
VHDL Quick Start

Peter J. Ashenden
The University of Adelaide

© 1998, Peter J. Ashenden VHDL Quick Start 2

Objective

• Quick introduction to VHDL
– basic language concepts
– basic design methodology

• Use The Student’s Guide to VHDL
or The Designer’s Guide to VHDL

– self-learning for more depth
– reference for project work

© 1998, Peter J. Ashenden VHDL Quick Start 3

Modeling Digital Systems

• VHDL is for writing models of a system
• Reasons for modeling

– requirements specification
– documentation
– testing using simulation
– formal verification
– synthesis

• Goal
– most reliable design process, with minimum cost and

time
– avoid design errors!

© 1998, Peter J. Ashenden VHDL Quick Start 4

Domains and Levels of Modeling

high level of
abstraction

FunctionalStructural

Geometric “Y-chart” due to
Gajski & Kahn

low level of
abstraction

© 1998, Peter J. Ashenden VHDL Quick Start 5

Domains and Levels of Modeling

FunctionalStructural

Geometric “Y-chart” due to
Gajski & Kahn

Algorithm
(behavioral)

Register-Transfer
Language

Boolean Equation

Differential Equation

© 1998, Peter J. Ashenden VHDL Quick Start 6

Domains and Levels of Modeling

FunctionalStructural

Geometric “Y-chart” due to
Gajski & Kahn

Processor-Memory
Switch

Register-Transfer

Gate

Transistor

© 1998, Peter J. Ashenden VHDL Quick Start 7

Domains and Levels of Modeling

FunctionalStructural

Geometric “Y-chart” due to
Gajski & Kahn

Polygons

Sticks

Standard Cells

Floor Plan

© 1998, Peter J. Ashenden VHDL Quick Start 8

Basic VHDL Concepts

• Interfaces
• Behavior
• Structure
• Test Benches
• Analysis, elaboration, simulation
• Synthesis

© 1998, Peter J. Ashenden VHDL Quick Start 9

Modeling Interfaces

• Entity declaration
– describes the input/output ports of a module

entity reg4 is
port (d0, d1, d2, d3, en, clk : in bit;

q0, q1, q2, q3 : out bit);
end entity reg4;

entity name port names port mode (direction)

port typereserved words

punctuation

© 1998, Peter J. Ashenden VHDL Quick Start 10

VHDL-87

• Omit entity at end of entity declaration

entity reg4 is
port (d0, d1, d2, d3, en, clk : in bit;

q0, q1, q2, q3 : out bit);
end reg4;

© 1998, Peter J. Ashenden VHDL Quick Start 11

Modeling Behavior

• Architecture body
– describes an implementation of an entity
– may be several per entity

• Behavioral architecture
– describes the algorithm performed by the module
– contains

• process statements, each containing
• sequential statements, including
• signal assignment statements and
• wait statements

© 1998, Peter J. Ashenden VHDL Quick Start 12

Behavior Example

architecture behav of reg4 is
begin

storage : process is
variable stored_d0, stored_d1, stored_d2, stored_d3 : bit;

begin
if en = '1' and clk = '1' then

stored_d0 := d0;
 stored_d1 := d1;
 stored_d2 := d2;
 stored_d3 := d3;

end if;
q0 <= stored_d0 after 5 ns;

 q1 <= stored_d1 after 5 ns;
 q2 <= stored_d2 after 5 ns;
 q3 <= stored_d3 after 5 ns;

wait on d0, d1, d2, d3, en, clk;
end process storage;

end architecture behav;

© 1998, Peter J. Ashenden VHDL Quick Start 13

VHDL-87

• Omit architecture at end of architecture body
• Omit is in process statement header

architecture behav of reg4 is
begin

storage : process
...

begin
...

end process storage;
end behav;

© 1998, Peter J. Ashenden VHDL Quick Start 14

Modeling Structure

• Structural architecture
– implements the module as a composition of subsystems
– contains

• signal declarations, for internal interconnections
– the entity ports are also treated as signals

• component instances
– instances of previously declared entity/architecture pairs

• port maps in component instances
– connect signals to component ports

• wait statements

© 1998, Peter J. Ashenden VHDL Quick Start 15

Structure Example

int_clk

d0

d1

d2

d3

en

clk

q0

q1

q2

q3

bit0
d_latch
d

clk

q

bit1
d_latch
d

clk

q

bit2
d_latch
d

clk

q

bit3
d_latch
d

clk

q

gate
and2

a

b

y

© 1998, Peter J. Ashenden VHDL Quick Start 16

Structure Example

• First declare D-latch and and-gate entities and
architectures

entity d_latch is
port (d, clk : in bit; q : out bit);

end entity d_latch;

architecture basic of d_latch is
begin

latch_behavior : process is
begin

if clk = ‘1’ then
q <= d after 2 ns;

end if;
wait on clk, d;

end process latch_behavior;
end architecture basic;

entity and2 is
port (a, b : in bit; y : out bit);

end entity and2;

architecture basic of and2 is
begin

and2_behavior : process is
begin

y <= a and b after 2 ns;
wait on a, b;

end process and2_behavior;
end architecture basic;

© 1998, Peter J. Ashenden VHDL Quick Start 17

Structure Example

• Now use them to implement a register

architecture struct of reg4 is
signal int_clk : bit;

begin
bit0 : entity work.d_latch(basic)

port map (d0, int_clk, q0);
bit1 : entity work.d_latch(basic)

port map (d1, int_clk, q1);
bit2 : entity work.d_latch(basic)

port map (d2, int_clk, q2);
bit3 : entity work.d_latch(basic)

port map (d3, int_clk, q3);
gate : entity work.and2(basic)

port map (en, clk, int_clk);
end architecture struct;

© 1998, Peter J. Ashenden VHDL Quick Start 18

VHDL-87

• Can’t directly instantiate entity/architecture pair
• Instead

– include component declarations in structural
architecture body

• templates for entity declarations
– instantiate components
– write a configuration declaration

• binds entity/architecture pair to each instantiated
component

© 1998, Peter J. Ashenden VHDL Quick Start 19

Structure Example in VHDL-87

• First declare D-latch and and-gate entities and
architectures

entity d_latch is
port (d, clk : in bit; q : out bit);

end d_latch;

architecture basic of d_latch is
begin

latch_behavior : process
begin

if clk = ‘1’ then
q <= d after 2 ns;

end if;
wait on clk, d;

end process latch_behavior;
end basic;

entity and2 is
port (a, b : in bit; y : out bit);

end and2;

architecture basic of and2 is
begin

and2_behavior : process
begin

y <= a and b after 2 ns;
wait on a, b;

end process and2_behavior;
end basic;

© 1998, Peter J. Ashenden VHDL Quick Start 20

Structure Example in VHDL-87

• Declare corresponding components in register
architecture body

architecture struct of reg4 is
component d_latch

port (d, clk : in bit; q : out bit);
end component;
component and2

port (a, b : in bit; y : out bit);
end component;
signal int_clk : bit;

...

© 1998, Peter J. Ashenden VHDL Quick Start 21

Structure Example in VHDL-87

• Now use them to implement the register

...
begin

bit0 : d_latch
port map (d0, int_clk, q0);

bit1 : d_latch
port map (d1, int_clk, q1);

bit2 : d_latch
port map (d2, int_clk, q2);

bit3 : d_latch
port map (d3, int_clk, q3);

gate : and2
port map (en, clk, int_clk);

end struct;

© 1998, Peter J. Ashenden VHDL Quick Start 22

Structure Example in VHDL-87

• Configure the register model

configuration basic_level of reg4 is
for struct

for all : d_latch
use entity work.d_latch(basic);

end for;
for all : and2

use entity work.and2(basic)
end for;

end for;
end basic_level;

© 1998, Peter J. Ashenden VHDL Quick Start 23

Mixed Behavior and Structure

• An architecture can contain both behavioral and
structural parts

– process statements and component instances
• collectively called concurrent statements

– processes can read and assign to signals

• Example: register-transfer-level model
– data path described structurally
– control section described behaviorally

© 1998, Peter J. Ashenden VHDL Quick Start 24

Mixed Example

shift_reg

reg

shift_
adder

control_
section

multiplier multiplicand

product

© 1998, Peter J. Ashenden VHDL Quick Start 25

Mixed Example
entity multiplier is

port (clk, reset : in bit;
multiplicand, multiplier : in integer;
product : out integer);

end entity multiplier;

architecture mixed of mulitplier is
signal partial_product, full_product : integer;
signal arith_control, result_en, mult_bit, mult_load : bit;

begin
arith_unit : entity work.shift_adder(behavior)

port map (addend => multiplicand, augend => full_product,
sum => partial_product,
add_control => arith_control);

result : entity work.reg(behavior)
port map (d => partial_product, q => full_product,

en => result_en, reset => reset);
...

© 1998, Peter J. Ashenden VHDL Quick Start 26

Mixed Example
…
multiplier_sr : entity work.shift_reg(behavior)

port map (d => multiplier, q => mult_bit,
load => mult_load, clk => clk);

product <= full_product;

control_section : process is
-- variable declarations for control_section
-- …

begin
-- sequential statements to assign values to control signals
-- …
wait on clk, reset;

end process control_section;
end architecture mixed;

© 1998, Peter J. Ashenden VHDL Quick Start 27

Test Benches

• Testing a design by simulation
• Use a test bench model

– an architecture body that includes an instance of the
design under test

– applies sequences of test values to inputs
– monitors values on output signals

• either using simulator
• or with a process that verifies correct operation

© 1998, Peter J. Ashenden VHDL Quick Start 28

Test Bench Example
entity test_bench is
end entity test_bench;

architecture test_reg4 of test_bench is
signal d0, d1, d2, d3, en, clk, q0, q1, q2, q3 : bit;

begin
dut : entity work.reg4(behav)

port map (d0, d1, d2, d3, en, clk, q0, q1, q2, q3);
stimulus : process is
begin

d0 <= ’1’; d1 <= ’1’; d2 <= ’1’; d3 <= ’1’; wait for 20 ns;
en <= ’0’; clk <= ’0’; wait for 20 ns;
en <= ’1’; wait for 20 ns;
clk <= ’1’; wait for 20 ns;
d0 <= ’0’; d1 <= ’0’; d2 <= ’0’; d3 <= ’0’; wait for 20 ns;
en <= ’0’; wait for 20 ns;
…
wait;

end process stimulus;
end architecture test_reg4;

© 1998, Peter J. Ashenden VHDL Quick Start 29

Regression Testing

• Test that a refinement of a design is correct
– that lower-level structural model does the same as a

behavioral model

• Test bench includes two instances of design under
test

– behavioral and lower-level structural
– stimulates both with same inputs
– compares outputs for equality

• Need to take account of timing differences

© 1998, Peter J. Ashenden VHDL Quick Start 30

Regression Test Example

architecture regression of test_bench is
signal d0, d1, d2, d3, en, clk : bit;
signal q0a, q1a, q2a, q3a, q0b, q1b, q2b, q3b : bit;

begin
dut_a : entity work.reg4(struct)

port map (d0, d1, d2, d3, en, clk, q0a, q1a, q2a, q3a);
dut_b : entity work.reg4(behav)

port map (d0, d1, d2, d3, en, clk, q0b, q1b, q2b, q3b);
stimulus : process is
begin

d0 <= ’1’; d1 <= ’1’; d2 <= ’1’; d3 <= ’1’; wait for 20 ns;
en <= ’0’; clk <= ’0’; wait for 20 ns;
en <= ’1’; wait for 20 ns;
clk <= ’1’; wait for 20 ns;
…
wait;

end process stimulus;
...

© 1998, Peter J. Ashenden VHDL Quick Start 31

Regression Test Example

…
verify : process is
begin

wait for 10 ns;
assert q0a = q0b and q1a = q1b and q2a = q2b and q3a = q3b

report ”implementations have different outputs”
severity error;

wait on d0, d1, d2, d3, en, clk;
end process verify;

end architecture regression;

© 1998, Peter J. Ashenden VHDL Quick Start 32

Design Processing

• Analysis
• Elaboration
• Simulation
• Synthesis

© 1998, Peter J. Ashenden VHDL Quick Start 33

Analysis

• Check for syntax and semantic errors
– syntax: grammar of the language
– semantics: the meaning of the model

• Analyze each design unit separately
– entity declaration
– architecture body
– …
– best if each design unit is in a separate file

• Analyzed design units are placed in a library
– in an implementation dependent internal form
– current library is called work

© 1998, Peter J. Ashenden VHDL Quick Start 34

Elaboration

• “Flattening” the design hierarchy
– create ports
– create signals and processes within architecture body
– for each component instance, copy instantiated entity

and architecture body
– repeat recursively

• bottom out at purely behavioral architecture bodies

• Final result of elaboration
– flat collection of signal nets and processes

© 1998, Peter J. Ashenden VHDL Quick Start 35

Elaboration Example

int_clk

d0

d1

d2

d3

en

clk

q0

q1

q2

q3

bit0
d_latch
d

clk

q

bit1
d_latch
d

clk

q

bit2
d_latch
d

clk

q

bit3
d_latch
d

clk

q

gate
and2

a

b

y

reg4(struct)

© 1998, Peter J. Ashenden VHDL Quick Start 36

Elaboration Example

int_clk

d0

d1

d2

d3

en

clk

q0

q1

q2

q3

bit0

bit1

bit2

bit3

gate

reg4(struct)
d_latch(basic)
d

clk

q

d_latch(basic)
d

clk

q

d_latch(basic)
d

clk

q

d_latch(basic)
d

clk

q

and2(basic)
a

b

y
process with variables

and statements

© 1998, Peter J. Ashenden VHDL Quick Start 37

Simulation

• Execution of the processes in the elaborated model
• Discrete event simulation

– time advances in discrete steps
– when signal values change— events

• A processes is sensitive to events on input signals
– specified in wait statements
– resumes and schedules new values on output signals

• schedules transactions
• event on a signal if new value different from old

value

© 1998, Peter J. Ashenden VHDL Quick Start 38

Simulation Algorithm

• Initialization phase
– each signal is given its initial value
– simulation time set to 0
– for each process

• activate
• execute until a wait statement, then suspend

– execution usually involves scheduling transactions on
signals for later times

© 1998, Peter J. Ashenden VHDL Quick Start 39

Simulation Algorithm

• Simulation cycle
– advance simulation time to time of next transaction
– for each transaction at this time

• update signal value
– event if new value is different from old value

– for each process sensitive to any of these events, or
whose “wait for … ” time-out has expired

• resume
• execute until a wait statement, then suspend

• Simulation finishes when there are no further
scheduled transactions

© 1998, Peter J. Ashenden VHDL Quick Start 40

Synthesis

• Translates register-transfer-level (RTL) design into
gate-level netlist

• Restrictions on coding style for RTL model
• Tool dependent

– see lab notes

© 1998, Peter J. Ashenden VHDL Quick Start 41

Basic Design Methodology

Requirements

SimulateRTL Model

Gate-level
Model

Synthesize

Simulate Test Bench

ASIC or FPGA Place & Route

Timing
Model Simulate

