
() ()

NAME
ddd, xddd - the data display debugger

SYNOPSIS
ddd [−−gdb] [−−dbx] [−−xdb] [−−jdb] [−−pydb] [−−perl] [−−debuggername] [−−[r]host

[username@]hostname]] [−−help] [−−trace] [−−version] [−−configuration] [options...]
[program[core | process-id]]

but usually just

ddd program

DESCRIPTION
The purpose of a debugger such asDDD is to allow you to see what is going on “inside” another program
while it executes—or what another program was doing at the moment it crashed.

DDD can do four main kinds of things (plus other things in support of these) to help you catch bugs in the
act:

• Start your program, specifying anything that might affect its behavior.

• Make your program stop on specified conditions.

• Examine what has happened, when your program has stopped.

• Change things in your program, so you can experiment with correcting the effects of one bug and go on
to learn about another.

“Classical” UNIX debuggers such as theGNU debugger (GDB) provide a command-line interface and a
multitude of commands for these and other debugging purposes.DDD is a comfortablegraphical user
interfacearound an inferiorGDB, DBX, XDB, JDB, Python debugger, or Perl debugger.

INVOKING DDD
You can runDDD with no arguments or options. However, the most usual way to startDDD is with one
argument or two, specifying an executable program as the argument:

ddd program

You can also start with both an executable program and a core file specified:

ddd program core

You can, instead, specify a process ID as a second argument, if you want to debug a running process:

ddd program 1234

would attachDDD to process1234(unless you also have a file named ‘1234’; DDD does check for a core
file first).

By default,DDD determines the inferior debugger automatically. Use

DDD 3.1 1998−12−01 1

() ()

ddd −−gdbprogram

or

ddd −−dbx program

or

ddd −−xdb program

or

ddd −−jdb class

or

ddd −−pydb module

or

ddd −−perl programfile

to runGDB, DBX, XDB, JDB, PYDB or Perl as inferior debugger.

To learn more aboutDDD options, run

ddd −−help

to get a list of frequently used options, or see the ‘OPTIONS’ section, below.

THE DDD WINDOWS
The DDD Main Windows

Machine Code Window

Data Window

Menu Bar

Source Window

Tool Bar

Debugger Console

Status Line

Panner

Command Tool

Scroll Bar

Resize Sash

Value Tip

Busy Indicator

The DDD Layout using Stacked Windows

DDD is composed of three main windows:

DDD 3.1 1998−12−01 2

() ()

• TheData Windowshows the current data of the debugged program.

• TheSource Windowshows the current source code of the debugged program.

• TheDebugger Consoleaccepts debugger commands and shows debugger messages.

By default,DDD places these main windows stacked into one single top-level window, butDDD can also be
configured to treat each one separately.

Source Window

Debugger Console

Data Window

Button Tip

The DDD Layout using Separate Windows

Besides these main windows, there are some other optional windows:

• TheCommand Tooloffers buttons for frequently used commands. It is usually placed on the source win-
dow.

• The Machine Code Windowshows the current machine code. It is usually placed beneath the current
source.

• TheExecution Windowshows the input and output of the debugged program.

DDD also has several temporarydialogsfor showing and entering additional information.

Using the Command Tool
The command tool is a small window containing frequently usedDDD commands. It can be moved around
on top of theDDD windows, but it can also be placed besides them. Whenever you saveDDD state,DDD
also saves the distance between command tool and source window, such that you can select your own indi-
vidual command tool placement. To move the command tool to its saved position, use ‘View→Command
Tool’.

By default, the command toolsticksto theDDD source window: Whenever you move theDDD source win-
dow, the command tool follows such that the distance between source window and command tool remains
the same. By default, the command tool is alsoauto-raised, such that it stays on top of otherDDD win-
dows.

The command tool can be configured to appear as a command tool bar above the source window; see
‘Edit→Preferences→Source→Tool Buttons Location’ for details.

DDD 3.1 1998−12−01 3

() ()

Start debugged program

Interrupt debugged program

Step program one line (step into calls)

Step program one line (step over calls)

Edit source file

Select stack frame that called this one

Continue program after breakpoint

Step one instruction (step into calls)

Step one instruction (step over calls)

Select stack frame called by this one

Kill execution of debugged program

Invoke the make program

Continue until frame returns

The Command Tool

Continue until program reaches next line

Undo previous action Redo next action

Using the Tool Bar
SomeDDD commands require anargument. This argument is specified in theargument field, labeled ‘():’.
Basically, there are four ways to set arguments:

• You cankey inthe argument manually.

• You canpastethe current selection into the argument field (typically usingmouse button 2). To clear old
contents beforehand, click on the ‘():’ label.

• You canselect an itemfrom the source and data windows. This will automatically copy the item to the
argument field.

• You can select apreviously used argumentfrom the drop-down menu at the right of the argument field.

Using GDB and Perl, the argument field provides a completion mechanism. You can enter the first few
characters of an item an press theTAB key to complete it. PressingTAB again shows alternative comple-
tions.

After having entered an argument, you can select one of the buttons on the right. Most of these buttons also
have menus associated with them; this is indicated by a small arrow in the upper right corner. Pressing and
holdingmouse button 1on such a button will pop up a menu with further operations.

Get Previous Arguments

Data CommandsLookup Commands Breakpoint Commands

Enter Argument

The Tool Bar

DDD 3.1 1998−12−01 4

() ()

GETTING HELP
DDD has an extensive on-line help system. Here’s how to get help while working withDDD.

Button Tips
You can get a short help text on mostDDD buttons by simply moving the mouse pointer on it and leave it
there. After a second, a small window (calledbutton tip) pops up, giving a hint on the button’s meaning.
The button tip disappears as soon as you move the mouse pointer to another item.

The Status Line
The status line also displays information about the currently selected item. By clicking on the status line,
you can redisplay the most recent messages.

Context-Sensitive Help
You can get detailed help on any visibleDDD item. Just point on the item you want help and press the ‘F1’
key. This pops up a detailed help text.

TheDDD dialogs all contain ‘Help’ buttons that give detailed information about the dialog.

Help on Debugger Commands
You can get help on debugger commands by entering ‘help’ at the debugger prompt.

See ‘Entering Commands’, below, for details on entering commands.

Are You Stuck?
If you are stuck, try ‘Help→What Now?’ (the ‘What Now’ item in the ‘Help’ menu) or pressCtrl+F1 .
Depending on the current state,DDD will give you some hints on what you can do next.

Undoing Commands
And if, after all, you made a mistake, don’t worry. Almost everyDDD command can be undone, using
‘Edit→Undo’ or the ‘Undo’ button on the command tool. Likewise, ‘Edit→Redo’ repeats the command
most recently undone.

OPENING FILES
If you did not invokeDDD specifying a program to be debugged, you can use the ‘File’ menu to open pro-
grams, core dumps and sources.

Opening a program to be debugged

Directory List

Program to be opened

Click here to open

File List

File Filter

To open a program to be debugged, select ‘File→Open Program’.

DDD 3.1 1998−12−01 5

() ()

In JDB, select ‘File→Open Class’ instead. This gives you a list of available classes to choose from.

To re-open a recently debugged program or class, select ‘File→Open Recent’ and choose a program or
class from the list.

Note: With XDB and someDBX versions, the debugged program must be specified upon invocation and
cannot be changed at run time.

To open a core dump for the program, select ‘File→Open Core Dump’. Before ‘Open Core Dump’, you
should first use ‘File→Open Program’ to specify the program that generated the core dump and to load its
symbol table.

To open a source file of the debugged program, select ‘File→Open Source’.

• UsingGDB, this gives you a list of the sources used for compiling your program.

• Using other inferior debuggers, this gives you a list of accessible source files, which may or may not be
related to your program.

LOOKING UP ITEMS
As soon as the source of the debugged program is available, thesource windowdisplays its current source
text. (If a source text cannot be found, use ‘Edit→GDB Settings’ to specify source text directories.)

In the source window, you can lookup and examine function and variable definitions as well as search for
arbitrary occurrences in the source text.

Looking up Definitions
If you wish to lookup a specific function or variable definition whose name is visible in the source text,
click with mouse button 1on the function or variable name. The name is copied to the argument field.
Alter the name if desired and click on the ‘Lookup ()’ button to find its definition.

Show Item Value

The Source Popup Menu

Set and Delete Breakpoint at Item

Lookup Item’s Definition in Source Code

Show Item Type

Press Button 3 on Item

As a faster alternative, you can simply pressmouse button 3on the function name and select the ‘Lookup’
item from the source popup menu.

As an even faster alternative, you can also double-click on a function call (an identifier followed by a ‘(’
character) to lookup the function definition.

DDD 3.1 1998−12−01 6

() ()

Textual Search
If the item you wish to search is visible in the source text, click withmouse button 1on it. The identifier is
copied to the argument field. Click on the ‘Find>> ()’ button to find following occurrences and on the
‘Find<< ()’ button to find previous occurrences.

As an alternative, you can enter the item in the argument field and click on one of the ‘Find’ buttons.

By default,DDD finds only complete words. To search for arbitrary substrings, change the value of the
‘Source→Find Words Only’ option.

Looking up Previous Locations
After looking up a location, use ‘Edit→Undo’ (or the ‘Undo’ button on the command tool) to go back to
the original locations. ‘Edit→Redo’ brings you back again to the location you looked for.

The Source Window

Program Counter

Disabled Breakpoint

Execution Position

Enabled Breakpoint

Click here to lookup ‘tree_test’

Click here to find further occurrences of ‘tree_test’Argument for command buttons on the right

BREAKPOINTS
You can make the program stop at certainbreakpointsand trace its execution.

Setting Breakpoints by Location
If the source line is visible, click withmouse button 1on the left of the source line and then on the ‘Break
at ()’ button.

As a faster alternative, you can simply pressmouse button 3on the left of the source line and select the ‘Set
Breakpoint’ item from the line popup menu.

DDD 3.1 1998−12−01 7

() ()

The Line Popup Menu

Set Breakpoint at Line
Press Button 3 on Line

As an even faster alternative, you can simply double-click on the left of the source line to set a breakpoint.

As yet another alternative, you can select ‘Source→Edit Breakpoints’. Click on the ‘Break’ button and
enter the location.

(If you find this number of alternatives confusing, be aware thatDDD users fall into three categories, which
must all be supported.Novice usersexplore DDD and may prefer to use one single mouse button.
Advanced usersknow how to use shortcuts and prefer popup menus.Experienced usersprefer the com-
mand line interface.)

Breakpoints are indicated by a plain stop sign, or as ‘#n#’, wheren is the breakpoint number. A greyed out
stop sign (or ‘_n_’) indicates a disabled breakpoint. A stop sign with a question mark (or ‘?n?’) indicates a
conditional breakpoint or a breakpoint with an ignore count set.

If you set a breakpoint by mistake, use ‘Edit→Undo’ to delete it again.

Note: We hav e received reports that some Motif versions fail to display stop signs correctly. If this hap-
pens, try writing in your ‘$HOME/.ddd/init ’ file:

Ddd*cacheGlyphImages: off

and restartDDD. See also the ‘cacheGlyphImages’ resource in the ‘RESOURCES’ section, below.

Setting Breakpoints by Name
If the function name is visible, click withmouse button 1on the function name. The function name is
copied to the argument field. Click on the ‘Break at ()’ button to set a breakpoint there.

As a shorter alternative, you can simply pressmouse button 3on the function name and select the ‘break’
item from the popup menu.

As yet another alternative, you can click on ‘New’ from the Breakpoint editor (invoked through
‘Source→Edit Breakpoints’) and enter the function name.

Setting Regexp Breakpoints
Using GDB, you can also set a breakpoint on all functions that match a given string. ‘Break at ()→Set
Breakpoints at Regexp ()’ sets a breakpoint on all functions whose name matches theregular expression
given in ‘()’. Here are some examples:

• To set a breakpoint on every function that starts with ‘Xm’, set ‘()’ to ‘ ˆXm’.

• To set a breakpoint on every member of class ‘Date’, set ‘()’ to ‘ ˆDate::’.

• To set a breakpoint on every function whose name contains ‘_fun’, set ‘()’ to ‘ _fun’.

• To set a breakpoint on every function that ends in ‘_test’, set ‘()’ to ‘ _test$’.

Once these multiple breakpoints are set, they are treated just like the breakpoints set with the ‘Break at ()’
button. You can delete them, disable them, or make them conditional the same way as any other

DDD 3.1 1998−12−01 8

() ()

breakpoint. Use ‘Source→Edit Breakpoints’ to view and edit the list of breakpoints.

Disabling Breakpoints
To temporarily disable a breakpoint, pressmouse button 3on the breakpoint symbol and select the ‘Disable
Breakpoint’ item from the breakpoint popup menu. To enable it again, select ‘Enable Breakpoint’.

The Breakpoint Popup Menu

Disable Breakpoint

Edit Properties

Press Button 3 on Breakpoint

As an alternative, you can select the breakpoint and click on ‘Disable’ or ‘ Enable’ in the Breakpoint editor
(invoked through ‘Source→Edit Breakpoints’.

Disabled breakpoints are indicated by a grey stop sign, or ‘_n_’, wheren is the breakpoint number.

The ‘Disable Breakpoint’ item is also accessible via the ‘Clear at ()’ button. Just press and holdmouse
button 1on the button to get a popup menu.

Note:JDB does not support breakpoint disabling.

Temporary Breakpoints
A temporary breakpointis immediately deleted as soon as it is reached. To set a temporary breakpoint,
pressmouse button 3on the left of the source line and select the ‘Set Temporary Breakpoint’ item from
the popup menu.

As a faster alternative, you can simply double-click on the left of the source line while holdingCtrl .

Temporary breakpoints are convenient to make the program continue up to a specific location: just set the
temporary breakpoint at this location and continue execution.

The ‘Continue Until Here’ item from the popup menu sets a temporary breakpoint on the left of the source
line and immediately continues execution. Execution stops when the temporary breakpoint is reached.

The ‘Set Temporary Breakpoint’ and ‘Continue Until Here’ items are also accessible via the ‘Break at
()’ button. Just press and holdmouse button 1on the button to get a popup menu.

Note:JDB does not support temporary breakpoints.

Deleting Breakpoints
If the breakpoint is visible, click withmouse button 1on the breakpoint. The breakpoint location is copied
to the argument field. Click on the ‘Clear at ()’ button to delete all breakpoints there.

If the function name is visible, click withmouse button 1on the function name. The function name is
copied to the argument field. Click on the ‘Clear at ()’ button to set a breakpoint there.

As a faster alternative, you can simply pressmouse button 3on the breakpoint and select the ‘Delete
Breakpoint’ item from the popup menu.

As yet another alternative, you can select the breakpoint and click on ‘Delete’ in the Breakpoint editor
(invoked through ‘Source→Edit Breakpoints’).

As an even faster alternative, you can simply double-click on the breakpoint while holdingCtrl .

DDD 3.1 1998−12−01 9

() ()

Editing Breakpoint Properties
You can change all properties of a breakpoint by pressingmouse button 3on the breakpoint symbol and
select ‘Properties’ from the breakpoint popup menu. This will pop up a dialog showing the current proper-
ties of the selected breakpoint.

As an even faster alternative, you can simply double-click on the breakpoint.

Breakpoint Properties

Edit Breakpoint Condition

Edit Ignore Count

Disable Breakpoint

• Click on ‘Lookup’ to move the cursor to the breakpoint’s location.

• Click on ‘Enable’ to enable the breakpoint.

• Click on ‘Disable’ to disable the breakpoint.

• Click on ‘Temp’ to make the breakpoint temporary. Note:GDB has no way to make a temporary break-
point non-temporary again.

• Click on ‘Delete’ to delete the breakpoint.

Breakpoint Conditions
In the field ‘Condition’ of the ‘Breakpoint Properties’ panel, you can specify abreakpoint condition. If a
breakpoint condition is set, the breakpoint stops the program only if the associated condition is met—that
is, if the condition expression evaluates to a non-zero value.

Note:JDB does not support breakpoint conditions.

Breakpoint Ignore Counts
In the field ‘Ignore Count’ of the ‘Breakpoint Properties’ panel, you can specify abreakpoint ignore
count. If the ignore count is set to some valueN, the nextN crossings of the breakpoint will be ignored:
Each crossing of the breakpoint decrements the ignore count; the program stops only if the ignore count is
zero.

Note:JDB, Perl and someDBX variants do not support breakpoint ignore counts.

Breakpoint Commands
Note: Breakpoint commands are currently available onGDB only.

Using the ‘Commands’ buttons of the ‘Breakpoint Properties’ panel, you can record and edit commands
to be executed when the breakpoint is hit.

DDD 3.1 1998−12−01 10

() ()

To record a command sequence, follow these steps:

• Click on ‘Record’ to begin the recording of the breakpoint commands.

• Now interact withDDD. While recording,DDD does not execute commands, but simply records them to
be executed when the breakpoint is hit. The recorded debugger commands are shown in the debugger
console.

• To stop the recording, click on ‘End’ or enter ‘end’ at the GDB prompt. Tocancelthe recording, click
on ‘Interrupt ’ or pressESC.

• Click on ‘Edit >>’ to edit the recorded commands. When done with editing, click on ‘Edit <<’ to close
the commands editor.

Moving and Copying Breakpoints
To move a breakpoint to a different location, pressmouse button 1on the stop sign and drag it to the desired
location. This is equivalent to deleting the breakpoint at the old location and setting a breakpoint at the new
location. The new breakpoint inherits all properties of the old breakpoint, except the breakpoint number.

To copy a breakpoint to a new location, press theShift key while dragging.

Note: Dragging breakpoints is not possible when glyphs are disabled. Delete and set breakpoints instead.

Looking up Breakpoints
If you wish to lookup a specific breakpoint, select ‘Source→Edit Breakpoints→Lookup’. After selecting
a breakpoint from the list and clicking the ‘Lookup’ button, the breakpoint location is displayed.

As an alternative, you can enter ‘#n’ in the argument field, wheren is the breakpoint number and click on
the ‘Lookup ()’ button to find its definition.

Editing all Breakpoints
To view and edit all breakpoints at once, select ‘Source→Edit Breakpoints’. This will popup theBreak-
point Editorwhich displays the state of all breakpoints.

Condition

Ignore Count
Commands

Edit Properties

The Breakpoint Editor

In the breakpoint editor, you can select individual breakpoints by clicking on them. PressingCtrl while
clicking toggles the selection. To edit the properties of all selected breakpoints, click on ‘Props’.

More Breakpoint Features
UsingGDB, a few more commands related to breakpoints can be invoked through the debugger console:

DDD 3.1 1998−12−01 11

() ()

hbreak position
Sets a hardware-assisted breakpoint atposition. This command requires hardware support and
some target hardware may not have this support. The main purpose of this is EPROM/ROM
code debugging, so you can set a breakpoint at an instruction without changing the instruction.

thbreak pos
Set a temporary hardware-assisted breakpoint atpos.

See theGDB documentation for details on these commands.

WA TCHPOINTS
You can make the program stop as soon as some variable value changes, or when some variable is read or
written. This is called ‘setting awatchpointon a variable’.

Watchpoints have much in common with breakpoints: in particular, you can enable and disable them. You
can also set conditions, ignore counts, and commands to be executed when a watched variable changes its
value.

Please note: on architectures without special watchpoint support, watchpoints currently make the program
execute two orders of magnitude more slowly. This is so because the inferior debugger must interrupt the
program after each machine instruction in order to examine whether the watched value has changed. How-
ev er, this delay can be well worth it to catch errors when you have no clue what part of your program is the
culprit.

Note: Watchpoints are available inGDB and someDBX variants only. InXDB, a similar feature is available
via XDB assertions; see theXDB documentation for details.

Setting Watchpoints
If the variable name is visible, click withmouse button 1on the variable name. The variable name is
copied to the argument field. Otherwise, enter the variable name in the argument field. Click on the
‘Watch ()’ button to set a watchpoint there.

Using GDB, you can set different types of watchpoints. Click and holdmouse button 1on the ‘Watch ()’
button to get a menu.

Editing Watchpoint Properties
To change the properties of a watchpoint, enter the name of the watched variable in the argument field.
Click and holdmouse button 1on the ‘Watch ()’ button and select ‘Watchpoint Properties’.

The Watchpoint Properties panel has the same functionality as theBreakpoint Properties panel; see
‘Editing Breakpoint Properties’, above, for details. As an additional feature, you can click on ‘Print () ’
to see the current value of a watched variable.

Editing all Watchpoints
To view and edit all watchpoints at once, select ‘Data→Edit Watchpoints’. This will popup theWatch-
point Editorwhich displays the state of all watchpoints.

TheWatchpoint Editorhas the same functionality as theBreakpoint Editor; see ‘Editing All Breakpoints ’,
above, for details. As an additional feature, you can click on ‘Print () ’ to see the current value of a
watched variable.

Deleting Watchpoints
To delete a watchpoint, enter the name of the watched variable in the argument field and click the
‘Unwatch ()’ button.

RUNNING THE PROGRAM
Starting Program Execution

To start execution of the debugged program, select ‘Program→Run’. You will then be prompted for the
arguments to pass to your program. You can either select from a list of previously used arguments or enter
own arguments in the text field. Afterwards, press the ‘Run’ button to start execution with the selected
arguments.

To run your program again, with the same arguments, select ‘Program→Run Again’ or press the ‘Run’

DDD 3.1 1998−12−01 12

() ()

button on the command tool. You may also enter ‘run ’, followed by arguments at the debugger prompt
instead.

Click here to select

Empty Argument List
Other Arguments

Program Arguments

Click here to run

Starting a Program with Arguments

Using the Execution Window
By default, input and output of your program go to the debugger console. As an alternative,DDD can also
invoke anexecution window, where the program terminal input and output is shown. To activate the execu-
tion window, select ‘Program→Run in Execution Window’.

While the execution window is active,DDD invokes your program such that its standard input, output, and
error streams are redirected to the execution window. Note that the device ‘/dev/tty’ still refers to the
debugger console,not the execution window.

You can override theDDD stream redirection by giving alternate redirection operations as arguments. For
instance, to have your program read from a file, but to write to the execution window, inv oke your program
with ‘< file’ as argument. Likewise, to redirect the standard error output to the debugger console, use ‘2>
/dev/tty’ (assuming the inferior debugger and/or yourUNIX shell support standard error redirection).

The execution window is not available inJDB andPerl.

Attaching to a Running Process
If the debugged program is already running in some process, you canattachto this process (instead of start-
ing a new one with ‘Run’). Select ‘File→Attach to Process’ to choose from a list of processes. After-
wards, press the ‘Attach’ button to attach to the specified process.

The first thingDDD does after arranging to debug the specified process is to stop it. You can examine and
modify an attached process with all theDDD commands that are ordinarily available when you start pro-
cesses with ‘Run’. You can insert breakpoints; you can step and continue; you can modify storage. If you
would rather the process continue running, you may use ‘Continue’ after attachingDDD to the process.

When using ‘Attach to Process’, you should first use ‘Open Program’ to specify the program running in
the process and load its symbol table.

When you have finished debugging the attached process, you can use the ‘File→Detach Process’ to release
it from DDD control. Detaching the process continues its execution. After ‘Detach Process’, that process
andDDD become completely independent once more, and you are ready to attach another process or start
one with ‘Run’.

DDD 3.1 1998−12−01 13

() ()

Selecting a Process to Attach

Click to attach

Selected process
ps output

You can customize the list of processes shown by defining an alternate command to list processes. See
‘Edit→Preferences→Helpers→List Processes’.

Note:JDB, PYDB, and Perl do not support attaching the debugger to running processes.

Stopping the Program
The program stops as soon as a breakpoint is reached. The current execution position is highlighted by an
arrow.

You can interrupt a running program any time by clicking the ‘Interrupt ’ button or typingESC in a DDD
window.

Resuming Execution
To resume execution, at the address where your program last stopped, click on the ‘Continue‘ button. Any
breakpoints set at that address are bypassed.

To execute just one source line, click on the ‘Step’ button. The program is executed until control reaches a
different source line, which may be in a different function.

To continue to the next line in the current function, click on the ‘Next’ button. This is similar to ‘Step’, but
any function calls appearing within the line of code are executed without stopping.

To continue until a greater line in the current function is reached, click on the ‘Until ’ button. This is useful
to avoid single stepping through a loop more than once.

To continue running until the current function returns, use the ‘Finish’ button. The returned value (if any)
is printed.

To continue running until a line after the current source line is reached, use the ‘Continue Until Here’
facility from the line popup menu. See the ‘Temporary Breakpoints’ section, above, for a discussion.

Altering the Execution Position
To resume execution at a different location, pressmouse button 1on the arrow and drag it to a different
location. The most common occasion to use this feature is to back up—perhaps with more breakpoints set-
over a portion of a program that has already executed, in order to examine its execution in more detail.

Moving the execution position does not change the current stack frame, or the stack pointer, or the contents
of any memory location or any register other than the program counter.

Some inferior debuggers (notablyGDB) allow you to set the new execution position into a different func-
tion from the one currently executing. This may lead to bizarre results if the two functions expect different
patterns of arguments or of local variables. For this reason, moving the execution position requests confir-
mation if the specified line is not in the function currently executing.

DDD 3.1 1998−12−01 14

() ()

After moving the execution position, click on the ‘Continue’ button to resume execution.

Click on arrow, hold mouse button and move to the final position.

Changing the Execution Position by Dragging the Execution Arrow

Note: Dragging the execution position is not possible when glyphs are disabled. Use ‘Set Execution Posi-
tion’ from the breakpoint popup menu instead to set the execution position to the current location. This
item is also accessible by pressing and holding the ‘Break at ()/Clear at ()’ button.

Note:JDB does not support altering the execution position.

Examining the Stack
When your program has stopped, the first thing you need to know is where it stopped and how it got there.

DDD provides abacktrace windowshowing a summary of how your program got where it is. To enable the
backtrace window, select ‘Status→Backtrace’.

Selecting a Frame from the Backtrace Viewer

Called functions

Current frame in source window

Calling functions

The ‘Up’ button selects the function that called the current one.

The ‘Down’ button selects the function that was called by the current one.

You can also directly type the ‘up’ and ‘down’ commands at the debugger prompt. TypingCtrl+Up and
Ctrl+Down , respectively, will also move you through the stack.

DDD 3.1 1998−12−01 15

() ()

‘Up’ and ‘Down’ actions can be undone via ‘Edit→Undo’.

“Undoing” Program Execution
If you take a look at the ‘Edit→Undo’ menu item after an execution command, you’ll find thatDDD offers
you to undo execution commands just as other commands. Does this mean thatDDD allows you to go
backwards in time, undoing program execution as well as undoing any side-effects of your program?

Sorry—we must disappoint you.DDD cannot undo what your program did. (After a little bit of thought,
you’ll find that this would be impossible in general.) However, DDD can do something different: it can
showpreviously recorded statesof your program.

After “undoing” an execution command (via ‘Edit→Undo’, or the ‘Undo’ button), the execution position
moves back to the earlier position and displayed variables take their earlier values. Your program state is in
fact unchanged, but DDD gives you aviewon the earlier state as recorded by DDD.

In this so-calledhistoric mode, most normalDDD commands that would query further information from the
program are disabled, since the debugger cannot be queried for the earlier state. However, you can examine
the current execution position, or the displayed variables. Using ‘Undo’ and ‘Redo’, you can move back
and forward in time to examine how your program got into the present state.

To let you know that you are operating in historic mode, the execution arrow gets a dashed-line appearance
(indicating a past position); variable displays also come with dashed lines. Furthermore, the status line
informs you that you are seeing an earlier program state.

Here’s how historic mode works: each time your program stops,DDD collects the current execution posi-
tion and the values of displayed variables. Backtrace, thread, and register information is also collected if
the corresponding dialogs are open. When “undoing” an execution command,DDD updates its view from
this collected state instead of querying the program.

If you want to collect this information without interrupting your program—within a loop, for instance—you
can place a breakpoint with an associated ‘cont’ command; see ‘Breakpoint Commands’, above, for
details. When the breakpoint is hit,DDD will stop, collect the data, and execute the ‘cont’ command,
resuming execution. Using a later ‘Undo’, you can step back and look at every single loop iteration.

To leave historic mode, you can use ‘Redo’ until you are back in the current program state. However, any
DDD command that refers to program state will also leave historic mode immediately by applying to the
current program state instead. For instance, ‘Up’ leaves historic mode immediately and selects an alternate
frame in the restored current program state.

If you want to see the history of a specific variable, as recorded during program stops, you can enter the
DDD command

graph history name

This returns a list of all previously recorded values of the variablename, using array syntax. Note that
namemust have been displayed at earlier program stops in order to record values.

Examining Threads
Note: Thread support is available withGDB andJDB only.

In some operating systems, a single program may have more than onethread of execution. The precise
semantics of threads differ from one operating system to another, but in general the threads of a single pro-
gram are akin to multiple processes—except that they share one address space (that is, they can all examine
and modify the same variables). On the other hand, each thread has its own registers and execution stack,
and perhaps private memory.

For debugging purposes,DDD lets you display the list of threads currently active in your program and lets
you select thecurrent thread—the thread which is the focus of debugging.DDD shows all program infor-
mation from the perspective of the current thread.

DDD 3.1 1998−12−01 16

() ()

Current thread

Change thread properties

Click on group to toggle view

Selecting Threads

To view all currently active threads in your program, select ‘Status→Threads’. The current thread is high-
lighted. Select any thread to make it the current thread.

UsingJDB, additional functionality is available:

• Select athread groupto switch between viewing all threads and the threads of the selected thread group;

• Click on ‘Suspend’ to suspend execution of the selected threads;

• Click on ‘Resume’ to resume execution of the selected threads.

For more information on threads, see theJDB andGDB documentation.

Handling Signals
Note: Signal support is available withGDB only.

A signal is an asynchronous event that can happen in a program. The operating system defines the possible
kinds of signals, and gives each kind a name and a number. For example, in UnixSIGINT is the signal a
program gets when you type an interrupt;SIGSEGV is the signal a program gets from referencing a place
in memory far away from all the areas in use;SIGALRM occurs when the alarm clock timer goes off
(which happens only if your program has requested an alarm).

Some signals, includingSIGALRM , are a normal part of the functioning of your program. Others, such as
SIGSEGV, indicate errors; these signals arefatal (kill your program immediately) if the program has not
specified in advance some other way to handle the signal.SIGINT does not indicate an error in your pro-
gram, but it is normally fatal so it can carry out the purpose of the interrupt: to kill the program.

GDB has the ability to detect any occurrence of a signal in your program. You can tellGDB in advance
what to do for each kind of signal.

Normally, DDD is set up to ignore non-erroneous signals likeSIGALRM (so as not to interfere with their
role in the functioning of your program) but to stop your program immediately whenever an error signal
happens. InDDD, you can change these settings via ‘Status→Signals’.

‘Status→Signals’ pops up a panel showing all the kinds of signals and howGDB has been told to handle
each one. The settings available for each signal are:

Stop If set, GDB should stop your program when this signal happens. This also implies ‘Print ’
being set.
If unset,GDB should not stop your program when this signal happens. It may still print a mes-
sage telling you that the signal has come in.

DDD 3.1 1998−12−01 17

() ()

Print If set,GDB should print a message when this signal happens.
If unset,GDB should not mention the occurrence of the signal at all. This also implies ‘Stop’
being unset.

Pass If set, GDB should allow your program to see this signal; your program can handle the signal,
or else it may terminate if the signal is fatal and not handled.
If unset,GDB should not allow your program to see this signal.

GDB Signal Handling Panel (Excerpt)

The entry ‘All Signals’ is special. Changing a setting here affectsall signals at once—except those used
by the debugger, typically SIGTRAP and SIGINT.

To undo any changes, use ‘Edit→Undo’. The ‘Reset’ button restores the saved settings.

When a signal stops your program, the signal is not visible until you continue. Your program sees the sig-
nal then, if ‘Pass’ is in effect for the signal in questionat that time. In other words, afterGDB reports a sig-
nal, you can change the ‘Pass’ setting in ‘Status→Signals’ to control whether your program sees that sig-
nal when you continue.

You can also cause your program to see a signal it normally would not see, or to give it any signal at any
time. The ‘Send’ button will resume execution where your program stopped, but immediately give it the
signal shown.

On the other hand, you can also prevent your program from seeing a signal. For example, if your program
stopped due to some sort of memory reference error, you might store correct values into the erroneous vari-
ables and continue, hoping to see more execution; but your program would probably terminate immediately
as a result of the fatal signal once it saw the signal. To prevent this, you can resume execution using ‘Com-
mands→Continue Without Signal’.

‘Edit→Save Options’ does not save changed signal settings, since changed signal settings are normally

DDD 3.1 1998−12−01 18

() ()

useful within specific projects only. Instead, signal settings are saved with the current session, using
‘File→Save Session As’.

EXAMINING DAT A
DDD provides several means to examine data.

Value Hints
The quickest way to examine variables is to move the pointer on an occurrence in the source
text. The value is displayed in the source line; after a second, a popup window shows the vari-
able value. This is useful for quick examination of several simple variables.

Printing Values
If you want to reuse variable values at a later time, you can print the value in the debugger con-
sole. This allows for displaying and examining larger data structures.

Displaying Values
If you want to examine complex data structures, you can display them graphically in the data
display. Displays remain effective until you delete them; they are updated each time the pro-
gram stops. This is useful for large dynamic structures.

Plotting Values
If you want to examine arrays of numeric values, you can plot them graphically in a separate
plot window. The plot is updated each time the program stops. This is useful for large
numeric arrays.

Memory Dumps
This feature, available usingGDB only, allows you to dump memory contents in any of sev eral
formats, independently of your program’s data types. This is described under ‘MACHINE-
LEVEL DEBUGGING ’, below.

Showing Simple Values using Value Hints
To display the value of a simple variable, move the mouse pointer on its name. After a second, a small win-
dow (calledvalue tip) pops up showing the value of the variable pointed at. The window disappears as
soon as you move the mouse pointer away from the variable. The value is also shown in the status line.

Displaying Simple Values using Value Tips

Move pointer on item

The value tip shows its value

Printing Simple Values in the Debugger Console
The variable value can also be printed in the debugger console, making it available for further operations.
To print a variable value, select the desired variable by clickingmouse button 1on its name. The variable
name is copied to the argument field. By clicking the ‘Print () ’ button, the value is printed in the debugger

DDD 3.1 1998−12−01 19

() ()

console. Note that the value is also shown in the status line.

As a shorter alternative, you can simply pressmouse button 3on the variable name and select the ‘Print ’
item from the popup menu.

in the debugger console
The value is printed

Select ‘Print’ on item

Displaying Simple Values in the Debugger Console

Displaying Complex Values in the Data Window
To explore complex data structures, you can use thegraphical data displayin thedata window. The data
window holdsdisplaysshowing names and the values of variables. The display is updated each time the
program stops.

To create a new display, select the desired variable by clickingmouse button 1on its name. The variable
name is copied to the argument field. By clicking the ‘Display ()’ button, a new display is created in the
data window. The data window opens automatically as soon as you create a display.

Scroll the data display

Displaying Data

As a shorter alternative, you can simply pressmouse button 3on the variable name and select the ‘Display’
item from the popup menu.

As an even faster alternative, you can also double-click on the variable name.

DDD 3.1 1998−12−01 20

() ()

As another alternative, you may also enter the expression to be displayed in the argument field and press the
‘Display ()’ button.

Finally, you may also enter

graph display expr[clustered] [at (x, y)] [dependent ondisplay] [[now or] when in scope]

at the debugger prompt. The options have the following meaning:

• If the suffix ‘clustered’ is specified, the new data display is created in a cluster. See ‘Clustering Dis-
plays’, below, for a discussion.

• If the suffix ‘at (x, y)’ is specified, the new data display is created at the position (x, y). Otherwise, a
default position is assigned.

• If the suffix ‘dependent ondisplay’ is giv en, an edge from the display numbered or nameddisplayto the
new display is created. Otherwise, no edge is created.

• If the suffix ‘when in scope’ is giv en, display creation isdeferreduntil execution reaches the givenscope
(a function name, as in the backtrace output).

• If the suffix ‘now or when in scope’ is giv en,DDD attempts to create the display immediately. If display
creation fails, it isdeferreduntil execution reaches the givenscope(a function name, as in the backtrace
output).

• If no ‘when in’ suffix or ‘now or when in’ suffix is given, the display is created immediately.

If you created a display by mistake, use ‘Edit→Undo’ to undisplay it.

Selecting Displays
Each display in the data window has atitle bar containing thedisplay numberand the displayed expression
(thedisplay name). Below the title, thedisplay valueis shown.

You can select individual displays by clicking on them withmouse button 1. The resulting expression is
shown in theargument field, below.

You canextendan existing selection by pressing theShift key while selecting. You can alsotoggle an
existing selection by pressing theShift key while selecting already selected displays.

Single displays may also be selected by using the arrow keys.

Selecting Multiple Displays
Multiple displays are selected by pressing and holdingmouse button 1somewhere on the window back-
ground. By moving the pointer while holding the button, a selection rectangle is shown; all displays fitting
in the rectangle are selected when mouse button 1 is released.

If the Shift key is pressed while selecting, the existing selection isextended.

By double-clicking on a display title, the display itself and all connected displays are automatically
selected.

DDD 3.1 1998−12−01 21

() ()

Selecting Multiple Displays

Selection rectangle

Showing and Hiding Values
Aggregate values (i.e. records, structs, classes, and arrays) can be shownexpanded, that is, displaying all
details, orhidden, that is, displayed as ‘{...}’.

To show details about an aggregate, select the aggregate by clickingmouse button 1on its name or value
and click on the ‘Show ()’ button. Details are shown for the aggregate itself as well as for all contained
sub-aggregates.

To hide details about an aggregate, select the aggregate by clickingmouse button 1on its name or value and
click on the ‘Hide ()’ button.

Showing Display Detail

Detailed view Select and show detailHidden details

When pressing and holdingmouse button 1on the ‘Show ()/Hide ()’ button, a menu pops up with even
more alternatives:

Show More ()
Shows details of all aggregates currently hidden, but not of their sub-aggregates. You can invoke
this item several times in a row to rev eal more and more details of the selected aggregate.

Show Just ()
Shows details of the selected aggregate, but hides all sub-aggregates.

DDD 3.1 1998−12−01 22

() ()

Show All ()
Shows all details of the selected aggregate and of its sub-aggregates. This item is equivalent to the
‘Show ()’ button.

Hide () Hide all details of the selected aggregate. This item is equivalent to the ‘Hide ()’ button.

As a faster alternative, you can also pressmouse button 3on the aggregate and select the appropriate menu
item.

As an even faster alternative, you can also double-clickmouse button 1on a value. If some part of the
value is hidden, more details will be shown; if the entire value is shown, double-clicking willhide the value
instead. This way, you can double-click on a value until you get the right amount of details.

If all details of a display are hidden, the display is calleddisabled; this is indicated by the string ‘(Dis-
abled)’. Displays can also be disabled or enabled via theDDD commands

graph disable displaydisplays...

and

graph enable displaydisplays...

at the debugger prompt.displays...is either

• a space-separated list of display numbers to disable or enable, or

• a single display name. If you specify a display by name, all displays with this name will be affected.

Use ‘Edit→Undo’ to undo disabling or enabling displays.

Rotating Arrays
Arrays can be aligned horizontally or vertically. To change the alignment of an array, select it and then
click on the ‘Rotate ()’ button.

As a faster alternative, you can also pressmouse button 3on the array and select the ‘Rotate’ menu item.

Select and Rotate

Rotating an Array

DDD 3.1 1998−12−01 23

() ()

Displaying Dependent Values
Dependent displays are created from an existing display. The dependency is indicated by arrows leading
from the originating display to the dependent display.

To create a dependent display, select the originating display or display part and enter the dependent expres-
sion in the ‘():’ argument field. Then click on the ‘Display’ button.

Using dependent displays, you can investigate the data structure of a “tree” for example and lay it out
according to your intuitive image of the “tree” data structure.

By default,DDD does not recognize shared data structures (i.e. a data object referenced by multiple other
data objects). See ‘Examining Shared Data Structures’, below, for details on how to examine such struc-
tures.

Display Shortcuts
DDD maintains ashortcut menuof frequently used display expressions. This menu is activated

• by pressing and holding the ‘Display’ button, or

• by pressingmouse button 3on some display and selecting ‘New Display’, or

• by pressingShift andmouse button 3on some display.

By default, the shortcut menu contains frequently used base conversions.

The ‘Other’ entry in the shortcut menu lets you create a new display thatextendsthe shortcut menu. As an
example, assume you have selected a display named ‘date_ptr’. Selecting ‘Display→Other’ pops up a
dialog that allows you to enter a new expression to be displayed -- for instance, you can cast the display
‘date_ptr’ to a new display ‘(char *)date_ptr ’. If the ‘Include in ‘New Display’ Menu’ toggle was acti-
vated, the shortcut menu will then contain a new entry ‘Display (char *)()’ that will castanyselected dis-
play displayto ‘(char *)display’. Such shortcuts can save you a lot of time when examining complex data
structures.

Using Display Shortcuts

Modify expression here... ... to include it in the ‘New Display’ menu.

You can edit the contents of the ‘New Display’ menu by selecting its ‘Edit Menu ’ item. This pops up the
Shortcut Editorcontaining all shortcut expressions, which you can edit at leisure. Each line contains the
expression for exactly one menu item. Clicking on ‘Apply ’ re-creates the ‘New Display’ menu from the
text. If the text is empty, the ‘New Display’ menu will be empty, too.

DDD 3.1 1998−12−01 24

() ()

Invoke shortcut editor

Editing Display Shortcuts

DDD also allows you to specify individual labels for user-defined buttons. You can write such a label after
the expression, separated by ‘//’. This feature is used in the default contents of theGDB ‘New Display’
menu, where each of the base conversions has a label:

/t () // Convert to Bin
/d () // Convert to Dec
/x () // Convert to Hex
/o () // Convert to Oct

Feel free to add other conversions here.DDD supports up to 20 ‘New Display’ menu items.

Dereferencing Pointers
There are special shortcuts for creating dependent displays showing the value of a dereferenced pointer.
This allows for rapid examination of pointer-based data structures.

To dereference a pointer, select the originating pointer value or name and click on the ‘Display *()’ button.
A new display showing the dereferenced pointer value is created.

As a faster alternative, you can also pressmouse button 3on the originating pointer value or name and
select the ‘Display *’ menu item.

As an even faster alternative, you can also double-clickmouse button 1on the originating pointer value or
name. If you pressCtrl while double-clicking, the display will be dereferencedin place--that is, it will be
replaced by the dereferenced display.

The ‘Display *()’ function is also accessible by pressing and holding the ‘Display ()’ button.

Displaying Local Variables
You can display all local variables at once by choosing ‘Data→Display Local Variables’. When using
DBX, XDB, JDB, or Perl, this displays all local variables, including the arguments of the current function.
When usingGDB or PYDB, function arguments are contained in a separate display, activated by ‘Display
Arguments’.

The display showing the local variables can be manipulated just like any other data display. Individual vari-
ables can be selected and dereferenced.

DDD 3.1 1998−12−01 25

() ()

Dereferencing a Local Variable

via popup menu
Dereference

Local arguments

Dereferenced pointer

Displaying Program Status
You can create a display from the output of an arbitrary debugger command. By entering

graph display ‘command‘

the output ofcommandis turned into astatus displayupdated each time the program stops. For instance,

graph display ‘where‘

creates a status display named ‘Where’ that shows the current backtrace.

If you are usingGDB, DDD provides a panel from which you can choose useful status displays. Select
‘Data→More Status Displays’ and pick your choice from the list.

Click here...

... to enable or disable this status display

Activating Status Displays

Status displays consume time; you should delete them as soon as you don’t need them any more.

DDD 3.1 1998−12−01 26

() ()

Displaying Multiple Array Values
When debugging C or C++ programs, one often has to deal with pointers to arrays of dynamically deter-
mined size. BothDDD andGDB provide special support for such dynamic arrays.

To display several successive objects of the same type (a section of an array, or an array of dynamically
determined size), use the notation[FROM..TO] in display expressions.FROMandTO denote the first and
last array position to display. Thus,

graph display argv[0..9]

creates ten new display nodes for ‘argv[0]’, ‘ argv[1]’, ..., ‘argv[9]’.

UsingGDB as inferior debugger, you can useartificial arrays. Typing

graph display argv[0] @ 10

creates a single array display node containing ‘argv[0]’ up to ‘argv[9]’. Generally, by using the ‘@’ opera-
tor, you can specify the number of array elements to be displayed.

For more details on artificial arrays, see theGDB documentation.

Repeated Array Values
Using GDB, an array value that is repeated 10 or more times is displayed only once. The value is shown
with a ‘<N×>’ postfix added, whereN is the number of times the value is repeated. Thus, the display ‘0x0
<30×>’ stands for 30 array elements, each with the value0x0. This saves a lot of display space, especially
with homogeneous arrays.

Displaying Repeated Array Values

Repeated Value

The defaultGDB threshold for repeated array values is 10. You can change it via ‘Edit→GDB Set-
tings→Threshold for repeated print elements’. Setting the threshold to0 will causeGDB (andDDD) to
display each array element individually. Be sure to refresh the data window via ‘Data→Refresh Displays’
after a change inGDB settings.

You can also configureDDD to display each array element individually, reg ardless ofGDB settings; see the
‘expandRepeatedValues’ resource for details.

Altering Variable Values
Using the ‘Set ()’ button or the ‘Set Value’ menu item in the data popup menu, you can alter the value of
the selected variable, to resume execution with the changed value. In a dialog, you can modify the variable
value at will; clicking the ‘OK ’ or ‘ Apply ’ button commits your change.

DDD 3.1 1998−12−01 27

() ()

Changing Variable Values

Select to set

Enter new value here

If you made a mistake, you can use ‘Edit→Undo’ to re-set the variable to its previous value.

Note: Altering variable values is not supported inJDB.

Refreshing the Data Window
The data window refreshes itself automatically each time the program stops. Values that have changed are
highlighted.

However, there may be situations where you should refresh the data window explicitly. This is especially
the case whenever you changed debugger settings that could affect the data format, and want the data win-
dow to reflect these settings.

You can refresh the data window by selecting ‘Data→Refresh Displays’.

As an alternative, you can pressmouse button 3on the background of the data window and select the
‘Refresh Display’ item.

Typing

graph refresh

at the debugger prompt has the same effect.

Deleting Displays
To delete a single display, select it and click on the ‘Delete ()’ button. As an alternative, you can also press
mouse button 3on the display and select the ‘Delete Display’ item.

When a display is deleted, its immediate ancestors and descendants are automatically selected, so that you
can easily delete entire graphs.

To delete several displays at once, select the ‘Delete’ item in the Display Editor (invoked via ‘Data→Edit
Displays’). Select any number of display items in the usual way and delete them by pressing ‘Delete’.

As an alternative, you can also type

graph undisplay displays...

at the debugger prompt.displays...is either

• a space-separated list of display numbers to delete, or

• a single display name. If you specify a display by name, all displays with this name will be deleted.

If you are using stacked windows, deleting the last display from the data window also automatically closes

DDD 3.1 1998−12−01 28

() ()

the data window. (You can change this via ‘Edit→Preferences→Data→Close data window when delet-
ing last display’.)

If you deleted a display by mistake, use ‘Edit→Undo’ to re-create it.

Examining Shared Data Structures
By default,DDD does not recognize shared data structures—that is, a data object referenced by multiple
other data objects. For instance, if two pointersp1 andp2 point at the same data objectd, the data displays
d, *p1, and*p2 will be separate, although they denote the same object.

DDD provides a special mode which makes it detect these situations.DDD recognizes if two or more data
displays are stored at the same physical address, and if this is so, merges all thesealiasesinto one single
data display, theoriginal data display. This mode is calledAlias Detection; it is enabled via the
‘Data→Detect Aliases’.

When alias detection is enabled,DDD inquires the memory location (theaddress) of each data display after
each program step. If two displays have the same address, they are merged into one. More specifically,
only the one which has least recently changed remains (theoriginal data display); all other aliases aresup-
pressed, i.e. completely hidden. The edges leading to the aliases are replaced by edges leading to the origi-
nal data display.

An edge created by alias detection is somewhat special: rather than connecting two displays directly, it goes
through anedge hint, describing an arc connecting the two displays and the edge hint.

Each edge hint is a placeholder for a suppressed alias; selecting an edge hint is equivalent to selecting the
alias. This way, you can easily delete display aliases by simply selecting the edge hint and clicking on
‘Undisplay ()’.

Examining Shared Data Structures

Original Display Edge Hint

To access suppressed display aliases, you can also use the Display Editor. Suppressed displays are listed in
the Display Editor asaliasesof the original data display. Via the Display Editor, you can select, change,
and delete suppressed displays.

Suppressed displays become visible again as soon as

• alias detection is disabled,

• their address changes such that they are no more aliases, or

• the original data display is deleted, such that the least recently changed alias becomes the new original
data display.

Please note the followingcaveatswith alias detection:

DDD 3.1 1998−12−01 29

() ()

• Alias detection requires that the current programming language provides a means to determine the
address of an arbitrary data object. Currently, only C and C++ are supported.

• Some inferior debuggers (for instance, SunOSDBX) produce incorrect output for address expressions.
Given a pointerp, you may verify the correct function of your inferior debugger by comparing the values
of p and & p (unlessp actually points to itself). You can also examine the data display addresses, as
shown in the Display Editor.

• Alias detection slows downDDD slightly, which is why it is disabled by default. You may consider to
enable it only at need—for instance, while examining some complex data structure—and disable it while
examining control flow (i.e., stepping through your program).DDD will automatically restore edges and
data displays when switching modes.

Suppressed Display Alias

The Display Editor

Clustering Displays
If you examine several variables at once, having a separate display for each of them uses a lot of screen
space. This is whyDDD supportsclusters. A cluster merges several logical data displays into one physical
display, saving screen space.

There are two ways to create clusters:

• You can create clustersmanually. This is done by selecting the displays to be clustered and choosing
‘Undisp→Cluster ()’. This creates a new cluster from all selected displays. If an already existing clus-
ter is selected, too, the selected displays will be clustered into the selected cluster.

• You can create a clusterautomaticallyfor all independent data displays, such that all new data displays
will automatically be clustered, too. This is achieved by enabling ‘Edit→Preferences→Data→Cluster
Data Displays’.

DDD 3.1 1998−12−01 30

() ()

Displays

uni =

ii = 7
bit1 = 1
bit2 = 3
u = {...}

guni =
ii = 1
{...}
{...}

pi = 3.14159274
sqrt2 = 1.4142135623730951

1: uni

ii = 7
bit1 = 1
bit2 = 3
u = {...}

2: guni

ii = 1
{...}
{...} 4: sqrt2

1.4142135623730951

3: pi
3.14159274

Clustered and Unclustered Displays

Displays in a cluster can be selected and manipulated like parts of an ordinary display; in particular, you
can show and hide details, or dereference pointers. However, edges leading to clustered displays can not be
shown, and you must either select one or all clustered displays.

Disabling a cluster is calledunclustering, and again, there are two ways of doing it:

• You can uncluster displaysmanually, by selecting the cluster and choosing ‘Undisp→Uncluster ()’.

• You can uncluster all current and future displays by disabling ‘Edit→Preferences→Data→Cluster
Data Displays’.

Moving Displays Around
From time to time, you may wish to move displays at another place in the data window. You can move a
single display by pressing and holdingmouse button 1on the display title. Moving the pointer while hold-
ing the button causes all selected displays to move along with the pointer.

If the data window becomes too small to hold all displays, scroll bars are created. If yourDDD is set up to
usepannersinstead, a panner is created in the lower right edge. When the panner is moved around, the
window view follows the position of the panner. See ‘CUSTOMIZING DDD ’, below, for details on how
to set up scroll bars or panners.

For fine-grain movements, selected displays may also be moved using the arrow keys. PressingShift and
an arrow key moves displays by single pixels. PressingCtrl and arrow keys moves displays by grid posi-
tions.

Edge hints can be selected and moved around like other displays. If an arc goes through the edge hint, you
can change the shape of the arc by moving the edge hint around.

Aligning Displays
You can align all displays on the nearest grid position by selecting ‘Data→Align on Grid ’. This is useful
for keeping edges horizontal or vertical.

You can enforce alignment by selecting ‘Edit→Preferences→Data→Auto-align displays on nearest grid
point’. If this feature is enabled, displays can be moved on grid positions only.

Layouting the Display Graph
You can layout the entire graph as a tree by selecting ‘Data→Layout Graph ’.

Layouting the graph may introduceedge hints; that is, edges are no more straight lines, but lead to an edge
hint and from there to their destination. Edge hints can be moved around like arbitrary displays.

To enable a more compact layout, you can set the ‘Edit→Preferences→Data→Compact layout’ option.
This realizes an alternate layout algorithm, where successors are placed next to their parents. This algo-
rithm is suitable for homogeneous data structures only.

You can enforce layout by setting ‘Edit→Preferences→Data→ Automatic Layout ’. If automatic layout
is enabled, the graph is layouted after each change.

DDD 3.1 1998−12−01 31

() ()

A Layouted Graph (with Compact Layout)

Rotating the Display Graph
You can rotate the entire graph clockwise by 90 degrees by selecting ‘Data→Rotate Graph’.

If the graph was previously layouted, you may need to layout it again. Subsequent layouts will respect the
direction of the last rotation.

Printing the Display Graph
DDD allows for printing the graph picture on PostScript printers or into files. This is useful for document-
ing program states.

Printing displays

Enter print command

Select paper size

Click to print

To print the graph on a PostScript printer, select ‘File→Print Graph ’. Enter the printing command in the
‘Print Command’ field. Click on the ‘OK ’ or the ‘Apply ’ button to start printing.

As an alternative, you may also print the graph in a file. Click on the ‘File’ button and enter the file name

DDD 3.1 1998−12−01 32

() ()

in the ‘File Name’ field. Click on the ‘Print ’ button to create the file.

When the graph is printed in a file, two formats are available:

• PostScript—suitable for enclosing the graph in another document;

• FIG—suitable for post-processing, using theXFIG graphic editor, or for conversion into other formats
(among othersIBMGL, LATEX, PIC), using theTRANSFIGor FIG2DEV package.

*() next next

next

self self self

5: list
(List *) 0x804af30

value = 86
self = 0x804af40
next = 0x804af50

value = 87
self = 0x804af50
next = 0x804af30

value = 85
self = 0x804af30
next = 0x804af40

Output of the ‘Print Graph’ Command

Please note the followingcaveatsrelated to printing graphs:

• If any displays were selected when invoking the ‘Print ’ dialog, the option ‘Selected Only’ is set. This
makesDDD print only the selected displays.

• The ‘Color’, ‘ Orientation ’, and ‘Paper Size’ options are meaningful for PostScript only.

PLOTTING DAT A
If you have huge amounts of numerical data to examine, a picture often says more than a thousand num-
bers. Therefore,DDD allows you to draw numerical values in nice 2-D and 3-D plots.

Plotting Arrays
Basically,DDD can plot two types of numerical values:

• One-dimensional arrays. These are drawn in a 2-DX/Y space, whereX denotes the array index, andY the
element value.

• Two-dimensional arrays. These are drawn in a 3-DX/Y/Z space, whereX andY denote the array indexes,
andZ the element value.

To plot an array, select it by clickingmouse button 1on an occurrence. The array name is copied to the
argument field. By clicking the ‘Plot’ button, a new display is created in the data window, followed by a
new top-level window containing the value plot.

Each time the value changes during program execution, the plot is updated to reflect the current values.
The plot window remains active until you close it (via ‘File→Close’) or until the associated display is
deleted.

Changing the Plot Appearance
The actual drawing is not done byDDD itself. Instead,DDD relies on an external Gnuplot program to cre-
ate the drawing.DDD adds a menu bar to the Gnuplot plot window that lets you influence the appearance
of the plot:

• The ‘View’ menu toggles optional parts of the plot, such as border lines or a background grid.

• The ‘Plot’ menu changes the plotting style. The ‘3-D Lines’ option is useful for plotting two-
dimensional arrays.

• The ‘Scale’ menu allows you to enable logarithmic scaling and to enable or disable the scale tics.

• The ‘Contour’ menu adds contour lines to 3-D plots.

You can also resize the plot window as desired.

DDD 3.1 1998−12−01 33

() ()

In a 3-D plot, you can use the scroll bars to change your view position. The horizontal scroll bar rotates the
plot around theZ axis, that is, to the left and right. The vertical scroll bar rotates the plot around theY axis,
that is, up and down.

Plotting 1-D and 2-D Arrays

Rotate View

Change Style

A 2-D Array

A 1-D Array

Plotting Scalars and Composites
Besides plotting arrays,DDD also allows you to plot scalars (simple numerical values). This works just like
plotting arrays—you select the numerical variable, click on ‘Plot’, and here comes the plot. However, plot-
ting a scalar is not very exciting. A plot that contains nothing but a scalar simply draws the scalar’s value
as aY constant—that is, a horizontal line.

So why care about scalars at all?DDD allows you to combine multiple values into one plot. The basic idea
is: if you want to plot something that is neither an array nor a scalar,DDD takes all numerical sub-values it
can find and plots them all together in one window. For instance, you can plot all local variables by select-
ing ‘Data→Display Local Variables’, followed by ‘Plot’. This will create a plot containing all numerical
values as found in the current local variables. Likewise, you can plot all numeric members contained in a
structure by selecting it, followed by ‘Plot’.

If you want more control about what to include in a plot and what not, you can use display clusters. (See
‘Clustering Displays’, above, for details on clusters.) A common scenario is to plot a one-dimensional
array together with the current index position. This is done in three steps:

• Display the array and the index, using ‘Display ()’.

• Cluster both displays: select them and choose ‘Undisp→Cluster ()’.

• Plot the cluster by pressing ‘Plot’.

Scalars that are displayed together with arrays can be displayed either as vertical lines or horizontal lines.
By default, scalars are plotted as horizontal lines. However, if a scalar is a valid index for an array that was
previously plotted, it is shown as a vertical line. You can change this initial alignment by selecting the
scalar display, followed by ‘Rotate ()’.

Plotting Display Histories
At each program stop,DDD records the values of all displayed variables. Thesedisplay historiescan be
plotted, too. The menu item ‘Plot→Plot history of ()’ creates a plot that shows all previously recorded val-
ues of the selected display.

DDD 3.1 1998−12−01 34

() ()

Printing Plots
If you want to print the plot, select ‘File→Print Plot ’. This pops up theDDD printing dialog, set up for
printing plots. Just as when printing graphs, you have the choice between printing to a printer or a file and
setting up appropriate options.

The actual printing is also performed by Gnuplot, using the appropriate driver. Please note the following
caveats related to printing:

• CreatingFIG files requires an appropriate driver built into Gnuplot. Your Gnuplot program may not con-
tain such a driver. In this case, you will have to recompile Gnuplot, including the line ‘#define FIG’ in
the Gnuplot ‘term.h’ file.

• The ‘Portrait ’ option generates anEPS file useful for inclusion in other documents. The ‘Landscape’
option makesDDD print the plot in the size specified in the ‘Paper Size’ option; this is useful for print-
ing on a printer. In ‘Portrait ’ mode, the ‘Paper Size’ option is ignored.

• The PostScript and X11 drivers each have their own set of colors, such that the printed colors may differ
from the displayed colors.

• The ‘Selected Only’ option is set by default, such that only the currently selected plot is printed. (If you
select multiple plots to be printed, the respective outputs will all be concatenated, which may not be what
you desire.)

Entering Plotting Commands
Via ‘File→Command’, you can enter Gnuplot commands directly. Each command entered at the ‘gnu-
plot>’ prompt is passed to Gnuplot, followed by a Gnuplot ‘replot’ command to update the view. This is
useful for advanced Gnuplot tasks.

Here’s a simple example. The Gnuplot command ‘set xrange [xmin:xmax]’ sets the horizontal range that
will be displayed toxmin...xmax. To plot only the elements 10 to 20, enter:

gnuplot>set xrange [10:20]

After each command entered, DDD adds a ‘replot’ command, such that the plot is updated automatically.

Here’s a more complex example. The following sequence of Gnuplot commands saves the plot inLATEX
format:

gnuplot>set output "plot.tex" # Set the output filename
gnuplot>set term latex # Set the output format
gnuplot>set term x11 # Show original picture again

Due to the implicit ‘replot’ command, the output is automatically written to ‘plot.tex’ after the ‘set term
latex’ command.

The dialog keeps track of the commands entered; use the arrow keys to restore previous commands. Gnu-
plot error messages (if any) are also shown in the history area.

The interaction betweenDDD and Gnuplot is logged in the file ‘$HOME/.ddd/log’. The DDD ‘−−trace’
option logs this interaction on standard output.

Exporting Plot Data
If you want some external program to process the plot data (a stand-alone Gnuplot program or thexmgr
program, for instance), you can save the plot data in a file, using ‘File→Save Data As’. This pops up a
dialog that lets you choose a data file to save the plotted data in.

The generated file starts with a few comment lines. The actual data follows in X/Y or X/Y/Z format. It is
the same file as processed by Gnuplot.

Animating Plots
If you want to see how your data evolves in time, you can set a breakpoint whose command sequence ends
in a ‘cont’ command. Each time this “continue” breakpoint is reached, the program stops andDDD updates

DDD 3.1 1998−12−01 35

() ()

the displayed values, including the plots. Then,DDD executes the breakpoint command sequence, resum-
ing execution.

This way, you can set a “continue” breakpoint at some decisive point within an array-processing algorithm
and haveDDD display the progress graphically. When your program has topped for good, you can use
‘Undo’ and ‘Redo’ to redisplay and examine previous program states.

MACHINE-LEVEL DEBUGGING
Note: Machine-level support is available withGDB only.

Sometimes, it is desirable to examine a program not only at the source level, but also at the machine level.
DDD provides special machine code and register windows for this task.

Examining Machine Code
To enable machine-level support, select ‘Source→Display Machine Code’. With machine code enabled,
an additionalmachine code windowshows up, displaying the machine code of the current function. By
moving the sash at the right of the separating line between source and machine code, you can resize the
source and machine code windows.

Showing Machine Code

Assembler instructions

Step one instruction

The machine code window works very much like the source window. You can set, clear, and change break-
points by selecting the address and pressing a ‘Break at ()’ or ‘ Clear at ()’ button; the usual popup menus
are also available. Breakpoints and the current execution position are displayed simultaneously in both
source and machine code.

The ‘Lookup ()’ button can be used to look up the machine code for a specific function—or the function
for a specific address. Just click on the location in one window and press ‘Lookup ()’ to see the corre-
sponding code in the other window.

The ‘maxDisassemble’ resource controls how much is to be disassembled. If ‘maxDisassemble’ is set to
256 (default) and the current function is larger than 256 bytes,DDD only disassembles the first 256 bytes
below the current location. You can set the ‘maxDisassemble’ resource to a larger value if you prefer to
have a larger machine code view.

If source code is not available, only the machine code window is updated.

Execution
All execution facilities available in the source code window are available in the machine code window as
well. Two special facilities are convenient for machine-level debugging:

DDD 3.1 1998−12−01 36

() ()

To execute just one machine instruction, click on the ‘Stepi’ button.

To continue to the next instruction in the current function, click on the ‘Nexti’ button. This is similar to
‘Stepi’, but any subroutine calls are executed without stopping.

Registers
DDD provides aregister windowshowing the machine register values after each program stop. To enable
the register window, select ‘Status→Registers’.

By selecting one of the registers, its name is copied to the argument field. You can use it as value for ‘Dis-
play ()’, for instance, to have its value displayed in the data window.

Displaying Register Values

Select register

is copied to ()

The register name

Examining Memory
Using GDB or DBX, you can examine memory in any of sev eral formats, independently of your program’s
data types. The item ‘Data→Examine Memory’ pops up a panel where you can choose the format to be
shown.

You can enter

• a repeat count, a decimal integer that specifies how much memory (counting by units) to display

• adisplay format—one of

octal Print as integer in octal

hex Regard the bits of the value as an integer, and print the integer in hexadecimal.

decimal Print as integer in signed decimal.

unsigned Print as integer in unsigned decimal.

binary Print as integer in binary.

float Regard the bits of the value as a floating point number and print using typical floating point
syntax.

address Print as an address, both absolute in hexadecimal and as an offset from the nearest preceding
symbol.

DDD 3.1 1998−12−01 37

() ()

instruction
Print as machine instructions. Theunit sizeis ignored for this display format.

char Regard as an integer and print it as a character constant.

string Print as null-terminated string. Theunit sizeis ignored for this display format.

• aunit size—one of

bytes Bytes.

halfwords Halfwords (two bytes).

words Words (four bytes).

giants Giant words (eight bytes).

• anaddress—the starting display address. The expression need not have a pointer value (though it may);
it is always interpreted as an integer address of a byte of memory.

There are two ways to examine the values:

• You can dump the memory in the debugger console (using ‘Print ’). If you repeat the resulting ‘x’ com-
mand by pressingRETURN, the following area of memory is shown.

• You can also display the memory dump in the data window (using ‘Display’). If you choose to display
the values, the values will be updated automatically each time the program stop.

Examining Memory

Click here to print...

... in the GDB console

Enter address here

Memory Dump
as Status Display

EDITING SOURCE CODE
In DDD itself, you cannot change the source file currently displayed. Instead,DDD allows you to invoke a
text editor. To inv oke a text editor for the current source file, select the ‘Edit ’ button or ‘Source→Edit
Source’.

By default,DDD tries a number of common editors. You can customizeDDD to use your favourite editor
via ‘Edit→Preferences→Helpers→Edit Sources’.

DDD 3.1 1998−12−01 38

() ()

After the editor has exited, the source code shown is automatically updated.

If you haveDDD and an editor running in parallel, you can also update the source code manually via
‘Source→Reload Source’. This reloads the source code shown from the source file. SinceDDD automati-
cally reloads the source code if the debugged program has been recompiled, this should seldom be neces-
sary.

ENTERING COMMANDS
In thedebugger console, you can interact with the command interface of the inferior debugger. Enter com-
mands at thedebugger prompt—that is, ‘(gdb)’ for GDB, ‘(dbx)’ for DBX, ‘>’ for XDB, ‘>’ and
‘ thread[depth]’ for JDB, or ‘(Pydb)’ for PYDB, or ‘DB<>’ for Perl. You can use arbitrary debugger com-
mands; use theRETURN key to enter them.

The Debugger Console

Prompt

Your Command

You canrepeatprevious and next commands by pressing the ‘Up’ and ‘Down’ arrow keys, respectively. If
you enter an empty line, the last command is repeated as well. ‘Commands→Command History’ shows
the command history.

Command Apply Selected CommandSearch String

Position in History

Searching with Ctrl+B in the Command History

You cansearchfor previous commands by pressingCtrl+B . This invokesincremental search mode,where
you can enter a string to be searched in previous commands. PressCtrl+B again to repeat the search, or
Ctrl+F to search in the reverse direction. To return to normal mode, pressESC, or use any cursor

DDD 3.1 1998−12−01 39

() ()

command.

Using GDB and Perl, you can alsocompletecommands and arguments by pressing theTAB key; pressing
theTAB key multiple times shows one possible expansion after the other.

CUSTOMIZING DDD
You can set up your personalDDD preferences by using the ‘Edit→Preferences’ menu from the menu bar.
These preferences affect your runningDDD process only, unless you save these preferences for a laterDDD
invocation. Frequently used preferences can also be found in the individual menus.

Frequently Used Preferences
If you want to run your debugged process in a separate terminal emulator window, set ‘Program→Run in
Execution Window’. This is useful for programs that have special terminal requirements not provided by
the debugger window, as raw keyboard processing or terminal control sequences.

By default,DDD finds only complete words. This is convenient for clicking on an identifier in the source
text and search for exactly this identifier. If you want to find all occurrences, including word parts, unset
‘Source→Find Words Only’.

By default,DDD find is case-sensitive. This is convenient for case-sensitive programming languages. If
you want to find all occurrences, regardless of case, unset ‘Source→Find Case Sensitive’.

If you wish to display machine code of selected functions, set ‘Source→Display Machine Code’. This
makesDDD run a little slower, so it is disabled by default.

Through ‘Edit→Preferences’, you can set up moreDDD preferences, which are discussed here.

General Preferences
By default, when you move the pointer over a button,DDD gives a hint on the button’s meaning in a small
window. This feature is known asbutton tips(also known astool tipsor balloon help). Experienced users
may find these hints disturbing; this is why you can disable them by unsetting the ‘Automatic display of
button hints as popup tips’ option.

General Preferences

The button hints are also displayed in the status line. Disabling hints in status line (by unsetting the ‘Auto-
matic display of button hints in the status line’ option) and disabling button tips as well makesDDD run
slightly faster.

By default, when you move the pointer over a variable in the source code,DDD displays the variable value
in a small window. Users may find thesevalue tipsdisturbing; this is why you can disable them by unset-
ting the ‘Automatic display of variable values as popup tips’ option.

DDD 3.1 1998−12−01 40

() ()

The variable values are also displayed in the status line. Disabling variable values in status line (by unset-
ting the ‘Automatic display of variable values in the status line’ option) and disabling value tips as well
will makeDDD run slightly faster.

If you want to useTAB key completion in all text windows, set the ‘TAB key completes in all windows’
option. This is useful if you have pointer-driven keyboard focus (see below) and no special usage for the
TAB key. Otherwise, theTAB key completes in the debugger console only.

If you frequently switch betweenDDD and other multi-window applications, you may like to set the
‘ Iconify all windows at once’ option. This way, allDDD windows are iconified and deiconified as a group.

If you want to keepDDD off your desktop during a longer computation, you may like to set the ‘Uniconify
when ready’ option. This way, you can iconifyDDD while it is busy on a command (e.g. running a pro-
gram); DDD will automatically pop up again after becoming ready (e.g. after the debugged program has
stopped at a breakpoint).

If you are bothered by X warnings, you can suppress them by setting the ‘Suppress X warnings’ option.

If you want to be warned about multipleDDD invocations sharing the same preferences and history files,
enable ‘Warn if Multiple DDD Instances are Running’.

When debugging a modal X application,DDD may interrupt it while it has grabbed the pointer, making fur-
ther interaction impossible. If the ‘Continue automatically when mouse pointer is frozen’ option is set,
DDD will check after each interaction whether the pointer is grabbed. If this is so,DDD will continue the
debugged program such that you can continue to use your display.

The Undo Bufferis the area whereDDD stores old program states and commands in order to undo opera-
tions. When you are displaying lots of data, the undo buffer can quickly grow. In ‘Undo Buffer Size’, you
can limit the size of the undo buffer. Setting this limit to0 disables undo altogether. A negative value
means to place no limit.

The ‘Reset’ button restores the most recently saved preferences.

Source Preferences
In the source text, the current execution position and breakpoints are indicated by symbols (“glyphs”). As
an alternative,DDD can also indicate these positions using text characters. If you wish to disable glyphs,
set the ‘As Text Characters’ option. This also makesDDD run slightly faster, especially when scrolling.

Source Preferences

DDD can locate the tool buttons in the command tool (‘Command Tool’) or in a command tool barabove
the program source (‘Source Window’). Pick your choice.

DDD 3.1 1998−12−01 41

() ()

SomeDBX and XDB variants do not properly handle paths in source file specifications. If you want the
inferior debugger to refer to source locations by source base names only, unset the ‘Refer to sources by
full path name’ option.

By default,DDD finds only complete words. This is convenient for clicking on an identifier in the source
text and search for exactly this identifier. If you want to find all occurrences, including word parts, unset
‘Find words only’.

By default,DDD find is case-sensitive. This is convenient for case-sensitive programming languages. If
you want to find all occurrences, regardless of case, unset ‘Find case sensitive’.

By default,DDD caches source files in memory. This is convenient for remote debugging, since remote file
access may be slow. If you want to reduce memory usage, unset the ‘Cache source files’ option.

By default,DDD caches machine code in memory. This is bad for memory usage, but convenient for speed,
since disassembling a function each time it is reached may take time. If you want to reduce memory usage,
unset the ‘Cache machine code’ option.

If your source code uses a tab width different from8 (the default), you can set an alternate width using the
‘Tab width ’ slider.

You can instructDDD to indent the source code, leaving more room for breakpoints and execution glyphs.
This is done using the ‘Source indentation’ slider. The default value is0 for no indentation at all. If the
source indentation is5 or higher,DDD will also show line numbers.

Finally, you can instructDDD to indent the machine code, leaving room for breakpoints and execution
glyphs. This is done using the ‘Machine code indentation’ slider. The default value is4.

The ‘Reset’ button restores the most recently saved preferences.

Data Preferences
You can control whether edge hints and edge annotations are displayed. Set or unset the ‘Show Edge
Hints’ and ‘Show Edge Annotations’ option, respectively.

By default,DDD disables the title of a dependent display if the name can be deduced from edge annota-
tions. If you want all dependent displays to have a title, set ‘Show Titles of Dependent Displays’.

Data Preferences

To enable a more compact layout, you can set the ‘Compact Layout’ option. This realizes an alternate lay-
out algorithm, where successors are placed next to their parents. This algorithm is suitable for homoge-
neous data structures only.

To enforce layout, you can set the ‘Re-layout graph automatically’ option. If automatic layout is enabled,

DDD 3.1 1998−12−01 42

() ()

the graph is layouted after each change.

If you wantDDD to detect aliases, set the ‘Detect Aliases’ option. Note that alias detection makesDDD run
slower. See ‘Examining Shared Data Structures’, above, for details on alias detection.

By default, DDD displays two-dimensional arrays as tables, aligning the array elements in rows and
columns. If you prefer viewing two-dimensional arrays as nested one-dimensional arrays, you can disable
the ‘Display two-dimensional arrays as tables’ option.

To facilitate alignment of data displays, you can set the ‘Auto-align displays’ option. If auto-alignment is
enabled, displays can be moved on grid positions only.

By default, the stacked data window is automatically closed when you delete the last data display. You can
keep the data window open by unsetting ‘Close data window when deleting last display’.

In the ‘Grid Size’ scale, you can change the spacing of grid points. A spacing of 0 disables the grid.
Default is 16.

The ‘Reset’ button restores the most recently saved preferences.

Startup Preferences
If you change one of the resources in this panel, the change will not take effect immediately. Instead, you
can

• sav e options (using ‘Edit→Save Options’) to make the change effective for futureDDD sessions,

• or restartDDD (using ‘File→Restart DDD’) to make it effective for the restartedDDD session.

After having made changes in the panel,DDD will automatically offer you to restart itself, such that you
can see the changes taking effect. Note that even after restarting, you still must save options to make the
changes permanent.

Startup Preferences

By default,DDD stacks commands, source, and data in one single top-level window. To hav e separate top-
level windows for source, data, and debugger console, set the ‘Window Layout ’ option to ‘Separate Win-
dows’. See also the ‘−−attach-windows’ and ‘−−separate-windows’ options, below.

TheCtrl+C key can be bound to different actions, each in accordance with a specific style guide.

Copy This setting bindsCtrl+C to the Copy operation, as specified by theKDE style guide. In this set-
ting, useESC to interrupt the debuggee.

DDD 3.1 1998−12−01 43

() ()

Interrupt
This (default) setting bindsCtrl+C to the Interrupt operation, as used in severalUNIX command-
line programs. In this setting, useCtrl+Ins to copy text to the clipboard.

TheCtrl+A key can be bound to different actions, too.

Select All
This (default) setting bindsCtrl+A to the Select All operation, as specified by theKDE style
guide. In this setting, useHOME tp move the cursor to the beginning of a line.

Beginning of Line
This setting bindsCtrl+A to the Beginning of Line operation, as used in severalUNIX text-editing
programs. In this setting, useCtrl+Shift+A to select all text.

TheDDD tool bar buttons can appear in a variety of styles:

Images This lets each tool bar button show an image illustrating the action.

Captions
This shows the action name below the image.

The default is to have images as well as captions, but you can choose to have only images (saving space) or
only captions.

Tool Bar Appearance

No captions, no images

Captions only, non-flat

Images only, flat

Captions, images, flat, color

If you choose to have neither images nor captions, tool bar buttons are labeled like other buttons, as inDDD
2.x. Note that this implies that in the stacked window configuration, the common tool bar cannot be dis-
played; it is replaced by two separate tool bars, as inDDD 2.x.

If you enable ‘Flat’ buttons (default), the border of tool bar buttons will appear only if the mouse pointer is
over them. This latest-and-greatestGUI invention can be disabled, such that the button border is always
shown.

If you enable ‘Color’ buttons, tool bar images will be colored when entered. IfDDD was built using Motif
2.0 and later, you can also choose a third setting, where buttons appear in color all the time.

By default, theDDD tool bars are located on top of the window. If you prefer the tool bar being located at
the bottom, as inDDD 2.x and earlier, enable the ‘Bottom’ toggle. The bottom setting is only supported for
separate tool bars—that is, you must either choose separate windows or configure the tool bar to have nei-
ther images nor captions.

By default,DDD directs keyboard input to the item your mouse pointer points at. If you prefer a click-to-

DDD 3.1 1998−12−01 44

() ()

type keyboard focus (that is, click on an item to make it accept keyboard input), set the ‘Keyboard Focus’
option on ‘Click to Type’.

By default,DDD uses Motif scroll bars to scroll the data window. Many people find this inconvenient, since
you can scroll in the horizontal or vertical direction only. As an alternative,DDD provides a panner (a kind
of two-dimensional scroll bar). This is much more comfortable, but may be incompatible with your Motif
toolkit. To set upDDD such that it uses panners by default, set the ‘Data Scrolling’ option to ‘Panner’.
See also the ‘−−panned-graph-editor’ and ‘−−scrolled-graph-editor’ options, below.

By default,DDD determines the inferior debugger automatically. To change this default, unset ‘Determine
Automatically ’ and set the ‘Debugger Type’ option to a specific debugger. See also the ‘−−gdb’,
‘−−dbx’, ‘ −−xdb’, ‘ −−jdb ’, ‘ −−pydb’, and ‘−−perl’ options, below.

If you want theDDD splash screen shown upon startup, enable ‘DDD Splash Screen’.

If you want theDDD tips of the day displayed upon startup, enable ‘Tip of the Day’.

The ‘Reset’ button restores the most recently saved preferences.

Fonts
You can configure the basicDDD fonts at run-time. Each font is specified using two members:

• The font family is an X font specifications, where the initial specification after ‘Family’. Thus, a pair
‘ family−weight’ usually suffices.

• Thefont sizeis given as (resolution-independent) 1⁄10 points.

The ‘Browse’ button opens a font selection program, where you can select fonts and attributes interactively.
Clicking ‘quit ’ or ‘ select’ in the font selector causes all non-default values to be transferred to theDDD
font preferences panel.

Setting Font Preferences

The following fonts can be set using the preferences panel:

Default Font
The defaultDDD font to use for labels, menus, and buttons. Default is ‘helvetica-bold’.

Variable Width
The variable widthDDD font to use for help texts and messages. Default is ‘helvetica-medium’.

Fixed Width
The fixed widthDDD font to use for source code, the debugger console, text fields, data displays,
and the execution window. Default is ‘lucidatypewriter-medium ’.

DDD 3.1 1998−12−01 45

() ()

Just like startup preferences, changes in this panel will not take effect immediately. Instead, you can

• sav e options (using ‘Edit→Save Options’) to make the change effective for futureDDD sessions,

• or restartDDD (using ‘File→Restart DDD’) to make it effective for the restartedDDD session.

After having made changes in the panel,DDD will automatically offer you to restart itself, such that you
can see the changes taking effect. Note that even after restarting, you still must save options to make the
changes permanent.

The ‘Reset’ button restores the most recently saved preferences.

Helpers
DDD relies on some external applications (calledhelpers) for specific tasks. Through the ‘Helpers’ panel,
you can choose and customize these applications.

In ‘Edit Sources’, you can select an X editor to be invoked via theDDD ‘Edit ’ button. ‘@FILE@’ is
replaced by the current file name; ‘@LINE@’ is replaced by the current line. Typical values include ‘xedit
@FILE@’ or ‘ gnuclient +@LINE@ @FILE@’. See also the ‘editCommand’ resource, below.

In ‘Get Core File’, you can enter a command to get a core file from a running process. ‘@FILE@’ is
replaced by the name of the target core file; ‘@PID@’ is replaced by the process ID. A typical value is
‘gcore -o @FILE@ @PID@’. If you don’t hav e an appropriate command, leave this value empty:DDD
will then kill the debuggee in order to get a core file. See also the ‘getCoreCommand’ resource, below.

‘List Processes’ is a command to get a list of processes, like ‘ps’. The output of this command is shown in
the ‘File→Attach to Process’ dialog. See also the ‘psCommand’ resource, below.

Setting Helpers Preferences

In ‘Execution Window’, you can enter a command to start a terminal emulator. To this command,DDD
appends Bourne shell commands to be executed within the execution window. A simple value is ‘xterm −e
/bin/sh −c’. See also the ‘termCommand’ resource, below.

‘Uncompress’ is the uncompression command used byDDD to uncompress theDDD license and manual
pages. The uncompression command should be invoked such that it reads from standard input and writes to
standard output. A typical value is ‘gunzip −c’. See also the ‘uncompressCommand’ resource, below.

‘Web Bro wser’ is the command to invoke aWWW browser for theDDD WWW page. ‘@URL@’ is
replaced by theURL (web page) to be shown. A simple value is ‘netscape @URL@’. See also the ‘www-
Command’ resource, below.

‘Plot’ is the name of a Gnuplot program to invoke.DDD can run Gnuplot in two ways:

DDD 3.1 1998−12−01 46

() ()

• DDD can use anExternal Plot Window, i.e. the plot window as supplied by Gnuplot.DDD “swallows”
the Gnuplot output window into its own user interface. Unfortunately, some window managers, notably
MWM, hav e trouble with swallowing techniques.

• DDD can supply aBuiltin Plot Window instead. This works with all window managers, but plots are
less customizable (Gnuplot resources are not understood).

Pick your choice from the menu. See also the ‘plotCommand’ and ‘plotTermType’ resources, below.

Saving Options
You can save the current option settings by selecting ‘Edit→Save Options’. Options are saved in a file
named ‘.ddd/init ’ in your home directory. If a sessionsessionis active, options will be saved in
‘$HOME/.ddd/sessions/session/init ’ instead.

Other Customizations
Other personalDDD resources can also be set in your ‘.ddd/init ’ file. See the ‘RESOURCES’ section,
below.

The inferior debugger can be customized via ‘Edit→Settings’. See the ‘DEBUGGER SETTINGS’ sec-
tion, below.

DEBUGGER SETTINGS
For most inferior debuggers, you can change its settings using ‘Edit→Settings’. Using the settings editor,
you can determine whether C++ names are to be demangled, how many array elements are to print, and so
on.

GDB Settings Panel (Excerpt)

The capabilities of the settings editor depend on the capabilities of your inferior debugger. Clicking on ‘?’
gives an an explanation on the specific item; theGDB documentation gives more details.

Use ‘Edit→Undo’ to undo changes. Clicking on ‘Reset’ restores the most recently saved settings.

Some debugger settings are insensitive and cannot be changed, because doing so would endangerDDD
operation. See the ‘gdbInitCommands’ and ‘dbxInitCommands’ resources for details.

All debugger settings (except source and object paths) are saved withDDD options.

USER-DEFINED ACTIONS
Defining Buttons

To facilitate interaction, you can add own command buttons toDDD. These buttons can be added below the
debugger console (‘Console Buttons’), the source window (‘Source Buttons’), or the data window (‘Data

DDD 3.1 1998−12−01 47

() ()

Buttons’).

To define individual buttons, use theButton Editor, inv oked via ‘Commands→Edit Buttons’. The button
editor displays a text, where each line contains the command for exactly one button. Clicking on ‘OK ’ cre-
ates the appropriate buttons from the text. If the text is empty (the default), no button is created.

As a simple example, assume you want to create a ‘print i ’ button. Invoke ‘Commands→Edit Buttons’
and enter a line saying ‘print i ’ in the button editor. Then click on ‘OK ’. A button named ‘Print i ’ will
now appear below the debugger console—try it! To remove the button, reopen the button editor, clear the
‘print i ’ line and press ‘OK ’ again.

If a button command contains ‘()’, the string ‘()’ will automatically be replaced by the contents of the argu-
ment field. For instance, a button named ‘return () ’ will execute theGDB ‘ return ’ command with the cur-
rent content of the argument field as argument.

By default,DDD disables buttons whose commands are not supported by the inferior debugger. To enable
such buttons, unset the ‘Enable supported buttons only’ toggle in the button editor.

Defining individual buttons

... to create these buttons.
Enter text here...

DDD also allows you to specify control sequences and special labels for user-defined buttons. See the
examples in ‘User-defined Buttons’ in the ‘RESOURCES’ section, below.

Defining Simple Commands using GDB
Aside from breakpoint commands (see ‘Breakpoint commands’, above),DDD also allows you to store
sequences of commands as a user-definedGDB command. Auser-defined commandis a sequence ofGDB
commands to which you assign a new name as a command. UsingDDD, this is done via theCommand Edi-
tor, inv oked via ‘Commands→Define Command’.

A GDB command is created in five steps:

• Enter the name of the command in the ‘Command’ field. Use the drop-down list on the right to select
from already defined commands.

• Click on ‘Record’ to begin the recording of the command sequence.

DDD 3.1 1998−12−01 48

() ()

• Now interact withDDD. While recording,DDD does not execute commands, but simply records them to
be executed when the breakpoint is hit. The recorded debugger commands are shown in the debugger
console.

• To stop the recording, click on ‘End’ or enter ‘end’ at the GDB prompt. Tocancelthe recording, click
on ‘Interrupt ’ or pressESC.

• Click on ‘Edit >>’ to edit the recorded commands. When done with editing, click on ‘Edit <<’ to close
the commands editor.

After the command is defined, you can enter it at theGDB prompt. You may also click on ‘Apply ’ to apply
the given user-defined command.

For convenience, you can assign a button to the defined command. Enabling one of the ‘Button’ locations
will add a button with the given command to the specified location. If you want to edit the button, select
‘Commands→Edit Buttons’; see also ‘Defining Buttons’, above.

Command Name Command Definition

If enabled, use argument field symbolically

Defining GDB Commands

Start Recording Assign Button

When user-definedGDB commands are executed, the commands of the definition are not printed. An error
in any command stops execution of the user-defined command.

If used interactively, commands that would ask for confirmation proceed without asking when used inside a
user-defined command. ManyGDB commands that normally print messages to say what they are doing
omit the messages when used in a user-defined command.

To sav e all command definitions, use ‘Edit→Save Options’.

Defining Argument Commands using GDB
If you want to pass arguments to user-defined commands, you can enable the ‘()’ toggle button in the Com-
mand Editor. Enabling ‘()’ has two effects:

• While recording commands, all references to the argument field are takensymbolicallyinstead of liter-
ally. The argument field value is frozen to ‘$arg0’, which is howGDB denotes the argument of a user-
defined command. WhenGDB executes the command, it will replace ‘$arg0’ by the current command
argument.

• When assigning a button to the command, the command will be suffixed by the current contents of the
argument field.

DDD 3.1 1998−12−01 49

() ()

While defining a command, you can toggle the ‘()’ button as you wish to switch between using the argu-
ment field symbolically and literally.

As an example, let us define a command ‘contuntil ’ that will set a breakpoint in the given argument and
continue execution.

• Enter ‘contuntil ’ in the ‘Definition’ field.

• Enable the ‘()’ toggle button.

• Now click on ‘Record’ to start recording. Note that the contents of the argument field change to
‘$arg0’.

• Click on ‘Break at ()’ to create a breakpoint. Note that the recorded breakpoint command refers to
‘$arg0’.

• Click on ‘Cont’ to continue execution.

• Click on ‘End’ to end recording. Note that the argument field is restored to its original value.

• Finally, click on one of the ‘Button’ locations. This creates a ‘Contuntil () ’ button where ‘()’ will be
replaced by the current contents of the argument field—and thus passed to the ‘contuntil ’ command.

• You can now either use the ‘Contuntil () ’ button or enter a ‘contuntil ’ command at theGDB prompt. (If
you plan to use the command frequently, you may wish to define a ‘cu’ command, which again calls
‘contuntil ’ with its argument. This is a nice exercise.)

There is a little drawback with argument commands: a user-defined command inGDB has no means to
access the argument list as a whole; only the first argument (up to whitespace) is processed. This may
change in futureGDB releases.

Defining Commands using Other Debuggers
If your inferior debugger allows you to define own command sequences, you can also use these user-
defined commands withinDDD; just enter them at the debugger prompt.

However, you may encounter some problems:

• In contrast to the well-documented commands of the inferior debugger,DDD does not know what a user-
defined command does. This may lead to inconsistencies betweenDDD and the inferior debugger. For
instance, if your the user-defined command ‘bp’ sets a breakpoint,DDD may not display it immediately,
becauseDDD does not know that ‘bp’ changes the breakpoint state.

• You cannot useDDD graph commands within user-defined commands. This is only natural, because
user-defined commands are interpreted by the inferior debugger, which does not know aboutDDD com-
mands.

As a solution,DDD provides a simple facility calledauto-commands. If DDD receives any output from the
inferior debugger in the form ‘prefix command’, it will interpret commandas if it had been entered at the
debugger prompt.prefix is a user-defined string, for example ‘ddd:

Suppose you want to define a command ‘gd’ that serves as abbreviation for ‘graph display’. All the com-
mandgd has to do is to issue a string

ddd: graph display argument

whereargumentis the argument given to ‘gd’. Using GDB, this can be achieved using theechocommand.
In your$HOME/.gdbinit file, insert the lines

define gd
echo ddd: graph display $arg0\n

end

To complete the setting, you must also set the ‘autoCommandPrefix’ resource to the ‘ddd: ’ prefix you
gave in your command. In ‘$HOME/.ddd/init ’, write:

DDD 3.1 1998−12−01 50

() ()

Ddd*autoCommandPrefix: ddd:\

(Be sure to leave a space after the trailing backslash.)

Entering ‘gd foo’ will now hav e the same effect as entering ‘graph display foo’ at the debugger prompt.

Please note: In your commands, you should choose some other prefix than ‘ddd: ’. This is because auto-
commands raise a security problem, since arbitrary commands can be executed. Just imagine some mali-
cious program issuing a string like ‘prefix shell rm -fr $HOME ’ when being debugged! As a conse-
quence, be sure to choose your ownprefix; it must be at least three characters long.

QUITTING DDD
To exit DDD, select ‘File→Exit ’. You may also type the ‘quit ’ command at the debugger prompt or press
Ctrl+Q . GDB andXDB also accept the ‘q’ command or an end-of-file character (usuallyCtrl+D). Closing
the lastDDD window will also exitDDD.

An interrupt (ESC or Interrupt) does not exit fromDDD, but rather terminates the action of any debugger
command that is in progress and returns to the debugger command level. It is safe to type the interrupt
character at any time because the debugger does not allow it to take effect until a time when it is safe.

In case an ordinary interrupt does not succeed, you can also use an abort (Ctrl+\ or Abort), which sends a
QUIT signal to the inferior debugger. Use this in emergencies only; the inferior debugger may be left
inconsistent or even exit after aQUIT signal.

As a last resort—ifDDD hangs, for example—, you may also interruptDDD itself using an interrupt signal
(SIGINT). This can be done by typing the interrupt character (usuallyCtrl+C) in the shellDDD was started
from, or by using theUNIX ‘kill ’ command. An interrupt signal interrupts anyDDD action; the inferior
debugger is interrupted as well. Since this interrupt signal can result in internal inconsistencies, use this as
a last resort in emergencies only; save your work as soon as possible and restartDDD.

PERSISTENT SESSIONS
Note: Persistent sessions are supported withGDB running on the local machine only. Support for other
DBX, XDB, andJDB is partially implemented; your mileage may vary.

If you want to interrupt your currentDDD session, you can save its entireDDD state in a file and restore it
later.

Saving Sessions
To sav e a session, select ‘File→Save Session As’. You will be asked for

• a symbolic session namesessionand

• whether to include a core dump of the debugged program. Including a core dump is necessary for restor-
ing memory contents and the current execution position.

After clicking on ‘Save’, the session is saved in ‘$HOME/.ddd/sessions/session’.

After saving the current state as a session, the session becomesactive. This means thatDDD state will be
saved as session defaults:

• User options will be saved in ‘$HOME/.ddd/sessions/session/init ’ instead of ‘$HOME/.ddd/init ’; see
‘Saving Options’, below, for details.

• The DDD command history will be saved in ‘$HOME/.ddd/sessions/session/history’ instead of
‘$HOME/.ddd/history ’; see ‘Entering Commands’, above, for details.

To make the current session inactive, open thedefault sessionnamed ‘[None]’; see below for details on
opening sessions.

If your program is running, or if you have opened a core file,DDD can include a core file in the session
such that the debuggee data will be restored when re-opening it. To get a core file,DDD typically must kill
the debuggee. This means that you cannot resume program execution after saving a session. Depending on
your architecture, other options for getting a core file may also be available.

DDD 3.1 1998−12−01 51

() ()

Program Data
Set to save

Saving a Session

Default session

Saved sessions

Click to save

If a core file isnot to be included in the session,DDD data displays are saved asdeferred; that is, they will
be restored as soon as program execution reaches the scope in which they were created.

Opening Sessions
To resume a previously saved session, select ‘File→Open Session’ and choose a session name from the
list. After clicking on ‘Open’, the entireDDD state will be restored from the given session.

The session named ‘[None]’ is the default sessionwhich is active when startingDDD. To sav e options for
default sessions, open the default session and save options; see ‘Saving Options’ below for details.

Click to open

Saved sessions

Opening a Session

Default session

If a the restored session includes a core dump, the program being debugged will be in the same state at the
time the session was saved; in particular, you can examine the program data. However, you will not be able
to resume program execution since the environment (open files, resources, etc.) will be lost. However, you
can restart the program, re-using the restored breakpoints and data displays.

Opening sessions also restores command definitions, buttons, display shortcuts and the source tab width.
This way, you can maintain a different set of definitions for each session.

DDD 3.1 1998−12−01 52

() ()

Deleting Sessions
To delete sessions that are no longer needed, select ‘File→Open Session’ or ‘ File→Save Session’. Select
the sessions you want to delete and click on ‘Delete’.

The default session cannot be deleted.

Starting DDD with a Session
To start-upDDD with a given session namedsessioninstead of the default session, use

ddd −−sessionsession

There is also a shortcut that opens the sessionsessionand also invokes the inferior debugger on an
executable namedsession(in casesessioncannot be opened):

ddd =session

There is no need to give further command-line options when restarting a session, as they will be overridden
by the options saved in the session.

INTEGRATING DDD
You can runDDD as an inferior debugger in other debugger front-ends, combining their special abilities
with those ofDDD.

General Information
To hav eDDD run as an inferior debugger in other front-ends, set up your debugger front-end such that ‘ddd
−−tty ’ is inv oked instead of the inferior debugger. WhenDDD is invoked using the ‘−−tty ’ option, it
enables itsTTYinterface, taking additional debugger commands from standard input and forwarding debug-
ger output to standard output, just as if the inferior debugger had been invoked directly. All remainingDDD
functionality stays unchanged.

In case your debugger front-end uses theGDB ‘−fullname’ option to haveGDB report source code posi-
tions, the ‘−−tty ’ option is not required.DDD recognizes the ‘−fullname’ option, finds that it has been
invoked from a debugger front-end and automatically enables theTTY interface.

You may also invoke ‘ddd −−tty’ directly, enteringDDD commands from yourTTY, or useDDD as the end
of a pipe, controlled by a remote program. Be aware, however, that theTTY interface does not support line
editing and command completion and thatDDD exits as soon as it detects anEOF condition on its standard
input. Also, do not try to runDDD with DDD as inferior debugger.

UsingDDD in TTY mode automatically disables someDDD windows, because it is assumed that their facili-
ties are provided by the remote program:

• If DDD is invoked with the ‘−−tty ’ option, the debugger console is initially disabled, as its facilities are
supposed to be provided by the integrating front-end.

• If DDD is invoked with the ‘−fullname’ option, the debugger console and the source window are initially
disabled, as their facilities are supposed to be provided by the integrating front-end.

In case of need, you can use the ‘View’ menu to re-enable these windows.

Using DDD with GNU Emacs
Use ‘M-x gdb’ or ‘ M-x dbx ’ to start a debugging session. At the prompt, enter ‘ddd −−tty’, followed by
‘−−dbx’ or ‘ −−gdb’, if required, and the name of the program to be debugged. Proceed as usual.

Using DDD with XEmacs
Set the variablegdb-command-nameto "ddd" , by inserting the following line in your$HOME/.emacs
file or evaluating it by pressingESC : (ESC ESCfor XEmacs 19.13 and earlier):

(setq gdb-command-name "ddd")

Use ‘M-x gdb’ or ‘ M-x gdbsrc’ to start a debugging session. Proceed as usual.

DDD 3.1 1998−12−01 53

() ()

Using DDD with XXGDB
Invokexxgdb as

xxgdb −db_name ddd −db_prompt ’(gdb) ’

USING DDD WITH LESSTIF
DDD 2.1.1 and later include a number of hacks that makeDDD run withLessTif,a free Motif clone, without
loss of functionality. Since aDDD binary may be dynamically bound and used with either an OSF/Motif or
LessTif library, theselesstif hackscan be enabled and disabled at run time.

Whether thelesstif hacksare included at run-time depends on the setting of the ‘lessTifVersion’ resource.
‘ lessTifVersion’ indicates the LessTif version against whichDDD is linked. For LessTif versionx.y, its
value isx multiplied by 1000 plusy—for instance, the value95 stands for LessTif 0.95 and the value1000
stands for LessTif 1.0. To specify the version number of the LessTif library atDDD invocation, you can
also use the option ‘−−lesstif-versionversion’.

The default value of the ‘lessTifVersion’ resource is derived from the LessTif libraryDDD was compiled
against (or1000when compiled against OSF/Motif). Hence, you normally don’t need to worry about the
value of this resource. However, if you use a dynamically linkedDDD binary with a library other than the
one DDD was compiled against, you must specify the version number of the library using this resource.
(Unfortunately,DDD cannot detect this at run-time.)

Here are a few scenarios to illustrate this scheme:

• Your DDD binary was compiled against OSF/Motif, but you use a LessTif 0.85 dynamic library instead.
InvokeDDD with ‘−−lesstif-version 85’.

• Your DDD binary was compiled against LessTif, but you use a OSF/Motif dynamic library instead.
InvokeDDD with ‘−−lesstif-version 1000’.

• Your DDD binary was compiled against LessTif 0.85, and you have upgraded to LessTif 0.90. Invoke
DDD with ‘−−lesstif-version 90’.

To find out the LessTif or OSF/Motif versionDDD was compiled against, invokeDDD with the ‘−−configu-
ration ’ option.

In theDDD source, LessTif-specific hacks are controlled by the string ‘lesstif_version’.

REMOTE DEBUGGING
It is possible to have the inferior debugger run on a remoteUNIX host. This is useful when the remote host
has a slow network connection or whenDDD is available on the local host only.

Furthermore, the inferior debugger may support debugging a program on a remote host. This is useful
when the inferior debugger is not available on the remote host—for instance, because the remote system
does not have a general purpose operating system powerful enough to run a full-featured debugger.

Using DDD with a Remote Debugger
In order to run the inferior debugger on a remote host, you need ‘remsh’ (called ‘rsh’ on BSD systems)
access on the remote host.

To run the debugger on a remote hosthostname, inv okeDDD as

ddd −−hosthostname remote-program

If your remoteusernamediffers from the local username, use

ddd −−hosthostname−−login username remote-program

or

ddd −−hostusername@hostname remote-program

DDD 3.1 1998−12−01 54

() ()

instead.

There are a fewcaveatsin remote mode:

• The remote debugger is started in your remote home directory. Hence, you must specify an absolute path
name forremote-program(or a path name relative to your remote home directory). Same applies to
remote core files. Also, be sure to specify a remote process id when debugging a running program.

• The remote debugger is started non-interactively. SomeDBX versions have trouble with this. If you
don’t get a prompt from the remote debugger, use the ‘−−rhost’ option instead of ‘−−host’. This will
invoke the remote debugger via an interactive shell on the remote host, which may lead to better results.
Note: using ‘−−rhost’, DDD invokes the inferior debugger as soon as a shell prompt appears. The first
output on the remote host ending in a space character or ‘>’ and not followed by a newline is assumed to
be a shell prompt. If necessary, adjust your shell prompt on the remote host.

• To run the remote program,DDD invokes an ‘xterm’ terminal emulator on the remote host, giving your
current ‘DISPLAY ’ environment variable as address. If the remote host cannot invoke ‘xterm’, or does
not have access to your X display, startDDD with the ‘−−no-exec-window’ option. The program
input/output will then go through theDDD debugger console.

• In remote mode, all sources are loaded from the remote host; file dialogs scan remote directories. This
may result in somewhat slower operation than normal.

• To help you find problems due to remote execution, runDDD with the ‘−−trace’ option. This prints the
shell commands issued byDDD on standard error.

• See also the ‘rshCommand’ resource, below.

Using DDD with a Remote Program
The GDB debugger allows you to run thedebugged pro gramon a remote machine (calledremote target),
while GDB runs on the local machine.

The section ‘Remote debugging’ in the GDB documentation contains all the details. Basically, the follow-
ing steps are required:

• Transfer the executable to the remote target.

• Start ‘gdbserver’ on the remote target.

• StartDDD usingGDB on the local machine, and load the same executable using the ’file’ command.

• Attach to the remote ‘gdbserver’ using the ’target remote’ command.

The local ‘.gdbinit ’ file is useful for setting up directory search paths, etc.

Of course, you can also combineDDD remote mode andGDB remote mode, runningDDD, GDB, and the
debugged program each on a different machine.

ROOT DEBUGGING
Sometimes, you may require to debug programs with root privileges, but without actually logging in as
root. This is usually done by installing the debuggersetuid root, that is, having the debugger run with root
privileges. For security reasons, you cannot installDDD as a setuid program;DDD invokes shell commands
and even shell scripts, such that all known problems of setuid shell scripts apply. Instead, you should
invokeDDD such that asetuidcopy of the inferior debugger is used.

Here is an example. Have asetuid rootcopy ofGDB installed as ‘rootgdb’. Then invoke

ddd −−debugger rootgdb

to debug programs with root privileges.

Since a program like ‘rootgdb’ grants root privileges to any inv oking user, you should give it very limited
access.

DDD 3.1 1998−12−01 55

() ()

RESOURCES
DDD understands all of the core X Toolkit resource names and classes. The following resources are spe-
cific to DDD.

Setting DDD Fonts
DDD uses the following resources to set up its fonts:

defaultFont (class Font)
The defaultDDD font to use for labels, menus, buttons, etc. The font is specified as an X font
spec, where the initial specification after ‘Family’. Default value is ‘helvetica-bold’.

To set the defaultDDD font to, say,helvetica medium, insert a line

Ddd*defaultFont: helvetica-medium

in your ‘$HOME/.ddd/init ’ file.

defaultFontSize (class FontSize)
The size of the defaultDDD font, in 1⁄10 points. This resource overrides any font size specifica-
tion in the ‘defaultFont’ resource (see above). The default value is120for a 12.0 point font.

variableWidthFont (class Font)
The variable widthDDD font to use for help texts and messages. The font is specified as an X font
spec, where the initial specification after ‘Family’. Defaults to ‘helvetica-medium-r’.

To set the variable widthDDD font family to, say,times, insert a line

Ddd*fixedWidthFont: times-medium

in your ‘$HOME/.ddd/init ’ file.

variableWidthFontSize (class FontSize)
The size of the variable widthDDD font, in 1⁄10 points. This resource overrides any font size
specification in the ‘variableWidthFont ’ resource (see above). The default value is120 for a 12.0
point font.

fixedWidthFont (class Font)
The fixed widthDDD font to use for source code, the debugger console, text fields, data displays,
and the execution window. The font is specified as an X font spec, where the initial specification
after ‘Family’. Defaults to ‘lucidatypewriter-medium ’.

To set the fixed widthDDD font family to, say,courier, insert a line

Ddd*fixedWidthFont: courier-medium

in your ‘$HOME/.ddd/init ’ file.

fixedWidthFontSize (class FontSize)
The size of the fixed widthDDD font, in 1⁄10 points. This resource overrides any font size specifi-
cation in the ‘fixedWidthFont ’ resource (see above). The default value is120 for a 12.0 point
font.

As all font size resources have the same class (and by default the same value), you can easily change the
defaultDDD font size to, say, 9.0 points by inserting a line

Ddd*FontSize: 90

in your ‘$HOME/.ddd/init ’ file.

To find out your favorite font size, try ‘−−fontsizeSIZE’. This also sets all font sizes toSIZE.

DDD 3.1 1998−12−01 56

() ()

If you want to set the fonts of specific items, see the ‘Ddd’ application defaults file for instructions.

Setting DDD Colors
These are the most important color resources used inDDD:

Ddd*foreground: black

Ddd*background: grey

Ddd*XmText.background: grey96

Ddd*XmTextField.background: grey96

Ddd*GraphEdit.background: grey96

Ddd*XmList.background: grey96

Ddd*graph_edit.nodeColor: black

Ddd*graph_edit.edgeColor: blue4

Ddd*graph_edit.selectColor: black

Ddd*graph_edit.gridColor: black

Ddd*graph_edit.frameColor: grey50

Ddd*graph_edit.outlineColor: grey50

You can copy and modify the appropriate resources to your ‘$HOME/.ddd/init ’ file. For colors within the
data display, things are slightly more complicated—see the ‘vslDefs’ resource, below.

General Preferences
The following resources determineDDD general behavior.

buttonTips (classTips)
Whether button tips are enabled (‘on’, default) or not (‘off’). Button tips are helpful for novices,
but may be distracting for experienced users.

buttonDocs (classDocs)
Whether the display of button hints in the status line is enabled (‘on’, default) or not (‘off’).

checkGrabs (classCheckGrabs)
When debugging a modal X application,DDD may interrupt it while it has grabbed the pointer,
making further interaction impossible. If this is ‘on’ (default), DDD will check after each interac-
tion whether the pointer is grabbed. If this is so,DDD will automatically continue execution of
debugged program.

checkGrabDelay (classCheckGrabDelay)
The time to wait (in ms) after a debugger command before checking for a grabbed pointer. IfDDD
sees some pointer event within this delay, the pointer cannot be grabbed and an explicit check for a
grabbed pointer is unnecessary. Default is5000, or 5 seconds.

checkOptions (classCheckOptions)
Every N seconds, whereN is the value of this resource,DDD checks whether the options file has
changed. Default is30, which means that every 30 seconds,DDD checks for the options file. Set-
ting this resource to0 disables checking for changed option files.

cutCopyPasteBindings (classBindingStyle)
Controls the key bindings for cut, copy, and paste operations.

• If this is ‘Motif ’ (default), Cut/Copy/Paste is onShift+Del/Ctrl+Ins /Shift+Ins. This is confor-
mant to the Motif style guide.

• If this is ‘KDE ’, Cut/Copy/Paste is onCtrl+X /Ctrl+C /Ctrl+V . This is conformant to theKDE
style guide. Note that this means thatCtrl+C no longer interrupts the debuggee; useESC
instead.

DDD 3.1 1998−12−01 57

() ()

filterFiles (classFilterFiles)
If this is ‘on’ (default),DDD filters files when opening execution files, core dumps, or source files,
such that the selection shows only suitable files. This requires thatDDD opens each file, which
may take time. If this is ‘off’, DDD always presents all available files.

globalTabCompletion (classGlobalTabCompletion)
If this is ‘on’ (default), theTAB key completes arguments in all windows. If this is ‘off’, the TAB
key completes arguments in the debugger console only.

grabAction (classgrabAction)
The action to take after having detected a grabbed mouse pointer. This is a list of newline-
separated commands. Default is ‘cont’, meaning to continue the debuggee. Other possible
choices include ‘kill ’ (killing the debuggee) or ‘quit ’ (exiting DDD).

grabActionDelay (classgrabActionDelay)
The time to wait (in ms) before taking an action due to having detected a grabbed pointer. During
this delay, a working dialog pops up telling the user about imminent execution of the grab action
(see the ‘grabAction’ resource, above). If the pointer grab is released within this delay, the work-
ing dialog pops down and no action is taken. This is done to exclude pointer grabs from sources
other than the debugged program (includingDDD). Default is10000, or 10 seconds.

groupIconify (classGroupIconify)
If this is ‘on’, (un)iconifying anyDDD window causes all otherDDD windows to (un)iconify as
well. Default is ‘off’, meaning that eachDDD window can be iconified on its own.

saveHistoryOnExit (classSaveHistoryOnExit)
If ‘ on’ (default), the command history is automatically saved whenDDD exits.

selectAllBindings (classBindingStyle)
Controls the key bindings for the select all operation.

• If this is ‘Motif ’, Select All onShift+Ctrl+A .

• If this is ‘KDE ’ (default), Select All is onCtrl+A . This is conformant to theKDE style guide.
Note that this means thatCtrl+A no longer moves the cursor to the beginning of a line; use the
HOME key instead.

splashScreen (classSplashScreen)
If ‘ on’ (default), show aDDD splash screen upon start-up.

splashScreenColorKey (classColorKey)
The color key to use for theDDD splash screen. Possible values include:

• ‘c’ (default) for a color visual,

• ‘g’ for a multi-level greyscale visual,

• ‘g4’ for a 4-level greyscale visual, and

• ‘m’ for a dithered monochrome visual.

• ‘best’ chooses the best visual available for your display.

Note: if DDD runs on a monochrome display, or ifDDD was compiled without theXPM library,
only the monochrome version (‘m’) can be shown.

startupTips (classStartupTips)
Whether a tip of the day is to be shown at startup (‘on’, default) or not (‘off’).

startupTipCount (classStartupTipCount)
The numbern of the tip of the day to be shown at startup. See also the ‘tipn’ resources.

suppressWarnings (classSuppressWarnings)
If ‘ on’, X warnings are suppressed. This is sometimes useful for executables that were built on a
machine with a different X or Motif configuration. By default, this is ‘off’.

DDD 3.1 1998−12−01 58

() ()

tipn (classTip)
The tip of the day numberedn (a string).

maxUndoDepth (classMaxUndoDepth)
The maximum number of entries in the undo buffer. This limits the number of actions that can be
undone, and the number of states that can be shown in historic mode. Useful for limitingDDD
memory usage. A neg ative value (default) means to place no limit.

maxUndoSize (classMaxUndoSize)
The maximum memory usage (in bytes) of the undo buffer. Useful for limitingDDD memory
usage. A negative value means to place no limit. Default is2000000.

uniconifyWhenReady (classUniconifyWhenReady)
If this is ‘on’ (default), theDDD windows are uniconified automatically wheneverGDB becomes
ready. This way, you can iconifyDDD during some longer operation and have it uniconify itself as
soon as the program stops. Setting this to ‘off’ leaves theDDD windows iconified.

valueTips (classTips)
Whether value tips are enabled (‘on’, default) or not (‘off’). Value tips affectDDD performance
and may be distracting for some experienced users.

valueDocs (classDocs)
Whether the display of variable values in the status line is enabled (‘on’, default) or not (‘off’).

warnIfLocked (classWarnIfLocked)
Whether to warn if multipleDDD instances are running (‘on’) or not (‘off’, default).

Source Window
The following resources determine theDDD source window.

cacheGlyphImages (classCacheMachineCode)
Whether to cache (share) glyph images (‘on’) or not (‘off’). Caching glyph images requires less X
resources, but has been reported to fail with Motif 2.1 on XFree86 servers. Default is ‘off’ for
Motif 2.1 or later on Linux machines, and ‘on’ otherwise.

cacheMachineCode (classCacheMachineCode)
Whether to cache disassembled machine code (‘on’, default) or not (‘off’). Caching machine code
requires more memory, but makesDDD run faster.

cacheSourceFiles (classCacheSourceFiles)
Whether to cache source files (‘on’, default) or not (‘off’). Caching source files requires more
memory, but makesDDD run faster.

disassemble (classDisassemble)
If this is ‘on’, the source code is automatically disassembled. The default is ‘off’. See also the
‘−−disassemble’ and ‘−−no-disassemble’ options, below.

displayGlyphs (classDisplayGlyphs)
If this is ‘on’, the current execution position and breakpoints are displayed as glyphs; otherwise,
they are shown through characters in the text. The default is ‘on’. See also the ‘−−glyphs’ and
‘−−no-glyphs’ options, below.

displayLineNumbers (classDisplayLineNumbers)
If this is ‘on’, lines in the source text are prefixed with their respective line number. The default is
‘off’.

findCaseSensitive (classFindCaseSensitive)
If this is ‘on’ (default), the ‘Find’ commands are case-sensitive. Otherwise, occurrences are found
regardless of case.

findWordsOnly (classFindWordsOnly)
If this is ‘on’ (default), the ‘Find’ commands find complete words only. Otherwise, arbitrary
occurrences are found.

DDD 3.1 1998−12−01 59

() ()

glyphUpdateDelay (classGlyphUpdateDelay)
A delay (in ms) that says how much time to wait before updating glyphs while scrolling the source
text. A small value results in glyphs being scrolled with the text, a large value disables glyphs
while scrolling and makes scrolling faster. Default:10.

indentCode (classIndent)
The number of columns to indent the machine code, such that there is enough place to display
breakpoint locations. Default:4.

indentSource (classIndent)
The number of columns to indent the source code, such that there is enough place to display
breakpoint locations. Default:0.

indentScript (classIndent)
The minimum indentation for script languages, such as Perl and Python. Default:4.

lineNumberWidth (classLineNumberWidth)
The number of columns to use for line numbers (if displaying line numbers is enabled). Line
numbers wider than this value extend into the breakpoint space. Default:4.

linesAboveCursor (classLinesAboveCursor)
The minimum number of lines to show before the current location. Default is2.

linesBelowCursor (classLinesBelowCursor)
The minimum number of lines to show after the current location. Default is3.

maxDisassemble (classMaxDisassemble)
Maximum number of bytes to disassemble (default:256). If this is zero, the entire current func-
tion is disassembled.

maxGlyphs (classMaxGlyphs)
The maximum number of glyphs to be displayed (default:10). Raising this value causes more
glyphs to be allocated, possibly wasting resources that are never needed.

sourceEditing (classSourceEditing)
If this is ‘on’, the displayed source code becomes editable. This is an experimental feature and
may become obsolete in futureDDD releases. Default if ‘off’.

tabWidth (classTabWidth)
The tab width used in the source window (default:8)

useSourcePath (classUseSourcePath)
If this is ‘off’ (default), the inferior debugger refers to source code locations only by their base
names. If this is ‘on’ (default),DDD uses the full source code paths.

Window Creation and Layout
The following resources determineDDD window creation and layout as well as the interaction with the X
window manager.

autoRaiseTool (classAutoRaiseTool)
If ‘ on’ (default), DDD will always keep the command tool on top of otherDDD windows. If this
setting interferes with your window manager, or if your window manager keeps the command tool
on top anyway, set this resource to ‘off’.

autoRaiseMenu (classAutoRaiseMenu)
If ‘ on’ (default), DDD will always keep the pull down menu on top of theDDD main window. If
this setting interferes with your window manager, or if your window manager does not auto-raise
windows, set this resource to ‘off’:

Ddd*autoRaiseMenu: off

DDD 3.1 1998−12−01 60

() ()

colorWMIcons (classColorWMIcons)
If ‘ on’ (default), DDD uses multi-color icons. If your window manager has trouble with multi-
color icons, set this resource to ‘off’ and DDD will use black-and-white icons instead.

decorateTool (classDecorate)
This resource controls the decoration of the command tool.

• If this is ‘off’, the command tool is created as atransient window. Sev eral window managers
keep transient windows automatically on top of their parents, which is appropriate for the com-
mand tool. However, your window manager may be configured not to decorate transient win-
dows, which means that you cannot easily move the command tool around.

• If this is ‘on’, DDD realizes the command tool as atop-level window. Such windows are always
decorated by the window manager. Howev er, top-level windows are not automatically kept on
top of other windows, such that you may wish to set the ‘autoRaiseTool’ resource, too.

• If this is ‘auto’ (default), DDD checks whether the window manager decorates transients. If
yes, the command tool is realized as a transient window (as in the ‘off’ setting); if no, the com-
mand tool is realized as a top-level window (as in the ‘on’ setting). Hence, the command tool is
always decorated using the “best” method, but the extra check takes some time.

openDataWindow (classWindow)
If ‘ off’ (default), the data window is closed upon start-up.

openDebuggerConsole (classWindow)
If ‘ off’, the debugger console is closed upon start-up.

openSourceWindow (classWindow)
If ‘ off’, the source window is closed upon start-up.

separateDataWindow (classSeparate)
If ‘ on’, the data window and the debugger console are realized in different top-level windows. If
‘off’ (default), the data window is attached to the debugger console. See also the ‘−−attach-
windows’ and ‘−−attach-data-window’ options, below.

separateExecWindow (classSeparate)
If ‘ on’, the debugged program is executed in a separate execution window. If ‘off’ (default), the
debugged program is executed in the console window. See also the ‘−−exec−window’ and
‘−−no−exec−window’ options, below.

separateSourceWindow (classSeparate)
If ‘ on’, the source window and the debugger console are realized in different top-level windows.
If ‘ off’ (default), the source window is attached to the debugger console. See also the ‘−−attach-
windows’ and ‘−−attach-source-window’ options, below.

statusAtBottom (classStatusAtBottom)
If ‘ on’ (default), the status line is placed at the bottom of theDDD source window. If ‘off’, the sta-
tus line is placed at the top of theDDD source window (as inDDD 1.x). See also the ‘−−status-at-
bottom’ and ‘−−status-at-top’ options, below.

stickyTool (classStickyTool)
If ‘ on’ (default), the command tool automatically follows every movement of the source window.
Whenever the source window is moved, the command tool is moved by the same offset such that
its position relative to the source window remains unchanged. If ‘off’, the command tool does not
follow source window movements.

transientDialogs (classTransientDialogs)
If ‘ on’ (default), all dialogs are created as transient windows—that is, they always stay on top of
the mainDDD windows, and they iconify with it. If ‘off’, the important selection dialogs, such as
the breakpoint and display editors, are created as top-level windows on their own, and may be
obscured by theDDD main windows.

DDD 3.1 1998−12−01 61

() ()

Debugger Settings
The following resources determine the inferior debugger.

autoCommands (classAutoCommands)
If this is ‘on’ (default), each line output by the inferior debugger beginning with the value of the
‘autoCommandPrefix’ resource (see below) will be interpreted asDDD command and executed.
Useful for user-defined commands; see ‘USER-DEFINED COMMANDS ’, above.

autoCommandPrefix (classAutoCommandPrefix)
The prefix for auto-commands. By default, an empty string, meaning to generate a new prefix for
eachDDD session. If this is set to ‘ddd: ’, for example, eachGDB output in the form ‘ddd: com-
mand’ will causeDDD to executecommand.

autoDebugger (classAutoDebugger)
If this is ‘on’ (default), DDD will attempt to determine the debugger type from its arguments, pos-
sibly overriding the ‘debugger’ resource (see below). If this is ‘off’, DDD will invoke the debug-
ger specified by the ‘debugger’ resource regardless ofDDD arguments.

blockTTYInput (classBlockTTYInput)
WhetherDDD should block when reading data from the inferior debugger via the pseudo-tty inter-
face. Some systemsrequire this, such as Linux with libc 5.4.33 and earlier; set it to ‘on’. Some
other systemsprohibit this, such as Linux with GNU libc 6 and later; set it to ‘off’. The value
‘auto’ (default) will always select the “best” choice (that is, the best choice known to theDDD
developers).

dbxInitCommands (classInitCommands)
This string contains a list of newline-separated commands that are initially sent toDBX. By
default, it is empty.
Do not use this resource to customizeDBX; instead, use a personal ‘$HOME/.dbxinit ’ or
‘$HOME/.dbxrc ’ file. See yourDBX documentation for details.

dbxSettings (classSettings)
This string contains a list of newline-separated commands that are also initially sent toDBX. By
default, it is empty.

debugger (classDebugger)
The type of the inferior debugger to invoke (‘gdb’, ‘ dbx’, ‘ xdb’, ‘ jdb ’, ‘ pydb’, or ‘perl’). This
resource is usually set through the ‘−−gdb’, ‘ −−dbx’, ‘ −−xdb’, ‘ −−jdb ’, ‘ −−pydb’, and ‘−−perl’,
options; see below for details.

debuggerCommand (classDebuggerCommand)
The name under which the inferior debugger is to be invoked. If this string is empty, the debugger
type (‘debugger’ resource) is used. This resource is usually set through the ‘−−debugger’ option;
see below for details.

debuggerHost (classDebuggerHost)
The host where the inferior debugger is to be executed; an empty string (default) means the local
host. See the ‘−−host’ option, below, and ‘REMOTE DEBUGGING ’, above.

debuggerHostLogin (classDebuggerHostLogin)
The login user name on the remote host; an empty string (default) means using the local user
name. See the ‘−−login’ option, below, and ‘REMOTE DEBUGGING ’, above.

debuggerRHost (classDebuggerRHost)
The host where the inferior debugger is to be executed; an empty string (default) means to use the
‘debuggerHost’ resource. In contrast to ‘debuggerHost’, using this resource causesDDD to login
interactively to the remote host and invoke the inferior debugger from the remote shell. See also
the ‘−−rhost’ option, below, and ‘REMOTE DEBUGGING ’, above.

fullNameMode (classTTYMode)
If this is ‘on’, DDD reports the current source position on standard output inGDB ‘−fullname’ for-
mat. As a side effect, the source window is disabled by default. See also the ‘−−fullname’

DDD 3.1 1998−12−01 62

() ()

option, below.

gdbInitCommands (classInitCommands)
This string contains a list of newline-separated commands that are initially sent toGDB. As a side-
effect, all settings specified in this resource are considered fixed and cannot be changed through
the GDB settings panel, unless preceded by white space. By default, the ‘gdbInitCommands’
resource contains some settings vital toDDD:

Ddd*gdbInitCommands: \
set height 0\n\
set width 0\n\
set verbose off\n\
set prompt (gdb) \n

While the ‘set height’, ‘ set width’, and ‘set prompt’ settings are fixed, the ‘set verbose’ settings
can be changed through theGDB settings panel (although being reset upon each newDDD invoca-
tion).
Do not use this resource to customizeGDB; instead, use a personal ‘$HOME/.gdbinit ’ file. See
your GDB documentation for details.

gdbSettings (classSettings)
This string contains a list of newline-separated commands that are also initially sent toGDB. Its
default value is

Ddd*gdbSettings: \
set print asm-demangle on\n

This resource is used to save and restore the debugger settings.

jdbInitCommands (classInitCommands)
This string contains a list of newline-separated commands that are initially sent toJDB. This
resource may be used to customizeJDB. By default, it is empty.

jdbSettings (classSettings)
This string contains a list of newline-separated commands that are also initially sent toJDB. By
default, it is empty.

This resource is used byDDD to save and restoreJDB settings.

openSelection (classOpenSelection)
If this is ‘on’, DDD invoked without argument checks whether the current selection or clipboard
contains the file name orURL of an executable program. If this is so,DDD will automatically
open this program for debugging. If this resource is ‘off’ (default), DDD invoked without argu-
ments will always start without a debugged program.

perlInitCommands (classInitCommands)
This string contains a list of newline-separated commands that are initially sent to the Perl debug-
ger. By default, it is empty.

This resource may be used to customize the Perl debugger.

pydbSettings (classSettings)
This string contains a list of newline-separated commands that are also initially sent to the Perl
debugger. By default, it is empty.

This resource is used byDDD to save and restore Perl debugger settings.

DDD 3.1 1998−12−01 63

() ()

pydbInitCommands (classInitCommands)
This string contains a list of newline-separated commands that are initially sent toPYDB. By
default, it is empty.
This resource may be used to customizePYDB.

pydbSettings (classSettings)
This string contains a list of newline-separated commands that are also initially sent toPYDB. By
default, it is empty.

This resource is used byDDD to save and restorePYDB settings.

questionTimeout (classQuestionTimeout)
The time (in seconds) to wait for the inferior debugger to reply. Default is10.

rHostInitCommands (classRHostInitCommands)
These commands are initially executed in a remote interactive session, using the ‘−−rhost’ option.
By default, it sets up the remote terminal such that it suitsDDD:

Ddd*rHostInitCommands: stty −echo −onlcr

You may add other commands here—for instance, to set the executable path or to invoke a suitable
shell.

sourceInitCommands (classSourceInitCommands)
If ‘ on’ (default), DDD writes all GDB initialization commands into a temporary file and makes
GDB read this file, rather than sending each initialization command separately. This results in
faster startup (especially if you have sev eral user-defined commands). If ‘off’, DDD makesGDB
process each command separately.

synchronousDebugger (classSynchronousDebugger)
If ‘ on’, X events are not processed while the debugger is busy. This may result in slightly better
performance on single-processor systems. See also the ‘−−sync-debugger’ option, below.

terminateOnEOF (classTerminateOnEOF)
If ‘ on’, DDD terminates the inferior debugger whenDDD detects an EOF condition (that is, as
soon as the inferior debugger closes its output channel). This was the default behavior inDDD 2.x
and earlier. If ‘off’ (default),DDD takes no special action.

ttyMode (classTTYMode)
If ‘ on’, enableTTY interface, taking additional debugger commands from standard input and for-
warding debugger output on standard output. As a side effect, the debugger console is disabled by
default. See also the ‘−−tty ’ and ‘−−fullname’ options, below.

useTTYCommand (classUseTTYCommand)
If ‘ on’, use theGDB ‘ tty ’ command for redirecting input/output to the separate execution window.
If ‘ off’, use explicit redirection through shell redirection operators ‘<’ and ‘>’. The default is ‘off’
(explicit redirection), since on some systems, the ‘tty ’ command does not work properly on some
GDB versions.

xdbInitCommands (classInitCommands)
This string contains a list of newline-separated commands that are initially sent toXDB. By
default, it is empty.
Do not use this resource to customizeDBX; instead, use a personal ‘$HOME/.xdbrc ’ file. See
your XDB documentation for details.

xdbSettings (classSettings)
This string contains a list of newline-separated commands that are also initially sent toXDB. By
default, it is empty.

DDD 3.1 1998−12−01 64

() ()

User-defined Buttons
The following resources can be used to create and control tool bars and user-defined buttons.

activeButtonColorKey (classColorKey)
TheXPM color key to use for the images of active buttons (entered or armed). ‘c’ means color, ‘g’
(default) means grey, and ‘m’ means monochrome.

buttonCaptions (classButtonCaptions)
Whether the tool bar buttons should be shown using captions (‘on’, default) or not (‘off’). If nei-
ther captions nor images are enabled, tool bar buttons are shown using ordinary labels. See also
‘buttonImages’, below.

buttonCaptionGeometry (classButtonCaptionGeometry)
The geometry of the caption subimage within the button icons. Default is ‘29×7+0−0’.

buttonImages (classButtonImages)
Whether the tool bar buttons should be shown using images (‘on’, default) or not (‘off’). If neither
captions nor images are enabled, tool bar buttons are shown using ordinary labels. See also ‘but-
tonCaptions’, above.

buttonImageGeometry (classButtonImageGeometry)
The geometry of the image within the button icon. Default is ‘25×21+2+0’.

buttonColorKey (classColorKey)
The XPM color key to use for the images of inactive buttons (non-entered or insensitive). ‘c’
means color, ‘g’ (default) means grey, and ‘m’ means monochrome.

commandToolBar (classToolBar)
Whether the tool buttons (see the ‘toolButtons’ resource, below) should be shown in a tool bar
above the source window (‘on’) or within the command tool (‘off’, default). Enabling the com-
mand tool bar disables the command tool and vice versa.

commonToolBar (classToolBar)
Whether the tool bar buttons should be shown in one common tool bar at the top of the common
DDD window (‘on’, default), or whether they should be placed in two separate tool bars, one for
data, and one for source operations, as inDDD 2.x (‘off’).

consoleButtons (classButtons)
A newline-separated list of buttons to be added under the debugger console. Each button issues
the command given by its name.

The following characters have special meanings:

• Commands ending with ’...’ insert their name, followed by a space, in the debugger console.

• Commands ending with a control character (that is, ‘ˆ’ followed by a letter or ‘?’) insert the
given control character.

• The string ‘()’ is replaced by the current contents of the argument field ‘()’.

• The string specified in the ‘labelDelimiter’ resource (usually ‘//’) separates the command name
from the button label. If no button label is specified, the capitalized command will be used as
button label.

The following button names are reserved:

Apply Send the given command to the debugger.

Back Lookup previously selected source position.

Clear Clear current command

Complete Complete current command.

DDD 3.1 1998−12−01 65

() ()

Edit Edit current source file.

Forward Lookup next selected source position.

Make Invoke the ‘make’ program, using the most recently given arguments.

Next Show next command

No Answer current debugger prompt with ‘no’. This button is visible only if the debug-
ger asks a yes/no question.

Prev Show previous command

Reload Reload source file.

Yes Answer current debugger prompt with ‘yes’. This button is visible only if the debug-
ger asks a yes/no question.

The default resource value is empty—no console buttons are created.

Here are some examples to insert into your ‘$HOME/.ddd/init ’ file. These are the settings of
DDD 1.x:

Ddd*consoleButtons: Yes\nNo\nbreakˆC

This setting creates some more buttons:

Ddd*consoleButtons: \
Yes\nNo\nrun\nClear\nPrev\nNext\nApply\nbreakˆC

See also the ‘dataButtons’, ‘ sourceButtons’ and ‘toolButtons’ resources, below.

dataButtons (classButtons)
A newline-separated list of buttons to be added under the data display. Each button issues the
command given by its name. See the ‘consoleButtons’ resource, above, for details on button syn-
tax.

The default resource value is empty—no source buttons are created.

flatToolbarButtons (classFlatButtons)
If ‘ on’ (default), all tool bar buttons with images or captions are given a ‘flat’ appearance—the
3-D border only shows up when the pointer is over the icon. If ‘off’, the 3-D border is shown all
the time.

flatDialogButtons (classFlatButtons)
If ‘ on’ (default), all dialog buttons with images or captions are given a ‘flat’ appearance—the 3-D
border only shows up when the pointer is over the icon. If ‘off’, the 3-D border is shown all the
time.

labelDelimiter (classLabelDelimiter)
The string used to separate labels from commands and shortcuts. Default is ‘//’.

sourceButtons (classButtons)
A newline-separated list of buttons to be added under the debugger console. Each button issues
the command given by its name. See the ‘consoleButtons’ resource, above, for details on button
syntax.

The default resource value is empty—no source buttons are created.

Here are some example to insert into your ‘$HOME/.ddd/init ’ file. These are the settings ofDDD
1.x:

Ddd*sourceButtons: \

DDD 3.1 1998−12−01 66

() ()

run\nstep\nnext\nstepi\nnexti\ncont\n\
finish\nkill\nup\ndown\n\
Back\nForward\nEdit\ninterruptˆC

This setting creates some buttons which are not found on the command tool:

Ddd*sourceButtons: \
print *()\ngraph display *()\nprint /x ()\n\
whatis ()\nptype ()\nwatch ()\nuntil\nshell

An even more professional setting uses customized button labels.

Ddd*sourceButtons: \
print *(()) // Print *()\n\
graph display *(()) // Display *()\n\
print /x ()\n\
whatis () // What is ()\n\
ptype ()\n\
watch ()\n\
until\n\
shell

See also the ‘consoleButtons’ and ‘dataButtons’ resources, above, and the ‘toolButtons’
resource, below.

toolbarsAtBottom (classToolbarsAtBottom)
Whether source and data tool bars should be placed above source and data, respectively (‘off’,
default), or below, as inDDD 2.x (‘on’). See also the ‘−−toolbars-at-bottom’ and ‘−−toolbars-
at-top’ options, below.

toolButtons (classButtons)
A newline-separated list of buttons to be included in the command tool or the command tool bar
(see the ‘commandToolBar’ resource, above). Each button issues the command given by its
name. See the ‘consoleButtons’ resource, above, for details on button syntax.

The default resource value is

Ddd*toolButtons: \
run\nbreakˆC\nstep\nstepi\nnext\nnexti\n\
until\nfinish\ncont\n\kill\n\
up\ndown\nBack\nForward\nEdit\nMake

For each button, its location in the command tool must be specified usingXmForm constraint
resources. See the ‘Ddd’ application defaults file for instructions.

If the ‘toolButtons’ resource value is empty, the command tool is not created.

toolRightOffset (classOffset)
The distance between the right border of the command tool and the right border of the source text
(in pixels). Default is 8 pixels.

toolTopOffset (classOffset)
The distance between the upper border of the command tool and the upper border of the source
text (in pixels). Default is 8 pixels.

verifyButtons (classVerifyButtons)
If ‘ on’ (default), verify for each button whether its command is actually supported by the inferior
debugger. If the command is unknown, the button is disabled. If this resource is ‘off’, no check-
ing is done: all commands are accepted “as is”.

DDD 3.1 1998−12−01 67

() ()

User-Defined New Display Menu
The following resources control the user-defined ‘New Display’ menu.

dbxDisplayShortcuts (classDisplayShortcuts)
A newline-separated list of display expressions to be included in the ‘New Display’ menu for
DBX. If a line contains a label delimiter (the string ‘//’; can be changed via the ‘labelDelimiter’
resource), the string before the delimiter is used asexpression, and the string after the delimiter is
used as label. Otherwise, the label is ‘Display expression’. Upon activation, the string ‘()’ in
expressionis replaced by the name of the currently selected display.

gdbDisplayShortcuts (classDisplayShortcuts)
A newline-separated list of display expressions to be included in the ‘New Display’ menu for
GDB. See the description of ‘dbxDisplayShortcuts’, above.

jdbDisplayShortcuts (classDisplayShortcuts)
A newline-separated list of display expressions to be included in the ‘New Display’ menu forJDB.
See the description of ‘dbxDisplayShortcuts’, above.

labelDelimiter (classLabelDelimiter)
The string used to separate labels from commands and shortcuts. Default is ‘//’.

perlDisplayShortcuts (classDisplayShortcuts)
A newline-separated list of display expressions to be included in the ‘New Display’ menu for Perl.
See the description of ‘dbxDisplayShortcuts’, above.

pydbDisplayShortcuts (classDisplayShortcuts)
A newline-separated list of display expressions to be included in the ‘New Display’ menu for
PYDB. See the description of ‘dbxDisplayShortcuts’, above.

xdbDisplayShortcuts (classDisplayShortcuts)
A newline-separated list of display expressions to be included in the ‘New Display’ menu for
XDB. See the description of ‘dbxDisplayShortcuts’, above.

Data Display
The following resources control the data display.

align2dArrays (classAlign2dArrays)
If ‘ on’ (default), DDD lays out two-dimensional arrays as tables, such that all array elements are
aligned with each other. If ‘off’, DDD treats a two-dimensional array as an array of one-
dimensional arrays, each aligned on its own.

autoCloseDataWindow (classAutoClose)
If this is ‘on’ (default) andDDD is in stacked window mode, deleting the last display automatically
closes the data window. If this is ‘off’, the data window stays open even after deleting the last dis-
play.

bumpDisplays (classBumpDisplays)
If some displayD changes size and this resource is ‘on’ (default), DDD assigns new positions to
displays below and on the right ofD such that the distance between displays remains constant. If
this is ‘off’, other displays are not rearranged.

clusterDisplays (classClusterDisplays)
If ‘ on’, new independent data displays will automatically be clustered. Default is ‘off’, meaning
to leave new displays unclustered.

deleteAliasDisplays (classDeleteAliasDisplays)
If this is ‘on’ (default), the ‘Undisplay ()’ button also deletes all aliases of the selected displays.
If this is ‘off’, only the selected displays are deleted; the aliases remain, and one of the aliases will
be unsuppressed.

detectAliases (classDetectAliases)
If ‘ on’, DDD attempts to recognize shared data structures. See ‘Examining shared data struc-
tures’, above, for a discussion. The default is ‘off’, meaning that shared data structures are not

DDD 3.1 1998−12−01 68

() ()

recognized.

expandRepeatedValues (classExpandRepeatedValues)
GDB can print repeated array elements as ‘VALUE <repeatedN times>’. If ‘ expandRepeated-
Values’ is ‘ on’, DDD will display N instances ofVALUE instead. If ‘expandRepeatedValues’ is
‘off’ (default),DDD will display VALUEwith ‘<N×>’ appended to indicate the repetition.

hideInactiveDisplays (class HideInactiveDisplays)
If some display gets out of scope and this resource is ‘on’ (default),DDD removes it from the data
display. If this is ‘off’, it is simply disabled.

pannedGraphEditor (classPannedGraphEditor)
The control to scroll the graph.

• If this is ‘on’, an Athena panner is used (a kind of two-directional scrollbar).

• If this is ‘off’ (default), two Motif scrollbars are used.

See also the ‘−−scrolled-graph-editor’ and ‘−−panned-graph-editor’ options, below.

paperSize (classPaperSize)
The paper size used for printing, in formatwidth x height. The default is A4 format, or ‘210mm×
297mm’.

showBaseDisplayTitles (classShowDisplayTitles)
Whether to assign titles to base (independent) displays or not. Default is ‘on’.

showDependentDisplayTitles (classShowDisplayTitles)
Whether to assign titles to dependent displays or not. Default is ‘off’.

typedAliases (classTypedAliases)
If ‘ on’ (default), DDD requires structural equivalence in order to recognize shared data structures.
If this is ‘off’, two displays at the same address are considered aliases, regardless of their structure.

vslBaseDefs (classVSLDefs)
A string with additionalVSL definitions that are appended to the builtinVSL library. This resource
is prepended to the ‘vslDefs’ resource below and set in theDDD application defaults file; don’t
change it.

vslDefs (classVSLDefs)
A string with additionalVSL definitions that are appended to the builtinVSL library. The default
value is an empty string. This resource can be used to override specificVSL definitions that affect
the data display.

The general pattern to replace a function definitionfunctionwith a new definitionnew_defis:

#pragma replacefunction
function(args...) = new_def;

The followingVSL functions are frequently used:

color(box, foreground[, background])
Set theforegroundandbackgroundcolors ofbox.

display_color(box)
The color used in data displays. Default:color(box, "black", "white")

title_color(box)
The color used in the title bar. Default:color(box, "black")

disabled_color(box)
The color used for disabled boxes. Default:color(box, "white", "grey50")

DDD 3.1 1998−12−01 69

() ()

simple_color(box)
The color used for simple values. Default:color(box, "black")

pointer_color(box)
The color used for pointers. Default:color(box, "blue4")

struct_color(box)
The color used for structures. Default:color(box, "black")

array_color(box)
The color used for arrays. Default:color(box, "blue4")

reference_color(box)
The color used for references. Default:color(box, "blue4")

changed_color(box)
The color used for changed values. Default:color(box, "black", "#ffffcc")

stdfontfamily()
The font family used. One offamily_times(), family_courier() , family_helvetica(),
family_new_century(), or family_typewriter() (default).

stdfontsize()
The font size used (in pixels).0 (default) means to usestdfontpoints() instead.

stdfontpoints()
The font size used (in 1⁄10 points).0 means to usestdfontsize() instead. Default
value:90.

stdfontweight()
The font weight used. Eitherweight_medium()(default) orweight_bold().

To set the pointer color to "red4", use

Ddd*vslDefs: \
#pragma replace pointer_color\n\
pointer_color(box) = color(box, "red4");\n

To set the default font size to resolution-independent 10.0 points, use

Ddd*vslDefs: \
#pragma replace stdfontsize\n\
#pragma replace stdfontpoints\n\
stdfontsize() = 0;\n
stdfontpoints() = 100;\n

To set the default font to 12-pixel courier, use

Ddd*vslDefs: \
#pragma replace stdfontsize\n\
#pragma replace stdfontfamily\n\
stdfontsize() = 12;\n\
stdfontfamily() = family_courier();\n

See the file ‘ddd.vsl’ for further definitions to override using the ‘vslDefs’ resource.

vslLibrary (classVSLLibrary)
TheVSL library to use. ‘builtin ’ (default) means to use the built-in library, any other value is used
as file name.

DDD 3.1 1998−12−01 70

() ()

vslPath (classVSLPath)
A colon-separated list of directories to search forVSL include files. Default is ‘.’, the current
directory.

If your DDD source distribution is installed in ‘/opt/src’, you can use the following settings to read
theVSL library from ‘/home/joe/ddd.vsl’:

Ddd*vslLibrary: /home/joe/ddd.vsl
Ddd*vslPath: \
.:/opt/src/ddd/ddd:/opt/src/ddd/vsllib

VSL include files referenced by ‘/home/joe/ddd.vsl’ are searched first in the current directory ‘.’,
then in ‘/opt/src/ddd/ddd/’, and then in ‘/opt/src/ddd/vsllib/’.

Instead of supplying anotherVSL library, it is often easier to specify some minor changes to the
built-in library. See the ‘vslDefs’ resource, above, for details.

Plot Window
The following resources control the plot window.

plotTermType (classPlotTermType)
The Gnuplot terminal type. Can have one of two values:

• If this is ‘x11’, DDD “swallows” the Gnuplot output window into its own user interface. Some window
managers, notablyMWM, hav e trouble with swallowing techniques.

• Setting this resource to ‘xlib ’ (default) makesDDD provide abuiltin plot windowinstead. In this mode,
plots work well with any window manager, but are less customizable (Gnuplot resources are not under-
stood).

plotCommand (classPlotCommand)
The name of a Gnuplot executable. Default is ‘gnuplot’, followed by some options to set up colors and
the initial geometry.

plotWindowClass (classPlotWindowClass)
The class of the Gnuplot output window. When invoking Gnuplot,DDD waits for a window with this
class and incorporates it into its own user interface (unless ‘plotTermType’ is ‘ xlib ’; see above).
Default is ‘Gnuplot’.

plotWindowDelay (classWindowDelay)
The time (in ms) to wait for the creation of the Gnuplot window. Before this delay,DDD looks at each
newly created window to see whether this is the plot window to swallow. This is cheap, but unfortu-
nately, some window managers do not pass the creation event toDDD. If this delay has passed, andDDD
has not found the plot window,DDD searchesall existing windows, which is pretty expensive. Default
time is2000.

plotInitCommands (classPlotInitCommands)
The initial Gnuplot commands issued byDDD. Default is:

set parametric
set urange [0:1]
set vrange [0:1]
set trange [0:1]

The ‘parametric’ setting is required to make Gnuplot understand the data files as generatedDDD. The
range commands are used to plot scalars.

plot2dSettings (classPlotSettings)
Additional initial settings for 2-D plots. Default is ‘set noborder’. Feel free to customize these settings
as desired.

DDD 3.1 1998−12−01 71

() ()

plot3dSettings (classPlotSettings)
Additional initial settings for 3-D plots. Default is ‘set border’. Feel free to customize these settings as
desired.

Debugger Console
The following resources control the debugger console.

lineBufferedConsole (classLineBuffered)
If this is ‘on’ (default), each line from the inferior is output on each own, such that the final line is
placed at the bottom of the debugger console. If this is ‘off’, all lines are output as a whole. This
is faster, but results in a random position of the last line.

Value Histories
The following resources control the pop-down value histories associated with various text fields.

popdownHistorySize (classHistorySize)
The maximum number of items to display in pop-down value histories. A value of0 (default)
means an unlimited number of values.

sortPopdownHistory (classSortPopdownHistory)
If ‘ on’ (default), items in the pop-down value histories are sorted alphabetically. If ‘off’, most
recently used values will appear at the top.

Customizing Helpers
The following resources determine external programs invoked byDDD.

editCommand (classEditCommand)
A command string to invoke an editor on the specific file. ‘@LINE@’ is replaced by the current
line number, ‘@FILE@’ by the file name. The default is to invoke$XEDITOR first, then$EDI-
TOR, thenvi:

Ddd*editCommand: \
${XEDITOR-false} +@LINE@ @FILE@ \
|| xterm −e ${EDITOR-vi} +@LINE@ @FILE@

This ‘.ddd/init ’ setting invokes an editing session for anXEmacseditor runninggnuserv:

Ddd*editCommand: gnuclient +@LINE@ @FILE@

This ‘.ddd/init ’ setting invokes an editing session for anEmacseditor runningemacsserver:

Ddd*editCommand: emacsclient +@LINE@ @FILE@

fontSelectCommand (classFontSelectCommand)
A command to select from a list of fonts. The string ‘@FONT@’ is replaced by the currentDDD
default font; the string ‘@TYPE@’ is replaced by a symbolic name of theDDD font to edit. The
program must either place the name of the selected font in thePRIMARY selection or print the
selected font on standard output. A typical value is:

Ddd*fontSelectCommand: xfontsel −print

getCoreCommand (classGetCoreCommand)
A command to get a core dump of a running process (typically, ‘gcore’) ‘ @FILE@’ is replaced
by the base name of the file to create; ‘@PID@’ is replaced by the process id. The output must be
written to ‘@FILE@.@PID@’.
Leave this entry empty if you have no ‘gcore’ or similar command.

DDD 3.1 1998−12−01 72

() ()

lessTifVersion (classLessTifVersion)
Indicates the LessTif versionDDD is running against. For LessTif versionx.y, the value isx multi-
plied by 1000 plusy—for instance, the value79 stands for LessTif 0.79 and the value1005stands
for LessTif 1.5.
If the value of this resource is less than 1000, indicating LessTif 0.99 or earlier,DDD enables ver-
sion-specific hacks to makeDDD work around LessTif bugs and deficiencies.
If DDD was compiled against LessTif, the default value is the value of the ‘LessTifVersion’ macro
in <Xm/Xm.h>. If DDD was compiled against OSF/Motif, the default value is1000, disabling all
LessTif-specific hacks.

listCoreCommand (classlistCoreCommand)
The command to list all core files on the remote host. The string ‘@MASK@’ is replaced by a
file filter. The default setting is:

Ddd*listCoreCommand: \
file @MASK@ | grep ’.*:.*core.*’ \
| cut −d: −f1

listDirCommand (classlistDirCommand)
The command to list all directories on the remote host. The string ‘@MASK@’ is replaced by a
file filter. The default setting is:

Ddd*listDirCommand: \
file @MASK@ | grep ’.*:.*directory.*’ \
| cut −d: −f1

listExecCommand (classlistExecCommand)
The command to list all executable files on the remote host. The string ‘@MASK@’ is replaced
by a file filter. The default setting is:

Ddd*listExecCommand: \
file @MASK@ | grep ’.*:.*exec.*’ \
| grep −v ’.*:.*script.*’ \
| cut −d: −f1 | grep −v ’.*\.o$’

listSourceCommand (classlistSourceCommand)
The command to list all source files on the remote host. The string ‘@MASK@’ is replaced by a
file filter. The default setting is:

Ddd*listSourceCommand: \
file @MASK@ | grep ’.*:.*text.*’ \
| cut −d: −f1

printCommand (classPrintCommand)
The command to print a postscript file. Usually ‘lp’ or ‘ lpr ’.

psCommand (classPsCommand)
The command to get a list of processes. Usually ‘ps’. Depending on your system, useful alternate
values include ‘ps -ef’ and ‘ps ux’. The first line of the output must either contain a ‘PID’ title, or
each line must begin with a process ID.
Note that the output of this command is filtered byDDD; a process is only shown if it can be
attached to. TheDDD process itself as well as the process of the inferior debugger are suppressed,
too.

DDD 3.1 1998−12−01 73

() ()

rshCommand (classRshCommand)
The remote shell command to invokeTTY-based commands on remote hosts. Usually, ‘remsh’,
‘ rsh’, ‘ ssh’, or ‘on’.

termCommand (classTermCommand)
The command to invoke a separateTTY for showing the input/output of the debugged program. A
Bourne shell command to run in the separateTTY is appended to this string. The string
‘@FONT@’ is replaced by the name of the fixed width font used byDDD. A simple value is

Ddd*termCommand: xterm −fn @FONT@ −e /bin/sh −c

termType (classTermType)
The terminal type provided by the ‘termCommand’ resource—that is, the value of theTERM
environment variable to be passed to the debugged program. Default: ‘xterm’.

uncompressCommand (classUncompressCommand)
The command to uncompress the built-inDDD manual, theDDD license, and theDDD news.
Takes a compressed text from standard input and writes the uncompressed text to standard output.
The default value is ‘gzip -d -c’; typical values include ‘zcat’ and ‘gunzip -c’.

wwwCommand (classWWWCommand)
The command to invoke aWWW browser. The string ‘@URL@’ is replaced by theURL to open.
Default is to try a running Netscape first, then$WWWBROWSER, then to invoke a new
Netscape process, then to let a running Emacs do the job, then to invoke Mosaic, then to invoke
Lynx in an xterm.

To specify ‘netscape-4.0’ as browser, use the setting:

Ddd*wwwCommand: \
netscape-4.0 −remote ’openURL(@URL@)’ \

|| netscape-4.0 ’@URL@’

This command first tries to connect to a runningnetscape-4.0browser; if this fails, it starts a new
netscape-4.0process.

wwwPage (classWWWPage)
TheDDD WWW page. Value:

Ddd*wwwPage: http://www.cs.tu-bs.de/softech/ddd/

Obtaining Diagnostics
The following resources are used for debuggingDDD and to obtain specificDDD information.

appDefaultsVersion (classVersion)
The version of theDDD app-defaults file. If this string does not match the version of the current
DDD executable,DDD issues a warning.

checkConfiguration (classCheckConfiguration)
If ‘ on’, check theDDD environment (in particular, the X configuration), report any possible prob-
lem causes and exit. See also the ‘−−check-configuration’ option, below.

dddinitVersion (classVersion)
The version of theDDD executable that last wrote the ‘$HOME/.ddd/init ’ file. If this string does
not match the version of the currentDDD executable,DDD issues a warning.

debugCoreDumps (classDebugCoreDumps)
If ‘ on’, DDD invokes a debugger on itself when receiving a fatal signal.

dumpCore (classDumpCore)
If ‘ on’ (default),DDD dumps core when receiving a fatal signal.

DDD 3.1 1998−12−01 74

() ()

maintenance (classMaintenance)
If ‘ on’, enables a top-level ‘Maintenance’ menu with additional options. See also the ‘−−mainte-
nance’ option, below.

showConfiguration (classShowConfiguration)
If ‘ on’, show theDDD configuration on standard output and exit. See also the ‘−−configuration’
option, below.

showFonts (classShowFonts)
If ‘ on’, show theDDD font definitions on standard output and exit. See also the ‘−−fonts’ option,
below.

showInvocation (classShowInvocation)
If ‘ on’, show theDDD invocation options on standard output and exit. See also the ‘−−help’
option, below.

showLicense (classShowLicense)
If ‘ on’, show theDDD license on standard output and exit. See also the ‘−−license’ option, below.

showManual (classShowManual)
If ‘ on’, show thisDDD manual page on standard output and exit. If the standard output is a termi-
nal, the manual page is shown in a pager ($PAGER, ‘ less’ or ‘ more’). See also the ‘−−manual’
option, below.

showNews (classShowNews)
If ‘ on’, show theDDD news on standard output and exit. See also the ‘−−news’ option, below.

showVersion (classShowVersion)
If ‘ on’, show theDDD version on standard output and exit. See also the ‘−−version’ option,
below.

trace (classTrace)
If ‘ on’, show the dialog betweenDDD and the inferior debugger on standard output. Default is
‘off’.

More Resources
The ‘Ddd’ application defaults file contains even more information about settingDDD resources. The
‘Ddd’ file comes with theDDD distribution.

OPTIONS
You can use the following options when startingDDD. All options may be abbreviated, as long as they are
unambiguous; single dashes may also be used.DDD also understands the usual X options such as ‘−dis-
play’ or ‘ −geometry’; seeX(1) for details.

All other arguments and options are passed to the inferior debugger. To pass an option to the inferior
debugger that conflicts with an X option, or with aDDD option listed here, use the ‘−−debugger’ option,
below.

−−attach-windows
Attach the source and data windows to the debugger console, creating one single bigDDD win-
dow. This is the default setting.

−−attach-source-window
Attaches only the source window to the debugger console.

−−attach-data-window
Attaches only the source window to the debugger console.

−−automatic-debugger
Determine the inferior debugger automatically.

−−button-tips
Enable button tips.

DDD 3.1 1998−12−01 75

() ()

−−configuration
Show theDDD configuration settings and exit.

−−check-configuration
Check theDDD environment (in particular, the X configuration), report any possible problem
causes and exit.

−−data-window
Create the data window upon start-up.

−−dbx Run theDBX debugger as inferior debugger.

−−debuggername
Invoke the inferior debuggername. This is useful if you have sev eral debugger versions around, or
if the inferior debugger cannot be invoked as ‘gdb’, ‘ dbx’, ‘ xdb’, ‘ jdb ’, ‘ pydb’, or ‘perl’ respec-
tively.
This option can also be used to pass options to the inferior debugger that would otherwise conflict
with DDD options. For instance, to pass the option ‘−d directory’ to XDB, use:

ddd −−debugger "xdb −ddirectory"

If you use the ‘−−debugger’ option, be sure that the type of inferior debugger is specified as well.
That is, use one of the options ‘−−gdb’, ‘ −−dbx’, ‘ −−xdb’, ‘ −−jdb ’ ‘ −−pydb’, or ‘−−perl’
(unless the default setting works fine).

−−debugger-console
Create the debugger console upon start-up.

−−disassemble
Disassemble the source code. See also the ‘−−no-disassemble’ option, below.

−−exec-window
Run the debugged program in a specially created execution window. This is useful for programs
that have special terminal requirements not provided by the debugger window, as raw keyboard
processing or terminal control sequences.

−−fonts
Show the font definitions used byDDD on standard output.

−−fontsizesize
Set the default font size tosize1⁄10 points. To use 12-point fonts, say ‘−−fontsize 120’.

−−fullname
EnableTTY interface, taking additional debugger commands from standard input and forwarding
debugger output on standard output. Current positions are issued inGDB ‘−fullname’ format suit-
able for debugger front-ends. By default, both the debugger console and source window are dis-
abled.

−−gdb Run theGDB debugger as inferior debugger.

−−glyphs
Display the current execution position and breakpoints as glyphs. See also the ‘−−no-glyphs’
option, below.

−−help Give a list of frequently used options. Show options of the inferior debugger as well.

−−host [username@] hostname
Invoke the inferior debugger directly on the remote hosthostname. If usernameis given and the
‘−−login’ option is not used, useusernameas remote user name. See ‘REMOTE DEBUG-
GING ’, above.

−−jdb RunJDB as inferior debugger.

DDD 3.1 1998−12−01 76

() ()

−−lesstif-hacks
Equivalent to ‘−−lesstif-version 999’. Deprecated.

−−lesstif-versionversion
Enable some hacks to makeDDD run properly with LessTif. See the ‘lessTifVersion’ resource
and ‘USING DDD WITH LESSTIF ’, above, for a discussion.

−−license
Show theDDD license and exit.

−−login username
Useusernameas remote user name. See ‘REMOTE DEBUGGING ’, above.

−−maintenance
Enable the top-level ‘Maintenance’ menu with options for debuggingDDD.

−−manual
Show this manual page and exit.

−−news
Show theDDD news and exit.

−−no-button-tips
Disable button tips.

−−no-data-window
Do not create the data window upon start-up.

−−no-debugger-console
Do not create the debugger console upon start-up.

−−no-disassemble
Do not disassemble the source code.

−−no-exec-window
Do not run the debugged program in a specially created execution window; use the debugger con-
sole instead. Useful for programs that have little terminal input/output, or for remote debugging.

−−no-glyphs
Display the current execution position and breakpoints as text characters. Do not use glyphs.

−−no-lesstif-hacks
Equivalent to ‘−−lesstif-version 1000’. Deprecated.

−−no-source-window
Do not create the source window upon start-up.

−−no-value-tips
Disable value tips.

−−nw Do not use the X window interface. Start the inferior debugger on the local host.

−−perl Run Perl as inferior debugger.

−−pydb
RunPYDB as inferior debugger.

−−panned-graph-editor
Use an Athena panner to scroll the data window. Most people prefer panners on scroll bars, since
panners allow two-dimensional scrolling. However, the panner is off by default, since some Motif
implementations do not work well with Athena widgets. See also−−scrolled-graph-editor,
below.

−−play log-file
Recapitulate a previousDDD session. Invoke ‘ddd−−PLAY log-file’ as inferior debugger, simu-
lating the inferior debugger given inlog-file (see below). This is useful for debuggingDDD.

DDD 3.1 1998−12−01 77

() ()

−−PLAY log-file
Simulate an inferior debugger.log-file is a ‘$HOME/.ddd/log’ file as generated by some previous
DDD session. When a command is entered, scan thelog-file for this command and re-issue the
logged reply; if the command is not found, do nothing. This is used by the ‘−−play’ option.

−−rhost [username@] hostname
Run the inferior debugger interactively on the remote hosthostname. If usernameis given and the
‘−−login’ option is not used, useusernameas remote user name. See ‘REMOTE DEBUG-
GING ’, above.

−−separate-windows
Separate the console, source and data windows. See also the ‘−−attach’ options, above.

−−scrolled-graph-editor
Use Motif scroll bars to scroll the data window. This is the default in mostDDD configurations.
See also−−panned-graph-editor, above.

−−source-window
Create the source window upon start-up.

−−status-at-bottom
Place the status line at the bottom of the source window.

−−status-at-top
Place the status line at the top of the source window.

−−sync-debugger
Do not process X events while the debugger is busy. This may result in slightly better perfor-
mance on single-processor systems.

−−toolbars-at-bottom
Place the toolbars the bottom of the window.

−−toolbars-at-top
Place the toolbars at the top of the window.

−−trace
Show the interaction betweenDDD and the inferior debugger on standard error. This is useful for
debuggingDDD. If ‘ −−trace’ is not specified, this information is written into ‘$HOME/.ddd/log’,
such that you can also do a post-mortem debugging.

−−tty EnableTTY interface, taking additional debugger commands from standard input and forwarding
debugger output on standard output. Current positions are issued in a format readable for humans.
By default, the debugger console is disabled.

−−value-tips
Enable value tips.

−−version
Show theDDD version and exit.

−−vsl-library library
Load theVSL library library instead of using theDDD built-in library. This is useful for customiz-
ing display shapes and fonts.

−−vsl-path path
SearchVSL libraries inpath(a colon-separated directory list).

−−vsl-help
Show a list of further options controlling theVSL interpreter. These options are intended for
debugging purposes and are subject to change without further notice.

−−xdb RunXDB as inferior debugger.

DDD 3.1 1998−12−01 78

() ()

ACTIONS
The followingDDD actions may be used in translation tables.

General Actions
These actions are used to assign the keyboard focus.

ddd-get-focus ()
Assign focus to the element that just received input.

ddd-next-tab-group ()
Assign focus to the next tab group.

ddd-prev-tab-group ()
Assign focus to the previous tab group.

ddd-previous-tab-group ()
Assign focus to the previous tab group.

Data Display Actions
These actions are used in theDDD graph editor.

end () End the action initiated byselect. Bound to a button up event.

extend ()
Extend the current selection. Bound to a button down event.

extend-or-move ()
Extend the current selection. Bound to a button down event. If the pointer is dragged, move the
selection.

follow ()
Continue the action initiated byselect. Bound to a pointer motion event.

graph-select ()
Equivalent toselect, but also updates the current argument.

graph-select-or-move ()
Equivalent toselect-or-move, but also updates the current argument.

graph-extend ()
Equivalent toextend, but also updates the current argument.

graph-extend-or-move ()
Equivalent toextend-or-move, but also updates the current argument.

graph-toggle ()
Equivalent totoggle, but also updates the current argument.

graph-toggle-or-move ()
Equivalent totoggle-or-move, but also updates the current argument.

graph-popup-menu ([graph|node|shortcut])
Pops up a menu.graph pops up a menu with global graph operations,nodepops up a menu with
node operations, andshortcut pops up a menu with display shortcuts. If no argument is given,
pops up a menu depending on the context: when pointing on a node with theShift key pressed,
behaves likeshortcut; when pointing on a without theShift key pressed, behaves likenode; other-
wise, behaves as ifgraph was giv en.

graph-dereference ()
Dereference the selected display.

graph-detail ()
Show or hide detail of the selected display.

DDD 3.1 1998−12−01 79

() ()

graph-rotate ()
Rotate the selected display.

graph-dependent ()
Pop up a dialog to create a dependent display.

hide-edges ([any|both|from |to])
Hide some edges.any means to process all edges where either source or target node are selected.
both means to process all edges where both nodes are selected.from means to process all edges
where at least the source node is selected.to means to process all edges where at least the target
node is selected. Default isany.

layout ([regular|compact], [[+|−]degrees]])
Layout the graph.regular means to use the regular layout algorithm;compact uses an alternate
layout algorithm, where successors are placed next to their parents. Default isregular. degrees
indicates in which direction the graph should be layouted. Default is the current graph direction.

move-selected (x-offset, y-offset)
Move all selected nodes in the direction given byx-offsetand y-offset. x-offsetand y-offset is
either given as a numeric pixel value, or as ‘+grid ’, or ‘−grid ’, meaning the current grid size.

normalize ()
Place all nodes on their positions and redraw the graph.

rotate ([[+|−]degrees])
Rotate the graph arounddegreesdegrees.degreesmust be a multiple of 90. Default is+90.

select ()
Select the node pointed at. Clear all other selections. Bound to a button down event.

select-all ()
Select all nodes in the graph.

select-first ()
Select the first node in the graph.

select-next ()
Select the next node in the graph.

select-or-move ()
Select the node pointed at. Clear all other selections. Bound to a button down event. If the pointer
is dragged, move the selected node.

select-prev ()
Select the previous node in the graph.

show-edges ([any|both|from |to])
Show some edges.any means to process all edges where either source or target node are selected.
both means to process all edges where both nodes are selected.from means to process all edges
where at least the source node is selected.to means to process all edges where at least the target
node is selected. Default isany.

snap-to-grid ()
Place all nodes on the nearest grid position.

toggle ()
Toggle the current selection—if the node pointed at is selected, it will be unselected, and vice
versa. Bound to a button down event.

toggle-or-move ()
Toggle the current selection—if the node pointed at is selected, it will be unselected, and vice
versa. Bound to a button down event. If the pointer is dragged, move the selection.

DDD 3.1 1998−12−01 80

() ()

unselect-all ()
Clear the selection.

Debugger Console Actions
These actions are used in the debugger console and other text fields.

gdb-backward-character ()
Move one character to the left. Bound toLeft .

gdb-beginning-of-line ()
Move cursor to the beginning of the current line, after the prompt. Bound toHOME .

gdb-control (control-character)
Send the givencontrol-characterto the inferior debugger. Thecontrol-charactermust be speci-
fied in the form ‘̂X’, whereX is an upper-case letter or ‘?’.

gdb-command (command)
Executecommandin the debugger console. The following replacements are performed oncom-
mand:

• If commandhas the form ’name...’, insertname, followed by a space, in the debugger console.

• All occurrences of ‘()’ are replaced by the current contents of the argument field ‘()’.

gdb-complete-arg (command)
Complete current argument as ifcommandwas prepended. Bound toCtrl+T .

gdb-complete-command ()
Complete current command line in the debugger console. Bound toTAB .

gdb-complete-tab (command)
If global TAB completion is enabled, complete current argument as ifcommandwas prepended.
Otherwise, proceed as if theTAB key was hit. Bound toTAB .

gdb-delete-or-control (control-character)
Like gdb-control, but effective only if the cursor is at the end of a line. Otherwise,control-
characteris ignored and the character following the cursor is deleted. Bound toCtrl+D .

gdb-end-of-line ()
Move cursor to the end of the current line. Bound toEnd.

gdb-forward-character ()
Move one character to the right. Bound toRight.

gdb-insert-graph-arg ()
Insert the contents of the data display argument field ‘()’.

gdb-insert-source-arg ()
Insert the contents of the source argument field ‘()’.

gdb-interrupt ()
If DDD is in incremental search mode, exit it; otherwise callgdb-control(ˆC).

gdb-isearch-prev ()
Enter reverse incremental search mode. Bound toCtrl+B .

gdb-isearch-next ()
Enter incremental search mode. Bound toCtrl+F .

gdb-isearch-exit ()
Exit incremental search mode. Bound toESC.

gdb-next-history ()
Recall next command from history. Bound toDown.

DDD 3.1 1998−12−01 81

() ()

gdb-prev-history ()
Recall previous command from history. Bound toUp.

gdb-previous-history ()
Recall previous command from history. Bound toUp.

gdb-process ([action[, args...]])
Process the given event in the debugger console. Bound to key events in the source and data win-
dow. If this action is bound to the source window, and the source window is editable, perform
action(args...) on the source window instead; ifaction is not given, perform ‘self-insert()’.

gdb-select-all ()
If the ‘selectAllBindings’ resource is set toMotif , performbeginning-of-line. Otherwise, perform
select-all. Bound toCtrl+A .

gdb-set-line (value)
Set the current line tovalue. Bound toCtrl+U .

Source Window Actions
These actions are used in the source and code windows.

source-delete-glyph ()
Delete the breakpoint related to the glyph at cursor position.

source-double-click ([text-action[,line-action[,function-action]]])
The double-click action in the source window.

• If this action is taken on a breakpoint glyph, edit the breakpoint properties.

• If this action is taken in the breakpoint area, invoke ‘gdb-command(line-action)’. If line-action
is not given, it defaults to ‘break ()’.

• If this action is taken in the source text, and the next character following the current selection is
a ‘(’, invoke ‘gdb-command(function-action)’. If function-actionis not given, it defaults to
‘ list ()’.

• Otherwise, invoke ‘gdb-command(text-action)’. If text-action is not given, it defaults to
‘graph display ()’.

source-drag-glyph ()
Initiate a drag on the glyph at cursor position.

source-drop-glyph ([action])
Drop the dragged glyph at cursor position.action is either ‘move’, meaning to move the dragged
glyph, or ‘copy’, meaning to copy the dragged glyph. If noaction is given, ‘move’ is assumed.

source-end-select-word ()
End selecting a word.

source-follow-glyph ()
Continue a drag on the glyph at cursor position. Usually bound to some motion event.

source-popup-menu ()
Pop up a menu, depending on the location.

source-set-arg ()
Set the argument field to the current selection. Typically bound to some selection operation.

source-start-select-word ()
Start selecting a word.

source-update-glyphs ()
Update all visible glyphs. Usually invoked after a scrolling operation.

DDD 3.1 1998−12−01 82

() ()

IMAGES
DDD installs a number of images that may be used as pixmap resources, simply by giving a symbolic name.
For button images, three variants are installed as well:

• The suffix ‘-hi’ indicates a highlighted variant (Button is entered).

• The suffix ‘-arm’ indicates an armed variant (Button is pushed).

• The suffix ‘-xx’ indicates a disabled (insensitive) variant.

break_at
‘Break at ()’ button.

clear_at
‘Clear at ()’ button.

ddd
DDD icon.

delete
‘Delete ()’ button.

disable
‘Disable’ button.

dispref
‘Display * ()’ button.

display
‘Display ()’ button.

drag_arrow
The execution pointer (being dragged).

drag_cond
A conditional breakpoint (being dragged).

drag_stop
A breakpoint (being dragged).

drag_temp
A temporary breakpoint (being dragged).

enable
‘Enable’ button.

find_forward
‘Find>> ()’ button.

find_backward
‘Find<< ()’ button.

grey_arrow
The execution pointer (not in lowest frame).

grey_cond
A conditional breakpoint (disabled).

grey_stop
A breakpoint (disabled).

grey_temp
A temporary breakpoint (disabled).

hide
‘Hide ()’ button.

DDD 3.1 1998−12−01 83

() ()

lookup
‘Lookup ()’ button.

maketemp
‘Make Temporary’ button.

new_break
‘New Breakpoint’ button.

new_display
‘New Display’ button.

new_watch
‘New Watchpoint’ button.

plain_arrow
The execution pointer.

plain_cond
A conditional breakpoint (enabled).

plain_stop
A breakpoint (enabled).

plain_temp
A temporary breakpoint (enabled).

print
‘Print () ’ button.

properties
‘Properties’ button.

rotate
‘Rotate ()’ button.

set
‘Set ()’ button.

show
‘Show ()’ button.

signal_arrow
The execution pointer (stopped by signal).

undisplay
‘Undisplay ()’ button.

unwatch
‘Unwatch ()’ button.

watch
‘Watch ()’ button.

ENVIRONMENT
DDD is controlled by the following environment variables:

DDD_NO_SIGNAL_HANDLERS
If set,DDD does not catch fatal errors. This is sometimes useful when debugging
DDD.

DDD_STATE Root ofDDD state directory. Default is ‘$HOME/.ddd/ ’.

DDD_SESSION If set, indicates a session to start, overriding all options. This is used byDDD
when restarting itself.

DDD 3.1 1998−12−01 84

() ()

DDD_SESSIONS DDD session directory. Default is ‘$DDD_STATE/sessions/’.

EDITOR The text editor to invoke for editing source code. See the ‘editCommand’
resource, above.

VSL_INCLUDE Where to search forVSL include files. Default is the current directory.

WWWBROWSER The WWW browser to invoke for viewing theDDD WWW page. See the ‘www-
Command’ resource, above.

XEDITOR The X editor to invoke for editing source code. See the ‘editCommand’ resource,
above.

The following environment variables are set byDDD:

DDD Set to a string indicating theDDD version. By testing whetherDDD is set, a
debuggee (or inferior debugger) can determine whether it was invoked byDDD.

TERM Set to ‘dumb’, the DDD terminal type. This is set for the inferior debugger only.
If the debuggee runs in a separate execution window, the debuggee’sTERM value
is set according to the ‘termType’ resource (see ‘RESOURCES’, above).

TERMCAP Set to ‘’ (none), theDDD terminal capabilities.

PA GER Set to ‘cat’, the preferredDDD pager.

FILES
$HOME/.ddd/ DDD state directory.
$HOME/.ddd/init Individual DDD resource file.DDD options are saved here.
$HOME/.ddd/history DefaultDDD command history file.
$HOME/.ddd/lock DDD lock file; indicates that aDDD is running.
$HOME/.ddd/log Trace of the current interaction betweenDDD and the inferior debugger.
$HOME/.ddd/sessions/

DDD session directory. One subdirectory per session.
$HOME/.ddd/sessions/session/dddcore

DDD core file forsession.
$HOME/.ddd/sessions/session/init

DDD resource file forsession.
$HOME/.ddd/sessions/session/history

DDD command history forsession.
$HOME/.ddd/sessions/.ddd/

TheDDD ‘restart’ session.
$HOME/.ddd/tips DDD tips resource file. Contains the number of the next tip of the day.
$HOME/.gdbinit GDB initialization file.
$HOME/.dbxinit DBX initialization file.
$HOME/.dbxrc AlternateDBX initialization file.
$HOME/.xdbrc XDB initialization file.
$HOME/.gnuplot Gnuplot initialization file.
$HOME/.dddinit Old-styleDDD initialization file; used only if$HOME/.ddd/init does not exist.

SEE ALSO
X(1), gdb(1), dbx(1), xdb(1), perldebug(1), remsh(1), rsh(1), gnuplot(1),

‘ gdb ’ entry in info.

UsingGDB: A Guide to theGNU Source-Level Debugger, by Richard M. Stallman and Roland H. Pesch.

jdb—The Java Debugger, at http://java.sun.com/ (and its mirrors) in /prod-
ucts/jdk/1.1/docs/tooldocs/solaris/jdb.html

Java Language Debugging, athttp://java.sun.com/ (and its mirrors) in/products/jdk/1.1/debugging/

The Python Language, athttp://www.python.org/ and its mirrors.

DDD 3.1 1998−12−01 85

() ()

DDD—A Free Graphical Front-End forUNIX Debuggers, by Andreas Zeller and Dorothea Lütkehaus, Com-
puter Science Report 95-07, Technische Universität Braunschweig, 1995.

DDD – ein Debugger mit graphischer Datendarstellung, by Dorothea Lütkehaus, Diploma Thesis, Technis-
che Universität Braunschweig, 1994.

TheDDD FTP site,

ftp://ftp.ips.cs.tu-bs.de/pub/local/softech/ddd/

TheDDD WWWpage,

http://www.cs.tu-bs.de/softech/ddd/

TheDDD Mailing List,

ddd-users@ips.cs.tu-bs.de

For more information on this list, send a mail to

ddd-users-request@ips.cs.tu-bs.de.

LIMITATIONS
General Limitations

If command output is sent to the debugger console, it is impossible forDDD to distinguish between the out-
put of the debugged program and the output of the inferior debugger. This problem can be avoided by run-
ning the program in the separate execution window.

Output that confusesDDD includes:

• Primary debugger prompts (e.g. ‘(gdb) ’ or ‘ (dbx) ’)

• Secondary debugger prompts (e.g. ‘>’)

• Confirmation prompts (e.g. ‘(y or n) ’)

• Prompts for more output (e.g. ‘PressRETURN to continue’)

• Display output (e.g. ‘$pc = 0x1234’)

If your program outputs any of these strings, you should run it in the separate execution window.

If the inferior debugger changes the defaultTTY settings, for instance through a ‘stty’ command in its ini-
tialization file,DDD will likely become confused. The same applies to debugged programs which change
the defaultTTY settings.

Limitations using GDB
SomeGDB settings are essential forDDD to work correctly. These settings with their correct values are:

set height 0
set width 0
set verbose off
set prompt (gdb)

DDD sets these values automatically when invokingGDB; if these values are changed, there may be some
malfunctions, especially in the data display.

When debugging at the machine level withGDB 4.12 and earlier as inferior debugger, use a ‘display /x
$pc’ command to ensure the program counter value is updated correctly at each stop. You may also enter
the command in$HOME/.gdbinit or (better yet) upgrade to the most recentGDB version.

DDD 3.1 1998−12−01 86

() ()

Limitations using DBX
When used for debugging Pascal-like programs,DDD does not infer correct array subscripts and always
starts to count with 1.

With someDBX versions (notably SolarisDBX), DDD strips C-style and C++-style comments from the
DBX output in order to interpret it properly. This also affects the output of the debugged program when
sent to the debugger console. Using the separate execution window avoids these problems.

In someDBX versions (notablyDEC DBX andAIX DBX), there is no automatic data display. As an alterna-
tive, DDD uses theDBX ‘print ’ command to access data values. This means that variable names are inter-
preted according to the current frame; variables outside the current frame cannot be displayed.

Limitations using XDB
There is no automatic data display inXDB. As a workaround,DDD uses the ‘p’ command to access data
values. This means that variable names are interpreted according to the current frame; variables outside the
current frame cannot be displayed.

Limitations using JDB
There is no automatic data display inJDB. As a workaround,DDD uses the ‘dump’ command to access
data values. This means that variable names are interpreted according to the current frame; variables out-
side the current frame cannot be displayed.

The JDB ‘dump’ and ‘print ’ commands do not support expression evaluation. Hence, you cannot display
arbitrary expressions.

Parsing ofJDB output is quite CPU-intensive, due to the recognition of asynchronous prompts (any thread
may output anything at any time, including prompts). Hence, a program producing much console output is
likely to slow downDDD considerably. In such a case, have the program run with−debug in a separate
window and attachJDB to it using the−passwdoption.

Limitations using Perl
There is no automatic data display in Perl. As a workaround,DDD uses the ‘x’ command to access data
values. This means that variable names are interpreted according to the current frame; variables outside the
current frame cannot be displayed.

REPORTING BUGS
If you find a bug inDDD, please send us a bug report. We will either attempt to fix the bug—or include the
bug description in theDDD ‘BUGS’ file, such that others can attempt to fix it. (Instead of sending bug
reports, you may also sendfixes; DDD is an excellent tool for debugging itself :-)

Where to Send Bug Reports
We recommend that you send bug reports forDDD via electronic mail to

ddd-bugs@ips.cs.tu-bs.de

As a last resort, send bug reports on paper to:

Technische Universität Braunschweig
Abteilung Softwaretechnologie
DDD-Bugs
Bültenweg 88
D-38092 Braunschweig
GERMANY

Is it a DDD Bug?
Before sending in a bug report, try to find out whether the problem cause really lies withinDDD. A com-
mon cause of problems are incomplete or missing X or Motif installations, for instance, or bugs in the X
server or Motif itself. RunningDDD as

ddd −−check-configuration

DDD 3.1 1998−12−01 87

() ()

checks for common problems and gives hints on how to repair them.

Another potential cause of problems is the inferior debugger; occasionally, they show bugs, too. To find out
whether a bug was caused by the inferior debugger, runDDD as

ddd −−trace

This shows the interaction betweenDDD and the inferior debugger on standard error whileDDD is running.
(If ‘ −−trace’ is not given, this interaction is logged in the file ‘$HOME/.ddd/log’.) Compare the debugger
output to the output ofDDD and determine which one is wrong.

How to Report Bugs
Here are some guidelines for bug reports:

• The fundamental principle of reporting bugs usefully is this:report all the facts. If you are not sure
whether to state a fact or leave it out, state it!

• Keep in mind that the purpose of a bug report is to enable someone to fix the bug if it is not known. It is
not very important what happens if the bug is already known. Therefore, always write your bug reports
on the assumption that the bug is not known.

• Your bug report should be self-contained. Do not refer to information sent in previous mails; your previ-
ous mail may have been forwarded to somebody else.

• Please report each bug in a separate message. This makes it easier for us to track which bugs have been
fixed and to forward your bugs reports to the appropriate maintainer.

• Please report bugs in English; this increases the chances of finding someone who can fix the bug. Do not
assume one particular person will receive your bug report.

What to Include in a Bug Report
To enable us to fix aDDD bug, youmustinclude the following information:

• Your DDD configuration. InvokeDDD as

ddd −−configuration

to get the configuration information. If this does not work, please include at least theDDD version, the
type of machine you are using, and its operating system name and version number.

• The debugger you are using and its version (e.g., ‘gdb-4.17’ or ‘ dbx as shipped with Solaris 2.6’).

• The compiler you used to compileDDD and its version (e.g., ‘gcc-2.8.1’).

• A description of what behavior you observe that you believe is incorrect. For example, “DDD gets a fatal
signal” or “DDD exits immediately after attempting to create the data window“.

• A log file showing the interaction betweenDDD and the inferior debugger. By default, this interaction is
logged in the file ‘$HOME/.ddd/log’. Include all trace output from theDDD invocation up to the first
bug occurrence; insert own comments where necessary.

• If you wish to suggest changes to theDDD source, send us context diffs. If you even discuss something
in theDDD source, refer to it by context,neverby line number.

Be sure to include this information ineverysingle bug report.

HISTORY
The history ofDDD is a story of code recycling. The oldest parts ofDDD were written in 1990, when
Andreas ZellerdesignedVSL, a box-based visual structure language for visualizing data and program struc-
tures. TheVSL interpreter and theBOX library became part of Andreas’ Diploma Thesis, a graphical syn-
tax editor based on the Programming System GeneratorPSG.

In 1992, theVSL andBOX libraries were recycled for theNORA project. ForNORA, an experimental infer-
ence-based software development tool set, Andreas wrote a graph editor (based onVSL and theBOX

DDD 3.1 1998−12−01 88

() ()

libraries) and facilities for inter-process knowledge exchange. Based on these tools,Dorothea Lütkehaus
(nowDorothea Krabiell) realizedDDD as her Diploma Thesis, 1994.

The originalDDD had no source window; this was added by Dorothea during the winter of 1994–1995. In
the first quarter of 1995, finally, Andreas completedDDD by adding command and execution windows,
extensions forDBX and remote debugging as well as configuration support for several architectures. Since
then, Andreas has further maintained and extendedDDD, based on the comments and suggestions of several
DDD users around the world. See the comments in theDDD source for details.

Major DDD ev ents:
April, 1995 DDD 0.9: FirstDDD beta release.
May, 1995 DDD 1.0: First publicDDD release.
December, 1995 DDD 1.4: Machine-level debugging, glyphs,EMACS integration.
October, 1996 DDD 2.0: Color displays,XDB support, genericDBX support, command tool.
May, 1997 DDD 2.1: Alias detection, button tips, status displays.
November, 1997 DDD 2.2: Persistent sessions, display shortcuts.
June, 1998 DDD 3.0: Icon tool bar, Java support,JDB support.
December, 1998 DDD 3.1: Data plotting, Perl support, Python support, Undo/Redo.

EXTENDING DDD
If you have any contributions to be incorporated intoDDD, please send them to ‘ddd@ips.cs.tu-bs.de’.
For suggestions on what might be done, see the file ‘TODO’ in the DDD distribution.

DDD NEEDS YOUR SUPPORT!
DDD needs your support! If you have any success stories related to DDD, please write them down on a
picture postcard and send them to us:

Technische Universität Braunschweig
Abteilung Softwaretechnologie
Bültenweg 88
D-38092 Braunschweig
GERMANY

You may also leave a message in theDDD Guestbook. It is accessible via theDDD WWW page,

http://www.cs.tu-bs.de/softech/ddd/.

PRINTING THIS MANUAL
InvokeDDD with the ‘−−manual’ option to show this manual page on standard output. This text output is
suitable for installation as formatted manual page (as ‘/usr/local/man/cat1/ddd.1’ or similar) onUNIX sys-
tems.

A PostScript copy of this manual page, including severalDDD screen shots and diagrams, is included in the
DDD source distribution and available separately as ‘ddd.man.ps.gz’ in

ftp://ftp.ips.cs.tu-bs.de/pub/local/softech/ddd/doc/

This directory also contains other documentation related toDDD.

A ROFF copy of this manual page, suitable for installation as manual page onUNIX systems (as
‘ /usr/local/man/man1/ddd.1’ or similar), is included in theDDD source distribution.

COPYRIGHT
DDD

DDD is Copyright © 1995, 1996, 1997, 1998 Technische Universität Braunschweig, Germany.

DDD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either version 2 of the License, or (at your option)
any later version.

DDD 3.1 1998−12−01 89

() ()

DDD is distributed in the hope that it will be useful, butwithout any warranty; without even the implied
warranty ofmerchantabilityor fitness for a particular purpose. See the License for more details.

You should have received a copy of the License along withDDD. If not, invokeDDD with the ‘−−license’
option; this will print a copy on standard output. To read the License from withinDDD, use ‘Help→DDD
License’.

DDD Manual
This DDD manual is Copyright © 1995, 1996, 1997, 1998 Technische Universität Braunschweig, Germany.

Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice
and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions for ver-
batim copying, provided that the entire resulting derived work is distributed under the terms of a permission
notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language, under the
above conditions for modified versions, except that this permission notice may be included in translations
approved by the Free Software Foundation instead of in the original English.

DDD 3.1 1998−12−01 90

