Accepted for publication in Proceedings of Sixth International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS '98).

© 1998 IEEE. Personal use of this material is pitteal. However, permission to reprintfreblish this material for advertising or promotional purposes or for creating new

collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtamet=EE.

Extensionsto VHDL for
Abstraction of Concurrency and Communication”

Peter J. Ashenden

Dept. Computer Science
University of Adelaide, SA 5005
Australia

petera@cs.adelaide.edu.au

Abstract

This paper describes extensions to VHDL to support sys-
tem-level behavioral modeling by providing more abstract
forms of communication and concurrency than those cur-
rently in the language. The report summarizes design ob-
jectives and issues that must be considered in developing
such extensions, and presents definitionsof our extensions.
Theextensionsfor communication consi st of channel types,
channel objects, dynamically allocated channels, and mes-
sage passing statements. The extensions for concurrency
consist of processdeclarationsand static and dynamic pro-
cessinstantiation statements. Use of theextensionsisillus-
trated with examples.

1. Introduction

Asthecomplexity of integrated hardwareand softwaresys-
temsincreases, system-level design languages are becom-
ing increasingly important. Such languages rely on
abstraction asthe key to managing complexity. Designers
focusfirst on the abstract properties of asystem in various
domains and devise a systems architecture that will satisfy
the requirements placed on the system. The domains under
consideration include behavior, structure, performance,
physical arrangement and packaging, power consumption,

Philip A. Wilsey

Dept. ECECS, PO Box 210030
University of Cincinnati
Cincinnati, OH 45221-0030, USA

phil.wilsey@uc.edu

Hardware description languages focus on describing
systems in the behavioral and structural domains. How-
ever, due to their origin aslanguages for hardware design,
they frequently do not include strong capabilities for ab-
stracting over dataand for describing complex interactions.
For example, in Verilog [14, 18], data types are closely
bound to their binary representation, and signalling be-
tween modul es includes aspects of electrical implementa-
tion. VHDL [1, 13], on the other hand, allows more
abstract expression of data, and itstype systemissimilar to
that of conventional programming languages. However, its
signalling features are still closely bound to electrical im-
plementation.

Toremedy these deficiencies, we have devel oped exten-
sionsto VHDL toimproveitssupport for system-level mo-
deling. These extensions are based on the requirement in
a system-level description language for abstraction in the
following areas.

« abstraction of data,
« abstraction of concurrency, and
« abstraction of communication and timing.

Theseextensionsmake VHDL suitablefor describing at
an abstract level aspectsof asystem that may ultimately be
implemented in hardware or software. We have described
the details of the extensionsto the data modeling facilities

thermal, cost, and so on. In each domain, abstraction is
used to focus on the maj or aspectsof the system and minor
detail isignored. Judicious choice of abstractions makes
architectural design and analysistractable, and aids subse-
guent partitioning and refinement of the system design.

in previouspapers[4—6]. These extensions involve mecha-
nisms for object-oriented data types and for genericity. We
have also presented a discussion of the issues that must be
considered in extending VHDL to provide more abstract
forms of concurrency and communication [3].

* Thiswork was partialy supported by Wright Laboratory under USAF contract F33615-95-C-1638.

In this paper we present our extensions for abstraction
of communication and concurrency in the SAUVE (SAV-
ANT and University of Adelaide VHDL Extensions) pro-
ject. We introduce into VHDL the notions of
communication channels and message-passing operations
asan abstraction of communication by signals. Weal soex-
tend the process model by allowing process declarations
that can be statically or dynamically instantiated.

Section 2 of this paper reviews our design objectives.
Section 3 discusses issues that must be considered in ex-
tending VHDL with a more abstract form of communica-
tion and gives reasons for our choices among the
aternaitves. Section 4 presents the details of the abstract
communication language features in SUAVE and Section
5 presentsthe detail s of the extensionsfor concurrency ab-
straction. Section 6 presentsan extended example, amulti-
threaded client-server system, that illustratesthe combined
useof theextensionsinasystem-level model. Finaly, Sec-
tion 7 contains our conclusions.

2. Design Objectives

Our main design objective in the SUAVE project istoim-
prove high-level modeling support in VHDL through in-
creased use of abstraction. Specific objectives leading to
the extensions described in this paper are:

« to provide amore abstract form of communication than
the existing mechanisms of signals and signal assign-
ment,

to provide dynamic process creation and termination,

to provide abstractionsthat are not biased towardshard-
ware or softwareimplementations, all owing subsequent
partitioning and refinement (hardware/software co-de-
sign),

to preserve capabilitiesfor synthesis and other forms of
design analysis,

to ensure clean integration and well-defined interaction
with existing language mechanisms,

to ensure clean integration and well-defined interaction
with extensionsfor data modeling and genericity devel-
oped in the SUAVE Project, and

to preserve correctnessof existing model swithin the ex-
tended language.

We consider integration with the existing language to be
akey design objective. We are guided by Fred Brooks' no-
tion of “conceptual integrity” [8]. As Brooks notes, “Con-
ceptual integrity does require that a system reflect a single

philosophy and that the specification as seen by the user

flow from a few minds.” To this end, we have embraced the
design principles (listed in our earlier paper [5]) used dur-
ing earlier development and standardizatiorvefDL.

3. Consderationsfor the Abstraction of
Communication

Atthe system level of design, processes representing active
objects mustinteract to communicate data and to synchron-
ize their operation. The simplest form of interaction is
message passing, involving the transfer of data from a sen-
der processto areceiver process. The act of message pass-
ing can also be used to synchronize processes. SUAVE
extends VHDL with message passing for abstract com-
munication as it is a natural abstraction of communication
common to both software and hardware. Other forms of
interaction, such as rendezvous and remote procedure call
are possible [7], but are oriented specifically toward soft-
ware implementation. Fortunately, they are easily ex-
pressed in terms of message passing.

There are two ways that message passing abstracts away
the details of communication in hardware description lan-
guages. First, communication events are not tied to spe-
cific times, but rather are simply ordered by relative time
of sending. This causality-based ordering is weaker and
less constraining than clock-time ordering, and is therefore
more appropriate at the early stages of design. Second,
communication events may be queued (either by queuing
messages or processes), rather than relying on the recipient
sensing data at the correct time. This allows multiple com-
munication events to form a stream or a transaction without
the need for detailed signalling protocols.

Signals in VHDL can be viewed agagically instan-
tiated, named communication channels. However, the se-
mantics of passing values via signalsis based on a low-level
model of electrical implementation, and is significantly
different from the forms of message passing seen in other
system-level description languages such as Estelle [9, 15],
SDL [10, 16] and CSP [11, 12]. At best, VHDL signal as-
signment might be viewed as asynchronous unbuffered
message passing, leading to loss of messages if the receiver
is not ready to accept them.

In a previous paper [3], we identify a number of issues
to consider when designing message-passing communica-
tion mechanism ivHDL and discuss some of tlaterna-
tives. The issues are:

1. whether the message send operation should hame a
target process as the recipient, or a communication
channel as the transmission medium;

whether message passing should be asynchronous or
synchronous;

whether to allow multicasting of messages; and

. how message passing integrates with concrete signal
assignment.

Our choices among the alternatives are as follows.

For the first issue, given that a description may be re-
fined to a hardware implementation in which communica-

tion occurs via named signals, named communication
channelsaremost appropriate. Channelsareamorenatural
abstraction of the communi cation mechanism used in hard-
ware description. Furthermore, they allow a communicat-
ing processto be encapsulated with formal channels. Such
a process can then be instantiated several times, each in-
stance communicating with different partner processes.

For the second issue, SUAVE chooses asynchronous
message passing. While either form of can be used to im-
plement the other, asynchronous message passing is the
most flexible. Synchronous communication can be smply
expressed using handshaking. The details can be encapsu-
lated to provide the appearance of simple synchronous
message passing, rendezvous, or remote procedure call.
Implementing asynchronous communication with syn-
chronousprimitives, ontheother hand, requiresexplicitin-
stantiation of a message buffer. An additiona
consideration addresses correctness proofs for communi-
cating programs. While formal proof techniques for syn-
chronous communication may be simpler, techniques for
proving properties of asynchronous communication have
been developed [17].

For thethird issue, SUAVE allows multiple processesto
receivefrom achannel, thusimplementing aform of multi-
cast communication. Each receiver accepts a copy of the
message when it isready. The sender proceeds as soon as
it has sent the message. Thisparallelshardware communi-
cation, inwhich asignal from one source can be connected
to several receivers.

For thefourthissue, the previous paper identified twoal -
ternatives: (i) generalizing signalsand signal assignment to
amoreabstract form, and (ii) adding channelsasanew lan-
guage construct. While the former alternative is possible,
inpracticeit isdifficult to define. To do soinvolvesadding
numerous special-case rules to the semantic definitions of
signal declarations, interface signals, signal assignment
statements and wait statements. Adding channelsiseasier
to define, and, sincethe semanticsare sufficiently different
from signals, easier to comprehend. Hence, SUAVE fol-
lows the latter approach.

4. Channelsand Communication in SUAVE
4.1 Channds

Abstract communication in SUAVE occurs over channels,
which are of declared channel types. Channels can be de-
clared objects or interface objects. The syntax rule for a
channel type definitioniis:

channel_type_definition ::=
channd of subtype_indication
| null channd

In the first form of channel type definition, the subtype
indication is called the message type of the channel. It de-

notesthe subtype of valuesthat may be passed asmessages
onachannel of thechannel type. The second form of chan-
nel type definition defines a null channel type. Such a
channel typeis used for a channel on which the messages
have no data content.

One or more channels may be declared using achannel
declaration. The syntax ruleis:

channel_declaration ::=
channd identifier_list : subtype _indication ;

Channel declarations may appear within entity declara-
tions, architecture bodies, block statements, generate state-
ments, and package declarations. The subtype indication
in the channel declaration denotes a channel type.

A channel isanalogousto asignal, except that informa-
tionistransferred using the send and receive message pass-
ing operations (described below). There is no notion of
resolution of multiple source values, nor of specific times
at which values occur on channels. A channel object de-
notes a queue of messages. When the channel object is
created, the queueisinitially empty.

Example
The following declarations define three channel types
and two channel objects:

type request_channel is channel of request_message;
type result_channel is channel of result_message;

type acknowledgment_channel is null channel;

channel request : request_channel;
channel result : result_channel;

SUAVE also allowsnterface channels, which may appear

as formal ports of design entities, components or blocks, or
as formal channel parameters of subprograms. The syntax

rule is:

interface_channel_declaration ::=
channd identifier_list: [mode] subtype_indication

The mode, if present, is one of or out, and the subtype
indication denotes a channel type. Anmode channel
may be used to receive messages, armbamode channel
may be used to send messages.

Example
In the following architecture body, thimage_channel

type represents tokens in an uninterpreted queuing model.

The componeninage_filter has channel ports for receiving
and sending tokens. The component instaieehas its
ports associated with the actual channel objegtamage
andfiltered_image.

architecture performance_modeling of motion_detector is

type image_channel is channel of image_token;

component image_filter is If the channel is not of a null channel type, the value of the

port (channel raw_image : in image_channel; message is assighed to the target using the same rules as va-
channel filtered_image : out image_channel); . .
riable assignment.

end component image_filter;

If multiple processes can read a message channel, all
processes receive each message sent to the channel. Fur-
thermore, all processes receive the messages from the
])] channel in the same order. An implementation may
filter : component image_filter achieve this effect either by providing one message queue

port map (raw_image => raw_image, . .
filtered_image => filtered_image); for the channel, from which each process copies message
values, or by replicating the message queue at each process.

channel raw_image, filtered_image : image_channel;

begin

end architecture performance_modeling; Example
The following two statements receive (a) from a channel
with data and (b) from a null channel:

4.2 Communication Statements receive next_request from request;

SUAVE extends the set of sequential statements to include receive from acknowledgment

send statements, receive statements andselect statements. —
A send statement adds a message to the queue of a channel. A process may choose between a number of channels for

The syntax rule is: message reception usingsaect statement. The syntax
rules are:
send_statement ::=
[label :] send [expression] to channel_name; select_statement ::=
[select_label :]
The expression is disallowed if the channel is of a null sdlect
channeltype. Otherwise, the expressionisrequired and de- [guard] receive_aternative
notes the value to be sent as a message. If the channel is of {or
anull channel type, a data-less message is sent. Execution [guard | receive_aternative }
of a send statement involves adding the message to the tail |else

sequence_of _statements]

of the message queue of the named channel. The process end select [select Tabel] -

executing the send statement then continues executing. If
multiple processes execute send statements to the same gyard ::= when condition =>
channel concurrently, the order in which the messages are

added to the message queue is not defined. (It is imple- receive_dternative ::=

mentation dependent.) receive_statement [sequence_of_statements]
Example A select statement allows non-deterministic choice be-

tween alternative sources for message reception. Each re-
ceive alternative may be guarded by a boolean condition;
a guarded alternative may only be chosen if the guard is
send result_message’(. . .) to result; true.

send to acknowledgment; Execution of the select statement consists firstly of ev-
aluating the guard conditions. An alternative is said to be
open if it has no guard, or if its guard evaluates to true. If
Aprocess accepts amessage from a channel useugiae no alternative is open and the select statement hatsan

The following two statements send (a) to a channel with
data and (b) to a null channel:

statement. The syntax rule is: clause, the statements in tlee clause are executed, thus
_ completing execution of the select statement. Itis an error
receive_statement 1= if no alternative is open and there is dse clause.

label : i target] f hannel ; . .
[recéive[target] from channel_name If there are open alternatives for which the channels

The target is disallowed if the channel is of a null channel hamed in the corresponding receive statements have
type, otherwise it is required. The target must denote a va-queued messages, one of the open alternatives is chosen ar-
riable name or an aggregate of variable names. ExecutiorPitrarily. The receive statement is executed, followed by
of a receive statement involves examining the messageeXecution of the sequence of statements (if present), com-
queue of the named channel. If the message queue iPleting execution of the select statement.

empty, the process suspends until a message arrives. When If there are open alternatives but none of the channels
there is a message available, it is removed from the queuenamed in the corresponding receive statements have

gueued messages, execution depends on whether the select
statement has an else clause. If thereisan else clause, the
statementsin it are executed, completing execution of the
select statement. Otherwise, the process blocks until a
message arriveson oneof thechannelsnamedinthereceive
statements of the open alternatives. Execution then pro-
ceeds as described in the previous paragraph. The guard
conditionsarenot re-eval uated while the processisblocked
or when a message arrives.

Example

In the following example, the process access_controller
arbitratesbetween readersand writers of a shared resource.
A reader sends a read-request message to the process, and
only proceeds when the process responds with an acknow-
ledgment. When the reader finishes reading, it sends a
read-finished message to the process. Writersobey asimi-
lar protocol. Multiple readers are allowed concurrent ac-
cess, provided the number of active writersis zero. Only
onewriter at atimeis permitted, and then only if there are
no active readers. The guardsin the select statement con-
trol the reception of request messages, based on the number
of readers or writers currently active.

type read_request_channel is channel of . . .;
type read_finished_channel is null channel;
type write_request_channel is channel of . . . ;
type write_finished_channel is null channel;

channel read_request : read_request_channel;
channel read_finished : read_finished_channel;
channel write_request : write_request_channel;
channel write_finished : write_finished_channel;

access_controller : process is
variable number_of_readers, number_of_writers : natural :=0;
begin
select
when number_of_writers = 0 =>
receive read_request_info from read_request;
number_of_readers := number_of _readers + 1;
. ——acknowledge read request
or
receive from read_finished;
number_of_readers := number_of_readers — 1,
or
when number_of _readers =0
and number_of_writers = 0 =>
receive write_request_info from write_request;
number_of_writers := number_of_writers + 1;
. ——acknowledge write request
or
receive from write_finished;
number_of_writers := number_of_writers — 1;
end select;
end process access_controller;

4.3 Dynamically Created Channels

SUAVE provides mechanisms based on accesstypes for dy-
namically creating channels in order to communicate with
dynamically created processes. An access types may be
declared to have a channel type asits designated type. Such
an accesstype is called atcess-to-channel type. Achan-

nel may be dynamically allocated using an allocator with

a subtype indication denoting a channel type. The access
value returned by the allocator designates the newly allo-
cated channel.

Example

The following declarations definesult_ref to be an ac-
cess-to-channel type, and the variakdait to be of this
type, initialized with a reference to a dynamically created
channel.

type result_ref is access result_channel;

variable result : result_ref := new result_channel;

5. Extensionsfor Abstraction of Con-
currency

A system-level design language needs to allow expression
of concurrent processes representing the active objects in
a system. In some systems, the number of active objectsis
not statically determined, but may vary during operation of
the system. For example, ina client/server system, new ser-
vice agents may be created as requests arrive from clients,
allowing multiple requests to be processed concurrently.
In order to describe such systems, a system-level design
language must allow expression of process types that may
be dynamically instantiated and terminated.

The model of concurrency in VHDL is based on pro-
cesses which are statically specified in architecture bodies.
However, the language does not allow specification of a
process type that can be separately instantiated. Instead,
the process must be encapsulated in a design entity and in-
stantiated through the component instantiation mecha-
nism. This is cumbersome, and has the disadvantage of
implying structural partitioning. Furthermore, it does not
allow dynamic instantiation of processes.

These deficiencies can be overcome by extending
VHDL to include processeklarations, abstracting over the
statically specified processes currently provided in the lan-
guage. A process interacts with its environment using the
communication mechanism provided by the language.
Therefore, a process declaration includes an interface in
which formal communication objects can be specified. A
process declaration can be statically instantiated as a con-
current statement in an architecture body, with bindings
made between formal and actual communication objects.

It can also be dynamically instantiated by the execution of
asequential processinstantiation statement. Process dec-
larations and their instantiation and termination are de-
scribed more fully below.

5.1 Process Declarations

SUAV E extends declarative partsto include process decla-
rations and process bodies as follows:

process_declaration ::=
process_specification
end process| process smple_name] ;

process _body ::=
process_specification
process_declarative_part
begin
process_statement_part
end process[process smple_name] ;

process_specification ::=
processidentifier is
[generic_clause]
[port_clause]

Process declarations, like subprogram declarations,
may be defined with separate specificationsand bodies. In
particular, if aprocessisdeclared in apackage, the process
specification occurs in the package declaration, and the
process body occurs in the package body.

5.2 Process | nstantiation Statements

Static instantiation of a declared process is done using a
process instantiation statement. The syntax ruleis:

process_instantiation_statement ::=
[instantiation_label :]
process process_name
[generic_map_aspect |
[port_map_aspect] ;

A process instantiation statement is equivalent to a
block statement with the generic clause and port clause
taken from the process specification and the generic map
aspect and port map aspect taken from the process instan-
tiation statement. The declarative part of the block state-
ment is empty, and the statement part contains a process
whose declarative part and statement part are taken from
the processbody. The meaning of any identifier withinthe
block statement and the process it contains is that asso-
ciated withtheidentifier inthe processdeclaration or body.
Toillustrate application of these rules, consider thefollow-
ing process body and instantiation statement:

process pis
generic (g : integer);
port (channel ¢ : c_chan);

variable v : integer;

begin
VI X;
end process p;

p_inst: process p
generic map (g=>5)
port map (c=>cl);
The processinstantiation statement issemantically equiva-
lent to:
p_inst: block is
generic (g : integer);
generic map (g=>5);
port (channel ¢ : c_chan);
port map (c=>cl);
begin
p : process is
variable v : integer;
begin
ViZ.LLX
end process p;
end block p_inst;

The name x is prefixed to ensure that it refers to the same
item visibleinthe processdeclration rather than any homo-
graph that hides the name.

Dynamic instantiation of a process is performed using
a sequential process instantiation statement. The syntax
ruleis:
sequential_process_instantiation_statement ::=
[label 1]
Process process_name
[generic_map_aspect |
[port_map_aspect] ;
Execution of a sequential process instantiation state-
ment involves the following steps:

« ¢laboration of the genericlist of the processdeclaration
to create the formal generics, and association of the
actual generics with the formal generics;

« ¢laboration of the port list of the process declaration to
createtheformal ports, and association of theactual sig-
nals, channels and values with the formal ports;

« ¢laboration of the declarations of the process; and
« creation and initialization of the drivers of the process.

The newly instantiated processthen commences execu-
tion of itsstatement part concurrently with theinstantiating
processin the current simulation cycle. The newly instan-
tiated processissaid to depend ontheinstance or activation
of the declaration or statement that immediately contains
the declaration of the process. That instance or activation
may not return or terminate until all of the processes that
depend on it have terminated, since such processes may
refer to items declared by the declaration or statement.

5.3 Process Termination

A process may terminate by executing a sequential state-
ment called aterminate statement. The syntax ruleis:

terminate_statement ::=
[label :] terminate;

Termination of aprocessinvolvesthefollowing actions:

» The process waits until all processes that depend on it
have terminated.

» Thedriversof the processare disconnected fromthesig-
nals that they drive.

» The formal ports are disassociated from the actual sig-
nals and channels.

6. Example: A Client-Server System

Thisexampleisamodel of aclient-server systeminwhich
the server is multi-threaded, allowing it to serve multiple
transactions concurrently. Since the number of clients to
be served concurrently is not known a priori, the server
creates agents dynamically to perform the transactions.
The organization of the system is illustrated in Figure 1.
The system may ultimately be implemented in software,
butitisdesirableto model it early inthedesign flow before
hardware/software partitioning is performed.

——
reguest
Client Server
result :ce);v&/;ded
———
| Agent |
|
dynamically
created

Figure 1. A client-server system
with dynamically created agents.

Thetyperesult_channel representsachannel for receiving
result messages from the server, and the type result_ref isa
reference to such a channel. The type request_info is the
message type for requeststo the server. Itincludesarefer-
enceto the channel uponwhichtheclient expectstoreceive
theresult of therequest. Thetyperequest_channel represents
achannel for sending requests, and the type request_ref isa
reference to arequest channel.

The client process's port is a channel upon which it
sends requests. Part of the client’s state is a dynamically
created channel for receiving transaction results. Whenthe
client makes arequest, itincludes the reference toits result
channel as part of the request.

The server process has a channel port for receiving re-

and saves the request in the variabie It then dynami-
cally creates a new request channel and a new agent pro-
cess, with the agent’s request channel port mapped to the
new request channel. The server then forwards the saved
request message via the new channel. The newly created
agent receives the forwarded message, performs the trans-
action, and sendsthe results to the channel referenced inthe
request message. The agent then terminates. While the
agent is processing the transaction, the server may receive
further request messages and create agents to process them
concurrently.

architecture system_level of client_server_system is

type result_valueis . . .;
type result_channel is channel result_value;
type result_ref is access result_channel;

type request_info is record
.., —— info for the transaction
result_please : result_ref;
end record request_info;
type request_channel is channel request_info;
type request_ref is access request_channel;

process clientis
port (channel request : out request_channel);

variable result : result_ref := new result_channel;
begin

send (.. ., result) to request;
receive . .. from result.all;

end process client;

process server is
port (channel request : in request_channel);

process agent is
port (channel request : in request_channel);

variable info : request_info;

begin
receive info from request;

.., —— perform transaction
send . .. to info.result_please.all;
terminate;

end process agent;

variable info : request_info;
variable new_agent_request : request_ref;

begin
receive info from request;
new_agent_request := new request_channel;
process agent
port map (new_agent_request.all);
send info to new_agent_request.all;
end process server;

channel server_request : request_info;

quests, and encapsulates a process declaration for agents, begin

which also has a channel port for requests. The body of the

server receives a request message on its request channel,

the_server : process server
port map (request => server_request);

client_pool : for client_index in 1 to 10 generate
a_client : process client
port map (request => server_request);
end generate client_pool;

end architecture system_level;

7. Conclusion

Design at the system level relies on abstraction to manage
complexity. In thispaper, we have described extensionsto
VHDL that introduce abstract formsof communicationand
concurrency. Theseextensions makethe language suitable
for design of behavior and structure at the system level.
Our extensionsare not biased towardshardware or software
refinement of adesign. Thus, the extended language can
beusedto expressbehavior and structure of asystem before
partitioning into hardware and software, supporting ex-
ploration of hardware/software trade-offs and hardware/
software co-design. The approach we have taken is to
provide abstract forms of the existing language mecha-
nisms for communication and concurrency. Thiseasesre-
finement of hardware partitions of adesign to lower-level
implementations expressed in VHDL. The abstract forms
of communication and concurrency al so ease refinement of
the software partitions to programming-language imple-
mentation.

Whereas this paper provides an overview of the lan-
guage extensions, a more detailed specification can be
foundin aseparate Technical Report [2]. Subsequent work
inthe SUAVE project will involveimplementing the exten-
sions in the SAVANT framework [19], and validating the
language design with use cases to be published by the SI2
System Level Design Language (SLDL) Committee.

References

[1] P J Ashenden, The Designer’'s Guide to VHDL San
Francisco, CA: Morgan Kaufmann, 1996.

[2] PJ AshendenandP A.Wilsey, Proposed Extensions
to VHDL for Abstraction of Concurrency and Com-

munication Dept. Computer Science, University of
Adelaide, Technical Report TR-97-11, 1997.

[3] P J AshendenandP A. Wilsey, “Considerations on
System-Level Behavioural and Structural Modeling

Extensions to VHDL, "Proceedings of VHDL Inter-
national Users Forum Spring 1998 Conference,
Santa Clara, CA, pp. 42-50, 1998.

[4] P. J. Ashenden, P. A. Wilsey, and D. E. Martin,

“Reuse Through Genericity in SUAVE Proceed-
ings of VHDL International Users Forum Fall 1997
Conference, Arlington, VA, pp. 170-177, 1997.

(5]

(6]

[7]

(8]

9]

(10]

[11]

[12]
(13]

(14]

[15]

(16]

(17]

(18]

[19]

P. J. Ashenden, P. A. Wilsey, and D. E. Martin,
SUAVE: A Proposal for Extensions to VHDL for
High-Level Modeling, Dept. Computer Science,
University of Adelaide, Technical Report TR-97-07,
ftp://ftp.cs.adelaide.edu.au/pMiADL/TR-exten-
sions.pdf, 1997.

P. J. Ashenden, P. A. Wilsey, and D. E. Martin,
“SUAVE: Painless Extension for an Object-Oriented
VHDL,” Proceedings of VHDL International Users
Forum Fall 1997 Conference, Arlington, VA, pp.
60-67, 1997.

H. E. Bal, J. G. Steiner, and A. S. Tanenbaum, “Pro-
gramming Languages for Distributed Computing
Systems,”ACM Computing Surveys, vol. 21, no. 3,
pp. 261-322, 1989.

F. P. Brooks, Jr.The Mythical Man-Month, Anniver-
sary ed. Reading, MA: Addison-Wesley, 1995.

S. Budkowski and P. Dembinski, “An Introduction to
Estelle: A Specification Language for Distributed
Systems,”Computer Networks and ISDN Systems,
vol. 14, no. 1, pp. 3-23, 1987.

O. Feergemand and A. Olsen, “Introduction to
SDL-92,” Computer Networks and 1SDN Systems,
vol. 26, , pp. 1143-1167, 1994.

C. A. R. Hoare, “Communicating Sequential Pro-
cesses, Communications of the ACM, vol. 21, no.
11, pp. 934-941, 1978.

C. A. R. Hoare,Communicating Sequential Pro-
cesses. London: Prentice Hall, 1985.

IEEE, Sandard VHDL Language Reference Manu-
al. Standard 1076-1993, New York, NY: IEEE, 1993.

IEEE,Sandard Verilog Hardware Description Lan-
guage Reference Manual. Standard 1364-1995, New
York, NY: IEEE, 1995.

ISO,Estelle: AFormal Description TechniqueBased
on an Extended Sate Transition Model. Draft Inter-
national Standard 9074, 1987.

ITU, Specification and Description Language
(SDL). Revised Recommendation Z.100, 1992.

R. D. Schlichting and F. B. Schneider, “Understand-
ing and Using Asynchronous Message-Passing,”
Proceedings of 1st ACM S GACT-S GOPS Sympo-
sium on Principles of Distributed Computing, Otta-
wa, Canada, pp. 141-147, 1982.

D. E. Thomas and P. R. Moorbyhe Verilog Hard-
ware Description Language, Third ed. Boston, MA:
Kluwer Academic Publishers, 1996.

P. A. Wilsey, D. E. Martin, and K. Subramani, “SAV-
ANT/TyVIS/warped: Components for the Analysis
and Simulation ofVHDL,” Proceedings of VHDL
International User’s Forum Spring 1998 Confer-
ence Santa Clara, CA, pp. 195-201, 1998.

