
This work has been accepted for publication in the Proceedings of FDL ’98.

1

SUAVE: Object-Oriented and Genericity Extensions to VHDL for High-Level Modeling

Peter J. Ashenden
Dept. Computer Science

The University of Adelaide, SA 5005
Australia

petera@cs.adelaide.edu.au

Philip A. Wilsey and Dale E. Martin
Dept. ECECS, PO Box 210030

University of Cincinnati
Cincinnati, OH 45221-0030, USA

phil.wilsey@uc.edu, dmartin@ececs.uc.edu

Abstract

The SUAVE project aims to introduce object-oriented and genericity
extensions into VHDL in a way that does not disturb the existing lan-
guage or its use. Designers regularly define abstract data types by
using aspects of VHDL’s type system, subprograms, and packages.
They also use VHDL’s genericity mechanism to parameterize compo-
nent and entity declarations with formal generic constants. The
SUAVE approach builds on these basic mechanisms by strengthening
the facilities for encapsulation and adding an inheritance mecha-
nism. It also extends the genericity mechanism by allowing formal ge-
nerics types and by allowing generics to be specified in the interfaces
of subprograms and packages. The SUAVE extensions are based on
the features of Ada-95. They allow units to be re-used in a much wider
variety of contexts without modifying the original code. By choosing
an incremental and evolutionary approach to extensions, SUAVE
avoids major additions to the language that would complicate choice
of mechanisms for expressing a design. This paper outlines the
SUAVE extensions and illustrates their use through some examples.

1. Introduction

VHDL is widely used by designers of digital systems for specification,
simulation and synthesis. Increasingly, designers are using VHDL at
high levels of abstraction as part of the system-level design process.
At this level of abstraction, the aggregate behavior of a system is de-
scribed in a style that is similar to that of software. Data is modeled
in abstract form, rather than using any particular binary representation,
and functionality is expressed in terms of interacting processes that
perform algorithms of varying complexity. A subsequent partitioning
step in the design process may determine which aspects of the mo-
deled behavior are to be implemented as hardware subsystems, and
which are to be implemented as software.

Experience in the software engineering community has lead to
adoption of object-oriented design and programming techniques for
managing complexity through abstract data types (ADTs) and re-use
[10]. Features included in programming languages to support these
techniques are abstraction and encapsulation mechanisms, inherit-
ance, and genericity. The term “object-based” is widely used to refer
to a language that included abstraction and encapsulation mechanisms
[24]. The term “object-oriented” is used to refer to a language that
additionally includes inheritance.

While VHDL can be used for modeling at the system level, it has
some deficiencies that make the task more difficult than it would other-
wise be. These difficulties center around language features (or lack of
some features) for supporting complexity management. VHDL is cur-
rently somewhat less than object-based, as its encapsulation mecha-

nism are weak. It is certainly not object-oriented, as it does not include
any form of inheritance. While it does include a mechanism for gener-
icity, that mechanism is severely limited, allowing only parameteriz-
ation of units by constant values. We have discussed these issues in a
previous paper [3].

SUAVE aims to improve support for high-level modeling in
VHDL by extending the language with features for object-orientation
and genericity in a way that does not disturb the existing language or
its use. As well as adding specific language features, some existing
features are generalized, the facilities for encapsulation are streng-
thened, and an inheritance mechanism is added. Private types and pri-
vate parts in packages support improved encapsulation. Type
derivation, record type extension, and class-wide types with dynamic
dispatching support inheritance.

SUAVE also extends the genericity mechanism of VHDL by al-
lowing types to specified as formal generics and by allowing generics
to be specified in the interfaces of subprograms and packages. Use of
formal type generics allows units to be reused in contexts where data
of different types is to be manipulated. For example, a multiplexer can
be specified with a formal type generic for the type of the input and
output data. This allows the multiplexer model to be reused as a bit,
bit_vector, std_logic, std_logic_vector, integer, or user-defined-type
multiplexer, without modifying the original model code. Use of ge-
nerics in the interfaces of subprograms and packages allows definition
of container abstract data types that can be reused to contain data of
different types. For example, a generic package can be defined to rep-
resent and manipulate sequences of integer, time values, or test vectors
for different devices under test, again without modifying the original
package code.

We have previously argued [4] that, in addition to supporting ob-
ject-orientation, these extensions improve the expressiveness of
VHDL and enhance reuse across the modeling spectrum from high-
level to gate-level. Furthermore, the genericity extensions interact
with the extensions for object-oriented data modeling to significantly
improve support for high-level behavioral modeling and for develop-
ing test-benches. By choosing an incremental and evolutionary ap-
proach to extensions, SUAVE avoids major additions to the language
that would complicate choice of mechanisms for expressing a design.
In addition, the implementation burden is not large, and there is no per-
formance penalty in simulation or synthesis if the mechanism are not
used.

The SUAVE approach is similar to that proposed by Mills [17] and
by Schumacher and Nebel [20]. It is contrasted with others that have
been proposed [9, 12, 19, 22, 25], that add new, separate mechanisms
for combining abstraction, encapsulation, and inheritance for object-
orientation. Such mechanisms replicate aspects of the existing fea-
tures of VHDL, making design choices for expressing a model more
complex.

* This work was partially supported by Wright Laboratory under USAF contract F33615-95-C-1638.

2

This paper outlines the SUAVE extensions for object-orientation
and genericity, and illustrates their use through some examples. More
complete presentation of the extensions can be found in the SUAVE
report [6].) Most of the features added to VHDL are adapted from fea-
tures in Ada-95 [16], and are included largely for the same reasons that
they are included in Ada-95 [8]. Section 2 of this paper outlines the
design principles and objectives that were followed in deciding how
to extend VHDL. Subsequent sections describe the extensions in de-
tail and illustrate them with examples. Section 3 describes the exten-
sions to the type system of VHDL to support type derivation,
extension and class-wide programming. Section 4 describes the ex-
tensions that improve the encapsulation features of VHDL. In com-
bination, the extensions in these two sections turn VHDL into an
object-oriented language. Section 5 describes the SUAVE type gener-
icity extensions, and Section 6 describes and illustrates further exten-
sions for subprogram and package genericity. Our conclusions are
presented in Section 7.

2. SUAVE Design Objectives

A previous paper [4] reviews the issues to be addressed in extending
VHDL for high-level modeling and discusses principles that should
govern the design of language extensions. As a result of that analysis,
a number of design objectives were formulated for SUAVE:

to improve support for high-level behavioural modeling by im-
proving encapsulation and information hiding capabilities and
providing for hierarchies of abstraction,

to improve support for re-use and incremental development by al-
lowing further delaying of bindings through type-genericity and
dynamic polymorphism,

to preserve capabilities for synthesis and other forms of design ana-
lysis,

to support hardware/software co-design through improved inte-
gration with programming languages (e.g., Ada),

to support refinement of models through elaboration of compo-
nents rather than through repartitioning, and

to preserve correctness of existing models within the extended lan-
guage.

Since SUAVE is an extension of the existing VHDL language, it
is important that the extensions integrate well with all aspects of the
existing language. In designing the SUAVE extensions, the design
principals followed during the restandardization of VHDL that lead to
the current language [15] were adopted in addition to those listed
above. The goal was to preserve what Brooks refers to as the “concep-
tual integrity” of the language [11].

3. Extensions to the Type System

Object-oriented languages support re-use and incremental develop-
ment through the mechanism of inheritance. SUAVE extends the type
system of VHDL by adopting the object-oriented features of Ada-95,
including inheritance through type derivation and tagged types with
extension on derivation.

3.1 Derived Types and Inheritance

For a type defined in a package, the operations (procedures and func-
tions) defined in the package are called the primitive operations of the
type. A new type can be defined as being derived from a parent type.
In that case, the derived type inherits the set of values and the primitive
operations of the parent type. An inherited operation can be over-

ridden by defining a new operation with the same name but with oper-
ands of the derived type. Furthermore, additional primitive operations
can be defined for the derived type. SUAVE adopts the Ada notation
for defining a derived type, for example:

type event_count is new natural;

The derived type is distinct from, but related to, the parent type. Use
of derived types helps avoid inadvertent mixing of conceptually differ-
ent values, and thus improves the expressiveness of the language.

3.2 Tagged Types and Type Extension

As in Ada-95, a record type in SUAVE may include the reserved word
tagged in its definition. Such a type is called a tagged type. An object
of a tagged type includes a run-time tag that identifies the specific type
used to create the object. The tag is used for dynamic dispatching,
which is described below. A tagged record type may be extended by
deriving a new type with a record extension containing additional re-
cord elements. This is the origin of the term “programming by exten-
sion,”sometimes used to describe the Ada-95 approach. The derived
type is also a tagged type that can be further extended. Since all ele-
ments in the parent type are also in the derived type, inherited oper-
ations of the parent type can be applied to objects of the extended type.
However, any overriding or newly defined operations for the extended
type can only be applied to the extended type (or its derivatives), since
they may refer to the elements in the extension.

As an example, consider a type and operations representing an in-
struction set for a RISC CPU. All instructions have an opcode. ALU
instructions additionally have fields for the source and destination reg-
ister numbers. Thus an ALU instruction can be considered as an ex-
tension of a base instruction with just an opcode. This can be
expressed in SUAVE by defining the following in a package:

type instruction is
tagged record

opcode : opcode_type;
end record instruction;

function privileged (instr : instruction;
mode : protection_mode) return boolean;

procedure disassemble (instr : instruction; file output : text);

type ALU_instruction is
new instruction with record

destination,
source_1, source_2 : register_number;

end record ALU_instruction;

procedure disassemble (instr : ALU_instruction;
file output : text);

The subprograms privileged and disassemble are primitive oper-
ations of instruction and are inherited by derived types. The type
ALU_instruction is derived from instruction and has four elements:
the opcode element inherited from instruction, and the three register
number elements defined in the extension. A version of the function
privileged is inherited from instruction with the instr parameter being
of type ALU_instruction. The disassemble instruction defined for
ALU_instruction overrides that inherited from instruction.

3.3 Abstract Types and Subprograms

An abstract type is a tagged type that is intended for use solely as the
parent of some other derived type. Objects may not be declared to be
of an abstract type. An abstract subprogram is one that has no body
(and requires none), because it is intended to be overridden when in-
herited by a derived type. Abstract types and subprograms allow defi-
nition of types that include common properties and operations, but

3

which must be refined by derivation of types that represent concrete
objects.

As an illustration, consider refinement of the instruction type to
represent memory reference instructions using displacement addres-
sing mode. Such instructions include a base register number and an
offset. The type for these instructions is declared abstract, since it is
intended to be the parent type for load and store instruction types.
More precisely,

type memory_instruction is
abstract new instruction with record

base : register_number
offset : integer:

end record memory_instruction;

function effective_address_of (instr : memory_instruction);

procedure perform_memory_transfer
(instr : memory_instruction) is abstract;

The function effective_address_of is not abstract, since it can cal-
culate the result using the data in a memory_instruction record. The
function can be inherited “as is”by derived types. The procedure per-
form_memory_transfer, on the other hand, is declared abstract since
the direction of transfer depends on whether a memory instruction is
a load or a store. The derived types must provide overriding non-ab-
stract implementations of this procedure. Examples are derived types
for load and store instructions, as follows:

type load_instruction is
new memory_instruction with record

destination : reg_number;
end record load_instruction;

procedure perform_memory_transfer
(instr : load_instruction);

procedure disassemble (instr : load_instruction;
file output : text);

type store_instruction is
new memory_instruction with record

source : reg_number;
end record store_instruction;

procedure perform_memory_transfer
(instr : store_instruction);

procedure disassemble (instr : store_instruction;
file output : text);

Objects cannot be declared to be of type memory_instruction, but
they can be declared to be of type load_instruction or store_instruc-
tion.

3.4 Class-Wide Types and Operations

One of the most important aspects of object-oriented programming is
the use of classes. SUAVE adopts the Ada-95 mechanism of class-
wide types to deal with classes. This contrasts with languages such as
Simula [13], C++ [21] and Java [14] that introduce a special construct
for classes. (See our paper that compares the two approaches [2].)

Class-wide types are denoted using the ’Class attribute. For a
tagged type T, the class-wide type denoted T’Class is the union of T
and all types derived directly or indirectly from T. The type T is called
the root of the class-wide type. For example, the class-wide type in-
struction’class denotes the hierarchy of types rooted at instruction,
and including ALU_instruction, memory_instruction, load_instruc-
tion and store_instruction.

An object of a class-wide type can have a value of any specific type
in T’Class. Such an object is called polymorphic, meaning that it can
take on values of different types during its lifetime. SUAVE allows
constants, dynamically allocated variables and signals to be of a class-

wide type. When an operation is applied to an object of a class-wide
type, the tag of the value is used to determine the specific type, and thus
to determine which primitive operation to invoke. This is called dy-
namic dispatching, or late binding, and is an essential aspect of object-
oriented languages. As an example, consider the following signal
declaration and application of an operation:

signal fetched_instruction : instruction’class;

disassemble (fetched_instruction);

If the value of the signal is of type instruction, the version of disas-
semble for that type is invoked. However, if the value of the signal is
of one of type load_instruction, the overriding version defined for
load_instruction values is invoked. The choice is made dynamically
at the time of the call.

While there are no primitive operations of a class-wide type, a sub-
program may have a parameter of a class-wide type. Such a subpro-
gram is called a class-wide operation. For example:

procedure execute (instr : instruction’class);

Since the parameter is polymorphic, dynamic dispatching may be re-
quired for operations on the parameter within the subprogram.

As a final example in this section, consider an instruction register
that can jam a TRAP instruction in place of the store instruction. First,
two constants are declared for the TRAP instruction and an undefined
instruction:

constant halt_instruction : instruction
:= instruction’(opcode => op_halt);

constant undef_instruction : instruction
:= instruction’(opcode => op_undef);

Next, the entity is declared:
entity instruction_reg is

port (load_enable : in bit;
jam_halt : in bit;
instr_in : in instruction’class;
instr_out : out instruction’class);

end entity instruction_reg;

The ports instr_in and instr_out are signals of a class-wide type and
so may take on values of any of the types in the instruction hierarchy.
A behavioral architecture body for the register is:

architecture behavioral of instruction_reg is
begin

store : process (load_enable, jam_halt, instr_in) is
type instruction_ptr is access instruction’class;
variable stored_instruction : instruction_ptr

:= new undef_instruction;
begin

if jam_halt = ’1’then
deallocate (stored_instruction);
stored_instruction := new halt_instruction;

elsif load_enable = ’1’then
deallocate (stored_instruction);
stored_instruction := new instr_in;

end if;
instr_out <= stored_instr.all;

end process store;

end architecture behavioral;

The process implements the register storage using the local vari-
able stored_instruction. Since a variable cannot be of a class-wide
type, stored_instruction is defined as an access value, pointing to a dy-
namically allocated object of type instruction’class. It is initialized to
the undefined instruction. When a HALT instruction is to be jammed,
a new instruction object initialized to the halt instruction value is allo-
cated. Similarly, when an input instruction is to be stored, a new in-
struction object of the corresponding specific type is allocated and

4

initialized to the input instruction. The designated instruction object
is assigned as the output of the register.

4. Extensions for Encapsulation

A data type in VHDL is characterized by a set of values, specified by
a type definition, and a set of operations. An abstract data type (ADT)
is one in which the concrete details of the type definition are hidden
from the user of the ADT. The user may only use the operations of the
ADT to manipulate values. ADTs are important tools for managing
complexity in a large design.

VHDL currently includes the package feature, which can be used
to define an ADT. The concrete type and associated operations are de-
clared in the package declaration, and the implementations of the oper-
ations are declared in the package body. While this approach allows
the implementation details of the operations to be hidden from the
ADT user, it exposes the details of the concrete type. A user may inad-
vertently (or deliberately) modify values of the concrete type directly,
rather than by using the provided operations. This can potentially
place the ADT value in an inconsistent state. It also reduces the main-
tainability of the design.

SUAVE extends the type system and package feature of VHDL to
provide secure encapsulation of information in an ADT. It adopts the
mechanisms of private types and private parts in packages from
Ada-95. This meets one of the design objectives for SUAVE: to im-
prove encapsulation and information hiding.

As a first step, the use of packages is generalized by allowing them
to be declared as part of most declarative regions in a model, not just
as library units. SUAVE allows a package declaration and body to be
declared in an entity declaration, an architecture body, a block state-
ment, a generate statement, a process statement, and a subprogram
body. Thus, the concept of a package is changed from that of a “heavy-
weight” library-level unit to that of a “light-weight” declarative item.
This is important, since packages are used to declare types and oper-
ations defining classes, as well as instances of generic packages (see
Ashenden et al [5]).

4.1 Private Parts and Private Types

The second extension of the package feature is to allow a package dec-
laration to be divided into a visible part and a private part, as follows:

package name is
. . . – – visible part

private
. . . – – private part

end package name;

Items declared in the visible part are exported and may be referred to
by users of the package. Items declared in the private part, on the other
hand, are not visible outside the package. When using a package to
define an ADT, the type is declared as a private type in the visible part
of the package, along with the specifications of the primitive oper-
ations of the type. A private type declaration only provides the name
of the type. The concrete details of the type are declared separately in
the private part of the package.

As an example, the following package defines an ADT for com-
plex numbers:

package complex_numbers is

type complex is private;

constant i : complex;

function cartesian_complex (re, im : real) return complex;
function re (C : complex) return real;
function im (C : complex) return real;
function polar_complex (r, theta : real) return complex;
function “abs”(C : complex) return real;
function arg (C : complex) return real;

function “+”(L, R : complex) return complex;
function “–”(L, R : complex) return complex;
function “*”(L, R : complex) return complex;
function “/”(L, R : complex) return complex;

private

type complex is
record

r, theta : real;
end record complex;

end package complex_numbers;

A user of this package can declare objects of type complex and invoke
operations on complex numbers, for example:

signal x, y, z : complex := cartesian_complex(0.0, 0.0);
. . .
z <= x * y after 20 ns;

However, the fact that complex numbers are represented in polar form
is hidden. Indeed, the representation may be changed without requir-
ing changes to the user’s code.

4.2 Private Extensions

SUAVE adopts the Ada-95 mechanisms for integrating encapsulation
with inheritance. A private type can be declared to be tagged, indicat-
ing that it can be used as the parent of a derived type. The concrete de-
tails remain hidden in the private part of the package. A tagged private
type can also be declared abstract if it should not be directly instan-
tiated. For example, a network packet at the media-access level of a
protocol suite might be declared as follows:

package MAC_level is

type MAC_packet is abstract tagged private;
. . .

private

type MAC_packet is tagged record
. . .

end record MAC_packet;

end package MAC_level;

A tagged private type can be extended using type derivation, as de-
scribed in Section 3. However, for the derived type to take on the form
of a secure ADT, it should be declared as a private extension. This al-
lows the details of the extension to be encapsulated. For example, the
network packet type defined above may be extended with payload in-
formation to form a network-level packet:

package network_level is

type network_packet is
new MAC_packet with private;

. . .

private

type network_packet is
new MAC_packet with record

. . .
end record network_packet;

end package network_level;

A user of this package knows that a network-level packet is derived
from a MAC-level packet, and thus inherits all of the operation applic-

5

able to a MAC-level packet. The concrete details of both types, how-
ever, remain hidden.

4.3 Contractual Details

In adopting the Ada-95 features for private types into VHDL, some
minor changes were required to take account of interactions with
VHDL-specific features. In particular, VHDL prohibits signals from
being of a type that includes access values. The reason for the restric-
tion is that signals are the communication medium between processes,
which execute concurrently. If processes were to pass access values
between one another, the designated variable would be shared and
thus liable to uncontrolled concurrent access. Furthermore, in a paral-
lel implementation of a simulator, different processes may execute in
different address spaces or on different processors. An access value
created in one process may be meaningless in the addressing context
of another.

SUAVE requires that a private type whose concrete implementa-
tion includes an access value to indicate the fact in the private type dec-
laration with the keywords access private. The same requirement
applies to a private extension that includes an access value. Such types
cannot be used for signals. Indication of the existence of an access type
in the concrete type can be viewed as a form of contract between the
type provider and users. Absence of the indication is contract that the
concrete type does not include access values. In the case of a signal
of a class-wide type, there may be a derived type in the class that in-
cludes an access value. While this cannot be checked during analysis,
it can be determined at elaboration time, since the complete hierarchy
covered by the class is known at that time.

Another form of contract that can be specified relates to assign-
ment. If a private type includes the keyword limited, assignment is not
allowed by the user of the type, and the equality operator is not prede-
fined. This feature is adopted from Ada, and is useful for types denot-
ing linked data structures. Assignment normally involves
element-wise copying of values, and equality involves element-wise
comparison. For linked structures, deep copy and deep comparison
may be more appropriate. The type is declared limited in the visible
part of the package, and copy and equality operations are provided.
The implementations of the operations have full view of the type, and
so can implement the required deep copy and comparison.

As an example of the two forms of contractual detail described in
this section, consider the following ADT for a set of test vectors:

package test_vector_lists is

type list is limited access private;

constant empty_list : list;

procedure copy (from : in list; to : out list);
impure function “=”(L, R : list) return boolean;
procedure add (L : inout list; test : in test_vector);
. . .

private

type element_node;
type element_ptr is access element_node;
type list is new element_ptr;

end package test_vector_lists;

The list type is represented by the private type list, whose concrete rep-
resentation is a singly-linked list of elements. Since the type includes
access values, the keyword access is included in the private type decla-
ration. Further, since the intended semantics of list assignment is to
copy the elements to the target, the private type is made limited. Hence
the package provides a copy operation and an equality operation. The
body of the package is outlined as follows.

package body test_vector_lists is

type element_node is record
next_element : element_ptr;
element : test_vector;

end record element_node;

constant empty_list : list := list (element_ptr’(null));

procedure copy (from : in list; to : out list) is . . .
. . .

end package body test_vector_lists;

This illustrates a further extension to VHDL made by SUAVE:
constants and constant parameters may include access values. This
improves the expressiveness of the language by allowing constants to
be of an ADT whose implementation happens to include access va-
lues. It also allows operations of such an ADT to be written functions
with constant in-mode parameters of the type and a result of the type.

5. Extension of Generics

VHDL currently allows an entity declaration, a component declara-
tion or a block statement to include a generic clause, which defines
formal generic constants for the unit. Generic constants are typically
used to specify timing and other operational parameters and to specify
index bounds for array ports. These uses are illustrated by the follow-
ing entity declaration for a multiplexer:

entity mux is
generic (Tpd : time;

width : positive;
trace : boolean := false);

port (sel : in bit;
d0, d1 : in bit_vector(0 to width – 1);
d_out : out bit_vector(0 to width – 1));

end entity mux;

The generic constant Tpd is used to parameterize the multiplexer with
respect to propagation-delay; width is used in the index constraints for
the data ports; and trace is used to control whether the multiplexer
traces values passed to the output. The generic constants are visible
in any architecture corresponding to this entity, and can be used in the
implementation of the structure or behavior of the design entity.

When a unit with a generic clause is instantiated, a generic map as-
pect is used to associate actual values with the formal generic con-
stants. For example, the entity shown above might be instantiated as
follows:

data_mux : entity work.mux(behavioral)
generic map (Tpd => 1.6 ns, width => 16, trace => true)
port map (. . .);

The actuals are constants whose values are used in place of the formal
generic constants for this instance. Association of actuals with formal
generics occurs when the instance is elaborated prior to simulation or
synthesis.

5.1 Overview of Extensions of Generics

One of the main aspects that constrains re-use of the multiplexer entity
described above is that it can only be instantiated to deal with bit-vec-
tor values. A more re-usable multiplexer entity would be instantiable
for arbitrary types. Thus, it is desirable to be able to specify the data
type as a formal generic. In many cases, this is feasible, since the im-
plementation of a unit does not depend on the details of any particular
type. For example, a behavioral implementation of a multiplexer sim-
ply involves assigning values from input to output, irrespective of the
type of the values. A given multiplexer instance, however, should only
be allowed to deal with values of one particular type, namely the type
of the signals connected to its data ports. This restriction is in con-
formance with the strong-typing philosophy of VHDL.

SUAVE extends the generic clause feature of VHDL by allowing
specification of formal generic types. A unit may use a formal type to

6

define ports and other objects in its implementation. When the unit is
instantiated, an actual type is associated with the formal type for that
instance. The association occurs when the instance is elaborated.

The particular mechanism for specifying formal types is modeled
on the corresponding mechanism in Ada-95 [16], but is adapted to in-
tegrate cleanly with the existing generic mechanism in VHDL. A for-
mal generic type is specified in the following form in a generic clause:

type identifier is interface_type_definition

For example, the multiplexer entity might be revised as follows to in-
clude a formal generic type for the data to be handled. (The propaga-
tion delay and tracing generic constants are omitted for clarity of
illustration.)

entity mux is
generic (type data_type is private);
port (sel : in bit; d0, d1 : in data_type;

d_out : out data_type);
end entity mux;

SUAVE allows a number of different classes of type definition,
each restricting the actual type that can be associated when the unit is
instantiated, as shown in Table 1. (Further refinements to the first three
classes are described in the SUAVE report [6].) The implementation
of a unit can make use of the knowledge about the formal type afforded
by the definition. For example, it may use arithmetic operations on a
formal integer type, or indexing on a formal array type. Section 5.2
includes further examples of use of formal types.

Formal type Restrictions on actual type

private actual can be any type that allows assign-
ment

new type_mark actual must be derived from the specific
type (see Ashenden, 1997, #94)

new type_mark
with private

actual must be derived from the specific
tagged type (see Ashenden, 1997, #94)

(<>) actual must be a discrete type

range <> actual must be an integer type

units <> actual must be a physical type

range <>.<> actual must be a floating-point type

array (index_type)
of element_type

actual must be an array type with the spe-
cified index and element types

access subtype actual must be an access type with the
specified designated type

file of type_mark actual must be a file type with the speci-
fied element type

Table 1. Classes of formal generic types in SUAVE.

The actual value to be associated with a formal type is specified as
a type name in the generic map aspect. For example, the generic multi-
plexer described above might be instantiated for integer data types as
follows:

int_mux : entity work.mux(behavioral)
generic map (data_type => integer)
port map (. . .);

SUAVE further extends VHDL by allowing package declarations
and subprogram specifications to include generic clauses, enabling
definition of template packages and subprograms that can be re-used
with different type bindings. This feature combines with the object-
oriented extensions in SUAVE [7] to provide means of defining gener-
ic abstract data types in a type-secure way.

A generic package includes a generic clause before the declarations
in the package, for example:

package float_ops is
generic (type float_type is range <>.<>);
. . .

end package float_ops;

A generic package such as this cannot be used directly. Instead, it must
be instantiated and actual generics associated with the formal generics,
for example:

type amplitude is range –10.0 to +10.0;

package amplitude_ops is new float_ops
generic map (float_type => amplitude);

Note that the instance is a package declared within an enclosing de-
clarative region. SUAVE generalizes the use of packages by allowing
them to be declared in inner regions, rather than just as library units.
This generalization is also related to the use of packages in the object-
oriented extensions, and is discussed further in that context [7].

A generic subprogram includes a generic clause before the param-
eter list, analogous to the way in which an entity includes the generic
clause before the port list, for example:

procedure swap
generic (type data_type is private)
(a, b : inout data_type) is

variable temp : data_type;

begin
temp := a; a := b; b := temp;

end procedure swap;

A generic subprogram cannot be called directly, but must be instan-
tiated first, for example:

procedure swap_times is new swap
generic map (data_type => time);

This declares a procedure with two parameters of type time. A call to
the procedure includes a normal actual parameter list, for example:

swap (old_time, new_time);

5.2 Examples Using Generic Types

5.2.1 Generic Multiplexer

An entity declaration for a generic multiplexer is shown in Section 5.
A corresponding architecture body is:

architecture data_flow of mux is
begin

with sel select
d_out <= d0 when ’0’, d1 when ’1’;

end architecture data_flow;

This illustrates that the implementation is independent of the details
of the data type. It simply uses the value of the select input to choose
which of the two inputs to assign to the output.

5.2.2 Generic Queue ADT Package

One common use of generic packages in Ada is to define re-usable ab-
stract data types (ADTs) for container structures, such as list, queues
and sets. SUAVE enables such ADTs to be defined in VHDL. As an
example, the following generic package declaration defines an ADT
interface for queues of homogeneous elements:

package queues is
generic (type element_type is private);

7

type queue is access private;

impure function new_queue return queue;
impure function is_empty (Q : in queue) return boolean;
procedure append (Q : inout queue;

E : in element_type);
procedure extract_head (Q : inout queue;

E : out element_type);

private

type element_node;
type element_ptr is access element_node;
type element_node is record

next_element : element_ptr;
value : element_type;

end record element_node;

type queue is record
head, tail : element_ptr;

end record queue;

end package queues;

The type of elements to be included in a queue is represented by the
formal type element_type. The queue type is a private type [7], whose
concrete implementation is a linked list of nodes, each containing a
value of the element type. The details of the concrete implementation
are in the private part of the package (between the keywords private
and end packge), and are thus not hidden from a package user. The
ADT operations have parameters of the queue and element types. The
queue package might be instantiated and used to deal with queues of
test vectors, for example, as follows:

type test_vector is . . .;

package test_queues is new queues
generic map (element_type => test_vector);

variable tests_pending : test_queues.queue
:= test_queues.new_queue;

. . .

test_queues.append (tests_pending, generated_test);

5.2.3 Generic Counter

A counter is a device that increments a value of some discrete type,
starting at the smallest value and returning to the smallest value after
reaching the largest value. A generic counter that deals with any dis-
crete type can be described as follows. First, the entity declaration is:

entity counter is
generic (type count_type is (<>));
port (clk : in bit; data : out count_type);

end entity counter;

The notation used for the formal generic type specifies that the actual
type must be a discrete type. A behavioral architecture body corres-
ponding to the entity is:

architecture behavioral of counter is
begin

count_behavior : process is
variable count : count_type := count_type’low;

begin
data <= count;
wait until clk = ’1’;
if count = count_type’high then

count := count_type’succ(count);
else

count := count_type’low;
end if;

end process count_behavior;

end architecture behavioral;

The state of the counter is represented by the variable, whose type is
the formal generic type. Since the type must be discrete, the imple-
mentation is free to use the ’low attribute to initialize the state. Similar-
ly, the process statement uses the ’succ attribute to increment the count
value, and the ’high attribute to determine when the value has reached
its maximum. Some examples of instantiating this counter design en-
tity are:

subtype short_natural is natural range 0 to 255;
type state_type is (idle, receiving, processing, replying);
. . .

short_natural_counter : entity work.counter(behavioral)
generic map (count_type => short_natural)
port map (clk => master_clk, data => short_data);

state_counter : entity work.counter(behavioral)
generic map (count_type => state_type)
port map (clk => master_clk, data => state_data);

5.2.4 Generic Shift Register

A shift register stores and shifts elements of a one-dimensional array.
The way in which the shift register operates is independent of the par-
ticular index and element types of the array. Hence, a generic shift reg-
ister can be described as follows. First, the entity declaration is:

entity shift_register is
generic (type index_type is (<>);

type element_type is private;
type vector is

array (index_type range <>)
of element_type);

port (clk : in bit;
data_in : element_type; data_out : vector);

end entity shift_register

The index type is discrete, and the element type can be any type that
allows assignment. The vector type illustrates use of preceding formal
types in the generic clause to specify the index and element types of
the array. This is a minor change to VHDL adopted from Ada as part
of adopting the generic mechanisms. A behavioral architecture body
for the shift register is:

architecture behavioral of shift_register is
begin

shift_behavior : process is

constant data_low : index_type
:= data_out’low;

constant data_high : index_type
:= data_out’high;

type ascending_vector is
array (data_low to data_high)
of element_type;

variable stored_data : ascending_vector;

begin
data_out <= stored_data;
wait until clk = ’1’;
stored_data(data_low

to index_type’pred(data_high))
:= stored_data(index_type’succ(data_low)

to data_high);
stored_data(data_high) := data_in;

end process shift_behavior;

end architecture behavioral;

The state of the shift register is represented by the variable
stored_data, whose type is an array of the same size and element type
as the formal array type. The behavior in the process statement is ex-

8

pressed using only the knowledge that the index type is discrete, that
the stored data can be indexed, and that the data output port can be as-
signed the stored array value. An example of instantiation of the shift
register is:

signal master_clk, carry_in : bit;
signal result : bit_vector(15 downto 8);

bit_vector_shifter : entity work.shift_register(behavioral)
generic map (index_type => natural,

element_type => bit,
vector => bit_vector)

port map (clk => master_clk,
data_in => carry_in, data_out => result);

5.2.5 Mixin Inheritance

In the companion paper [7], we describe the SUAVE features for ob-
ject-oriented inheritance based on derived tagged types. These fea-
tures can be combined with formal generic derived types to provide a
form of mixin inheritance [23]. Languages such as C++ use multiple
inheritance for this purpose, but with the SUAVE mechanisms, multi-
ple inheritance is not needed.

To illustrate mixin inheritance, consider description of an instruc-
tion set for a RISC CPU. The basic type of instruction, including only
an opcode, can be described as:

type instruction is tagged record
opcode : opcode_type;

end record instruction;

This is a tagged record type, and thus can be extended with additional
elements when new types are derived from it. The derived types inherit
the operations applicable to the parent type and can override inherited
operations and define additional ones.

The basic instruction type might be extended to define memory re-
ference instructions that use indexed addressing mode, requiring base
and offset register numbers. Rather than replicating the description of
register numbers and operations in each kind of memory reference in-
struction, the description is encapsulated so that it can be re-used for
any extension derived from the instruction type. The package declara-
tion encapsulating the description is:

package indexed_addressing_mixin is
generic (type parent_instruction is

new instruction with private);

type indexed_instruction is
new parent_instruction with record

index_base, index_offset : register_number;
end record indexed_instruction;

function effective_address
(instr : indexed_instruction) return address;

end package indexed_addressing_mixin;

The package has a formal generic type that represents a parent instruc-
tion type to be extended. The derived type indexed_instruction ex-
tends the parent instruction with base and index register numbers, and
has effective_address as an applicable operation. To see how this
package might be used, consider descriptions of load and store instruc-
tion types, derived from the basic instruction type:

type load_instruction is
abstract new instruction with record

destination : register_number;
end record load_instruction;

type store_instruction is
abstract new instruction with record

source : register_number;
end record store_instruction;

Indexed versions of each of these instruction types can be derived
through instantiations of the indexed_addressing_mixin package:

package indexed_loads is
new indexed_addressing_mixin

generic map (parent_instruction => load_instruction);
alias indexed_load_instruction is

indexed_loads.indexed_instruction;

package indexed_stores is
new indexed_addressing_mixin

generic map (parent_instruction
=> store_instruction);

alias indexed_store_instruction is
indexed_stores.indexed_instruction;

6. Formal Subprograms and Packages

In the previous sections, formal generic types were described and illus-
trated. SUAVE also adopts formal generic subprograms and packages
from Ada-95. These features significantly aid re-use of generic units.
Use of formal generic subprograms is described in this section. Space
considerations preclude description of formal generic packages; they
are described in the SUAVE report [6].

A formal generic subprogram is defined by including a subpro-
gram specification in a generic clause. When the unit is instantiated,
an actual subprogram with the same parameter and result type profile
must be supplied. There are two idiomatic uses of this feature. The
first arises when a generic unit includes a formal generic type and
needs the instantiator to supply an operation on values of that type.
The second arises when a unit needs the instantiator to supply an ac-
tion procedure or a call-back procedure that will be invoked as part of
an operation. Both of these uses are illustrated by the following pack-
age declaration for an ordered collection ADT, adapted from
Ashenden [1]:

package ordered_collection_adt is
generic (type element_type is private;

type key_type is private;
function key_of (E : element_type)

return key_type;
function “<”(L, R : key_type)

return boolean is <>);

type ordered_collection is limited access private;

function new_ordered_collection
return ordered_collection;

procedure insert (c : inout ordered_collection;
e : in element_type);

procedure traverse
generic (procedure action

(element : in element_type))
(c : in ordered_collection);

private

type ordered_collection_object;
type ordered_collection_ptr is

access ordered_collection_object;
type ordered_collection_object is record

next_element,
prev_element : ordered_collection_ptr;
element : element_type;

end record tree_record;

type ordered_collection is new ordered_collection_ptr;

end package ordered_collection_adt;

9

The position of each element in a collection is determined by its key.
Since the package has know knowledge of the actual element type, the
formal generic functions key_of and “<” are used. An instantiator of
this package will supply actual functions that are appropriate for the
actual element and key types. The notation “<>”indicates that the de-
fault actual function will be whichever conforming “<” function is
visible at the point of instantiation. The generic procedure traverse
has a formal generic subprogram for the action to be applied to each
element in the collection. The package body for this ADT is:

package body ordered_collection_adt is

function new_ordered_collection
return ordered_collection is

variable result : ordered_collection_ptr
:= new ordered_collection_object;

begin
result.next_element := result;
result.prev_element := result;
return ordered_collection(result);

end function new_ordered_collection;

procedure insert (c : inout ordered_collection;
e : in element_type) is

variable current_element : ordered_collection _ptr
:= ordered_collection_ptr(c).next_element;

variable new_element : ordered_collection_ptr;
begin

while current_element /= ordered_collection_ptr(c)
and key_of(current_element.element)

< key_of(e) loop
current_element := current_element.next_element;

end loop;
– – insert new element before current_element
new_element

:= new ordered_collection_object’(
element => e,
next_element => current_element,
prev_element

=> current_element.prev_element
);

new_element.next_element.prev_element
:= new_element;

new_element.prev_element.next_element
:= new_element;

end procedure insert;

procedure traverse
generic (procedure action

(element : in element_type))
(c : in ordered_collection) is
variable current_element : ordered_collection _ptr

:= ordered_collection_ptr(c).next_element;
begin

while current_element
/= ordered_collection_ptr(c) loop

action (current_element.element);
current_element := current_element.next_element;

end loop;
end procedure traverse;

end package body ordered_collection_adt;

The body of the insert procedure simply calls the formal generic func-
tions to determine the key of an element and the compare keys. Simi-
larly, the body of the traverse procedure calls its formal generic
procedure to invoke the action on each element.

An illustration of the use of the ADT is also adapted from
Ashenden [1]. Suppose test-bench requires a collection of stimulus

vectors ordered by time of application to the device under test. The
declarations for the stimulus vectors are:

type stimulus_element is record
application_time : delay_length;
pattern : std_logic_vector

(0 to stimulus_vector_length – 1);
end record stimulus_element;

function stimulus_key (stimulus : stimulus_element)
return delay_length is

begin
return stimulus.application_time;

end function stimulus_key;

The ordered collection ADT package can be instantiated to deal with
simulus vectors:

package ordered_stimulus_collection_adt is
new ordered_collection_adt

generic map (element_type => stimulus_element,
key_type => delay_length,
key_of => stimulus_key,
“<”=> std.standard.“<”);

The traverse procedure can be instantiated to apply each stimulus
vector to the device under test:

use ordered_stimulus_collection_adt.all;
variable dut_stimuli : ordered_collection

:= new_ordered_collection;
signal dut_inputs : std_logic_vector

(0 to stimulus_vector_length – 1);

procedure apply_stimulus (stimulus : stimulus_element) is
begin

dut_inputs <= stimulus.pattern;
wait for 100 ns;

end procedure apply_stimulus;

procedure apply_all_stimuli is new traverse
generic map (action => apply_stimulus);

. . .

apply_all_stimuli (dut_stimuli);

7. Conclusion

In this paper we have described the SUAVE extensions to VHDL to
improve its support for modeling at all levels of abstraction. We have
presented the features that provide object-orientation as a combination
of improved abstraction, encapsulation and inheritance mechanisms,
and the genericity features that improve support for re-use. Most of
the features are drawn from Ada-95 and are adapted to integrate with
modeling features that are specific to VHDL. Drawing on Ada is ap-
propriate, since VHDL was originally strongly influenced by Ada. In
a sense, SUAVE is an evolution of VHDL that parallels the evolution
from Ada-83 to Ada-95.

SUAVE improves modeling support by generalizing and extend-
ing existing mechanisms, rather than by adding whole new features.
In particular, SUAVE avoids replication of the abstraction & encap-
sulation mechanisms already provided by the package feature. Ad-
ding a separate class feature, as proposed in Objective VHDL [19], for
example, replicates many aspects of packages and so complicates a de-
signer’s choice of expression of design intent.

Space considerations preclude a more detailed definition of the
features added in SUAVE. The interested reader can find a more com-
plete description in the SUAVE report [6]. Work is now in progress
to implement the extensions within the framework of the SAVANT
project [18].

10

References

[1] P. J. Ashenden, The Designer’s Guide to VHDL. San Francisco,
CA: Morgan Kaufmann, 1996.

[2] P. J. Ashenden and P. A. Wilsey, A Comparison of Alternative
Extensions for Data Modeling in VHDL, Dept. Computer Sci-
ence, University of Adelaide, Technical Report TR-02/97,
ftp://ftp.cs.adelaide.edu.au/pub/VHDL/TR-data-modeling.ps,
1997.

[3] P. J. Ashenden and P. A. Wilsey, “Considerations on Object-
Oriented Extensions to VHDL,” Proceedings of VHDL Inter-
national Users Forum Spring 1997 Conference, Santa Clara,
CA, pp. 109–118, 1997.

[4] P. J. Ashenden and P. A. Wilsey, Principles for Language Ex-
tension to VHDL to Support High-Level Modeling, Dept.
Computer Science, University of Adelaide, Technical Report
TR-03/97, ftp://ftp.cs.adelaide.edu.au/pub/VHDL/TR-princi-
ples.ps, 1997.

[5] P. J. Ashenden, P. A. Wilsey, and D. E. Martin, “Reuse Through
Genericity in SUAVE,” Proceedings of VHDL International
Users Forum Fall 1997 Conference, Arlington, VA, pp.
170–177, 1997.

[6] P. J. Ashenden, P. A. Wilsey, and D. E. Martin, SUAVE: A Pro-
posal for Extensions to VHDL for High-Level Modeling, Dept.
Computer Science, University of Adelaide, Technical Report
TR-97-07, ftp://ftp.cs.adelaide.edu.au/pub/VHDL/TR-exten-
sions.pdf, 1997.

[7] P. J. Ashenden, P. A. Wilsey, and D. E. Martin, “SUAVE: Pain-
less Extension for an Object-Oriented VHDL,”Proceedings of
VHDL International Users Forum Fall 1997 Conference,
Arlington, VA, pp. 60–67, 1997.

[8] J. Barnes, Ed. Ada 95 Rationale, vol. 1247. Berlin, Germany:
Springer-Verlag, 1997.

[9] J. Benzakki and B. Djaffri, “Object Oriented Extensions to
VHDL: the LaMI Proposal,” Proceedings of Conference on
Hardware Description Languages ’97, Toledo, Spain, pp.
334–347, 1997.

[10] G. Booch, Object-Oriented Analysis and Design with Applica-
tions. Redwood City, CA: Benjamin/Cummins, 1994.

[11] F. P. Brooks, Jr., The Mythical Man-Month, Anniversary ed.
Reading, MA: Addison-Wesley, 1995.

[12] D. Cabanis and S. Medhat, “Classification-Orientation for
VHDL: A Specification,”Proceedings of VHDL International
Users Forum Spring ’96 Conference, Santa Clara, CA, pp.
265–274, 1996.

[13] O. J. Dahl and K. Nygaard, “Simula: An Algol Based Simula-
tion Language,”Communications of the ACM, vol. 9, no. 9, pp.
671–678, 1966.

[14] J. Gosling, B. Joy, and G. L. Steele, The Java Language Speci-
fication. Reading, MA: Addison-Wesley, 1996.

[15] IEEE, Standard VHDL Language Reference Manual. Stan-
dard 1076-1993, New York, NY: IEEE, 1993.

[16] ISO/IEC, Ada 95 Reference Manual. International Standard
ISO/IEC 8652:1995 (E), Berlin, Germany: Springer-Verlag,
1995.

[17] M. T. Mills, Proposed Object Oriented Programming (OOP)
Enhancements to the Very High Speed Integrated Circuits
(VHSIC) Hardware Description Language (VHDL), Wright
Laboratory, Dayton, OH, Tech. Report WL-TR-5025, 1993.

[18] MTL Systems Inc., Standard Analyzer of VHDL Applications
for Next-generation Technology (SAVANT). MTL Systems,
Inc, http://www.mtl.com/projects/savant/, 1996.

[19] M. Radetzki, W. Putzke, W. Nebel, S. Maginot, J.-M. Bergé,
and A.-M. Tagant, “VHDL Language Extensions to Support
Abstraction and Re-Use,” Proceedings of Workshop on Li-
braries, Component Modeling, and Quality Assurance, Tole-
do, Spain, 1997.

[20] G. Schumacher and W. Nebel, “Inheritance Concept for Sig-
nals in Object-Oriented Extensions to VHDL,”Proceedings of
Euro-DAC ’95 with Euro-VHDL ’95, Brighton, UK, pp.
428–435, 1995.

[21] B. Stroustrup, The C++ Programming Language. Reading,
MA: Addison-Wesley, 1986.

[22] S. Swamy, A. Molin, and B. Covnot, “OO-VHDL: Object-Ori-
ented Extensions to VHDL,” IEEE Computer, vol. 28, no. 10,
pp. 18–26, 1995.

[23] A. Taivalsaari, “On the Notion of Inheritance,” ACM Comput-
ing Surveys, vol. 28, no. 3, pp. 438–479, 1996.

[24] P. Wegner, “Dimensions of Object-Based Language Design,”
ACM SIGPLAN Notices, vol. 22, no. 12, Proceedings of
OOPSLA ’87, pp. 168–182, 1987.

[25] J. C. Willis, S. A. Bailey, and R. Newschutz, “A Proposal for
Minimally Extending VHDL to Achieve Data Encapsulation
Late Binding and Multiple Inheritance,”Proceedings of VHDL
International Users Forum Fall ’94 Conference, McLean, VA,
pp. 5.31–5.38, 1994.

