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Abstract

The SUAVE project aimsto introduce object-oriented and genericity
extensionsinto VHDL in a way that doesnot disturb the existing lan-
guage or itsuse. Designers regularly define abstract data types by
using aspects of VHDL's type system, subprograms, and packages.
They also use VHDL' sgenericity mechanismto parameterize compo-
nent and entity declarations with formal generic constants. The
SUAVE approach builds on these basic mechanismsby strengthening
the facilities for encapsulation and adding an inheritance mecha-
nism. It also extendsthegenericity mechanismbyallowing formal ge-
nericstypesand by allowing genericsto be specified in theinterfaces
of subprograms and packages. The SUAVE extensionsare based on
thefeaturesof Ada-95. They allow unitsto bere-used inamuchwider
variety of contexts without modifying theoriginal code. By choosing
an incremental and evolutionary approach to extensions, SUAVE
avoids major additionsto thelanguage that would complicatechoice
of mechanisms for expressing a design. This paper outlines the
SUAVE extensions and illustrates their use through some examples.

1. Introduction

VHDL iswidely used by designersof digital systemsfor specification,
simulation and synthesis. Increasingly, designersareusing VHDL at
high levels of abstraction as part of the system-level design process.
At thislevel of abstraction, the aggregate behavior of asystem isde-
scribed in astyle that issimilar to that of software. Datais modeled
inabstract form, rather than using any particular binary representation,
and functiondlity is expressed in terms of interacting processes that
perform algorithmsof varying complexity. A subsequent partitioning
step in the design process may determine which aspects of the mo-
deled behavior are to be implemented as hardware subsystems, and
which are to be implemented as software.

Experience in the software engineering community has lead to
adoption of object-oriented design and programming techniques for
managing complexity through abstract datatypes (ADTS) and re-use
[10]. Featuresincluded in programming languages to support these
techniques are abstraction and encapsulation mechanisms, inherit-
ance, and genericity. Theterm “object-based” iswidely used to refer
to alanguagethat included abstraction and encapsulation mechanisms
[24]. The term “object-oriented” is used to refer to a language that
additionally includes inheritance.

While VHDL can be used for modeling at the system level, it has
somedeficienciesthat makethetask moredifficult thanit would other-
wisebe. Thesedifficulties center around language features (or lack of
somefeatures) for supporting complexity management. VHDL iscur-
rently somewhat less than object-based, as its encapsulation mecha
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nismareweak. Itiscertainly not object-oriented, asitdoesnotinclude
any form of inheritance. Whileit doesincludeamechanism for gener-
icity, that mechanism is severely limited, alowing only parameteriz-
ation of unitsby constant values. We have discussed theseissuesina
previous paper [3].

SUAVE aims to improve support for high-level modeling in
VHDL by extending thelanguage with featuresfor object-orientation
and genericity in away that does not disturb the existing language or
itsuse. Aswell as adding specific language features, some existing
features are generdized, the facilities for encapsulation are streng-
thened, and an inheritancemechanismisadded. Privatetypesand pri-
vate parts in packages support improved encapsulation. Type
derivation, record type extension, and class-widetypeswith dynamic
dispatching support inheritance.

SUAVE dso extends the genericity mechanism of VHDL by a-
lowing typesto specified asformal genericsand by allowing generics
to be specified in theinterfaces of subprogramsand packages. Useof
formal type genericsalows unitsto be reused in contexts where data
of different typesisto bemanipulated. For example, amultiplexer can
be specified with aformal type generic for the type of the input and
output data. Thisallows the multiplexer model to be reused as abit,
bit_vector, std_logic, std_logic_vector, integer, or user-defined-type
multiplexer, without modifying the original model code. Use of ge-
nericsintheinterfaces of subprogramsand packagesallowsdefinition
of container abstract data types that can be reused to contain data of
different types. For example, ageneric package can bedefined to rep-
resent and manipul ate sequencesof integer, timevalues, or test vectors
for different devices under test, again without modifying the original
package code.

We have previoudly argued [4] that, in addition to supporting ob-
ject-orientation, these extensions improve the expressiveness of
VHDL and enhance reuse across the modeling spectrum from high-
level to gate-level. Furthermore, the genericity extensions interact
with the extensionsfor object-oriented datamodeling to significantly
improve support for high-level behavioral modeling and for develop-
ing test-benches. By choosing an incrementa and evolutionary ap-
proach to extensions, SUAVE avoids major additionsto thelanguage
that would complicate choice of mechanismsfor expressing adesign.
Inaddition, theimplementation burdenisnot large, and thereisno per-
formance penalty in simulation or synthesisif the mechanism are not
used.

The SUAV E approachissimilar to that proposed by Mills[17] and
by Schumacher and Nebel [20]. Itiscontrasted with othersthat have
been proposed [9, 12, 19, 22, 25], that add new, separate mechanisms
for combining abstraction, encapsulation, and inheritance for object-
orientation. Such mechanisms replicate aspects of the existing fea
tures of VHDL, making design choicesfor expressing amodel more
complex.

* Thiswork was partially supported by Wright Laboratory under USAF contract F33615-95-C-1638.



This paper outlines the SUAVE extensions for object-orientation
and genericity, and illustratestheir usethrough someexamples. More
complete presentation of the extensions can be found in the SUAVE
report[6].) Most of thefeaturesadded to VHDL areadapted from fea-
turesin Ada-95[16], and areincluded largely for thesamereasonsthat
they areincluded in Ada-95 [8]. Section 2 of this paper outlinesthe
design principles and objectives that were followed in deciding how
to extend VHDL. Subsequent sections describe the extensionsin de-
tail and illustrate them with examples. Section 3 describes the exten-
sions to the type system of VHDL to support type derivation,
extension and class-wide programming. Section 4 describes the ex-
tensions that improve the encapsulation features of VHDL. In com-
bination, the extensions in these two sections turn VHDL into an
object-oriented language. Section 5 describestheSUAV E typegener-
icity extensions, and Section 6 describes and illustrates further exten-
sions for subprogram and package genericity. Our conclusions are
presented in Section 7.

2. SUAVE Design Objectives

A previous paper [4] reviews theissues to be addressed in extending
VHDL for high-level modeling and discusses principles that should
govern thedesign of language extensions. Asaresult of that analysis,
anumber of design objectives were formulated for SUAVE:

¢ to improve support for high-level behavioural modeling by im-
proving encapsulation and information hiding capabilities and
providing for hierarchies of abstraction,

¢ toimprove support for re-useand incremental development by al-
lowing further delaying of bindings through type-genericity and
dynamic polymorphism,

* topreservecapabilitiesfor synthesisand other formsof designana-
lysis,

* to support hardware/software co-design through improved inte-
gration with programming languages (e.g., Ada),

* to support refinement of models through elaboration of compo-
nents rather than through repartitioning, and

* topreservecorrectnessof existing modelswithin the extended lan-
guage.

Since SUAVE is an extension of the existing VHDL language, it
isimportant that the extensions integrate well with all aspects of the
existing language. In designing the SUAVE extensions, the design
principalsfollowed during therestandardization of VHDL that lead to
the current language [15] were adopted in addition to those listed
above. Thegoa wasto preservewhat Brooksrefersto asthe” concep-
tuad integrity” of the language [11].

3. Extensionsto the Type System

Object-oriented languages support re-use and incremental develop-
ment through themechanism of inheritance. SUAV E extendsthetype
system of VHDL by adopting the object-oriented features of Ada-95,
including inheritance through type derivation and tagged types with
extension on derivation.

3.1 Derived Typesand Inheritance

For atype defined in a package, the operations (procedures and func-
tions) defined in the package are called the primitive operations of the
type. A new type can be defined as being derived from a parent type.
Inthat case, thederived typeinheritsthe set of valuesand the primitive
operations of the parent type. An inherited operation can be over-

ridden by defining anew operation with the same namebut with oper-
andsof thederived type. Furthermore, additional primitiveoperations
can be defined for the derived type. SUAVE adoptsthe Adanotation
for defining aderived type, for example:

type event_count is new natural,

The derived typeis distinct from, but related to, the parent type. Use
of derived typeshel psavoid inadvertent mixing of conceptualy differ-
ent values, and thus improves the expressiveness of the language.

3.2 Tagged Typesand Type Extension

Asin Ada-95, arecord typein SUAV E may includethereserved word
tagged initsdefinition. Such atypeiscalled atagged type. Anobject
of atagged typeincludesarun-timetag that identifiesthe specifictype
used to create the object. Thetag is used for dynamic dispatching,
which isdescribed below. A tagged record type may be extended by
deriving anew typewith arecord extension containing additiona re-
cord elements. Thisistheorigin of theterm “programming by exten-
sion,” sometimes used to describe the Ada-95 approach. Thederived
typeisaso atagged typethat can be further extended. Sinceall ele-
ments in the parent type are aso in the derived type, inherited oper-
ationsof the parent type can be applied to objectsof theextended type.
However, any overriding or newly defined operationsfor theextended
typecan only beapplied to the extended type (or itsderivatives), since
they may refer to the elementsin the extension.

Asan example, consider atypeand operationsrepresenting anin-
struction set for aRISC CPU. All instructionshave an opcode. ALU
instructionsadditionally havefieldsfor the sourceand destinationreg-
ister numbers. Thusan ALU instruction can be considered as an ex-
tension of a base instruction with just an opcode. This can be
expressed in SUAVE by defining the following in a package:

type instruction is
tagged record
opcode : opcode_type;
end record instruction;
function privileged ( instr : instruction;
mode : protection_mode ) return boolean;

procedure disassemble ( instr : instruction; file output : text );

type ALU_instruction is
new instruction with record
destination,
source_1, source_2 : register_number;
end record ALU_instruction;

procedure disassemble ( instr : ALU_instruction;
file output : text );

The subprograms privileged and disassemble are primitive oper-
ations of instruction and are inherited by derived types. The type
ALU_instruction is derived from instruction and has four elements:
the opcode element inherited from instruction, and the three register
number elements defined in the extension. A version of the function
privileged isinherited frominstruction with theinstr parameter being
of type ALU_instruction. The disassemble instruction defined for
ALU_instruction overrides that inherited from instruction.

3.3 Abstract Typesand Subprograms

An abstract typeisatagged typethat isintended for use solely asthe
parent of some other derived type. Objects may not be declared to be
of an abstract type. An abstract subprogramisone that has no body
(and requires none), because it isintended to be overridden when in-
herited by aderived type. Abstract typesand subprogramsallow defi-
nition of types that include common properties and operations, but



which must be refined by derivation of typesthat represent concrete
objects.

As an illustration, consider refinement of the instruction type to
represent memory reference instructions using displacement addres-
sing mode. Such instructionsinclude a base register number and an
offset. Thetypefor theseinstructionsis declared abstract, sinceit is
intended to be the parent type for load and store instruction types.
More precisely,

type memory_instruction is
abstract new instruction with record
base : register_number
offset : integer:
end record memory_instruction;

function effective_address_of ( instr : memory_instruction );

procedure perform_memory_transfer
(instr : memory_instruction ) is abstract;

Thefunction effective_address_of isnot abstract, sinceit can cal-
culate the result using the datain amemory_instruction record. The
function can beinherited “asis’ by derived types. The procedureper-
form_memory_transfer, on the other hand, is declared abstract since
the direction of transfer depends on whether amemory instructionis
aload or astore. The derived types must provide overriding non-ab-
stract implementationsof thisprocedure. Examplesare derived types
for load and store ingtructions, as follows:

type load_instruction is
new memory_instruction with record
destination : reg_number;
end record load_instruction;

procedure perform_memory_transfer
(instr : load_instruction );

procedure disassemble (instr : load_instruction;
file output : text );

type store_instruction is
new memory_instruction with record
source : reg_number;
end record store_instruction;
procedure perform_memory_transfer
(instr : store_instruction );

procedure disassemble ( instr : store_instruction;
file output : text );

Objects cannot be declared to be of type memory_instruction, but
they can be declared to be of typeload_instruction or store_instruc-
tion.

3.4 ClassWide Typesand Operations

Oneof themost important aspects of object-oriented programming is
the use of classes. SUAVE adopts the Ada-95 mechanism of class-
widetypesto deal with classes. Thiscontrastswith languages such as
Simula[13], C++ [21] and Java [14] that introduceaspecia construct
for classes. (See our paper that compares the two approaches [2].)

Class-wide types are denoted using the 'Class attribute. For a
tagged type T, the class-wide type denoted T’ Classis the union of T
and all typesderived directly orindirectly fromT. ThetypeT iscalled
theroot of the class-wide type. For example, the class-wide typein-
struction’class denotes the hierarchy of typesrooted at instruction,
and including ALU_instruction, memory_instruction, load_instruc-
tion and store_instruction.

An object of aclass-widetypecan have avaue of any specifictype
in T'Class. Such an objectis called polymorphic, meaning that it can
take on values of different types during its lifetime. SUAVE alows
constants, dynamically alocated variablesand signalsto beof aclass-

widetype. When an operation isapplied to an object of aclass-wide
type, thetag of thevalueisused to determinethe specifictype, and thus
to determine which primitive operation to invoke. Thisis called dy-
namicdispatching, or latebinding, and isan essential aspect of object-
oriented languages. As an example, consider the following signa
declaration and application of an operation:

signal fetched_instruction : instruction’class;
disassemble ( fetched_instruction );

If the value of the signal is of typeinstruction, the version of disas-
semble for that typeisinvoked. However, if thevaue of thesignd is
of one of type load_instruction, the overriding version defined for
load_instruction valuesisinvoked. The choiceis made dynamically
at thetime of the call.

Whilethereareno primitiveoperations of aclass-widetype, asub-
program may have a parameter of aclasswidetype. Such asubpro-
gramiscaled aclass-wide operation. For example:

procedure execute ( instr : instruction’class );

Sincethe parameter is polymorphic, dynamic dispatching may bere-
quired for operations on the parameter within the subprogram.
Asafina examplein this section, consider an instruction register
that canjamaTRAPInstructionin placeof thestoreinstruction. First,
two constants are declared for the TRAP instruction and an undefined
ingtruction:
constant halt_instruction : instruction
:= instruction’(opcode => op_halt);
constant undef_instruction : instruction
:= instruction’(opcode => op_undef);

Next, the entity is declared:
entity instruction_reg is
port (load_enable : in bit;
jam_halt : in bit;
instr_in : in instruction’class;
instr_out : out instruction’class );
end entity instruction_reg;

The portsinstr_in and instr_out are signas of aclass-wide type and
so may take on values of any of thetypesin theinstruction hierarchy.
A behaviora architecture body for the register is:

architecture behavioral of instruction_reg is
begin
store : process ( load_enable, jam_halt, instr_in ) is
type instruction_ptr is access instruction’class;
variable stored_instruction : instruction_ptr
:= new undef_instruction;
begin
if jam_halt ='1" then
deallocate ( stored_instruction );
stored_instruction := new halt_instruction;
elsif load_enable ='1’' then
deallocate ( stored_instruction );
stored_instruction := new instr_in;
end if;
instr_out <= stored_instr.all;
end process store;

end architecture behavioral;

The process implements the register storage using the local vari-
able stored_instruction. Since a variable cannot be of aclasswide
type, stored_instruction isdefined asan accessvalue, pointing to ady-
namically allocated object of typeinstruction’class. Itisinitialized to
theundefined instruction. WhenaHALT instruction isto bejammed,
anew instruction object initialized to the halt instruction valueisallo-
cated. Similarly, when an input instruction is to be stored, a new in-
struction object of the corresponding specific type is alocated and



initialized to the input instruction. The designated instruction object
isassigned as the output of the register.

4. Extensionsfor Encapsulation

A datatypein VHDL ischaracterized by aset of values, specified by
atypedefinition, and aset of operations. An abstract datatype(ADT)
is one in which the concrete details of the type definition are hidden
fromtheuser of theADT. Theuser may only usetheoperationsof the
ADT to manipulate values. ADTs are important tools for managing
complexity in alarge design.

VHDL currently includes the package feature, which can be used
todefinean ADT. Theconcretetypeand associated operationsarede-
claredinthepackagedeclaration, and theimplementationsof theoper-
ations are declared in the package body. While this approach alows
the implementation details of the operations to be hidden from the
ADT user, it exposesthedetail sof theconcretetype. A user may inad-
vertently (or deliberately) modify vaues of the concrete typedirectly,
rather than by using the provided operations. This can potentialy
placethe ADT vauein aninconsistent state. It also reducesthemain-
tainability of the design.

SUAVE extendsthe type system and package feature of VHDL to
provide secure encapsulation of informationin an ADT. It adoptsthe
mechanisms of private types and private parts in packages from
Ada95. Thismeetsone of the design objectives for SUAVE: to im-
prove encapsulation and information hiding.

Asafirgt step, theuse of packagesisgeneraized by alowingthem
to be declared as part of most declarative regionsin amodel, not just
aslibrary units. SUAVE alowsa package declaration and body to be
declared in an entity declaration, an architecture body, a block state-
ment, a generate statement, a process statement, and a subprogram
body. Thus, theconcept of apackageischanged fromthat of a“heavy-
weight” library-level unit to that of a“light-weight” declarativeitem.
Thisisimportant, since packages are used to declare types and oper-
ations defining classes, as well asinstances of generic packages (see
Ashenden et al [5]).

4.1 Private Partsand Private Types

Thesecond extension of the packagefeatureisto allow apackage dec-

laration to bedivided into avisible part and aprivate part, asfollows:
package name is

.. — —visible part

private
. — — private part

end package name;

Items declared in thevisible part are exported and may be referred to
by usersof thepackage. Itemsdeclared intheprivate part, on theother
hand, are not visible outside the package. When using a package to
definean ADT, thetypeisdeclared asaprivatetypein the visible part
of the package, along with the specifications of the primitive oper-
ationsof thetype. A private type declaration only providesthe name
of thetype. Theconcrete detailsof thetype aredeclared separately in
the private part of the package.

As an example, the following package definesan ADT for com-
plex numbers:

package complex_numbers is
type complex is private;

constant i : complex;

function cartesian_complex (re, im: real) return complex;
function re ( C : complex ) return real;
function im ( C : complex ) return real;
function polar_complex ( r, theta : real ) return complex;
function “abs” ( C : complex ) return real;
function arg ( C : complex ) return real;
function “+” (L, R : complex ) return complex;
function “=” (L, R : complex ) return complex;
function “*” (L, R : complex ) return complex;
function “/”" (L, R : complex ) return complex;
private

type complex is

record

r, theta : real;
end record complex;

end package complex_numbers;
A user of thispackage can declare objectsof typecomplex and invoke
operations on complex numbers, for example:

signal x, y, z : complex := cartesian_complex(0.0, 0.0);

z <=x*y after 20 ns;

However, thefact that complex numbersarerepresentedin polar form
ishidden. Indeed, the representation may be changed without requir-
ing changes to the user’s code.

4.2 Private Extensions

SUAVE adoptsthe Ada-95 mechanismsfor integrating encapsulation
withinheritance. A privatetype can bedeclared to betagged, indicat-
ing that it can be used astheparent of aderived type. The concretede-
tailsremain hidden intheprivate part of thepackage. A tagged private
type can aso be declared abstract if it should not be directly instan-
tiated. For example, a network packet at the media-access level of a
protocol suite might be declared asfollows:

package MAC_level is
type MAC_packet is abstract tagged private;

private
type MAC_packet is tagged record

end-r-e-cord MAC_packet;

end package MAC_level;

A tagged privatetype can beextended using typederivation, asde-
scribed in Section 3. However, for thederived typeto takeon theform
of asecure ADT, it should be declared as aprivate extension. Thisal-
lowsthe details of the extension to be encapsulated. For example, the

network packet type defined above may be extended with payload in-
formation to form a network-level packet:

package network_level is

type network_packet is
new MAC_packet with private;

private
type network_packet is

new MAC_packet with record

end record network_packet;
end package network_level;

A user of this package knows that a network-level packet is derived
fromaMAC-level packet, and thusinheritsall of the operation applic-



ableto aMAC-level packet. The concretedetails of both types, how-
ever, remain hidden.

4.3 Contractual Details

In adopting the Ada-95 features for private typesinto VHDL, some
minor changes were required to take account of interactions with
VHDL-specific features. In particular, VHDL prohibits signalsfrom
being of atypethat includes accessvalues. Thereason for therestric-
tionisthat signa sarethecommunication medium between processes,
which execute concurrently. If processes were to pass access values
between one another, the designated variable would be shared and
thusliableto uncontrolled concurrent access. Furthermore, in aparal-
lel implementation of asimulator, different processes may executein
different address spaces or on different processors. An access value
created in one process may be meaningless in the addressing context
of another.

SUAVE requires that a private type whose concrete implementa
tionincludesan accessvaluetoindicatethefactintheprivatetypedec-
laration with the keywords access private. The same requirement
appliesto aprivateextension that includesan accessvalue. Suchtypes
cannot beused for signals. Indication of theexistence of an accesstype
in the concrete type can be viewed as aform of contract between the
type provider and users. Absenceof theindication iscontract that the
concrete type does not include access values. In the case of asignal
of aclass-widetype, there may be aderived typein the class that in-
cludesan accessvaue. Whilethiscannot bechecked during analysis,
it can be determined at elaboration time, since the complete hierarchy
covered by the classis known at that time.

Another form of contract that can be specified relates to assign-
ment. If aprivatetypeincludesthekeyword limited, assignmentisnot
alowed by the user of thetype, and the equality operator isnot prede-
fined. Thisfeatureisadopted from Ada, and isuseful for typesdenot-
ing linked data structures.  Assignment normaly involves
element-wise copying of values, and equality involves element-wise
comparison. For linked structures, deep copy and deep comparison
may be more appropriate. Thetypeisdeclared limited in thevisible
part of the package, and copy and equality operations are provided.
Theimplementations of the operationshavefull view of the type, and
so can implement the required deep copy and comparison.

Asan example of thetwo formsof contractual detail described in
this section, consider the following ADT for a set of test vectors:

package test_vector_lists is
type list is limited access private;
constant empty_list : list;
procedure copy ( from :in list; to: out list);

impure function “=" (L, R : list) return boolean;
procedure add (L : inout list; test: in test_vector );

private
type element_node;
type element_ptr is access element_node;
type list is new element_ptr;

end package test_vector_lists;

Thelist typeisrepresented by the privatetypelist, whose concreterep-
resentationisasingly-linked list of elements. Sincethetypeincludes
accessvalues, thekeyword accessisincluded in theprivatetypedecla-
ration. Further, since the intended semantics of list assignment isto
copy theelementsto thetarget, theprivatetypeismadelimited. Hence
thepackage providesacopy operation and an equality operation. The
body of the packageisoutlined asfollows.

package body test_vector_lists is

type element_node is record
next_element : element_ptr;
element : test_vector;
end record element_node;
constant empty_list : list := list ( element_ptr'(null) );

procedure copy (from :inlist; to: outlist)is ...

end package body test_vector_lists;

This illustrates a further extension to VHDL made by SUAVE:
constants and constant parameters may include access values. This
improvesthe expressiveness of thelanguage by allowing constantsto
be of an ADT whose implementation happens to include access va
lues. 1t also dlowsoperationsof such an ADT to bewritten functions
with constant in-mode parameters of the type and aresult of thetype.

5. Extension of Generics

VHDL currently allows an entity declaration, a component declara-
tion or ablock statement to include a generic clause, which defines
formal generic constantsfor the unit. Generic constants aretypically
used to specify timing and other operational parametersand to specify
index boundsfor array ports. Theseusesareillustrated by thefollow-
ing entity declaration for amultiplexer:
entity mux is
generic ( Tpd : time;
width : positive;
trace : boolean := false );
port ( sel :in bit;
do, di : in bit_vector(0 to width — 1);
d_out : out bit_vector(0 to width — 1) );
end entity mux;

Thegeneric constant Tpd isused to parameterize the multiplexer with
respect to propagation-delay; width isused in theindex constraintsfor
the data ports; and trace is used to control whether the multiplexer
traces values passed to the output. The generic constants are visible
in any architecture corresponding to thisentity, and can beused in the
implementation of the structure or behavior of the design entity.
When aunit with ageneric clauseisinstantiated, ageneric map as-
pect is used to associate actual values with the forma generic con-
stants. For example, the entity shown above might be instantiated as
follows:
data_mux : entity work.mux(behavioral)
generic map ( Tpd => 1.6 ns, width => 16, trace => true )
portmap (...);

Theactuasare constantswhose valuesare used in place of theformal
generic constantsfor thisinstance. Association of actualswithformal
generics occurswhen theinstance iselaborated prior to smulation or
synthesis.

5.1 Overview of Extensions of Generics

Oneof themain aspectsthat constrainsre-use of the multiplexer entity
described aboveisthat it can only beinstantiated to deal with bit-vec-
tor values. A more re-usable multiplexer entity would beinstantiable
for arbitrary types. Thus, it is desirable to be able to specify the data
typeasaformal generic. In many cases, thisisfeasible, sincetheim-
plementation of aunit doesnot depend on the detailsof any particular
type. For example, abehavioral implementation of amultiplexer sm-
ply involvesassigning valuesfrom input to output, irrespective of the
typeof thevalues. A given multiplexer instance, however, should only
be allowed to deal with valuesof one particular type, namely thetype
of the signals connected to its data ports. This restriction isin con-
formance with the strong-typing philosophy of VHDL.

SUAVE extends the generic clause feature of VHDL by alowing
specification of formal generictypes. A unit may useaformal typeto



define portsand other objectsin itsimplementation. When theunitis
instantiated, an actual typeis associated with the formal type for that
instance. The association occurs when the instance is elaborated.

The particular mechanism for specifying formal typesismodeled
on the corresponding mechanismin Ada-95[16], but isadapted toin-
tegrate cleanly with theexisting generic mechanismin VHDL. A for-
mal generictypeisspecified inthefollowing forminagenericclause:

typeidentifier isinterface type definition
For example, the multiplexer entity might berevised asfollowsto in-
cludeaformal generic typefor the datato be handled. (The propaga-
tion delay and tracing generic constants are omitted for clarity of
illustration.)

entity mux is

generic ( type data_type is private );

port (sel :in bit; dO, d1:in data_type;
d_out : out data_type );

end entity mux;

SUAVE alows a number of different classes of type definition,
each restricting the actua type that can be associated when the unit is
instantiated, asshowninTable 1. (Further refinementstothefirstthree
classes are described in the SUAVE report [6].) Theimplementation
of aunit can makeuseof the knowledgeabout theformal typeafforded
by the definition. For example, it may use arithmetic operationson a
formal integer type, or indexing on aformal array type. Section 5.2
includes further examples of use of formal types.

Formal type Restrictionson actual type

private actual can be any typethat alows assign-

ment

new type_mark actual must be derived from the specific

type (see Ashenden, 1997, #94)
actual must be derived from the specific

new type_mark

with private tagged type (see Ashenden, 1997, #94)
(=>) actual must be adiscrete type
range <> actual must be an integer type
units <> actual must be aphysical type
range <>.<> actual must be afloating-point type

array (index_type) | actual must be an array type with the spe-

of element_type cified index and element types
access subtype actual must be an access type with the
specified designated type
file of type_mark actual must be afile type with the speci-
fied element type

Table 1. Classes of formal generic types in SUAVE.

Theactua valueto be associated with aformal typeis specified as
atypenamein thegeneric map aspect. For example, thegenericmulti-
plexer described above might be instantiated for integer data typesas
follows:

int_mux : entity work.mux(behavioral)

generic map ( data_type => integer )
portmap (...);

SUAVE further extends VHDL by allowing package declarations
and subprogram specifications to include generic clauses, enabling
definition of template packages and subprograms that can be re-used
with different type bindings. This feature combines with the object-
oriented extensionsin SUAV E[7] to provide meansof defining gener-
ic abstract datatypesin atype-secure way.

A genericpackageincludesagenericclausebeforethedeclarations
in the package, for example:
package float_ops is
generic (type float_type is range <>.<>);

end package float_ops;

A generic packagesuch asthiscannot beused directly. Instead, it must
beinstantiated and actual genericsassociated with theformal generics,
for example:

type amplitude is range —10.0 to +10.0;

package amplitude_ops is new float_ops
generic map ( float_type => amplitude );

Note that the instance is a package declared within an enclosing de-
clarativeregion. SUAVE generalizesthe use of packagesby allowing
them to be declared in inner regions, rather than just as library units.
Thisgeneraization isaso related to the use of packagesin the object-
oriented extensions, and is discussed further in that context [7].

A generic subprogram includes ageneric clause before the param-
eter list, analogous to the way in which an entity includes the generic
clause before the port list, for example:

procedure swap
generic (type data_type is private )
(&, b:inout data_type)is
variable temp : data_type;
begin
temp:=a; a:=b; b:=temp;
end procedure swap;
A generic subprogram cannot be caled directly, but must be instan-
tiated first, for example:

procedure swap_times is new swap
generic map ( data_type =>time );
Thisdeclares aprocedure with two parametersof typetime. A call to
the procedure includes anormal actual parameter list, for example:
swap ( old_time, new_time );

5.2 ExamplesUsing Generic Types
5.2.1 Generic Multiplexer

An entity declaration for ageneric multiplexer isshown in Section 5.
A corresponding architecture body is:

architecture data_flow of mux is
begin
with sel select
d_out <=d0 when '0’, d1 when '1’;
end architecture data_flow;

Thisillustrates that the implementation is independent of the details
of thedatatype. It smply usesthevalue of the select input to choose
which of the two inputsto assign to the output.

5.2.2 Generic Queue ADT Package

Onecommon useof generic packagesin Adaisto definere-usableab-
stract datatypes (ADTs) for container structures, such aslist, queues
and sets. SUAVE enablessuch ADTsto bedefinedin VHDL. Asan
example, the following generic package declaration defines an ADT
interface for queues of homogeneous elements:

package queues is
generic ( type element_type is private );



type queue is access private;

impure function new_queue return queue;
impure function is_empty (Q : in queue ) return boolean;
procedure append ( Q : inout queue;
E :in element_type );
procedure extract_head ( Q : inout queue;
E : out element_type );

private

type element_node;
type element_ptr is access element_node;
type element_node is record
next_element : element_ptr;
value : element_type;
end record element_node;

type queue is record
head, tail : element_ptr;
end record queue;

end package queues;

Thetype of elementsto be included in aqueue is represented by the
formal typeelement_type. Thequeuetypeisaprivatetype[7], whose
concrete implementation is alinked list of nodes, each containing a
valueof theelement type. Thedetailsof the concreteimplementation
arein the private part of the package (between the keywords private
and end packge), and are thus not hidden from a package user. The
ADT operationshave parametersof thequeueand element types. The
queue package might be instantiated and used to deal with queues of
test vectors, for example, asfollows:

type test_vectoris . . .;

package test_gqueues is new queues
generic map ( element_type => test_vector );

variable tests_pending : test_queues.queue
‘= test_queues.new_queue;

test_queues.append ( tests_pending, generated_test );

5.2.3 Generic Counter

A counter is adevice that increments a value of some discrete type,
starting at the smallest value and returning to the smallest value after
reaching thelargest vaue. A generic counter that dealswith any dis-
cretetype can be described asfollows. First, theentity declarationis:

entity counter is

generic ( type count_type is (<>));

port (clk : in bit; data : out count_type );
end entity counter;

The notation used for theformal generic type specifiesthat theactua
type must be adiscrete type. A behaviora architecture body corres-
ponding to the entity is:

architecture behavioral of counter is
begin
count_behavior : process is
variable count : count_type := count_type’low;
begin
data <= count;
wait until clk ='1";
if count = count_type’high then
count := count_type’succ(count);
else
count := count_type’low;
end if;
end process count_behavior;

end architecture behavioral;

The state of the counter isrepresented by the variable, whose typeis
the formal generic type. Since the type must be discrete, the imple-
mentationisfreeto usethe’low attributetoinitializethestate. Similar-
ly, the processstatement usesthe’succ attributetoincrement thecount
value, and the’high attribute to determinewhen the value hasreached
itsmaximum. Some examplesof instantiating thiscounter designen-
tity are:

subtype short_natural is natural range 0 to 255;
type state_type is ( idle, receiving, processing, replying );

short_natural_counter : entity work.counter(behavioral)
generic map ( count_type => short_natural )
port map ( clk => master_clk, data => short_data );

state_counter : entity work.counter(behavioral)
generic map ( count_type => state_type)
port map ( clk => master_clk, data => state_data );

5.2.4 Generic Shift Register

A shift register stores and shifts elements of aone-dimensional array.
Theway in which the shift register operatesisindependent of the par-
ticular index and element typesof thearray. Hence, ageneric shiftreg-
ister can be described asfollows. First, the entity declaration is:
entity shift_register is
generic ( type index_type is (<>);
type element_type is private;
type vector is
array ( index_type range <>)
of element_type );
port (clk : in bit;
data_in : element_type; data_out : vector );
end entity shift_register

Theindex typeisdiscrete, and theelement typecan beany typethat
alowsassignment. Thevector typeillustratesuseof preceding formal
types in the generic clause to specify the index and element types of
thearray. Thisisaminor changeto VHDL adopted from Adaaspart
of adopting the generic mechanisms. A behaviora architecture body
for the shift register is:

architecture behavioral of shift_register is
begin
shift_behavior : process is

constant data_low : index_type
:= data_out’low;
constant data_high : index_type
:= data_out’high;
type ascending_vector is
array ( data_low to data_high )
of element_type;
variable stored_data : ascending_vector;
begin
data_out <= stored_data;
wait until clk ='1";
stored_data(data_low
to index_type’pred(data_high))
.= stored_data(index_type’succ(data_low)
to data_high);
stored_data(data_high) := data_in;
end process shift_behavior;
end architecture behavioral,
The state of the shift register is represented by the variable

stored_data, whosetypeisan array of thesame sizeand element type
astheformal array type. Thebehavior in the process statement isex-



pressed using only the knowledgethat theindex typeis discrete, that
the stored datacan beindexed, and that the dataoutput port can beas-
signed the stored array value. An exampleof instantiation of the shift
register is.

signal master_clk, carry_in : bit;
signal result : bit_vector(15 downto 8);

bit_vector_shifter : entity work.shift_register(behavioral)
generic map ( index_type => natural,
element_type => bit,
vector => bit_vector )
port map ( clk => master_clk,
data_in => carry_in, data_out => result);

5.2.5 Mixin Inheritance

In the companion paper [7], we describe the SUAVE festures for ob-
ject-oriented inheritance based on derived tagged types. These fea-
tures can be combined with formal generic derived typesto providea
form of mixininheritance [23]. Languagessuch asC++ usemultiple
inheritancefor this purpose, but with the SUAV E mechanisms, multi-
pleinheritance is not needed.

To illustrate mixin inheritance, consider description of an instruc-
tion set foraRISC CPU. Thebasictypeof instruction, including only
an opcode, can be described as:

type instruction is tagged record
opcode : opcode_type;
end record instruction;

Thisisatagged record type, and thus can be extended with additional
elementswhen new typesarederived fromit. Thederived typesinherit
the operations applicableto the parent type and can overrideinherited
operations and define additional ones.

Thebasicinstruction type might be extended to define memory re-
ferenceingtructionsthat useindexed addressing mode, requiring base
and offset register numbers. Rather than replicating the description of
register numbersand operationsin each kind of memory referencein-
struction, the description is encapsulated so that it can be re-used for
any extension derived from theinstruction type. Thepackagedeclara-
tion encapsulating the descriptionis:

package indexed_addressing_mixin is
generic ( type parent_instruction is
new instruction with private );

type indexed_instruction is
new parent_instruction with record
index_base, index_offset : register_number;
end record indexed_instruction;

function effective_address
(instr : indexed_instruction ) return address;

end package indexed_addressing_mixin;

Thepackagehasaformal generic typethat representsaparent instruc-
tion type to be extended. The derived type indexed_instruction ex-
tendsthe parent instruction with baseand index register numbers, and
has effective_address as an applicable operation. To see how this
packagemight beused, consider descriptionsof load and storeinstruc-
tion types, derived from the basic instruction type:

type load_instruction is
abstract new instruction with record
destination : register_number;
end record load_instruction;

type store_instruction is
abstract new instruction with record
source : register_number;
end record store_instruction;

Indexed versions of each of these instruction types can be derived
through instantiations of the indexed_addressing_mixin package:

package indexed_loads is
new indexed_addressing_mixin
generic map ( parent_instruction => load_instruction );
alias indexed_load_instruction is
indexed_loads.indexed_instruction;

package indexed_stores is
new indexed_addressing_mixin
generic map ( parent_instruction
=> store_instruction );
alias indexed_store_instruction is
indexed_stores.indexed_instruction;

6. Formal Subprogramsand Packages

Intheprevioussections, formal generictypesweredescribed andillus-
trated. SUAVE also adoptsformal generic subprogramsand packages
from Ada-95. Thesefeaturessignificantly aid re-use of generic units.
Useof formal generic subprogramsisdescribed in thissection. Space
considerations preclude description of formal generic packages; they
are described in the SUAVE report [6].

A formal generic subprogram is defined by including a subpro-
gram specification in ageneric clause. When the unit isinstantiated,
an actual subprogram with the same parameter and result typeprofile
must be supplied. There are two idiomatic uses of thisfeature. The
first arises when a generic unit includes a forma generic type and
needs the instantiator to supply an operation on values of that type.
The second arises when aunit needs the instantiator to supply an ac-
tion procedure or acall-back procedurethat will beinvoked as part of
an operation. Both of theseusesareillustrated by thefollowing pack-
age declaration for an ordered collection ADT, adapted from
Ashenden [1]:

package ordered_collection_adt is

generic ( type element_type is private;
type key_type is private;
function key_of ( E : element_type )
return key_type;
function “<” (L, R : key_type)
return boolean is <>);
type ordered_collection is limited access private;

function new_ordered_collection
return ordered_collection;

procedure insert ( ¢ : inout ordered_collection;
e :in element_type );
procedure traverse
generic ( procedure action
(element : in element_type ) )
(c:in ordered_collection );

private

type ordered_collection_object;
type ordered_collection_ptr is
access ordered_collection_object;
type ordered_collection_object is record
next_element,
prev_element : ordered_collection_ptr;
element : element_type;
end record tree_record;

type ordered_collection is new ordered_collection_ptr;
end package ordered_collection_adt;



The position of each element in acollection is determined by itskey.
Sincethepackagehasknow knowledge of theactual element type, the
formal generic functionskey_of and “<” areused. An instantiator of
this package will supply actua functionsthat are appropriate for the
actual element and key types. Thenotation“<>" indicatesthat thede-
fault actua function will be whichever conforming “<” function is
visible at the point of instantiation. The generic procedure traverse
has aformal generic subprogram for the action to be applied to each
element in the collection. The package body for thisADT is:

package body ordered_collection_adt is

function new_ordered_collection
return ordered_collection is
variable result : ordered_collection_ptr
:= new ordered_collection_object;

begin

result.next_element := result;

result.prev_element := result;

return ordered_collection(result);
end function new_ordered_collection;

procedure insert ( ¢ : inout ordered_collection;
e in element_type ) is
variable current_element : ordered_collection _ptr
:= ordered_collection_ptr(c).next_element;
variable new_element : ordered_collection_ptr;
begin
while current_element /= ordered_collection_ptr(c)
and key_of(current_element.element)
< key_of(e) loop
current_element := current_element.next_element;
end loop;
— —insert new element before current_element
new_element
:= new ordered_collection_object’(
element => e,
next_element => current_element,
prev_element
=> current_element.prev_element
)i
new_element.next_element.prev_element
= new_element;
new_element.prev_element.next_element
= new_element;
end procedure insert;

procedure traverse
generic ( procedure action
(element : in element_type ) )
(c:in ordered_collection) is
variable current_element : ordered_collection _ptr
:= ordered_collection_ptr(c).next_element;
begin
while current_element
/= ordered_collection_ptr(c) loop
action ( current_element.element );
current_element := current_element.next_element;
end loop;
end procedure traverse;

end package body ordered_collection_adt;

Thebody of theinsert proceduresimply callstheformal genericfunc-
tionsto determinethekey of an element and the comparekeys. Simi-
larly, the body of the traverse procedure calls its forma generic
procedure to invoke the action on each element.

An illustration of the use of the ADT is aso adapted from
Ashenden [1]. Suppose test-bench requires a collection of stimulus

vectors ordered by time of application to the device under test. The
declarations for the stimulus vectors are:

type stimulus_element is record
application_time : delay_length;
pattern : std_logic_vector
(O to stimulus_vector_length — 1);
end record stimulus_element;

function stimulus_key ( stimulus : stimulus_element )
return delay_length is
begin
return stimulus.application_time;
end function stimulus_key;

Theordered collection ADT package can beinstantiated to deal with
simulus vectors:
package ordered_stimulus_collection_adt is
new ordered_collection_adt
generic map ( element_type => stimulus_element,

key_type => delay_length,
key_of => stimulus_key;,
“<” => std.standard.“<" );

The traverse procedure can be instantiated to apply each stimulus
vector to the device under test:

use ordered_stimulus_collection_adt.all;
variable dut_stimuli : ordered_collection
:= new_ordered_collection;
signal dut_inputs : std_logic_vector
(O to stimulus_vector_length — 1);

procedure apply_stimulus ( stimulus : stimulus_element ) is
begin

dut_inputs <= stimulus.pattern;

wait for 100 ns;
end procedure apply_stimulus;

procedure apply_all_stimuli is new traverse
generic map ( action => apply_stimulus );

apply_all_stimuli ( dut_stimuli );

7. Conclusion

In this paper we have described the SUAVE extensionsto VHDL to
improveits support for modeling at al levelsof abstraction. Wehave
presented thefeaturesthat provide object-orientation asacombination
of improved abstraction, encapsulation and inheritance mechanisms,
and the genericity features that improve support for re-use. Most of
the features are drawn from Ada-95 and are adapted to integrate with
modeling festuresthat are specificto VHDL. Drawing on Adais ap-
propriate, snceVHDL wasoriginaly strongly influenced by Ada. In
asense, SUAVE isan evolution of VHDL that parallelsthe evolution
from Ada-83 to Ada-95.

SUAV E improves modeling support by generalizing and extend-
ing existing mechanisms, rather than by adding whole new features.
In particular, SUAVE avoids replication of the abstraction & encap-
sulation mechanisms aready provided by the package feature. Ad-
ding aseparate classfeature, as proposed in ObjectiveVHDL [19], for
exampl e, replicatesmany aspectsof packagesand so complicatesade-
signer’s choice of expression of design intent.

Space considerations preclude a more detailed definition of the
featuresadded in SUAVE. Theinterested reader can find amore com-
plete description in the SUAVE report [6]. Work isnow in progress
to implement the extensions within the framework of the SAVANT
project [18].
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