s information
and to gain access to a symbol’s information. A
MIR_Placeholder object has as one of its attributes a
pointer to an object of type Final_Base. This attribute
points to a child node in the intermediate representa-
tion, which in turn has its own template.

Figure 9 shows an implementation of the STEVE
design for a subset of VHDL including an entity
declaration and a design unit. Figure 9 illustrates the
use of the extension class insertion positions in

SAVANT for the Display extension classes.

Figures 6 and 9 also show symbol table management
classes that are used by STEVE. These classes pro-
vide simple functions to add, search and remove en-
tries from the symbol table. The classes are included
in the design to allow some semantic analysis to be
performed by STEVE.

Each node in the intermediate representation inherits
from the symbol table class through the inheritance of
the Final_Base class. This inheritance gives each
node access to methods to check that identifiers have
been declared, and to insert and remove objects from
the symbol table. The symbol table class also pro-
vides a method which takes a string parameter, used
to search for partial matches. This method provides
the mechanism for performing auto-completion of
identifiers.

The symbol table groups the symbols into pools
sorted by the type of identifier. For example, there
are separate pools for types, package names, reserved
words and general identifiers. This concept can be
extended to sort the general identifier pool into sepa-
rate pools for entity identifiers, architecture identifi-
ers, constants and variables.

The pools maintained by the symbol table are static
members of the MIR_symbol_table class, which
means that each instantiated object accesses the same
data structures. This restriction means that the symbol
table must be rebuilt whenever a new program is
loaded into STEVE. Further design and implementa-
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Figure 8.   Example framework hierarchy.

Figure 9.  STEVE design for an entity declaration.



tion will address this restriction.

5. Implementation

STEVE has been implemented in prototype form for
a subset of VHDL. This subset includes simplified
versions of VHDL syntax rules, including a design
unit, which consists of a list of context clause state-
ments and an entity declaration.

The high-level system structure of STEVE is shown
in Figure 10. It describes the communication routes
between the intermediate representation and the user
through the user interface. Each action performed by
the user corresponds to a user interface event. Each
event invokes the execution of a procedure or func-
tion in the user interface; these procedures and func-
tions may in turn invoke methods in the intermediate
representation.

Figure 10.  System level design of STEVE.

Communication between the intermediate represen-
tation and the template for a node takes place in order
to access any information that the user interface re-
quires or to perform any operations that the user in-
terface requests. Communication takes place between
the intermediate representation and the symbol table
to perform semantic analysis.

5.1 Integration and Interaction with Other Tools

SAVANT has been designed to aid integration of
CAD tools that extend the SAVANT intermediate
representation.

Integration of multiple tools requires only that the
extension classes be inserted with the appropriate
inheritance hierarchy and that no naming conflicts
occur within the extension classes. As long as the
extension classes use the attributes of the Base and
Final classes in their designated manner, then no
problems arise.

One of the aims of the SAVANT project is to provide
a common intermediate representation that can be
used by multiple CAD tools. This requires that CAD

tools output VHDL programs in a way that other
tools will be able to understand. SAVANT provides a
file intermediate form that can be used to port VHDL
designs between tools. Unfortunately, this form of
output loses any information that is specific to a CAD
tool. Hence, if a design is to be reloaded into a CAD
tool, it must regenerate any additional information
that it requires; potentially an expensive process.

STEVE provides mechanisms to output an annotated
file format of a VHDL program. This is implemented
in STEVE by providing a method in the
MIR_template class, which, when invoked, traverses
the intermediate representation from the invoking
node and prints the contents to a file. To save an en-
tire VHDL program, this method is simply invoked
from the root node of the intermediate representation.
The annotations to the file include information about
which nodes have been accepted, and, for each node,
which place-holders have been expanded and infor-
mation about any of its children nodes.

The information is printed to a shadow file for each
VHDL file that is produced. The use of a shadow file
allows STEVE to reload incomplete VHDL programs
and easily reconstruct all display information that it
requires.

5.2 Summary

STEVE has been implemented as a prototype for a
subset of VHDL. It has been designed to work with
the SAVANT intermediate representation and to be
easily extensible and maintainable. STEVE consists
of two main components: the user interface, which
uses a purpose-built editor widget, and the extended
intermediate representation.

STEVE operates through communication between the
user interface and nodes in the intermediate represen-
tation. Nodes in the intermediate representation have
access to their templates and methods for operating
on the templates and also have access to a symbol
table, which records all declarations within a VHDL
program. Frameworks have been developed for
STEVE-specific classes that allow alterations and
additional nodes to be implemented easily.

6. Conclusions

STEVE is a textual programming tool for VHDL
which helps the user to construct programs more eas-
ily and extends the SAVANT intermediate represen-
tation. The tool is syntax directed, and uses automatic
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template insertion and the concept of auto-
completion wherever possible to enforce correct
syntax and to simplify program entry.

The implemented prototype of STEVE is a fully
functional syntax-directed editor for a subset of
VHDL. It implements automatic template insertion,
auto-completion and performs some semantic analy-
sis, including maintaining and referencing a symbol
table. The extensibility of the design means that in-
formation can be added to each node in the interme-
diate representation in any order; so that testing and
implementation can be performed in an incremental
manner.

STEVE also supports extensibility by providing
frameworks for STEVE extension classes. These
frameworks can be extended and combined to pro-
duce a class definition for a specific node.

Automatic template insertion is a concept used suc-
cessfully in STEVE. The implementation of STEVE
illustrates that this concept is intuitive, considering
the nature and structure of programming languages,
and helps the user. Auto-completion is used to com-
plete identifier names and tokens. When combined
with semantic knowledge, auto-completion is even
more successful, as it enforces selection of appropri-
ate attributes, for example, selection of an appropri-
ate identifier for a type place-holder.

STEVE does not perform complete semantic analysis.
However, STEVE does examine the key concepts of
a syntax-directed editor for VHDL and explores how
successful these techniques are; producing a success-
ful preliminary design and prototype for a complete
editor.

SAVANT proved to be a good basis for STEVE. The
design is easily extensible due to its object-oriented
nature, and lent itself to the implementation of full
functionality for a subset of VHDL. Different imple-
mentation ideas are tested easily with no major
changes required in other sections of the intermediate
representation. The only difficulties encountered
whilst working with SAVANT were involved with
lack of detailed specification and explanatory com-
ments for the intermediate representation’s design.
These problems have been addressed in the successor
to the SAVANT intermediate representation, AIRE
[11].
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