VHDL Quick Start

Peter J. Ashenden
The University of Adelaide

Objective

e Quick introduction to VHDL
— basic language concepts
— basic design methodol ogy

e Use The Student’s Guide to VHDL
or The Designer’s Guide to VHDL

— self-learning for more depth
— reference for project work

© 1998, Peter J. Ashenden VHDL Quick Start

Modeling Digital Systems

 VHDL isfor writing models of a system

* Reasons for modeling
— requirements specification
— documentation
— testing using simulation
— formal verification
— synthesis

e God

— most reliable design process, with minimum cost and
time
— avoid design errors!

© 1998, Peter J. Ashenden VHDL Quick Start

Domains and Levels of Modeling

Structural Functional
Il high level of
' < abstraction
< low level of
/ abstraction
\4
Geometric “Y-chart” dueto
Gajski & Kahn

© 1998, Peter J. Ashenden VHDL Quick Start 4

Domains and Levels of Modeling

Structural Functional

A < Algorithm

“\ (behavioral)

'\ Register-Transfer
. Language

Boolean Equation

Differential Equation

\

Geometric “Y-chart” dueto
Gajski & Kahn

© 1998, Peter J. Ashenden VHDL Quick Start 5

Domains and Levels of Modeling

Structural Functional

Processor-Memory

Register-Transfer

Gate

il Y—
(’5@

Transistor

\

Geometric “Y-chart” dueto
Gajski & Kahn

© 1998, Peter J. Ashenden VHDL Quick Start 6

Domains and Levels of Modeling

Structural Functional

S
o

/ Standard Cells

Floor Plan

Polygons

Sticks

\

Geometric “Y-chart” dueto
Gajski & Kahn

© 1998, Peter J. Ashenden VHDL Quick Start 7

Basic VHDL Concepts

e Interfaces

e Behavior
e Structure

e Test Benches

e Analysis,
e Synthesis

elaboration, ssmulation

© 1998, Peter J. Ashenden VHDL Quick Start

Modeling Interfaces

 Entity declaration
— describes the input/output ports of a module

entity na{ne po/rt names po/rt mode (direction)
entity reg4 is l l

port (dO, d1, d2, d3, en, clk : in bit;
qo1 q11 q21 q3 . out blt)1<—_ pUnCtuatiOn
end entity reg4,

reserved words port type

© 1998, Peter J. Ashenden VHDL Quick Start 9

VHDL-87

e Omit entity at end of entity declaration

entity reg4 is
port (dO, d1, d2, d3, en, clk : in bit;
g0, g1, g2, g3 : out bit);
end reg4,

© 1998, Peter J. Ashenden VHDL Quick Start

Modeling Behavior

 Architecture body
— describes an implementation of an entity

— may be several per entity
* Behavioral architecture
— describes the algorithm performed by the module

— contains
* process statements, each containing
e sequential statements, including
e signal assignment statements and

e Wwait statements

© 1998, Peter J. Ashenden VHDL Quick Start 11

Behavior Example

architecture behav of reg4 is
begin
storage : process is
variable stored _dO, stored_d1, stored _d2, stored_d3 : bit;
begin
If en="1"and clk ="1' then
stored_dO := dO;
stored_d1 :=di;
stored_d2 := d2;
stored_d3 :=d3;
end if;
g0 <= stored_dO after 5 ns;
gl <= stored_d1 after 5 ns;
g2 <= stored_d2 after 5 ns;
g3 <= stored_d3 after 5 ns;
wait on d0, d1, d2, d3, en, clk;
end process storage;
end architecture behav;

© 1998, Peter J. Ashenden VHDL Quick Start

12

VHDL-87

e Omit architecture at end of architecture body
e Omitis In process statement header

architecture behav of reg4 is
begin

storage : process

begin

end process storage;
end behav;

© 1998, Peter J. Ashenden VHDL Quick Start

13

Modeling Structure

e Sructural architecture
— Implements the module as a composition of subsystems
— contains

 gignal declarations, for internal interconnections
— the entity ports are also treated as signals

e component instances
— Instances of previously declared entity/architecture pairs

e port mapsin component instances
— connect signals to component ports

e Wait statements

© 1998, Peter J. Ashenden VHDL Quick Start 14

© 1998, Peter J. Ashenden

Structure Example

bit0
d latch

do - qo
d q
clk
bitl
d latch

dl - gl
d q
clk
bit2
d latch

d2 - g2
d q
clk
bit3
d latch

d3 - g3
d q

gate clk
d2
en an int_clk
a
Ik
¢ b

VHDL Quick Start 15

Structure Example

» First declare D-latch and and-gate entities and

architectures

entity d_latch is
port (d, clk:in bit; q: out bit);
end entity d_latch;

architecture basic of d_latch is
begin
latch_behavior : process is

begin
if clk =1’ then
g <=d after 2 ns;
end if;

wait on clk, d;
end process latch_behavior;

end architecture basic;

entity and2 is
port (a, b:in bit; y:out bit);
end entity and2;

architecture basic of and2 is
begin
and2_behavior : process is
begin
y <= a and b after 2 ns;
wait on a, b;
end process and2_behavior;

end architecture basic;

© 1998, Peter J. Ashenden

VHDL Quick Start 16

Structure Example

* Now use them to implement aregister

architecture struct of reg4 is
signal int_clk : bit;
begin
bit0 : entity work.d_latch(basic)
port map (dO, int_clk, g0);
bitl : entity work.d_latch(basic)
port map (dl,int _clk, gl);
bit2 : entity work.d_latch(basic)
port map (d2, int_clk, g2);
bit3 : entity work.d_latch(basic)
port map (d3, int_clk, g3);
gate : entity work.and2(basic)
port map (en, clk, int_clk);
end architecture struct;

© 1998, Peter J. Ashenden

VHDL Quick Start

17

VHDL-87

o Can't directly instantiate entity/architecture pair
* |nstead

— Include component declarations in structural
architecture body

o templates for entity declarations
— Instantiate components
— write a configuration declaration

 binds entity/architecture pair to each instantiated
component

© 1998, Peter J. Ashenden VHDL Quick Start 18

Structure Example in VHDL-87

» First declare D-latch and and-gate entities and

architectures

entity d_latch is
port (d, clk:in bit; q: out bit);
end d_latch;

architecture basic of d_latch is
begin
latch_behavior : process

begin
If clk =1’ then
g <= d after 2 ns;
end if;

wait on clk, d;
end process latch_behavior;

end basic;

entity and2 is
port (a, b:in bit; y:out bit);
end and2;

architecture basic of and2 is
begin
and2_behavior : process
begin
y <= a and b after 2 ns;
wait on a, b;
end process and2_behavior;

end basic;

© 1998, Peter J. Ashenden

VHDL Quick Start 19

Structure Example in VHDL-87

» Declare corresponding components in register
architecture body

architecture struct of reg4 is

component d_latch

port (d, clk:in bit; g : out bit);
end component;
component and2

port (a, b:in bit; y:out bit);
end component;
signal int_clk : bit;

© 1998, Peter J. Ashenden VHDL Quick Start

20

Structure Example in VHDL-87

e Now use them to implement the register

begin
bitO : d_latch
port map (dO, int_clk, g0);
bitl : d_latch
port map (di, int clk, ql);
bit2 : d_latch
port map (d2, int_clk, g2);
bit3 : d_latch
port map (d3, int_clk, g3);
gate : and2
port map (en, clk, int_clk);
end struct;

© 1998, Peter J. Ashenden VHDL Quick Start

21

Structure Example in VHDL-87

o Configure the register model

configuration basic_level of reg4 is
for struct

for all : d_latch
use entity work.d_latch(basic);
end for;

for all : and2
use entity work.and2(basic)
end for;

end for;
end basic_level;

© 1998, Peter J. Ashenden VHDL Quick Start

22

Mixed Behavior and Structure

 An architecture can contain both behavioral and
structural parts
— process statements and component instances
 collectively called concurrent statements
— processes can read and assign to signals

o Example: register-transfer-level model
— data path described structurally
— control section described behaviorally

© 1998, Peter J. Ashenden VHDL Quick Start

23

Mixed Example

multiplier multiplicand

y

shift_reg

/

‘ v

© 1998, Peter J. Ashenden

\

control_ shift_
section adder
J/
reg
\4
product

VHDL Quick Start

24

Mixed Example

entity multiplier is
port (clk, reset : in bit;
multiplicand, multiplier : in integer,;
product : out integer);
end entity multiplier,;

architecture mixed of mulitplier is

signal partial_product, full _product : integer;
signal arith_control, result_en, mult_bit, mult_load : bit;

begin
arith_unit : entity work.shift_adder(behavior)
port map (addend => multiplicand, augend => full _product,

sum => partial_product,
add_control => arith_control);

result : entity work.reg(behavior)
port map (d => partial_product, q => full_product,
en =>result_en, reset => reset);

© 1998, Peter J. Ashenden VHDL Quick Start

Mixed Example

multiplier_sr : entity work.shift_reg(behavior)
port map (d => multiplier, g=> mult_bit,
load => mult_load, clk => clk);

product <= full_product;

control_section : process is
-- variable declarations for control section

begin
-- seguential statements to assign values to control signals
wait on clk, reset;

end process control_section;

end architecture mixed:

© 1998, Peter J. Ashenden VHDL Quick Start 26

Test Benches

e Testing adesign by simulation

e Use atest bench model

— an architecture body that includes an instance of the
design under test

— applies sequences of test values to inputs
— monitors values on output signals
 either using ssmulator
e Or with aprocess that verifies correct operation

© 1998, Peter J. Ashenden VHDL Quick Start 27

Test Bench Example

entity test_bench is
end entity test_bench;

architecture test_reg4 of test_bench is
signal dO, d1, d2, d3, en, clk, g0, g1, g2, g3 : bit;
begin
dut : entity work.reg4(behav)
port map (dO, di, d2, d3, en, clk, g0, g1, g2, g3);
stimulus : process is
begin
dO<="1" dl1<='1"; d2<="1"; d3<="1"; wait for 20 ns;
en <='0"; clk <='0"; wait for 20 ns;
en <='1"; wait for 20 ns;
clk <="1"; wait for 20 ns;
d0<='0"; d1<='0"; d2<='0"; d3 <='0"; walit for 20 ns;
en <='0"; wait for 20 ns;

wait;
end process stimulus;
end architecture test_reg4;

© 1998, Peter J. Ashenden VHDL Quick Start

28

Regression Testing

e Test that arefinement of adesign Is correct
— that lower-levd structural model doesthe same as a
behavioral model

* Test bench includes two instances of design under
test
— behavioral and lower-level structural
— stimulates both with same inputs
— compares outputs for equality

* Need to take account of timing differences

© 1998, Peter J. Ashenden VHDL Quick Start 29

Regression Test Example

architecture regression of test_bench is

signal dO, d1, d2, d3, en, clk : bit;
signal g0a, qla, g2a, g3a, q0b, glb, g2b, q3b : bit;
begin
dut_a : entity work.reg4(struct)
port map (dO, d1, d2, d3, en, clk, q0a, gqla, g2a, q3a);

dut_b : entity work.reg4(behav)
port map (dO, di, d2, d3, en, clk, qOb, glb, g2b, q3b);

stimulus : process is
begin
do<="1" dl<="1"; d2<="1"; d3 <="1"; wait for 20 ns;
en <='0"; clk <='0"; wait for 20 ns;
en <='1": wait for 20 ns;
clk <='1"; walit for 20 ns;

wait;
end process stimulus;

© 1998, Peter J. Ashenden VHDL Quick Start 30

Regression Test Example

verify : process is
begin
wait for 10 ns;
assert g0a = q0b and gla = glb and gq2a = q2b and g3a = g3b
report "implementations have different outputs”
severity error;
wait on dO, d1, d2, d3, en, clk;
end process verify;

end architecture regression;

© 1998, Peter J. Ashenden VHDL Quick Start 31

e Analysis
 Elaboration
e Simulation
e Synthesis

© 1998, Peter J. Ashenden

Design Processing

VHDL Quick Start

32

Analysis

e Check for syntax and semantic errors
— gyntax: grammar of the language
— semantics. the meaning of the model

o Analyze each design unit separately
— entity declaration
— architecture body

— best if each design unit isin aseparatefile

« Analyzed design unitsare placed in alibrary
— In an implementation dependent internal form
— current library is called work

© 1998, Peter J. Ashenden VHDL Quick Start

33

Elaboration

o “Flattening” the design hierarchy
— Create ports
— create signals and processes within architecture body

— for each component instance, copy instantiated entity
and architecture body

— repeat recursively
 bottom out at purely behavioral architecture bodies

 Final result of elaboration
— flat collection of signal nets and processes

© 1998, Peter J. Ashenden VHDL Quick Start 34

Elaboration Example

reg4(struct) bit0
d_latch
do | | 00
d q
clk
bitl
d_latch
di | | ”
d g
clk
bit2
d_latch
d2 | | 02
d g
clk
bit3
d_latch
d3 03
d q
gate clk
en andz int_clk
a y
clk

© 1998, Peter J. Ashenden

VHDL Quick Start

35

Elaboration Example

bit0
d_latch(basic)
do d [Tl a q0

reg4(struct)

clkll =—

bitl
d_latch(basic)
di d [Tl a ql

clkll =

bit2
d_latch(basic)
d2 d [C] g q2

clkll =

bit3
d_latch(basic)
d3 d [C] g q3

clkll =

gate
and2(basic)
a [y| intck
clk b Il — process with variables
and statements

en

© 1998, Peter J. Ashenden VHDL Quick Start

Simulation

 Execution of the processes in the elaborated model

» Discrete event smulation
— time advances in discrete steps
— when signal values change—events

o A processesissensitive to events on input signals
— gpecified in wait statements
— resumes and schedules new values on output signals
 schedules transactions

e event onasigna if new value different from old
value

© 1998, Peter J. Ashenden VHDL Quick Start 37

Simulation Algorithm

 Initialization phase
— each signal isgivenitsinitial value
— simulation time set to O
— for each process
e activate

« execute until await statement, then suspend

— execution usually involves scheduling transactions on
signals for later times

© 1998, Peter J. Ashenden VHDL Quick Start

38

Simulation Algorithm

o Simulation cycle
— advance ssmulation time to time of next transaction
— for each transaction at thistime

e Uupdate signal value
— event if new valueisdifferent from old value

— for each process sensitive to any of these events, or
whose “ walit for ...” time-out has expired

* resume
« execute until await statement, then suspend

o Simulation finishes when there are no further
schedul ed transactions

© 1998, Peter J. Ashenden VHDL Quick Start 39

Synthesis

 Translates register-transfer-level (RTL) design into

gate-level netlist

 Restrictions on coding style for RTL model

e Tool dependent
— seelab notes

© 1998, Peter J. Ashenden

VHDL Quick Start

40

Basic Design Methodology

o

ASIC or FPGA

© 1998, Peter J. Ashenden VHDL Quick Start 41

