NAME
ddd, xddd - the data display debugger

DataDisplayDebugger

SYNOPSIS
ddd [——gdb] [——dbx] [——xdb] [-—jdb] [——pydb] [——perl] [——debuggername] [——[r]host
[usernamé@]hostnamé] [——help] [——trace] [——version] [——configuration] [options..]
[program|[core | process-iq]

but usually just
ddd program

DESCRIPTION
The purpose of a debugger suclDad is to allow you to see what is going on “inside” another program
while it executes—or what another program was doing at the moment it crashed.

DDD can do four main kinds of things (plus other things in support of these) to help you catch bugs in the
act:

 Start your program, specifying anything that might affect its behavior.
» Make your program stop on specified conditions.
» Examine what has happened, when your program has stopped.

» Change things in your program, so you can experiment with correcting the effects of one bug and go on
to learn about another.

“Classical” UNIX debuggers such as tiBNU debugger €DB) provide a command-line interface and a
multitude of commands for these and other debugging purp@®eB.is a comfortablegraphical user
interfacearound an inferioGDB, DBX, XDB, JDB, Python debugger, or Perl debugger.

INVOKING DDD
You can runDDD with no arguments or options. However, the most usual way toxdd@rtis with one
argument or two, specifying an executable program as the argument:
ddd program
You can also start with both an executable program and a core file specified:
ddd program core
You can, instead, specify a process ID as a second argument, if you want to debug a running process:

ddd program 1234

would attachDDD to procesd234(unless you also have a file namei®34’; DDD does check for a core
file first).

By default,DDD determines the inferior debugger automatically. Use

DDD 3.1 1998-12-01 1

ddd ——gdb program
or

ddd ——dbx program
or

ddd ——xdb program
or

ddd --jdb class
or

ddd ——pydb module
or

ddd ——perl programfile

to runGDB, DBX, XDB, JDB, PYDB or Perl as inferior debugger.
To learn more abouyDD options, run

ddd —-help

to get a list of frequently used options, or see @RTIONS’ section, below.

THE DDD WINDOWS
The DDD Main Windows

MenuBarﬂ-F.—.—.!—-—uF

b
Tool Bar——#=| !lir=imai- s e —‘!ial.&iﬁii

Source Window ——= 1 et v 1=

Machine Code Window J

Debugger Console —-*

Panner

— Command Tool

— Scroll Bar

— Resize Sash

— Value Tip

il

Status Line — sl s {i s

— Busy Indicator

The DDD Layout using Stacked Windows
DDD is composed of three main windows:

DDD 3.1 1998-12-01

» TheData Windowshows the current data of the debugged program.
» TheSource Windowhows the current source code of the debugged program.
» TheDebugger Consolaccepts debugger commands and shows debugger messages.

By default,DDD places these main windows stacked into one single top-level windo®pbutan also be
configured to treat each one separately.

H |
[
§ |

ix
fur
 fi
=
R

Debugger Console

m‘ |..| ||:r - - I

.|,=.: i 1lmt—mpet— ot

]

Source Window

Pl Elg/ia
Tieillile

ki

CEIEN

; | Tisi --... = .-rr ~——Button Tip
Data Window - = J-_,_ i 1 - 'i,

i

The DDD Layout using Separate Windows

Besides these main windows, there are some other optional windows:

» TheCommand Toobffers buttons for frequently used commands. It is usually placed on the source win-
dow.

» The Machine Code Windowhows the current machine code. It is usually placed beneath the current
source.

» TheExecution Windowhows the input and output of the debugged program.
DDD also has several temporatialogsfor showing and entering additional information.

Using the Command Tool
The command tool is a small window containing frequently g commands. It can be moved around
on top of theDDD windows, but it can also be placed besides them. Whenever yolbBavstate,DDD
also saves the distance between command tool and source window, such that you can select your own indi-
vidual command tool placement. Tawethe command tool to its saved position, ugiew . Command
Tool'.

By default, the command tosticksto theDDD source window: Whenever youave theDDD source win-

dow, the command tool follows such that the distance between source window and command tool remains
the same. By default, the command tool is ast-raised such that it stays on top of othebD win-

dows.

The command tool can be configured to appear as a command toolokartteh source window; see
‘Edit - Preferences- Source- Tool Buttons Location’ for details.

DDD 3.1 1998-12-01 3

Start debugged program

Interrupt debugged program

Step program one line (step into calls)
Step program one line (step over calls)
Continue until program reaches next line
Continue program after breakpoint
Select stack frame that called this one

Undo previous action

Edit source file

s poD E3

Step one instruction (step into calls)

Step one instruction (step over calls)

Continue until frame returns

Kill execution of debugged program

Select stack frame called by this one

Run
Interrupt
Step | Stepi
Mext | Mesti
Until | Finish

Cont | Kil
Up | Down

nda | Fedo

Edit | Make

Redo next action

Invoke the make program

Using the Tool Bar

The Command Tool

SomeDDD commands require argument This argument is specified in thegument fieldlabeled ():’.
Basically, there are four ways to set arguments:

» You cankey inthe argument manually.

» You canpastethe current selection into the argument field (typically usiogise button)2 To clear old
contents beforehand, click on thg* label.

* You canselect an itenfrom the source and data windows. This will automatically copy the item to the

argument field.

* You can select previously used argumefrom the drop-down menu at the right of the argument field.

Using GDB and Perl, the argument field provides a completion mechanism. You can enter the first few
characters of an item an press 1@ key to complete it. PressintpB again shows alternative comple-

tions.

After having entered an argument, you can select one of the buttons on the right. Most of these buttons also
have menus associated with them; this is indicated by a small arrow in the upper right corner. Pressing and
holdingmouse button @&n such a button will pop up a menu with further operations.

Enter Argument

Get Previous Arguments

(}p:larra:-.»ﬁt E@ @v@vmv?éaﬁv%@ ﬁ|
L?t-kup /an:lss Brr&%k I..Jaych Prﬂ'ﬂ\l:nsplay\ﬁhou\ Rm{ate /Zet /Undisp

Lookup Commands

Breakpoint Commands

Data Commands

DDD 3.1

The Tool Bar

1998-12-01

GETTING HELP
DDD has an extensive on-line help system. Here’s how to get help while workin@miith

Button Tips
You can get a short help text on me&iD buttons by simply moving the mouse pointer on it and leave it
there. After a second, a small window (callagtton tig pops up, giving a hint on the button’s meaning.
The button tip disappears as soon as youathe mouse pointer to another item.

The Status Line
The status line also displays information about the currently selected item. By clicking on the status line,
you can redisplay the most recent messages.

Context-Sensitive Help
You can get detailed help on any visiliBD item. Just point on the item you want help and pressitie *
key. This pops up a detailed help text.

TheDDD dialogs all containHelp’ buttons that give detailed information about the dialog.

Help on Debugger Commands
You can get help on debugger commands by entehigig“at the debugger prompt.

See Entering Commands, below, for details on entering commands.

Are You Stuck?
If you are stuck, tryHelp - What Now? (the ‘What Now’ item in the Help’ menu) or pres<tri+F1.
Depending on the current stad)D will give you some hints on what you can do next.

Undoing Commands
And if, after all, you made a mistake, don't worry. Almost evedD command can be undone, using
‘Edit -~ Undo’ or the ‘Undo’ button on the command tool. Likewisédit — Redd repeats the command
most recently undone.

OPENING FILES
If you did not invokeDDD specifying a program to be debugged, you can usé-tle menu to open pro-
grams, core dumps and sources.

£: DDD: Open Program E3
Filter

File Filter *I»/u5r1u59r5fst51 Fzeller/ddd/Tinux/ddd/ %

Directorie Fles
4 |ctest
Idd/.. cxxtest |

L

ddd File List
Directory List - ddd -2.99.1 -i586- pc - linux - gnulibcl
grahiest
stringify
userinfo
A A
=4 .~ |- [
Program

Program to be opened 4‘| rfusers/sts1/zeller/ddd/ i nux/ddd s cantesd

Click here to open Open Filter Cancel Help |

Opening a program to be debugged

To open a program to be debugged, selet - Open Program.

DDD 3.1 1998-12-01 5

In JDB, select File — Open Classinstead. This gives you a list of available classes to choose from.

To re-open a recently debugged program or class, séliéet-'‘Open Recentand choose a program or
class from the list.

Note: With XDB and someDBX versions, the debugged program must be specified upon invocation and
cannot be changed at run time.

To open a core dump for the program, selede- Open Core Dumg. Before ‘Open Core Dumg, you
should first useFile — Open Program to specify the program that generated the core dump and to load its
symbol table.

To open a source file of the debugged program, sélgets Open Source.
» UsingGDB, this gives you a list of the sources used for compiling your program.

» Using other inferior debuggers, this gives you a list of accessible source files, which may or may not be
related to your program.

LOOKING UP ITEMS
As soon as the source of the debugged program is availabknuiee windowdisplays its current source
text. (If a source text cannot be found, usdit — GDB Settings to specify source text directories.)

In the source window, you can lookup and examine function and variable definitions as well as search for
arbitrary occurrences in the source text.

Looking up Definitions
If you wish to lookup a specific function or variable definition whose name is visible in the source text,
click with mouse button bn the function or variable name. The name is copied to the argument field.
Alter the name if desired and click on th@okup ()’ button to find its definition.

Press Button 3 on Item

f/ Test disambijguation
void Tist_testidouble dJ
i
B int{di)
3 Print 1ist_test | ShowItem Value
Display list_fest ———
void refereng . Date*&
Print #1ist_test
date = *¢ .
delete d: Display *1ist_test
date_ptr whatis 1ist_test +——— Show ltem Type
/7 Lookup list_test & Lookup Item’s Definition in Source Code
void array_te Break at 1ist_test{———— Setand Delete Breakpoint at Item
: Clear at 1ist_test

A Lookup definition of the selected item

The Source Popup Menu

As a faster alternative, you can simply pressuse button 8n the function name and select thedkup’
item from the source popup menu.

As an even faster alternative, you can also double-click on a function call (an identifier followed by a *
character) to lookup the function definition.

DDD 3.1 1998-12-01 6

Textual Search

If the item you wish to search is visible in the source text, click mithise button @n it. The identifier is

copied to the argument field. Click on theirild>> ()’ button to find following occurrences and on the

‘Find<< ()’ button to find previous occurrences.

As an alternative, you can enter the item in the argument field and click on oneFRihthduttons.

By default,DDD finds only complete words. To search for arbitrary substrings, change the value of the

‘Source- Find Words Only’ option.
Looking up Previous Locations

After looking up a location, usé&dit — Undo’ (or the ‘Undo’ button on the command tool) to go back to

the original locations. Edit -~ Redd brings you back again to the location you looked for.

Argument for command buttons on the right

Click here to find further occurrences of ‘tree_test’

Click here to lookup ‘tree_test’

£2 DDD: fusrfusersfsts1fzellerfddd/dddicxxtest.C

Fle FEdit View Program Status Source Help |
o I tree_test! el
Lookup Find= Break Watch Frint Dizplay
. ! Y
A Simple binary tree -
ot d. EOETRERA) S DODES
{ Run
Enabled Breakpoint —D Tree *tree = 0;
tree = new Tree(7, "ada"); /7 Byron Lovelace Interrupt
tree—:left = new Tree(1, "Grace") /4 Murray Hopper Step | Stepi
tree—:left—r:1eft = new Tree(S, "Judy"): ff Clapp
Execution Position ————=#p tree—left—>right = new Tree(g, "Kathleen"); // McNulty Mext | Mexti|| | |
tree—rright = new Tree(1, "Mildred"); /J/ Koss : :
Until | Finisk
tree—rdate.set{Tue, 29, 11, 1994); cont | il
tree—>date.set(Wed, 30, 11, 1994);
i X Up | Down
Disabled Breakpoint ik delete tree;
3 Back | Fud
I Eclit | Make
L
Program Counter P [0x00488e3 <tree_test_ Fv+121>: pushl $0x30496a7 ﬁ
0xB8048%ee <tree_test__Fv+126>: pushl $0x6 .
A tree_test = fvoid ()3 0x8048870 <tree_test(voidl> ‘F

The Source Window

BREAKPOINTS

You can make the program stop at certaiwakpointaand trace its execution.

Setting Breakpoints by Location

If the source line is visible, click wittnouse button bn the left of the source line and then on Beak

at ()’ button.

As a faster alternative, you can simply pressise button 8n the left of the source line and select thet

Breakpoint’ item from the line popup menu.

DDD 3.1 1998-12-01

list

list—rnext

Press Button 3 on Line T et L T e
3et Breakpoint

Set Temporary Breakpoint | .

Set Breakpoint at Line

Continue Until Here

3 Set Execution Position

A Set a breakpoint at the selected position

The Line Popup Menu

As an even faster alternative, you can simply double-click on the left of the source line to set a breakpoint.

As yet another alternative, you can sel&uurce- Edit Breakpoints’. Click on the Break’ button and
enter the location.

(If you find this number of alternatives confusing, be awarenbat users fall into three categories, which
must all be supportedNovice usersexplore DDD and may prefer to use one single mouse button.
Advanced userknow how to use shortcuts and prefer popup meitixperienced usergrefer the com-
mand line interface.)

Breakpoints are indicated by a plain stop sign, o#a#,' wheren is the breakpoint number. A greyed out
stop sign (or_‘n_’) indicates a disabled breakpoint. A stop sign with a question marRr{@) indicates a
conditional breakpoint or a breakpoint with an ignore count set.

If you set a breakpoint by mistake, ugalit — Undo’ to delete it again.

Note: We have received reports that some Motif versions fail to display stop signs correctly. If this hap-
pens, try writing in your$HOME/.ddd/init ' file:

Ddd*cacheGlyphimages: off

and restarbDD. See also thecacheGlyphlmagesresource in theRESOURCES section, below.

Setting Breakpoints by Name
If the function name is visible, click witmouse button bn the function name. The function name is
copied to the argument field. Click on thigreak at ()’ button to set a breakpoint there.

As a shorter alternative, you can simply pregsise button 8n the function name and select thecak’
item from the popup menu.

As yet another alternative, you can click oNetw from the Breakpoint editor (invoked through
‘Source- Edit Breakpoints’) and enter the function name.

Setting Regexp Breakpoints
Using GDB, you can also set a breakpoint on all functions that match a given stBrepk‘at () - Set
Breakpoints at Regexp () sets a breakpoint on all functions whose name matchegdhér expression
givenin ‘()’. Here are some examples:

» To set a breakpoint on every function that starts with", set ()’ to * "Xm".

* To set a breakpoint on every member of cl&xse, set ()’ to ‘"Date::’.

* To set a breakpoint on every function whose name contais’, set ()’ to * _fun’.
» To set a breakpoint on every function that ends fest, set ()’ to ‘ _test$.

Once these multiple breakpoints are set, they are treated just like the breakpoints set Bitathat'()’
button. You can delete them, disable them, or make them conditional the same way as any other

DDD 3.1 1998-12-01 8

breakpoint. UseSource- Edit Breakpoints’ to view and edit the list of breakpoints.

Disabling Breakpoints
To temporarily disable a breakpoint, pressuse button 8n the breakpoint symbol and select tbésable
Breakpoint’ item from the breakpoint popup menu. To enable it again, séleetble Breakpoint.

f/f Dereference this
Date *date_ptrs[4];
Press Button 3 on Breakpoint ——@ date_ptrs[0] = new Date{Thu, 1,

Properties... Date(Fri. 15 Edit Properties

¢ Disable Breakpoint - {Date(Sat, 24 pisaple Breakpoint
Delete Breakpoint

4; k)

Fet Execution Position
A Breakpoint 5 (enabled; delete when hit)

The Breakpoint Popup Menu

As an alternative, you can select the breakpoint and clicBmmablée or ‘ Enable’ in the Breakpoint editor
(invoked through Source- Edit Breakpoints'.

Disabled breakpoints are indicated by a grey stop signyot, wheren is the breakpoint number.

The ‘Disable Breakpoint item is also accessible via th€lear at ()’ button. Just press and hahdouse
button 1on the button to get a popup menu.

Note:JDB does not support breakpoint disabling.

Temporary Breakpoints
A temporary breakpoints immediately deleted as soon as it is reached. To set a temporary breakpoint,
pressmouse button 8n the left of the source line and select tBet'Temporary Breakpoint item from
the popup menu.

As a faster alternative, you can simply double-click on the left of the source line while Hotding

Temporary breakpoints are convenient to make the program continue up to a specific location: just set the
temporary breakpoint at this location and continue execution.

The ‘Continue Until Here’ item from the popup menu sets a temporary breakpoint on the left of the source
line and immediately continues execution. Execution stops when the temporary breakpoint is reached.

The ‘Set Temporary Breakpoint and ‘Continue Until Here’ items are also accessible via tigréak at
()’ button. Just press and haldouse button &n the button to get a popup menu.

Note:JDB does not support temporary breakpoints.

Deleting Breakpoints
If the breakpoint is visible, click witmouse button bn the breakpoint. The breakpoint location is copied
to the argument field. Click on th€lear at ()’ button to delete all breakpoints there.

If the function name is visible, click witmouse button bn the function name. The function name is
copied to the argument field. Click on tli&ear at ()’ button to set a breakpoint there.

As a faster alternative, you can simply pressuse button ®n the breakpoint and select tHaelete
Breakpoint’ item from the popup menu.

As yet another alternative, you can select the breakpoint and clicRedate in the Breakpoint editor
(invoked through Source- Edit Breakpoints’).

As an even faster alternative, you can simply double-click on the breakpoint while Hotding

DDD 3.1 1998-12-01 9

Editing Breakpoint Properties
You can change all properties of a breakpoint by pregsiogse button ®n the breakpoint symbol and
select Properties from the breakpoint popup menu. This will pop up a dialog showing the current proper-
ties of the selected breakpoint.

As an even faster alternative, you can simply double-click on the breakpoint.

Disable Breakpoint

£: DDD: Properties: Breakpoint 1

el

Breakpoint 1 &

Lookup Enable Disable Temp Delete

Condition Hwodim < 10

Edit Breakpoint Condition

Ignore Count | 1 -] -

Edit Ignore Count

Commands Record | EEEH | Edit > |

Close | Help |

Breakpoint Properties

Click on ‘Lookup’ to movethe cursor to the breakpoint’s location.
Click on ‘Enabl€’ to enable the breakpoint.
Click on ‘Disabl€ to disable the breakpoint.

Click on ‘Temp’ to make the breakpoint temporary. No@DB has no way to make a temporary break-
point non-temporary again.

Click on ‘Delete to delete the breakpoint.

Breakpoint Conditions
In the field Condition’ of the ‘Breakpoint Properties’ panel, you can specify lareakpoint condition If a
breakpoint condition is set, the breakpoint stops the program only if the associated condition is met—that
is, if the condition expression evaluates to a non-zero value.

Note:JDB does not support breakpoint conditions.

Breakpoint Ignore Counts
In the field 1gnore Count’ of the ‘Breakpoint Properties' panel, you can specify breakpoint ignore
count If the ignore count is set to some valNgthe nextN crossings of the breakpoint will be ignored:
Each crossing of the breakpoint decrements the ignore count; the program stops only if the ignore count is
zero.

Note:JDB, Perl and somBBX variants do not support breakpoint ignore counts.

Breakpoint Commands
Note: Breakpoint commands are currently availabl&Ds only.

Using the Commands buttons of the Breakpoint Properties’ panel, you can record and edit commands
to be executed when the breakpoint is hit.

DDD 3.1

1998-12-01 10

To record a command sequence, follow these steps:
* Click on ‘Record to begin the recording of the breakpoint commands.

* Now interact withDDD. While recordingDDD does not execute commands, but simply records them to
be executed when the breakpoint is hit. The recorded debugger commands are shown in the debugger
console.

» To stop the recording, click ofehd’ or enter end at the GDB prompt. Tocancelthe recording, click
on ‘Interrupt ’ or pressescC.

» Click on ‘Edit >>' to edit the recorded commands. When done with editing, clickedlit ‘<<’ to close
the commands editor.

Moving and Copying Breakpoints
To move areakpoint to a different location, pressuse button tn the stop sign and drag it to the desired
location. This is equivalent to deleting the breakpoint at the old location and setting a breakpoint at the new
location. The new breakpoint inherits all properties of the old breakpoint, except the breakpoint number.

To copy a breakpoint to a new location, pressShit key while dragging.
Note: Dragging breakpoints is not possible when glyphs are disabled. Delete and set breakpoints instead.

Looking up Breakpoints
If you wish to lookup a specific breakpoint, sel&urce- Edit Breakpoints — Lookup’. After selecting
a breakpoint from the list and clicking tHeookup’ button, the breakpoint location is displayed.

As an alternative, you can entén’ in the argument field, whene is the breakpoint number and click on
the ‘Lookup ()’ button to find its definition.

Editing all Breakpoints
To view and edit all breakpoints at once, sel&durce- Edit Breakpoints’. This will popup theBreak-
point Editorwhich displays the state of all breakpoints.

£2 DDD: Breakpoint and Watchpoint Editor

Edit Properties —— L3k, ® & @

Props. Lookup Break. Match. FPrint Enable Disable Delete

Num Type Disp Enb Address What

<pep v 0x08048h2h in arrav_test() at o
=top only if twodim < 10

breakpoint already hit 1 time

stgnore next 1 hits

Condition

Ignore Count

Commands - info Tocals
3 watchpoint keep v twodim
5 hbreakpoint del vy 0x08048bc0 in array_test() at cxxtest.C:191
£ breakpoint keep n 0x08048c38 in array_test() at caxtest.C:194

The Breakpoint Editor

In the breakpoint editor, you can select individual breakpoints by clicking on them. Pr€ssinghile
clicking toggles the selection. To edit the properties of all selected breakpoints, clRtops.*

More Breakpoint Features
UsingGDB, a few more commands related to breakpoints can be invoked through the debugger console:

DDD 3.1 1998-12-01 11

hbreak position
Sets a hardware-assisted breakpoimgosition This command requires hardware support and
some target hardware may not have this support. The main purpose of this is EPROM/ROM
code debugging, so you can set a breakpoint at an instruction without changing the instruction.

thbreak pos
Set a temporary hardware-assisted breakpojmst

See thesDB documentation for details on these commands.

WATCHPOINTS

You can make the program stop as soon as some variable value changes, or when some variable is read or
written. This is called ‘setting @watchpointon a variable’.

Watchpoints have much in common with breakpoints: in particular, you can enable and disable them. You
can also set conditions, ignore counts, and commands to be executed when a watched variable changes its
value.

Please note: on architectures without special watchpoint support, watchpoints currently make the program
execute two orders of magnitude more slowly. This is so because the inferior debugger must interrupt the
program after each machine instruction in order to examine whether the watched value has changed. How-
ever, this delay can be well worth it to catch errors when you have no clue what part of your program is the
culprit.

Note: Watchpoints are available®@DB and soméBX variants only. IrXDB, a similar feature is available
via XDB assertionssee thexDB documentation for details.

Setting Watchpoints
If the variable name is visible, click wittnouse button bn the variable name. The variable name is
copied to the argument field. Otherwise, enter the variable name in the argument field. Click on the
‘“Watch ()’ button to set a watchpoint there.

Using GDB, you can set different types of watchpoints. Click and hotdise button dn the Watch ()’
button to get a menu.

Editing Watchpoint Properties
To change the properties of a watchpoint, enter the name of the watched variable in the argument field.
Click and holdmouse button @&n the Watch ()’ button and selectWatchpoint Properties'.

The Watchpoint Properties panel has the same functionality as Breakpoint Properties panel; see
‘Editing Breakpoint Properties’, above, for details. As an additional feature, you can clickRsmt ()’
to see the current value of a watched variable.

Editing all Watchpoints
To view and edit all watchpoints at once, sel&xta - Edit Watchpoints’. This will popup theWatch-
point Editorwhich displays the state of all watchpoints.

TheWatchpoint Editohas the same functionality as tBeeakpoint Editoy see Editing All Breakpoints’,
above, for details. As an additional feature, you can clickRvint ()’ to see the current value of a
watched variable.

Deleting Watchpoints

To delete a watchpoint, enter the name of the watched variable in the argument field and click the
‘Unwatch () button.

RUNNING THE PROGRAM
Starting Program Execution
To start execution of the debugged program, seRrcigram — Run’. You will then be prompted for the
arguments to pass to your program. You can either select from a list of previously used arguments or enter

own arguments in the text field. Afterwards, press Ren’ button to start execution with the selected
arguments.

To run your program again, with the same arguments, s&lemgjram - Run Again’ or press the Run’

DDD 3.1 1998-12-01 12

button on the command tool. You may also entan’, followed by arguments at the debugger prompt
instead.

£2 DDD: Run Program []
Arguments

Empty Argument List . .
—configuration

—indent 45
—trace —separate—windows cxxtest

Click here to select oo

Other Arguments

Run with Arguments

Program Arguments ———=display elvis.araceland. eduzd.

Click here to run i [0 4|Cancel 4IHEIP

Starting a Program with Arguments

Using the Execution Window
By default, input and output of your program go to the debugger console. As an alteDzllivegn also
invoke anexecution windoywhere the program terminal input and output is shown. To activate the execu-
tion window, selectProgram — Run in Execution Window'.

While the execution window is activeDD invokes your program such that its standard input, output, and
error streams are redirected to the execution window. Note that the delachty’ still refers to the
debugger consolapotthe execution window.

You can override th®DD stream redirection by giving alternate redirection operations as arguments. For
instance, to have your program read from a file, but to write to the execution window, invoke your program
with ‘< file’ as argument. Likewise, to redirect the standard error output to the debugger consde, use *
/dev/tty’ (assuming the inferior debugger and/or yomiX shell support standard error redirection).

The execution window is not availableibB andPerl

Attaching to a Running Process
If the debugged program is already running in some process, y@attaelnto this process (instead of start-
ing a new one withRun’). Select File - Attach to Processto choose from a list of processes. After-
wards, press théittach’ button to attach to the specified process.

The first thingDDD does after arranging to debug the specified process is to stop it. You can examine and
modify an attached process with all thBD commands that are ordinarily available when you start pro-
cesses withRun’. You can insert breakpoints; you can step and continue; you can modify storage. If you
would rather the process continue running, you may@saetinue’ after attachingdDD to the process.

When using Attach to Proces§ you should first useOpen Program to specify the program running in
the process and load its symbol table.

When you have finished debugging the attached process, you can Usketh®etach Processto release

it from DDD control. Detaching the process continues its execution. Adetach Process that process

andDDD become completely independent once more, and you are ready to attach another process or start
one with Run’.

DDD 3.1 1998-12-01 13

£2 DDD: Attach to Process

Processes

ps output
Selected process

- I -

—attach | update Cancel Help

Click to attach

Selecting a Process to Attach

You can customize the list of processes shown by defining an alternate command to list processes. See
‘Edit - Preferences- Helpers- List Processes

Note:JDB, PYDB, and Perl do not support attaching the debugger to running processes.

Stopping the Program
The program stops as soon as a breakpoint is reached. The current execution position is highlighted by an
arrow.

You can interrupt a running program any time by clicking théetrupt ’ button or typingESC in aDDD
window.

Resuming Execution
To resume execution, at the address where your program last stopped, click@onthrug' button. Any
breakpoints set at that address are bypassed.

To execute just one source line, click on t8&ef button. The program is executed until control reaches a
different source line, which may be in a different function.

To continue to the next line in the current function, click on Mext’ button. This is similar toStep, but
any function calls appearing within the line of code are executed without stopping.

To continue until a greater line in the current function is reached, click obJti&’ button. This is useful
to avoid single stepping through a loop more than once.

To continue running until the current function returns, useRmash’ button. The returned value (if any)
is printed.

To continue running until a line after the current source line is reached, ugeathtntie Until Here’
facility from the line popup menu. See tAemporary Breakpoints’ section, above, for a discussion.

Altering the Execution Position
To resume execution at a different location, pressise button bn the arrow and drag it to a different
location. The most common occasion to use this feature is to back up—perhaps with more breakpoints set-
over a portion of a program that has already executed, in order to examine its execution in more detail.

Moving the execution position does not change the current stack frame, or the stack pointer, or the contents
of any memory location or any register other than the program counter.

Some inferior debuggers (notaldpB) allow you to set the new execution position into a different func-

tion from the one currently executing. This may lead to bizarre results if the two functions expect different
patterns of arguments or of local variables. For this reason, moving the execution position requests confir-
mation if the specified line is not in the function currently executing.

DDD 3.1 1998-12-01 14

After moving the execution position, click on tl@ontinue’ button to resume execution.

int mainfint /* a

int main{int /* a

t i
int i =42; int i =42;
tree_test(}; tree_test();
i+ 1+

Tist_test(il;

e i4++;
array_test{d; array_test();
1++: 1+
type_test(l; type_test(};
—1i; —i;

> > D> ks

Tist_test(il;

Click on arrow, ...

... hold mouse button and move ...

>

)

int main{int /% a

{

int i = 42;
tree_test();
14++:
list_test(il;
14++;
array_test();
14++:
type_testil;
—1.

... to the final position.

Changing the Execution Position by Dragging the Execution Arrow

Note: Dragging the execution position is not possible when glyphs are disabledSet/§&xécution Posi-

tion’ from the breakpoint popup menu instead to set the execution position to the current location. This

item is also accessible by pressing and holdingBheak at ()/Clear at ()’ button.
Note: JDB does not support altering the execution position.

Examining the Stack
When your program has stopped, the first thing you need to know is where it stopped and how it got there.

DDD provides aacktrace windovehowing a summary of how your program got where it is. To enable the

backtrace window, selectatus— Backtrace'.

£: DDD: Backirace E
Backirace

#4 0x804227e in _crt_dumny_ @]

#3 0x8048e62 in main () at cxxtest.C:275
#2 DHSD4SSSE in tree_test () at cuxtest.C:127
1 0 8d in Tree::Tree () at

Up Down | Close | Help

Calling functions

Current frame in source window

Called functions

Selecting a Frame from the Backtrace Viewer

The ‘Up’ button selects the function that called the current one.

The ‘Down’ button selects the function that was called by the current one.

You can also directly type theip’ and ‘down’ commands at the debugger prompt. Typ@igl+Up and
Ctrl+Down , respectively, will also mveyou through the stack.

DDD 3.1

1998-12-01

15

‘Up’ and ‘Down’ actions can be undone vigdit — Undo'.

“Undoing” Program Execution
If you take a look at theEdit — Undo’ menu item after an execution command, you'll find thaD offers
you to undo execution commands just as other commands. Does this meabDhaitows you to go
backwards in time, undoing program execution as well as undoing any side-effects of your program?

Sorry—we must disappoint yoDDD cannot undo what your program did. (After a little bit of thought,
you'll find that this would be impossible in general.) However, DDD can do something different: it can
showpreviously recorded stated your program.

After “undoing” an execution command (vigdit -~ Undo’, or the ‘Undo’ button), the execution position
moves back to the earlier position and displayed variables take their earlier values. Your program state is in
fact unchanged, but DDD gives yowiawon the earlier state as recorded by DDD.

In this so-calledhistoric modemost normabDD commands that would query further information from the
program are disabled, since the debugger cannot be queried for the earlier state. However, you can examine
the current execution position, or the displayed variables. Ukingd’ and ‘Redd, you can nove back

and forward in time to examine how your program got into the present state.

To let you know that you are operating in historic mode, the execution arrow gets a dashed-line appearance
(indicating a past position); variable displays also come with dashed lines. Furthermore, the status line
informs you that you are seeing an earlier program state.

Here’s how historic mode works: each time your program stpB, collects the current execution posi-

tion and the values of displayed variables. Backtrace, thread, and register information is also collected if
the corresponding dialogs are open. When “undoing” an execution combibdjpdates its view from

this collected state instead of querying the program.

If you want to collect this information without interrupting your program—uwithin a loop, for instance—you
can place a breakpoint with an associatesht command; seeBreakpoint Commands, above, for
details. When the breakpoint is hitpD will stop, collect the data, and execute tlkent command,
resuming execution. Using a latéindo’, you can step back and look at every single loop iteration.

To leave historic mode, you can ug&dd until you are back in the current program state. However, any
DDD command that refers to program state will also leave historic mode immediately by applying to the
current program state instead. For instandg, leaves historic mode immediately and selects an alternate
frame in the restored current program state.

If you want to see the history of a specific variable, as recorded during program stops, you can enter the
DDD command

graph history name

This returns a list of all previously recorded values of the variaétee using array syntax. Note that
namemust have been displayed at earlier program stops in order to record values.

Examining Threads
Note: Thread support is available wsDB andJDB only.

In some operating systems, a single program may have more thahremeof execution. The precise
semantics of threads differ from one operating system to another, but in general the threads of a single pro-
gram are akin to multiple processes—except that they share one address space (that is, they can all examine
and modify the same variables). On the other hand, each thread has its own registers and execution stack,
and perhaps private memory.

For debugging purposeBDD lets you display the list of threads currently active in your program and lets
you select theurrent threagd—the thread which is the focus of debuggimpPD shows all program infor-
mation from the perspective of the current thread.

DDD 3.1 1998-12-01 16

£ DDD: Threads

Threads
Click on group to toggle view Group system: . A

1. Clock cond, waiting
2. Idle thread running
3. Async Garbage Collector cond. waiting
4. Finalizer thread cond, waiting
5. Debugger agent running
£. Breakpoint handler cond. waiting
7. 5tep handler cond., waiting

Group main:

Current thread 8. main cond. waiting Fj
Change thread properties Suspend | Resume Cose Help

Selecting Threads

To view all currently active threads in your program, selgtiatus— Threads. The current thread is high-
lighted. Select any thread to make it the current thread.

UsingJDB, additional functionality is available:

» Select ghread groupo switch between viewing all threads and the threads of the selected thread group;
 Click on ‘Suspendto suspend execution of the selected threads;

 Click on ‘Resume to resume execution of the selected threads.

For more information on threads, see 168 andGDB documentation.

Handling Signals
Note: Signal support is available witDB only.

A signal is an asynchronous event that can happen in a program. The operating system defines the possible
kinds of signals, and gives each kind a name and a number. For example, BIGINX is the signal a

program gets when you type an interrtGSEGV is the signal a program gets from referencing a place

in memory far away from all the areas in uSGALRM occurs when the alarm clock timer goes off

(which happens only if your program has requested an alarm).

Some signals, includin§IGALRM , are a normal part of the functioning of your program. Others, such as
SIGSEGYV, indicate errors; these signals &aal (kill your program immediately) if the program has not
specified in advance some other way to handle the sigh@INT does not indicate an error in your pro-
gram, but it is normally fatal so it can carry out the purpose of the interrupt: to kill the program.

GDB has the ability to detect any occurrence of a signal in your program. You c@Dglh advance
what to do for each kind of signal.

Normally, DDD is set up to ignore non-erroneous signals 8k ALRM (so as not to interfere with their
role in the functioning of your program) but to stop your program immediately whenever an error signal
happens. IIDDD, you can change these settings Btatus- Signals.

‘Status-> Signals pops up a panel showing all the kinds of signals and @B has been told to handle
each one. The settings available for each signal are:

Stop If set, GDB should stop your program when this signal happens. This also impligg’’
being set.
If unset,GDB should not stop your program when this signal happens. It may still print a mes-
sage telling you that the signal has come in.

DDD 3.1 1998-12-01 17

Print If set,GDB should print a message when this signal happens.
If unset,GDB should not mention the occurrence of the signal at all. This also imglieg *
being unset.

Pass If set, GDB should allow your program to see this signal; your program can handle the signal,
or else it may terminate if the signal is fatal and not handled.
If unset,GDB should not allow your program to see this signal.

£: DDD: Signal Handling []

GDE Signal Handling

Hangup - __ I~ Stop |7 Print |7 Pass ﬂl j A
Interrupt __________________. 7 Stop |7 Print _I Pass ﬂl j J
Quit - ____ I~ Stop I Print |~ Pass Send| 7
llegal instruction __ __________. J7 Stop [T Print |7 Pass ﬂl j
Tracefbreakpoint trap _________ 7 Stop |7 Print _| Pass ﬂl j
Aborted __________________ I~ Stop I Print |~ Pass Send| 7|
Emulation trap ___ ___________ 7 Stop |7 Print |7 Pass ﬂl j
Arithmetic exception __________ 7 Stop |7 Print |7 Pass ﬂl j
Killed _____________________ I~ Stop |7 Print |~ Pass Send| 7
Bus emor _ _ - _______________ 7 Stop |7 Print |7 Pass ﬂl j
Segmentation fault _ __________ 7 Stop |7 Print |7 Pass ﬂl j
Bad systemcall _____________ 7 Stop |7 Print |7 Pass ﬂl j)

GDB Signal Handling Panel (Excerpt)

The entry All Signals' is special. Changing a setting here affealissignals at once-except those used
by the debugger, typically SIGTRAP and SIGINT.

To undo any changes, udedit -~ Undo’. The ‘Reset button restores the saved settings.

When a signal stops your program, the signal is not visible until you continue. Your program sees the sig-
nal then, if Passis in effect for the signal in questicat that time In other words, afteGDB reports a sig-

nal, you can change thBass setting in ‘Status- Signals to control whether your program sees that sig-

nal when you continue.

You can also cause your program to see a signal it normally would not see, or to give it any signal at any
time. The Send button will resume execution where your program stopped, but immediately give it the
signal shown.

On the other hand, you can also prevent your program from seeing a signal. For example, if your program
stopped due to some sort of memory reference error, you might store correct values into the erroneous vari-
ables and continue, hoping to see more execution; but your program would probably terminate immediately
as a result of the fatal signal once it saw the signal. To prevent this, you can resume executi@oumsing
mands- Continue Without Signal.

‘Edit — Save Options$ does not save changed signal settings, since changed signal settings are normally

DDD 3.1 1998-12-01 18

useful within specific projects only. Instead, signal settings are saved with the current session, using
‘File - Save Session As

EXAMINING DATA
DDD provides several means to examine data.
Value Hints

The quickest way to examine variables is toveithe pointer on an occurrence in the source
text. The value is displayed in the source line; after a second, a popup window shows the vari-
able value. This is useful for quick examination of several simple variables.

Printing Values
If you want to reuse variable values at a later time, you can print the value in the debugger con-
sole. This allows for displaying and examining larger data structures.

Displaying Values
If you want to examine complex data structures, you can display them graphically in the data
display. Displays remain effective until you delete them; they are updated each time the pro-
gram stops. This is useful for large dynamic structures.

Plotting Values

If you want to examine arrays of numeric values, you can plot them graphically in a separate
plot window. The plot is updated each time the program stops. This is useful for large
numeric arrays.

Memory Dumps

This feature, available usirgDB only, allows you to dump memory contents in any of several

formats, independently of your program’s data types. This is described WAEHINE-
LEVEL DEBUGGING ', below.

Showing Simple Values using Value Hints
To display the value of a simple variablegwathe mouse pointer on its name. After a second, a small win-

dow (calledvalue tip pops up showing the value of the variable pointed at. The window disappears as
soon as you mvethe mouse pointer away from the variable. The value is also shown in the status line.

£: DDD: fusrfusersfstsifzellerfddd/ddd/jtest))
File Edit View Program Commands

(): |)

Lookup |

public class jtest §

static void S]
Tree tree;
@ tree = new Treel?,
I 4 tree.left = new Tree(l, eron it
tree.left R new Treels, ove pointer on item

The value tip shows its value

A treeleft = null

Displaying Simple Values using Value Tips

Printing Simple Values in the Debugger Console

The variable value can also be printed in the debugger console, making it available for further operations.
To print a variable value, select the desired variable by cliakiogse button bn its name. The variable
name is copied to the argument field. By clicking #Berit ()’ button, the value is printed in the debugger

DDD 3.1 1998-12-01 19

console. Note that the value is also shown in the status line.

As a shorter alternative, you can simply pregsuse button 8n the variable name and select tRerit’

item from the popup menu.

£2 DDD: fustiusersists] izellerfddd/dddjtestjtest java M=l
Fle Edit View Program Commands Status Source Data Help
():Itree.]eft.righﬁ B T @ e ® W
Lookup Finds: Break L=ich Frint Display Show REotate Set Undizp
3 = 3
Tree tree; B0
on) tree _|= . riety TreeE?, "P.da");) ;; Byron Lovelace Run
tree.left = new Tree(l, "Grace"); Murray Hopper
tree.left.left = new Tree(5, "Tudy"); #f Clapp Interrupt J
P> tree. left.right] = naw Traafa “Wathlaan®): /7 MoNUTLy Step| Stepi|
tree.right = Print tree.left.right —H e Select ‘Print’ on item
tree.date.set(2 Display tree.left.right
tree.date.set{3 :
1 Print tree.left. right
, , , Display tree.left.right
static void Tist_te piay £
What is tree.1eft. right é
) , ; B
main[1] print tree.left Lookup tree.left.right 5 i i
tree.left.right = null s . Ecit | Make | The value is printed
main[1] Break at tree.left. right S v in the debugger console
. Print the value of the seiec_Ciear at tree.Teft. right +

Displaying Simple Values in the Debugger Console

Displaying Complex Values in the Data Window
To explore complex data structures, you can us@thghical data displayn the data window The data
window holdsdisplaysshowing names and the values of variables. The display is updated each time the
program stops.

To create a new display, select the desired variable by clickimgse button dn its name. The variable
name is copied to the argument field. By clicking thesplay () button, a new display is created in the
data window. The data window opens automatically as soon as you create a display.

£ DDD: Program Data M= B
File Edit WView Program Data Help
0:| *1ist & : 173 ;
izplay Hide Rotate Sat Undi=p
|3 *Tist->next
1: Tlist value = 56
(List *) Ox804ab78 self = 0OxB04abss
next = OxB804ab9s
Scroll the data display

Displaying Data
As a shorter alternative, you can simply pnessise button 8n the variable name and select théesplay’
item from the popup menu.
As an even faster alternative, you can also double-click on the variable name.

DDD 3.1 1998-12-01 20

As another alternative, you may also enter the expression to be displayed in the argument field and press the
‘Display () button.

Finally, you may also enter
graph display expr[clustered] [at (X, ¥)] [dependent ondisplay] [[now or] when in scopg

at the debugger prompt. The options have the following meaning:

« If the suffix ‘clustered is specified, the new data display is created in a cluster. Gastéring Dis-
plays, below, for a discussion.

« If the suffix ‘at (X, y)' is specified, the new data display is created at the positioy).(Otherwise, a
default position is assigned.

« If the suffix ‘dependent ondisplay is given, an edge from the display numbered or nadigalayto the
new display is created. Otherwise, no edge is created.

« If the suffix ‘when in scopéis given, display creation ideferreduntil execution reaches the giveoope
(a function name, as in the backtrace output).

« If the suffix ‘now or when in scopéis given,DDD attempts to create the display immediately. If display
creation fails, it ideferreduntil execution reaches the giveoope(a function name, as in the backtrace
output).

* If no ‘when in’ suffix or ‘now or when in’ suffix is given, the display is created immediately.
If you created a display by mistake, ukelit — Undo’ to undisplay it.

Selecting Displays
Each display in the data window hastke bar containing thalisplay numbeand the displayed expression
(thedisplay namp Below the title, thelisplay valuds shown.

You can select individual displays by clicking on them witbuse button.1The resulting expression is
shown in theargument fielgdbelow.

You canextendan existing selection by pressing tBaift key while selecting. You can aldoggle an
existing selection by pressing tBaift key while selecting already selected displays.

Single displays may also be selected by using the arrow keys.

Selecting Multiple Displays
Multiple displays are selected by pressing and holdiogise button Somewhere on the window back-
ground. By moving the pointer while holding the button, a selection rectangle is shown; all displays fitting
in the rectangle are selected when mouse button 1 is released.

If the Shift key is pressed while selecting, the existing selectiextisnded

By double-clicking on a display title, the display itself and all connected displays are automatically
selected.

DDD 3.1 1998-12-01 21

£ DDD: Program Data - (O] %]
File Edit View Program Data Help

0:: B A 6

Display’ Hide Rotate 32t Undisp

C|2 st © |3 *list->next

1t dist) I walue = &5 value = 86

(List *) OxB04ab?78 self = OxB04ab?s self = 0xB04abBs
’ next = 0x804ab88 next = 0x804ah98

Selection rectangle

Selecting Multiple Displays

Showing and Hiding Values
Aggregate values (i.e. records, structs, classes, and arrays) can beeghantedthat is, displaying all
details, othidden that is, displayed a$...}".

To show details about an aggregate, select the aggregate by chiosusg button bn its name or value
and click on theShow () button. Details are shown for the aggregate itself as well as for all contained
sub-aggregates.

To hide details about an aggregate, select the aggregate by chiukirsg button tn its name or value and
click on the Hide ()’ button.

£ DDD: Program Data [[O]x]
File Edit View FProgram Data Help
{: I twoding o Q AT, 5@ i)
Dizplay Show Rotate Set Undisp
9: twodin] 11: twodin
[...] - |[0%80436d4 "Pioneering”|0%80436df "women” [0xB0496e5 "in"
[...] [FFrymvays 8 "computer" |0yB0496f1 "science”|0xB04398f3 "!"
— (——
— Show All
Rotate o)
Hidden details | ggt value Detailed view Select and show detail
Undisplay

Showing Display Detail
When pressing and holdingouse button bn the Show (YHide ()’ button, a menu pops up with even
more alternatives:

Show More ()
Shows details of all aggregates currently hidden, but not of their sub-aggregates. You can invoke
this item several times in a row to reveal more and more details of the selected aggregate.

Show Just ()
Shows details of the selected aggregate, but hides all sub-aggregates.

DDD 3.1 1998-12-01 22

Show All ()
Shows all details of the selected aggregate and of its sub-aggregates. This item is equivalent to the
‘Show () button.

Hide () Hide all details of the selected aggregate. This item is equivalent tdithes()’ button.

As a faster alternative, you can also prassise button 8n the aggregate and select the appropriate menu
item.

As an even faster alternative, you can also double-diokise button bn a value. If some part of the
value is hidden, more details will be shown; if the entire value is shown, double-clickirgdeihe value
instead. This way, you can double-click on a value until you get the right amount of details.

If all details of a display are hidden, the display is catls@bled this is indicated by the strindDis-
abled). Displays can also be disabled or enabled viethe commands

graph disable displaydisplays...
and
graph enable displaydisplays...

at the debugger promptlisplays..is either

» aspace-separated list of display numbers to disable or enable, or

» asingle display name. If you specify a display by name, all displays with this name will be affected.
Use Edit — Undo’ to undo disabling or enabling displays.

Rotating Arrays
Arrays can be aligned horizontally or vertically. To change the alignment of an array, select it and then
click on the Rotate () button.

As a faster alternative, you can also pmessise button 8n the array and select tHedtate' menu item.

£: DDD: Program Data - (O] =]
File Edit View Program Data Help

v‘:’v

bOisplay* Hide FRotate et Undisp

0): I date_ptrs

13: date_ptrs
* ||_ox&04ab7e | 0x804ah30 | 0x804abad| OxB04abcn)

i ispiay *03
. Hew Display -
Hide All
Rotate Select and Rotate
Set Value...

Undisplay

Rotating an Array

DDD 3.1 1998-12-01 23

Displaying Dependent Values
Dependent displays are created from an existing display. The dependency is indicated by arrows leading
from the originating display to the dependent display.

To create a dependent display, select the originating display or display part and enter the dependent expres-
sion in the ():’ argument field. Then click on th®Isplay’ button.

Using dependent displays, you can investigate the data structure of a “tree” for example and lay it out
according to your intuitive image of the “tree” data structure.

By default,DDD does not recognize shared data structures (i.e. a data object referenced by multiple other
data objects). Se&xamining Shared Data Structures, below, for details on how to examine such struc-
tures.

Display Shortcuts
DDD maintains ashortcut menwf frequently used display expressions. This menu is activated

» by pressing and holding thBisplay’ button, or

» by pressingnouse button 8n some display and selectingew Display, or
» by pressingshift andmouse button 8n some display.

By default, the shortcut menu contains frequently used base conversions.

The ‘Other’ entry in the shortcut menu lets you create a new displayettahdghe shortcut menu. As an
example, assume you have selected a display nasag¢el ptr'. Selecting Display - Other’ pops up a

dialog that allows you to enter a new expression to be displayed -- for instance, you can cast the display
‘date_ptr’ to a new display (char *)date_ptr’. If the ‘Include in ‘New Display Menu’ toggle was acti-

vated, the shortcut menu will then contain a new emigglay (char *)()’ that will castany selected dis-

play displayto ‘(char *)display. Such shortcuts can save you a lot of time when examining complex data

structures.
Modify expression here... = ... toinclude it in the ‘New Display’ menu.
\r:.m Eajriskn
. {rhar *1 gate_str
e G Ve ' Wckel i Dl () M tep |
[l (char =) &a . &. € 4 -E b
e Display | coscel | Ho | J"'_ AL
: L] Sty gy
A fniivert o Do
14 date_ptr
([ate =) MefMag7E Coirveri to Hey
- et In Ocl
BT o
[TR T
- i N e
Unetaplay (]

Using Display Shortcuts

You can edit the contents of thideéw Display menu by selecting itsEdit Menu’ item. This pops up the
Shortcut Editorcontaining all shortcut expressions, which you can edit at leisure. Each line contains the
expression for exactly one menu item. Clicking dpply’ re-creates theNew Display menu from the

text. If the text is empty, thé\'ew Display menu will be empty, too.

DDD 3.1 1998-12-01 24

£ DDD: Program Data I[=] B3

File Edit View Program Data Help |
():Idate_ptr‘} 2 A o8 =
Dispa Hide Rotate Set Undisp
14: date_ptr | 3 DDD: Shortcut Editor x|
[(Date *)_f:z804ah7s) I Shortcuts
Display *() J <
S T —— Wchar *3(3 £/ Display (char *3()
: M Display (char *){(} || /d (} /f Convert to Dec
" Hi fa () /F Convert to Hex
. lee Al Convert to Dec fo (3 /f Convert to Oct
. Hetate Convert to Hex
Set value... Conwvert to Oct
Undisplay Other...
Invoke shortcut editor ———————————Edit Menu...
¥

OK Apply Cancel Help

Editing Display Shortcuts

DDD also allows you to specify individual labels for user-defined buttons. You can write such a label after
the expression, separated I. ‘ This feature is used in the default contents of GB ‘New Display
menu, where each of the base conversions has a label:

It () /I Convertto Bin

/d () /I Convertto Dec
Ix () [/l Convert to Hex
/o () /I Convertto Oct

Feel free to add other conversions hed®D supports up to 2(New Display menu items.

Dereferencing Pointers
There are special shortcuts for creating dependent displays showing the value of a dereferenced pointer.
This allows for rapid examination of pointer-based data structures.

To dereference a pointer, select the originating pointer value or name and click Disiay’ *()’ button.
A new display showing the dereferenced pointer value is created.

As a faster alternative, you can also pregsuse button ®n the originating pointer value or name and
select theDisplay *' menu item.

As an even faster alternative, you can also double-atiockse button bn the originating pointer value or
name. If you pres€trl while double-clicking, the display will be dereferendeglace-that is, it will be
replaced by the dereferenced display.

The ‘Display *()’ function is also accessible by pressing and holdingBepiay ()’ button.

Displaying Local Variables
You can display all local variables at once by choosbagta— Display Local Variables. When using
DBX, XDB, JDB, or Perl, this displays all local variables, including the arguments of the current function.
When usingGDB or PYDB, function arguments are contained in a separate display, activat&ispjay
Arguments’.

The display showing the local variables can be manipulated just like any other data display. Individual vari-
ables can be selected and dereferenced.

DDD 3.1 1998-12-01 25

£ DDD: Program Data - [O] =

Fle Edit View Program Data Help
:| thig “ S 6 2
() " Dispa: Hide Rotate Set Undisp
[Locals L Local arguments
= (Tree *] 0Ox804aee |
B M g radar DEPRY 0 — : Dereference
n = a : - .
- ————— Hew Display ~ w_\\H2 *this : via popup menu
1 T value = 7 .
Lideyall .. .| name = oxB043Ees "Adail Dereferenced pointer
#otate e ?g?% z DQ&I.}
Set Value... i n| right = 0x0
Undisplay (155 ,"5'_,. .

Dereferencing a Local Variable

Displaying Program Status
You can create a display from the output of an arbitrary debugger command. By entering

graph display ‘command
the output otommands turned into atatus displayipdated each time the program stops. For instance,
graph display ‘where’

creates a status display nam®¢htere’ that shows the current backtrace.

If you are usingGDB, DDD provides a panel from which you can choose useful status displays. Select
‘Data - More Status Displays and pick your choice from the list.

G0E Fintey Degisys
. = F
Click here... & Enwiilon Slsi ol Gepregrani____ 1| d
. LiSt o ot regters el Tabireornamts 1
... to enable or disable this status display - List of intugper roqgstars aul Wher comtmts ¥
F o a1
I Enpras s tn isploy wihen progeens shops T
- imdreaafion slaal te ool sooere e
WEP t Ml o ety bramam Wi b
fs £ Www B et -1 Ewropitins. fhevl com e cosghe in B come siack deme 7|
| 1aFD progea - Al vriaiies of curest glack e
e | i il vowtabley wf curven wiack "
Frigran 1 Al ook eeiecied ek oo 1
sl the reandid dsege of child procass 90 7es, | Ekackirce of the slak ﬂ ¥
Progiom sTomged At DeealEidcc R e e S b e e]
It izcaped at bragkpaiat 2,
— (3 et | oy |
Sourée Pilis Ter shich Spewld hires Dssdn raad in:

ST ARITTE R CRRP TR T LT Ry s
Epagrce Fies For whfich gpebals wilV b read 10 on dosond

Activating Status Displays

Status displays consume time; you should delete them as soon as you don’t need them any more.

DDD 3.1 1998-12-01 26

Displaying Multiple Array Values
When debugging C or C++ programs, one often has to deal with pointers to arrays of dynamically deter-
mined size. BotiDDD andGDB provide special support for such dynamic arrays.

To display several successive objects of the same type (a section of an array, or an array of dynamically
determined size), use the notat{GfiROM..TQ] in display expressiond=ROM and TO denote the first and
last array position to display. Thus,

graph display argv[0..9]

creates ten new display nodes fargv[0]’, ‘argv[1]’, ..., ‘argv[9]'".
UsingGDB as inferior debugger, you can umificial arrays. Typing

graph display argv[0] @ 10

creates a single array display node containgémgv[0]" up to ‘argv[9]’. Generally, by using the@’ opera-
tor, you can specify the number of array elements to be displayed.

For more details on artificial arrays, see @B documentation.

Repeated Array Values
Using GDB, an array value that is repeated 10 or more times is displayed only once. The value is shown
with a ‘<Nx>' postfix added, wher8l is the number of times the value is repeated. Thus, the di€pi@y °
<30x>" stands for 30 array elements, each with the vBk@ This saves a lot of display space, especially
with homogeneous arrays.

DDD: Pro D]
File Edit View Program Daia Help
O | *ar1] a2 U o &

Displey Hide FRotate Set Undisp

1 ar |- - o 249 - - .

DXD D
wamaadzel - - - - - /_4}_\\ i
0x0_<ago |l {3 arl1] R T] I e | Repeated Value
Ox804adfofl |[(int *) Ox804ad2ec| 1] soff
Oxg04adfd) 11 |
Ox0 4@l . 0 0 0=l
QuBddaebd(|. o al . . .

Displaying Repeated Array Values

The defaultGDB threshold for repeated array values is 10. You can change itEdid— GDB Set-
tings - Threshold for repeated print elements Setting the threshold t0 will causeGDB (andDDD) to
display each array element individually. Be sure to refresh the data windodate— Refresh Display$
after a change iGDB settings.

You can also configurBDD to display each array element individually, regardlessi settings; see the
‘expandRepeatedValuegesource for details.

Altering Variable Values
Using the Set () button or the Set Valué menu item in the data popup menu, you can alter the value of
the selected variable, to resume execution with the changed value. In a dialog, you can modify the variable
value at will; clicking the OK’ or * Apply’ button commits your change.

DDD 3.1 1998-12-01 27

£: DDD: Program Data |- [Of =]
Fle Edit View Program Data Help |

- -
G &
Displax* Hide Rotate et Undisp

. |set the value of ()]

O: I pii Select to set

ji <X DDD: Set Value

Set valueofpi |l -

|§3. 14159274 0 Enter new value here

---------- OK | Apply Cancel Help S

Changing Variable Values

If you made a mistake, you can uglit - Undo’ to re-set the variable to its previous value.
Note: Altering variable values is not supportedirs.

Refreshing the Data Window

The data window refreshes itself automatically each time the program stops. Values that have changed are
highlighted.

However, there may be situations where you should refresh the data window explicitly. This is especially
the case whenever you changed debugger settings that could affect the data format, and want the data win-
dow to reflect these settings.

You can refresh the data window by selectiBgta - Refresh Displays.

As an alternative, you can preswuse button ®n the background of the data window and select the
‘Refresh Display item.

Typing
graph refresh

at the debugger prompt has the same effect.

Deleting Displays

To delete a single display, select it and click on Delete () button. As an alternative, you can also press
mouse button 8n the display and select tHa€lete Display item.

When a display is deleted, its immediate ancestors and descendants are automatically selected, so that you
can easily delete entire graphs.

To delete several displays at once, selectffedete item in the Display Editor (invoked vieData— Edit
Displays). Select any number of display items in the usual way and delete them by pré&sditg.’

As an alternative, you can also type
graph undisplay displays...

at the debugger promptlisplays..is either

» aspace-separated list of display numbers to delete, or

 asingle display name. If you specify a display by name, all displays with this name will be deleted.

If you are using stacked windows, deleting the last display from the data window also automatically closes

DDD 3.1 1998-12-01 28

the data window. (You can change this \Ealit - Preferences- Data— Close data window when delet-
ing last display.)

If you deleted a display by mistake, ukalit — Undo’ to re-create it.

Examining Shared Data Structures
By default,DDD does not recognize shared data structures—that is, a data object referenced by multiple
other data objects. For instance, if two poinggtsandp?2 point at the same data objegtthe data displays
d, *pl, and*p2 will be separate, although they denote the same object.

DDD provides a special mode which makes it detect these situati@iz.recognizes if two or more data
displays are stored at the same physical address, and if this is so, merges aliasesiato one single
data display, theoriginal data display This mode is calledAlias Detection it is enabled via the
‘Data - Detect Aliases

When alias detection is enabl&@hD inquires the memory location (tlaeldres$ of each data display after

each program step. If two displays have the same address, they are merged into one. More specifically,
only the one which has least recently changed remainsitfinal data display; all other aliases a®up-
pressedi.e. completely hidden. The edges leading to the aliases are replaced by edges leading to the origi-
nal data display.

An edge created by alias detection is somewhat special: rather than connecting two displays directly, it goes
through aredge hintdescribing an arc connecting the two displays and the edge hint.

Each edge hint is a placeholder for a suppressed alias; selecting an edge hint is equivalent to selecting the
alias. This way, you can easily delete display aliases by simply selecting the edge hint and clicking on
‘Undisplay ().

£ DDD: Program Data [(O]]
File Edit View Program Data Help |
0 I 1ist—rnart—>next—rnext &’.-* Q A2
Disp* Hide Rotate Zet Undisp
e |2 *1ist |3 *list->next
1: list value = 85 valuoe=86 || .
(List *) DxB04aeed self = DxB04aeel self = OuB04aefs
' next, = Ox804aef8|| - next = OxBO4afoB|| " - ~ °
:|I_u|:a1s \:k-___él *list->next—>next| ~ =
list = (List *) Ox8daees| | = S valwe =2 ||
.................. Se]F — DXBD4aFDB

Original Display Edge Hint

Examining Shared Data Structures

To access suppressed display aliases, you can also use the Display Editor. Suppressed displays are listed in
the Display Editor asliasesof the original data display. Via the Display Editor, you can select, change,
and delete suppressed displays.

Suppressed displays become visible again as soon as
+ alias detection is disabled,
* their address changes such that they are no more aliases, or

* the original data display is deleted, such that the least recently changed alias becomes the new original
data display.

Please note the followingaveatswith alias detection:

DDD 3.1 1998-12-01 29

» Alias detection requires that the current programming language provides a means to determine the
address of an arbitrary data object. Currently, only C and C++ are supported.

» Some inferior debuggers (for instance, Sum@&X) produce incorrect output for address expressions.
Given a pointep, you may verify the correct function of your inferior debugger by comparing the values
of p and&p (unlessp actually points to itself). You can also examine the data display addresses, as
shown in the Display Editor.

 Alias detection slows dowbDD slightly, which is why it is disabled by default. You may consider to
enable it only at need—for instance, while examining some complex data structure—and disable it while
examining control flow (i.e., stepping through your progra®ipD will automatically restore edges and
data displays when switching modes.

2 DDD: Program Data i [=] 3
File Edit View Program Data Help
{): | *1ist—rnext—next—rnext A Q LZ
Display Hide Rotate Sat Undisp
Sl *list |3 _*Tist-snext
1: list value = 85 value = 86
(List *) OuB0daced self = 0x804aeeB self = 0xB04aefd
’ next = OxB04aef8 next = Ox804af08
Mocals T - _ = e
= - Lo il =2 DDD: Display Editor X
st = (List *) Ux804aeesl_ o | Py]
ot 5,
Displese.. Disps Show Hide Set Undisp
Num Expression State Scope Address
—1: "info locals” enabled
1: Tist enabled Tist_test Oxbffffasc
2r *list enabled Tist_test 0Ox=B804aeel
3 *list—rnext enabled Tist_test 0x804aefs
4: #list—rnext—rnext enabled Tist_test 0x=804af08
Suppressed Display Alias 5: *list—rnext—rnext—rnext alias of 2 list_test (x804aees
6: *Tist alias of 2 Tlist_test 0x804aeed
Close | Help |

The Display Editor

Clustering Displays
If you examine several variables at once, having a separate display for each of them uses a lot of screen
space. This is whpDD supportsclusters A cluster merges several logical data displays into one physical
display, saving screen space.

There are two ways to create clusters:

* You can create clustersanually This is done by selecting the displays to be clustered and choosing
‘Undisp- Cluster ()’. This creates a new cluster from all selected displays. If an already existing clus-
ter is selected, too, the selected displays will be clustered into the selected cluster.

* You can create a clustautomaticallyfor all independent data displays, such that all new data displays
will automatically be clustered, too. This is achieved by enablidit - Preferences- Data - Cluster
Data Displays.

DDD 3.1 1998-12-01 30

Displays

i =7 i
uni = E!%f‘% L ”um 2. guni 3 pi
u't I 't'mzz iz 1 3.14159274
= bit2 = 3 {-}
guni = I{I} ! u ={.} - 4. sqrt2
{..} 1.4142135623730951
3.14159274

pi =3.
sqrt2 = 1.4142135623730951

Clustered and Unclustered Displays

Displays in a cluster can be selected and manipulated like parts of an ordinary display; in particular, you
can show and hide details, or dereference pointers. However, edges leading to clustered displays can not be
shown, and you must either select one or all clustered displays.

Disabling a cluster is callaghclusteringand again, there are two ways of doing it:
» You can uncluster displaysanually by selecting the cluster and choosikdisp - Uncluster ().

* You can uncluster all current and future displays by disablidijt - Preferences- Data— Cluster
Data Displays.

Moving Displays Around
From time to time, you may wish toave displays at another place in the data window. You cavena
single display by pressing and holdimgpuse button dn the display title. Moving the pointer while hold-
ing the button causes all selected displaysdwaalong with the pointer.

If the data window becomes too small to hold all displays, scroll bars are created. DDig set up to
usepannersinstead, a panner is created in the lower right edge. When the panner is moved around, the
window view follows the position of the panner. SEJSTOMIZING DDD ', below, for details on how

to set up scroll bars or panners.

For fine-grain movements, selected displays may also be moved using the arrow keys. Bhifsing
an arrow key moves displays by single pixels. Pres8imngand arrow keys moves displays by grid posi-
tions.

Edge hints can be selected and moved around like other displays. If an arc goes through the edge hint, you
can change the shape of the arc by moving the edge hint around.

Aligning Displays
You can align all displays on the nearest grid position by selediata* Align on Grid’. This is useful
for keeping edges horizontal or vertical.

You can enforce alignment by selectiriggit — Preferences- Data - Auto-align displays on nearest grid
point’. If this feature is enabled, displays can be moved on grid positions only.

Layouting the Display Graph
You can layout the entire graph as a tree by selediiatp'> Layout Graph’.

Layouting the graph may introdueege hintsthat is, edges are no more straight lines, but lead to an edge
hint and from there to their destination. Edge hints can be moved around like arbitrary displays.

To enable a more compact layout, you can setElé - Preferences- Data—- Compact layout option.
This realizes an alternate layout algorithm, where successors are placed next to their parents. This algo-
rithm is suitable for homogeneous data structures only.

You can enforce layout by settingdit — Preferences- Data— Automatic Layout’. If automatic layout
is enabled, the graph is layouted after each change.

DDD 3.1 1998-12-01 31

A Layouted Graph (with Compact Layout)

Rotating the Display Graph
You can rotate the entire graph clockwise by 90 degrees by seld2titay- Rotate Graph'.

If the graph was previously layouted, you may need to layout it again. Subsequent layouts will respect the
direction of the last rotation.

Printing the Display Graph
DDD allows for printing the graph picture on PostScript printers or into files. This is useful for document-
ing program states.

— Enter print command

Frha Hare i ks o 1 mner |

il Typay = FrgkAcrigt . FIG s Coler
Tt S Dty - Mt 7 See i Only
Tmarialian = Pariil . Londerape
Al EI DT = PTG o A3 (R = ST
Prprer Sirm w Leiler (I8 = TA°) wlmpEsc 1 L Select paper size

w EstCilive (T8 = 107} - Ober...

Click to print ———1—— Pt | n-l| tndg |

Printing displays

To print the graph on a PostScript printer, seléde Print Graph’. Enter the printing command in the
‘Print Command’ field. Click on the OK’ or the ‘Apply’ button to start printing.

As an alternative, you may also print the graph in a file. Click onRitef button and enter the file name

DDD 3.1 1998-12-01 32

in the File Namé field. Click on the Print’ button to create the file.
When the graph is printed in a file, two formats are available:
» PostScript—suitable for enclosing the graph in another document;

* FIG—suitable for post-processing, using %ElG graphic editor, or for conversion into other formats
(among others8MGL, LATEX, PIC), using theTRANSFIG or FIG2DEV package.

self self self
T * value = 85 Q value = 86 Q value = 87 '/>
. "fto T Oul self = oxeodarao [[N%L|| self = oxgo4afs0 |[NOL|l self = 0x804af50
(List *) 0x804a next = 0x804af40 next = 0x804af50 next = 0x804af30

next

Output of the ‘Print Graph’ Command

Please note the followintaveatselated to printing graphs:

« If any displays were selected when invoking tReint’ dialog, the option Selected Onlyis set. This
makesDDD print only the selected displays.

e The ‘Color’, ‘ Orientation’, and ‘Paper Sizé options are meaningful for PostScript only.
PLOTTING DATA

If you have huge amounts of numerical data to examine, a picture often says more than a thousand num-
bers. ThereforepDD allows you to draw numerical values in nice 2-D and 3-D plots.

Plotting Arrays
Basically,DDD can plot two types of numerical values:

» One-dimensional arrays. These are drawn in aXY3space, wherX denotes the array index, avdhe
element value.

» Two-dimensional arrays. These are drawn in a 8¥JZ space, wher&X andY denote the array indexes,
andZ the element value.

To plot an array, select it by clickimpouse button bn an occurrence. The array name is copied to the
argument field. By clicking thePlot’ button, a new display is created in the data window, followed by a
new top-level window containing the value plot.

Each time the value changes during program execution, the plot is updated to reflect the current values.
The plot window remains active until you close it (viilé - Close) or until the associated display is
deleted.

Changing the Plot Appearance
The actual drawing is not done bypD itself. InsteadDDD relies on an external Gnuplot program to cre-
ate the drawingDDD adds a menu bar to the Gnuplot plot window that lets you influence the appearance
of the plot:

« The View’ menu toggles optional parts of the plot, such as border lines or a background grid.

e The ‘Plot’ menu changes the plotting style. Th&-D Lines option is useful for plotting two-
dimensional arrays.

» The ‘Scalé menu allows you to enable logarithmic scaling and to enable or disable the scale tics.
e The ‘Contour’ menu adds contour lines to 3-D plots.
You can also resize the plot window as desired.

DDD 3.1 1998-12-01 33

In a 3-D plot, you can use the scroll bars to change your view position. The horizontal scroll bar rotates the
plot around th& axis, that is, to the left and right. The vertical scroll bar rotates the plot arou¥@xise
that is, up and down.

e e T N .|l

s [Sem [egren [eeessh S e [[
M . - |

e e yew fw e g -

i Ly

h| L A 1-D Array

Change Style

A 2-D Array

Rotate View —————— === e

Plotting 1-D and 2-D Arrays

Plotting Scalars and Composites
Besides plotting array®DD also allows you to plot scalars (simple numerical values). This works just like
plotting arrays—you select the numerical variable, clickRInt', and here comes the plot. However, plot-
ting a scalar is not very exciting. A plot that contains nothing but a scalar simply draws the scalar’s value
as aY constant—that is, a horizontal line.

So why care about scalars at alt®D allows you to combine multiple values into one plot. The basic idea

is: if you want to plot something that is neither an array nor a scaartakes all numerical sub-values it

can find and plots them all together in one window. For instance, you can plot all local variables by select-
ing ‘Data— Display Local Variables, followed by ‘Plot’. This will create a plot containing all numerical
values as found in the current local variables. Likewise, you can plot all numeric members contained in a
structure by selecting it, followed biplot’.

If you want more control about what to include in a plot and what not, you can use display clusters. (See
‘Clustering Displays, above, for details on clusters.) A common scenario is to plot a one-dimensional
array together with the current index position. This is done in three steps:

» Display the array and the index, usimjsplay ().
* Cluster both displays: select them and chotselisp - Cluster ().
 Plot the cluster by pressinglot’.

Scalars that are displayed together with arrays can be displayed either as vertical lines or horizontal lines.
By default, scalars are plotted as horizontal lines. However, if a scalar is a valid index for an array that was
previously plotted, it is shown as a vertical line. You can change this initial alignment by selecting the
scalar display, followed byRotate ().

Plotting Display Histories
At each program stoyDD records the values of all displayed variables. Thésglay historiescan be

plotted, too. The menu itenPlot - Plot history of ()’ creates a plot that shows all previously recorded val-
ues of the selected display.

DDD 3.1 1998-12-01 34

Printing Plots
If you want to print the plot, seledFile - Print Plot’. This pops up théDD printing dialog, set up for
printing plots. Just as when printing graphs, you have the choice between printing to a printer or a file and
setting up appropriate options.

The actual printing is also performed by Gnuplot, using the appropriate driver. Please note the following
caveats related to printing:

» CreatingFIG files requires an appropriate driver built into Gnuplot. Your Gnuplot program may not con-
tain such a driver. In this case, you will have to recompile Gnuplot, including thettieéirie FIG in
the Gnuplotterm.h’ file.

» The ‘Portrait’ option generates aBPS file useful for inclusion in other documents. Thandscapé
option make$DD print the plot in the size specified in tHeaper Sizé option; this is useful for print-
ing on a printer. InPortrait’ mode, the Paper Sizé option is ignored.

» The PostScript and X11 drivers each have their own set of colors, such that the printed colors may differ
from the displayed colors.

» The ‘Selected Onlyoption is set by default, such that only the currently selected plot is printed. (If you
select multiple plots to be printed, the respective outputs will all be concatenated, which may not be what
you desire.)

Entering Plotting Commands
Via ‘File ~ Command, you can enter Gnuplot commands directly. Each command entered anthe *
plot>" prompt is passed to Gnuplot, followed by a Gnupteplot’ command to update the view. This is
useful for advanced Gnuplot tasks.

Here’s a simple example. The Gnuplot commaset Xxrange kminxmax’' sets the horizontal range that
will be displayed toxmin.xmax To plot only the elements 10 to 20, enter:

gnuplotset xrange [10:20]

After each command entered, DDD addseplot’ command, such that the plot is updated automatically.

Here's a more complex example. The following sequence of Gnuplot commands saves the/pT@xin
format:

gnuplotsset output "plot.tex" # Set the output filename
gnuplot>set term latex ~ # Set the output format
gnuplotsset term x11 # Show original picture again

Due to the implicit feplot’ command, the output is automatically written pdot.tex’ after the Sset term
latex command.

The dialog keeps track of the commands entered; use the arrow keys to restore previous commands. Gnu-
plot error messages (if any) are also shown in the history area.

The interaction betweebDD and Gnuplot is logged in the fil8{OME/.ddd/log’. The DDD ‘—-trace’
option logs this interaction on standard output.

Exporting Plot Data
If you want some external program to process the plot data (a stand-alone Gnuplot prograrmgr the
program, for instance), you can save the plot data in a file, usileg-'Save Data AS This pops up a
dialog that lets you choose a data file to save the plotted data in.

The generated file starts with a few comment lines. The actual data follows in X/Y or X/Y/Z format. It is
the same file as processed by Gnuplot.

Animating Plots
If you want to see how your data evolves in time, you can set a breakpoint whose command sequence ends
in a ‘cont command. Each time this “continue” breakpoint is reached, the program stop®angdates

DDD 3.1 1998-12-01 35

the displayed values, including the plots. TheDp executes the breakpoint command sequence, resum-
ing execution.

This way, you can set a “continue” breakpoint at some decisive point within an array-processing algorithm
and haveDDD display the progress graphically. When your program has topped for good, you can use
‘Undo’ and ‘Redo’ to redisplay and examine previous program states.

MACHINE-LEVEL DEBUGGING
Note: Machine-level support is available witdB only.

Sometimes, it is desirable to examine a program not only at the source level, but also at the machine level.
DDD provides special machine code and register windows for this task.

Examining Machine Code
To enable machine-level support, sel&dburce- Display Machine Codé. With machine code enabled,
an additionalmachine code windowhows up, displaying the machine code of the current function. By
moving the sash at the right of the separating line between source and machine code, you can resize the
source and machine code windows.

£: DDD: fusriusersists/fzellerfddd/ddd/cxxtest.C M=l
File Edit View Program Commands Status Source Data Help
= = = = = = = g
():|Dx804888&3 D M P @ 2 e A 6 F @
Lookup Find= EBreak Watch Print Display Show Rotade Set Undisp
; 3
void tree_test() =
/ =IDDDEY
ITree *tree = 0; Run -
IS Ttree = new Tree(?, "Ada"); #¢ Byron Lovelace
tree—>left = new Tree(1, "Grace"); ff Murray Hopper Interrupt
tree—>left—:left = new Tree(S, "Tudy'); ff Clapp " . .
tree—>left—rright = new Tree(B, "Kathleen"l; // McNulty M% Step one instruction
Nesct | Mesti | | 1,/
: ; = i
0x8048876 <tree_test(void)+E>: troy 1 $0x0,0xfEFEfFfc(%ebp) | Until | Fnish
@ 0x804887d <tree_test{void)+13>: pushl $0x80496=8 J|J| =))
0x8048882 <tree_test(void)+185: pushl $0x7 Lot j 2l Assembler instructions
<tree_test{void)+20>: pushl =24
-) <tree_test(void)+22:: call 0=28049380 <___huiltin_ MM
0x204888h <tree_test{void)+27:: add] $0x4,%esp Back | Fuwdl
0x804888e <tree_testi{woid)+30>: movl Eeax,Heax -
0x8048890 <tree_test{void)+32:: pushl %eax Eciit | Make
0:8048891 <tree_test(woid)+33s: call 0x8048fc0 <Tree::Tree(Tms—ormer— i
/ 'J

Showing Machine Code

The machine code window works very much like the source window. You can set, clear, and change break-
points by selecting the address and pressiBreak at ()’ or ‘ Clear at ()’ button; the usual popup menus

are also available. Breakpoints and the current execution position are displayed simultaneously in both
source and machine code.

The ‘Lookup ()’ button can be used to look up the machine code for a specific function—or the function
for a specific address. Just click on the location in one window and jedsup ()’ to see the corre-
sponding code in the other window.

The ‘maxDisassembleresource controls how much is to be disassembledndfxDisassembleis set to
256 (default) and the current function is larger than 256 bp@B, only disassembles the first 256 bytes
below the current location. You can set theaxDisassembleresource to a larger value if you prefer to
have a larger machine code view.

If source code is not available, only the machine code window is updated.

Execution
All execution facilities available in the source code window are available in the machine code window as
well. Two special facilities are convenient for machine-level debugging:

DDD 3.1 1998-12-01 36

To execute just one machine instruction, click on 8tepi button.

To continue to the next instruction in the current function, click on Kexti’ button. This is similar to
‘Stepi, but any subroutine calls are executed without stopping.

Registers
DDD provides aregister windowshowing the machine register values after each program stop. To enable
the register window, selecstatus— Registers.

By selecting one of the registers, its name is copied to the argument field. You can use it as \&ise for *
play (), for instance, to have its value displayed in the data window.

5 PO frkesess S0 oler ahibekkl s an sl |

B Bl Vew Prapes (eosesds Tl Feere e |
The register name — &= fesi TS m §oa 8o H
Is copied to () R T — 1))|
] L |
| — i : | ierrug ||
f s s | e | |
o g N m:_'
Select register U
Lot | EE _'
e i |
A1 Pl |
TR 1 lll-l:l"':
| § Vi,
Frelisdp)
BE_tErt
kp,) %
4 s = 0 433 +

Displaying Register Values

Examining Memory
Using GDB or DBX, you can examine memory in any of several formats, independently of your program’s
data types. The itenData— Examine Memory pops up a panel where you can choose the format to be
shown.

You can enter
» arepeat counta decimal integer that specifies how much memory (counting by units) to display
» adisplay format—one of
octal Print as integer in octal
hex Regard the bits of the value as an integer, and print the integer in hexadecimal.
decimal Print as integer in signed decimal.

unsigned Print as integer in unsigned decimal.

binary Print as integer in binary.
float Regard the bits of the value as a floating point number and print using typical floating point
syntax.

address Print as an address, both absolute in hexadecimal and as an offset from the nearest preceding
symbol.

DDD 3.1 1998-12-01 37

instruction
Print as machine instructions. Theit sizeis ignored for this display format.

char Regard as an integer and print it as a character constant.

string Print as null-terminated string. Thmit sizeis ignored for this display format.
* aunit size—one of

bytes Bytes.

halfwords Halfwords (two bytes).

words Words (four bytes).

giants Giant words (eight bytes).

» anaddress—the starting display address. The expression need not have a pointer value (though it may);
it is always interpreted as an integer address of a byte of memory.

There are two ways to examine the values:

* You can dump the memory in the debugger console (uBirigt'). If you repeat the resulting* com-
mand by pressinBETURN, the following area of memory is shown.

* You can also display the memory dump in the data window (uBigplay’). If you choose to display
the values, the values will be updated automatically each time the program stop.

Vew Prgan Cenees Sisies Sasre el s |

“+— Memory Dump
as Status Display

Enter address here

Click here to print...

S-—— .

| ol & 118 n i
| et T F e LRI L4 L L1 2 BT RN et gt o et a tuet

B Ry [MR’ o [
... in the GDB console b PRI < yphind] {nbedidliaifi-: § "ydd 0 "L

i Debd ~_ptirac el v N0 100 %' 117 1000 1100 B B0 8 e o et

Examining Memory

EDITING SOURCE CODE
In DDD itself, you cannot change the source file currently displayed. In©e&dallows you to invoke a
text editor To invoke a text editor for the current source file, select Bukt " button or ‘Source- Edit
Source.

By default,DDD tries a number of common editors. You can custordi2® to use your favourite editor
via ‘Edit - Preferences- Helpers— Edit Sources.

DDD 3.1 1998-12-01 38

After the editor has exited, the source code shown is automatically updated.

If you haveDDD and an editor running in parallel, you can also update the source code manually via
‘Source- Reload Sourcé This reloads the source code shown from the source file. BiDbeautomati-

cally reloads the source code if the debugged program has been recompiled, this should seldom be neces-
sary.

ENTERING COMMANDS
In thedebugger console/ou can interact with the command interface of the inferior debugger. Enter com-
mands at thedebugger promptthat is, (gdb) for GDB, ‘(dbx)’ for DBX, ‘> for XDB, ‘>’ and
‘threaddepth’ for JDB, or ‘(Pydb)’ for PYDB, or ‘DB<>’ for Perl. You can use arbitrary debugger com-
mands; use thRETURN key to enter them.

£: DDD: Debugger Console M=l E
File Edit View Program Commands Help
[5

{gdh) info source

Current source file is fusrfusers/stsi/zeller/ddd/ddd/crxtest.C
Compilation directory is Sfusrfusersistsi/zeller/Sddd/ 11 nuxsdddys
Located in fusrfusers/stst/zeller/ddd/ddd/cxxtest.C

Contains 285 lines.

Source language is c++.

Prompt —+{gdb)]

¢
|

Your Command

el

The Debugger Console

You canrepeatprevious and next commands by pressing th& and ‘Down’ arrow keys, respectively. If
you enter an empty line, the last command is repeated as @elnrmands- Command History’ shows
the command history.

£ DDD: Command History

Command History
graph enable display 2 5 il

Position in History info program
info source
info Tine fusrfusers/sts1/zeller/ddd/ddd/curtest.C150
graph disable display 1
graph enable display 1

£2 DDD: Debugger info Tine "Tist_test

File Edit View

=L

graph dizsable display 1

{gdb) Quit

{gdb) info progr OKS | _Apply | EIrsE | G |

{gdb) graph disz

{gdb) graph enak

{gdb) graph disable display 1

{gdb) graph enable display 1

Creverse—1—search) info p’: [info program
i

!

Search String Command Apply Selected Command

Searching with Ctrl+B in the Command History

You cansearchfor previous commands by pressi@yyl+B . This invokesncremental search modehere
you can enter a string to be searched in previous commands. Geile&s again to repeat the search, or
Ctrl+F to search in the reverse direction. To return to normal mode, BS&Ssor use any cursor

DDD 3.1 1998-12-01 39

command.

Using GDB and Perl, you can alsmmpletecommands and arguments by pressingTke key; pressing
theTAB key multiple times shows one possible expansion after the other.

CUSTOMIZING DDD
You can set up your persorabD preferences by using thEdit - Preference$menu from the menu bar.
These preferences affect your runnid@D process only, unless you save these preferences for tzber
invocation. Frequently used preferences can also be found in the individual menus.

Frequently Used Preferences
If you want to run your debugged process in a separate terminal emulator wind®wgedrh — Run in
Execution Window'. This is useful for programs that have special terminal requirements not provided by
the debugger window, as raw keyboard processing or terminal control sequences.

By default,DDD finds only complete words. This is convenient for clicking on an identifier in the source
text and search for exactly this identifier. If you want to find all occurrences, including word parts, unset
‘Source- Find Words Only’.

By default,DDD find is case-sensitive. This is convenient for case-sensitive programming languages. If
you want to find all occurrences, regardless of case, Ubgetce- Find Case Sensitive

If you wish to display machine code of selected functions, Smirte- Display Machine Codé. This
makesDDD run a little slower, so it is disabled by default.

Through Edit - Preference$ you can set up mormeDD preferences, which are discussed here.

General Preferences
By default, when you mwvethe pointer over a buttomDD gives a hint on the button’s meaning in a small
window. This feature is known dmtton tips(also known asool tipsor balloon help). Experienced users
may find these hints disturbing; this is why you can disable them by unsettirgutbenatic display of
button hints as popup tips option.

3 DD Feslurms
[r.—-l Sorc | Buim | Stwip | Feix | beipers |
Fadpemalic Dtspley of Mhilon Hirds © ma Popup Tigs ik Staie L
Pabiysali) Drplay BF Vortablo Volerd 7 a8 Pojug Tigs [oies Hiaies Lee
Ttk bey Campleisn * i Al T i Conmas Oy
J eonity &l Vndews ol Oncs
LT Tee e —
- SuppaE X Wamige

- Warn i Fhilipds V00 s lasews an TRrwesy
7 dmsimien il olly s Wi Pesien . Froces

Ok | r'-:m.| =iy |

General Preferences

The button hints are also displayed in the status line. Disabling hints in status line (by unsetfgpthe *
matic display of button hints in the status liné option) and disabling button tips as well malk#sD run
slightly faster.

By default, when you ovethe pointer over a variable in the source caueD displays the variable value
in a small window. Users may find thessdue tipsdisturbing; this is why you can disable them by unset-
ting the ‘Automatic display of variable values as popup tigoption.

DDD 3.1 1998-12-01 40

The variable values are also displayed in the status line. Disabling variable values in status line (by unset-
ting the ‘Automatic display of variable values in the status lineoption) and disabling value tips as well
will make DDD run slightly faster.

If you want to us&fAB key completion in all text windows, set thEAB key completes in all windows
option. This is useful if you have pointer-driven keyboard focus (see below) and no special usage for the
TAB key. Otherwise, the@AB key completes in the debugger console only.

If you frequently switch betweeBDD and other multi-window applications, you may like to set the
‘Iconify all windows at onceé option. This way, alDDD windows are iconified and deiconified as a group.

If you want to keeDD off your desktop during a longer computation, you may like to setithe&onify

when ready option. This way, you can iconiffpDD while it is busy on a command (e.g. running a pro-
gram); DDD will automatically pop up again after becoming ready (e.g. after the debugged program has
stopped at a breakpoint).

If you are bothered by X warnings, you can suppress them by settir§ugngréss X warningsoption.

If you want to be warned about multipgkdD invocations sharing the same preferences and history files,
enable Warn if Multiple DDD Instances are Running’.

When debugging a modal X applicati@DD may interrupt it while it has grabbed the pointer, making fur-
ther interaction impossible. If th€bntinue automatically when mouse pointer is frozeroption is set,
DDD will check after each interaction whether the pointer is grabbed. If this BED&pwill continue the
debugged program such that you can continue to use your display.

The Undo Bufferis the area wherBDD stores old program states and commands in order to undo opera-
tions. When you are displaying lots of data, the undo buffer can quickly growintio‘Buffer Siz€, you

can limit the size of the undo buffer. Setting this limitOtaisables undo altogether. A negative value
means to place no limit.

The ‘Reset button restores the most recently saved preferences.

Source Preferences
In the source text, the current execution position and breakpoints are indicated by symbols (“glyphs”). As
an alternativePDD can also indicate these positions using text characters. If you wish to disable glyphs,
set the As Text Characters option. This also makeBDD run slightly faster, especially when scrolling.

X D00 Fewlmasas

Source Preferences

DDD can locate the tool buttons in the command td@bthmand Tool) or in acommand tool baabove
the program source§ource Window). Pick your choice.

DDD 3.1 1998-12-01 41

SomeDBX and XDB variants do not properly handle paths in source file specifications. If you want the
inferior debugger to refer to source locations by source base names only, unBetféhéd sources by
full path name’ option.

By default,DDD finds only complete words. This is convenient for clicking on an identifier in the source
text and search for exactly this identifier. If you want to find all occurrences, including word parts, unset
‘Find words only’.

By default,DDD find is case-sensitive. This is convenient for case-sensitive programming languages. If
you want to find all occurrences, regardless of case, Ufigetcase sensitive

By default,DDD caches source files in memory. This is convenient for remote debugging, since remote file
access may be slow. If you want to reduce memory usage, unsétttiee'source file'soption.

By default,DDD caches machine code in memory. This is bad for memory usage, but convenient for speed,
since disassembling a function each time it is reached may take time. If you want to reduce memory usage,
unset the Cache machine codeoption.

If your source code uses a tab width different f®(the default), you can set an alternate width using the
‘Tab width’ slider.

You can instrucDDD to indent the source code, leaving more room for breakpoints and execution glyphs.
This is done using theésburce indentation slider. The default value i8 for no indentation at all. If the
source indentation Bor higher,DDD will also show line numbers.

Finally, you can instrucDDD to indent the machine code, leaving room for breakpoints and execution
glyphs. This is done using th®lachine code indentation slider. The default value i4.

The ‘Reset button restores the most recently saved preferences.

Data Preferences
You can control whether edge hints and edge annotations are displayed. Set or urSkouh&dge
Hints’ and ‘Show Edge Annotationsoption, respectively.

By default,DDD disables the title of a dependent display if the name can be deduced from edge annota-
tions. If you want all dependent displays to have a title Swiw Titles of Dependent Displays

Ganersl | Sesce || Dwtn Staap | oo | e |

Hurm T kg Fate 0 Exkg Ayeerlalinn 0 THBES gl Dapsaska] Dtdays
Lapmel 7 Compeat) faneredic
! Dwiert Pimses [shened defe sineie
_ emsinr Duila (vsosys
" Coplay Tes- Dimermiona Sereys o Tabies
I it [k ‘Wedwet e (iselie kril Orplas
T faria- fgn epbrys on fearvas Gnd Pors
I

Tt S

[y |]

Data Preferences

To enable a more compact layout, you can setGbenpact Layout option. This realizes an alternate lay-
out algorithm, where successors are placed next to their parents. This algorithm is suitable for homoge-
neous data structures only.

To enforce layout, you can set thiee-layout graph automatically option. If automatic layout is enabled,

DDD 3.1 1998-12-01 42

the graph is layouted after each change.

If you wantDDD to detect aliases, set tHaetect AliaseSoption. Note that alias detection mak@BD run
slower. SeeExamining Shared Data Structures, above, for details on alias detection.

By default, DDD displays two-dimensional arrays as tables, aligning the array elements in rows and
columns. If you prefer viewing two-dimensional arrays as nested one-dimensional arrays, you can disable
the ‘Display two-dimensional arrays as tablesoption.

To facilitate alignment of data displays, you can set Awo-align displays option. If auto-alignment is
enabled, displays can be moved on grid positions only.

By default, the stacked data window is automatically closed when you delete the last data display. You can
keep the data window open by unsetti@ip'se data window when deleting last displdy

In the ‘Grid Size’' scale, you can change the spacing of grid points. A spacing of 0 disables the grid.
Default is 16.

The ‘Reset button restores the most recently saved preferences.

Startup Preferences
If you change one of the resources in this panel, the change will not take effect immediately. Instead, you
can

» save options (usind=dit » Save Optiong) to make the change effective for futu®D sessions,
 orrestarDDD (using File - Restart DDD’) to make it effective for the restart&@bD session.

After having made changes in the pam#D will automatically offer you to restart itself, such that you
can see the changes taking effect. Note that even after restarting, you still must save options to make the
changes permanent.

T S - |
Ganersl | Sauroe et || Starap Fotz | e |

Wy Laprnl < e b Whekras - Haparely Hashee
T s = Cogy .o Wnewagl
Crskin “ Suka A - Degesing of Les
Tal Bor Mg T Eanged o Dogliees T Rk O Color o Donio
Wrysannd Tacun “ poml ln Typs - Ok ks Typa
D oy * Popweer . oo
Dntuggpr Trpe T Beteris ooty e Argmnenis
A B e (115 e SH e S o YT o P

At M T B0 Splash Screen) Tie ol 0w ey

L

=y e |

Startup Preferences

By default,DDD stacks commands, source, and data in one single top-level window. To have separate top-
level windows for source, data, and debugger console, saMihddw Layout’ option to ‘Separate Win-
dows. See also the~—attach-windows and ‘——separate-windowsoptions, below.

TheCtrl+C key can be bound to different actions, each in accordance with a specific style guide.

Copy This setting bind€trl+C to the Copy operation, as specified by KD style guide. In this set-
ting, useESC to interrupt the debuggee.

DDD 3.1 1998-12-01 43

Interrupt
This (default) setting bindStrl+C to the Interrupt operation, as used in seveniX command-
line programs. In this setting, uS&l+ins to copy text to the clipboard.

TheCtrl+A key can be bound to different actions, too.

Select All
This (default) setting bind€trl+A to the Select All operation, as specified by KizE style
guide. In this setting, u3¢OME tp movethe cursor to the beginning of a line.

Beginning of Line
This setting bind€trl+A to the Beginning of Line operation, as used in sevgx#X text-editing
programs. In this setting, usgrl+Shift+A to select all text.

TheDDD tool bar buttons can appear in a variety of styles:
Images This lets each tool bar button show an image illustrating the action.

Captions
This shows the action name below the image.

The default is to have images as well as captions, but you can choose to have only images (saving space) or
only captions.

No captions, no images

(| fnain 7 Lookup ()| Find> (7| Break at (§| Watch () *| Print ()| Display (ﬂl

Captions, images, flat, color

- - - - -

02 | ain B i @ @ R ol L T 5 k7

' Lookup Find: Break Watch Print Display Plot Showl Botete Set Updisgr

Captions only, non-flat

.. - - | - - | - - -
l:]: main _-'". L-:u:-ku:-l Fin-:l»l Breakl I..Jatchl Frint |Di5|:-|ay| Flat | S | F!-:-tatel Set | Uncli5|:-|

Images only, flat

-

()¢ | nain R e e el IS P A

Tool Bar Appearance

If you choose to have neither images nor captions, tool bar buttons are labeled like other butt@zas in
2.x. Note that this implies that in the stacked window configuration, the common tool bar cannot be dis-
played; it is replaced by two separate tool bars, &b 2.x.

If you enable Flat’ buttons (default), the border of tool bar buttons will appear only if the mouse pointer is
over them. This latest-and-great&dtl invention can be disabled, such that the button border is always
shown.

If you enable Color’ buttons, tool bar images will be colored when enteredDib was built using Motif
2.0 and later, you can also choose a third setting, where buttons appear in color all the time.

By default, theDDD tool bars are located on top of the window. If you prefer the tool bar being located at
the bottom, as iDDD 2.x and earlier, enable thBottom’ toggle. The bottom setting is only supported for
separate tool bars—that is, you must either choose separate windows or configure the tool bar to have nei-
ther images nor captions.

By default,DDD directs keyboard input to the item your mouse pointer points at. If you prefer a click-to-

DDD 3.1 1998-12-01 44

type keyboard focus (that is, click on an item to make it accept keyboard input), s&tyhedrd Focus
option on Click to Type’.

By default,DDD uses Motif scroll bars to scroll the data window. Many people find this inconvenient, since
you can scroll in the horizontal or vertical direction only. As an alternad®®, provides a panner (a kind

of two-dimensional scroll bar). This is much more comfortable, but may be incompatible with your Motif
toolkit. To set upDDD such that it uses panners by default, set Erad Scrolling’ option to ‘Panner.

See also the-—panned-graph-editor and ‘——scrolled-graph-editor options, below.

By default,DDD determines the inferior debugger automatically. To change this default, Desetmine
Automatically’ and set the Debugger Typeé option to a specific debugger. See also thegdb),
‘——dbx’, ‘——xdb’, ‘ —=jdb’, ‘ ——pydb’, and ‘——perI’ options, below.

If you want theDDD splash screen shown upon startup, endblED Splash Screeh
If you want theDDD tips of the day displayed upon startup, enabip of the Day'.
The ‘Reset button restores the most recently saved preferences.

Fonts
You can configure the badibD fonts at run-time. Each font is specified using two members:

» Thefont familyis an X font specifications, where the initial specification afamily. Thus, a pair
‘family-weight usually suffices.

» Thefont sizeis given as (resolution-independent) 1710 points.

The ‘Browse€ button opens a font selection program, where you can select fonts and attributes interactively.

Clicking ‘quit’ or ‘select in the font selector causes all non-default values to be transferred oDthe
font preferences panel.

Gawrd | Saros | Deis St || Terh Huipary |
‘Fmnabln Wd Fu 1t it L Oiom | o e
Vil Wl Tucidwtype - tee <mcHue E RS

(8 Nasai b I

Setting Font Preferences

The following fonts can be set using the preferences panel:
Default Font

The defaulDDD font to use for labels, menus, and buttons. Defaultebsetica-bold.
Variable Width

The variable widttDDD font to use for help texts and messages. Defautiglvética-mediumi.
Fixed Width

The fixed widthDDD font to use for source code, the debugger console, text fields, data displays,
and the execution window. Default lacidatypewriter-medium’.

DDD 3.1 1998-12-01 45

Just like startup preferences, changes in this panel will not take effect immediately. Instead, you can
» save options (usind=dit » Save Optiong) to make the change effective for futue®D sessions,
 orrestarDDD (using File - Restart DDD’) to make it effective for the restart&@bD session.

After having made changes in the pam#D will automatically offer you to restart itself, such that you
can see the changes taking effect. Note that even after restarting, you still must save options to make the
changes permanent.

The ‘Reset button restores the most recently saved preferences.

Helpers
DDD relies on some external applications (catedperg for specific tasks. Through thelélpers panel,
you can choose and customize these applications.

In ‘Edit Sources, you can select an X editor to be invoked via bigD ‘Edit’ button. ‘@FILE@’ is
replaced by the current file nam@LINE@' is replaced by the current line. Typical values includedit
@FILE@’ or ‘gnuclient +@LINE@ @FILE@’. See also thegditCommand resource, below.

In ‘Get Core Fil€, you can enter a command to get a core file from a running proc@dsSILE@’ is
replaced by the name of the target core fi@PID@' is replaced by the process ID. A typical value is
‘gcore -0 @QFILE@ @PID@. If you don’t have an appropriate command, leave this value erDpip:
will then kill the debuggee in order to get a core file. See als@&t€oreCommand resource, below.

‘List Processesis a command to get a list of processes, Ii8." The output of this command is shown in
the File - Attach to Processdialog. See also thggsCommand resource, below.

ol Frasai b I

Setting Helpers Preferences

In ‘Execution Window, you can enter a command to start a terminal emulator. To this commband,
appends Bourne shell commands to be executed within the execution window. A simple vagreisé
/bin/sh —c. See also thetermCommand’ resource, below.

‘Uncompress is the uncompression command useddfyD to uncompress thBDD license and manual
pages. The uncompression command should be invoked such that it reads from standard input and writes to
standard output. A typical value igunzip —c. See also theuncompressCommandresource, below.

‘Web Browser is the command to invoke &/wWw browser for theDDD WWW page. @URL@’ is
replaced by th&RL (web page) to be shown. A simple valueristscape @URL@ See also theviww-
Command resource, below.

‘Plot’ is the name of a Gnuplot program to invokeDD can run Gnuplot in two ways:

DDD 3.1 1998-12-01 46

» DDD can use aifexternal Plot Window, i.e. the plot window as supplied by Gnupl@DD “swallows”
the Gnuplot output window into its own user interface. Unfortunately, some window managers, notably
MWM, have trouble with swallowing techniques.

» DDD can supply auiltin Plot Window instead. This works with all window managers, but plots are
less customizable (Gnuplot resources are not understood).

Pick your choice from the menu. See also filetCommand’ and ‘plotTermType’ resources, below.
Saving Options
You can save the current option settings by selectitit - Save Options. Options are saved in a file

named ddd/init’ in your home directory. If a sessiomessionis active, options will be saved in
‘$HOME/.ddd/sessionsgessiofinit’ instead.
Other Customizations

Other personabDD resources can also be set in youaldd/init’ file. See the RESOURCES section,
below.
The inferior debugger can be customized #dit - Settings. See the DEBUGGER SETTINGS' sec-
tion, below.

DEBUGGER SETTINGS
For most inferior debuggers, you can change its settings Usitig— Settings. Using the settings editor,
you can determine whether C++ names are to be demangled, how many array elements are to print, and so
on.

T - |

GlH Settingn =
- Blipping Mo shene] ey wemls e x
Cumrpnl o derassghng adgie MBI S i s on Bnecitabbe 7]
...... ey g _...:1:

T N T s e e e e [J
TEP CBSLRERL o] 1]
Feaavi pakli (04 Soarce ey ___ L el ArLAtarral el
Sunrch path lor ol s . Iizellaria w N

oK Iazal | = |

GDB Settings Panel (Excerpt)

The capabilities of the settings editor depend on the capabilities of your inferior debugger. Click¥hg on
gives an an explanation on the specific item;@Gb8 documentation gives more details.

Use Edit — Undo’ to undo changes. Clicking ofiReset restores the most recently saved settings.

Some debugger settings are insensitive and cannot be changed, because doing so wouldD&iganger
operation. See thgdblnitCommands’ and ‘dbxInitCommands’ resources for details.

All debugger settings (except source and object paths) are savanDmithptions.

USER-DEFINED ACTIONS
Defining Buttons
To facilitate interaction, you can add own command buttob®®. These buttons can be added below the
debugger console@onsole Buttons), the source window Source Buttons), or the data window Pata

DDD 3.1 1998-12-01 47

Buttons’).

To define individual buttons, use tBaitton Editor invoked via Commands- Edit Buttons’. The button
editor displays a text, where each line contains the command for exactly one button. Clickitg ore-
ates the appropriate buttons from the text. If the text is empty (the default), no button is created.

As a simple example, assume you want to creageimat i’ button. Invoke Commands- Edit Buttons’

and enter a line sayin@rint i’ in the button editor. Then click orOK’. A button namedPrint i will

now appear below the debugger console—try it! Toawshe button, reopen the button editor, clear the
‘printi’ line and pressOK’ again.

If a button command contain§’; the string ()’ will automatically be replaced by the contents of the argu-
ment field. For instance, a button namesturn () ' will execute theGDB ‘return’ command with the cur-
rent content of the argument field as argument.

By default,DDD disables buttons whose commands are not supported by the inferior debugger. To enable
such buttons, unset thEriable supported buttons onlytoggle in the button editor.

£: DDD: Button Editor Ed
|Cunsule Buttons Source Buttons | Data Buttons |
print i -
Enter text here... interrupthc
... to create these buttons.
£3 DDD: Debugger Console O x
File Edit View Program Help
Print i Intem%lpt
. . Y] | o
Starting program: Jamd/inf Lot |
7 Enable supported buttons only
Breakpoint 1, main (3 at /
igdb) print i
$3 =43 J
{gdb) T (1] 4 | Cancel | Help | y

Defining individual buttons

DDD also allows you to specify control sequences and special labels for user-defined buttons. See the
examples inUser-defined Buttonsin the ‘RESOURCES section, below.

Defining Simple Commands using GDB
Aside from breakpoint commands (sé&&réakpoint commands, above),DDD also allows you to store
sequences of commands as a user-defdiEglcommand. Auser-defined commarns a sequence @DB
commands to which you assign a new name as a command. N ghis is done via th€ommand Edi-
tor, invoked via Commands- Define Command.

A GDB command is created in five steps:

» Enter the name of the command in t@®Mmmand field. Use the drop-down list on the right to select
from already defined commands.

» Click on ‘Record to begin the recording of the command sequence.

DDD 3.1 1998-12-01 48

* Now interact withDDD. While recordingDDD does not execute commands, but simply records them to
be executed when the breakpoint is hit. The recorded debugger commands are shown in the debugger
console.

» To stop the recording, click ofehd’ or enter end at the GDB prompt. Tocancelthe recording, click
on ‘Interrupt ’ or pressescC.

» Click on ‘Edit >>' to edit the recorded commands. When done with editing, clickedlit ‘<<’ to close
the commands editor.

After the command is defined, you can enter it adhs prompt. You may also click oA\pply’ to apply
the given user-defined command.

For convenience, you can assign a button to the defined command. Enabling on®ofttme focations
will add a button with the given command to the specified location. If you want to edit the button, select
‘Commands- Edit Buttons’; see alsoDefining Buttons, above.

Command Name Command Definition

If enabled, use argument field symbolically

3 DDD: Define

Command Ig:;g o I Taraph display $argo
Definition Record | Endl Edit «« |
Button -l |Console _| Source _| Data

oK _forly | tete_|

Start Recording Assign Button

Defining GDB Commands

When user-define@DB commands are executed, the commands of the definition are not printed. An error
in any command stops execution of the user-defined command.

If used interactively, commands that would ask for confirmation proceed without asking when used inside a
user-defined command. Mam@DB commands that normally print messages to say what they are doing
omit the messages when used in a user-defined command.

To save all command definitions, ugalit -~ Save Options

Defining Argument Commands using GDB
If you want to pass arguments to user-defined commands, you can enaf)le¢dbgle button in the Com-
mand Editor. Enabling()’ has two effects:

» While recording commands, all references to the argument field aresgkdolicallyinstead of liter-
ally. The argument field value is frozen &afg0, which is howGDB denotes the argument of a user-
defined command. Whe®DB executes the command, it will repla&artg0 by the current command
argument.

* When assigning a button to the command, the command will be suffixed by the current contents of the
argument field.

DDD 3.1 1998-12-01 49

While defining a command, you can toggle tfebutton as you wish to switch between using the argu-
ment field symbolically and literally.

As an example, let us define a commagwhtuntil’ that will set a breakpoint in the given argument and
continue execution.

 Enter ‘contuntil’ in the ‘Definition’ field.

» Enable the()’ toggle button.

* Now click on Record to start recording. Note that the contents of the argument field change to
‘$arg0.

» Click on ‘Break at () to create a breakpoint. Note that the recorded breakpoint command refers to
‘$arg0.

* Click on ‘Cont’ to continue execution.

» Click on ‘End’ to end recording. Note that the argument field is restored to its original value.

» Finally, click on one of theButton’ locations. This creates &bntuntil ()’ button where ()’ will be
replaced by the current contents of the argument field—and thus passecttmtustil’ command.

* You can now either use th€ontuntil ()’ button or enter acontuntil’ command at th&sDB prompt. (If
you plan to use the command frequently, you may wish to defiee’ @dmmand, which again calls
‘contuntil” with its argument. This is a nice exercise.)

There is a little drawback with argument commands: a user-defined commem ihas no means to
access the argument list as a whole; only the first argument (up to whitespace) is processed. This may
change in futur&DB releases.

Defining Commands using Other Debuggers
If your inferior debugger allows you to define own command sequences, you can also use these user-
defined commands withibDD; just enter them at the debugger prompt.

However, you may encounter some problems:

 In contrast to the well-documented commands of the inferior debug@erdoes not know what a user-
defined command does. This may lead to inconsistencies bebidEeand the inferior debugger. For
instance, if your the user-defined commalpl sets a breakpoinDDD may not display it immediately,
becaus®DD does not know thabp’ changes the breakpoint state.

* You cannot us®DD graph commands within user-defined commands. This is only natural, because
user-defined commands are interpreted by the inferior debugger, which does not knoltdaboatn-
mands.

As a solutionpDD provides a simple facility calleguto-commandsIf DDD receives any output from the
inferior debugger in the fornptefix commanid it will interpret commandas if it had been entered at the
debugger promptprefixis a user-defined string, for examptigld:

Suppose you want to define a commagdi that serves as abbreviation fagraph display. All the com-
mandgd has to do is to issue a string

ddd: graph display argument

wherearguments the argument given t@d'. Using GDB, this can be achieved using taehocommand.
In your$HOME/.gdbinit file, insert the lines

define gd
echo ddd: graph display $argO\n
end

To complete the setting, you must also set theadCommandPrefiX resource to theddd: ' prefix you
gave in your command. IIBHOME/.ddd/init’, write:

DDD 3.1 1998-12-01 50

Ddd*autoCommandPrefix: ddd:\

(Be sure to leave a space after the trailing backslash.)
Entering gd foo will now have the same effect as enteriggdph display fod at the debugger prompt.

Please note: In your commands, you should choose some other prefidddah ‘This is because auto-
commands raise a security problem, since arbitrary commands can be executed. Just imagine some mali-
cious program issuing a string likeréfix shell rm -fr $HOME ' when being debugged! As a conse-
guence, be sure to choose your gwefix it must be at least three characters long.

QUITTING DDD
To exitDDD, select File — Exit’. You may also type theguit’ command at the debugger prompt or press
Ctrl+Q . GDB andXDB also accept they' command or an end-of-file character (usu&lyl+D). Closing
the lastDDD window will also exitDDD.

An interrupt ESC or Interrupt) does not exit fronDDD, but rather terminates the action of any debugger
command that is in progress and returns to the debugger command level. It is safe to type the interrupt
character at any time because the debugger does not allow it to take effect until a time when it is safe.

In case an ordinary interrupt does not succeed, you can also use aiCabartof Abort), which sends a
QUIT signal to the inferior debugger. Use this in emergencies only; the inferior debugger may be left
inconsistent or even exit aftelQUIT signal.

As a last resort—ibDD hangs, for example—, you may also interrDpD itself using an interrupt signal
(SIGINT). This can be done by typing the interrupt character (usGallyC) in the shellDDD was started

from, or by using th&JNIX ‘kill command. An interrupt signal interrupts abpD action; the inferior
debugger is interrupted as well. Since this interrupt signal can result in internal inconsistencies, use this as
a last resort in emergencies only; save your work as soon as possible andbestart

PERSISTENT SESSIONS
Note: Persistent sessions are supported @itB running on the local machine only. Support for other
DBX, XDB, andJDBis partially implemented; your mileage may vary.

If you want to interrupt your curremmDD session, you can save its ent@D state in a file and restore it
later.

Saving Sessions
To save a session, seleEtlé - Save Session As You will be asked for

» asymbolic session nansessiorand

» whether to include a core dump of the debugged program. Including a core dump is necessary for restor-
ing memory contents and the current execution position.

After clicking on ‘Saveé, the session is saved ISHHOME/.ddd/sessionsgessioh

After saving the current state as a session, the session bemttives This means thabDD state will be
saved as session defaults:

» User options will be saved iSHOME/.ddd/sessionsgessiofinit’ instead of $HOME/.ddd/init’; see
‘Saving Options, below, for details.

» The DDD command history will be saved ifBHOME/.ddd/sessionsgessiofhistory’ instead of
‘$HOME/.ddd/history’; see Entering Commands, above, for details.

To make the current session inactive, opendéfault sessiomamed [None]; see below for details on
opening sessions.

If your program is running, or if you have opened a core BilZh) can include a core file in the session

such that the debuggee data will be restored when re-opening it. To get a cbeXitgpically must Kill

the debuggee. This means that you cannot resume program execution after saving a session. Depending on
your architecture, other options for getting a core file may also be available.

DDD 3.1 1998-12-01 51

1 MEOO; Save Sessien

Default session

Saved sessions ———

Set to save]
Program Data ———————— nilwiin Coew fumsp wia Kilrw the Defogoges o

Jarve Bession
i.Ml...l.l

Clicktosave — - Sava | Duete | Caocel | Hep |

Saving a Session

If a core file isnotto be included in the sessidbDD data displays are saved@eferred that is, they will

be restored as soon as program execution reaches the scope in which they were created.
Opening Sessions

To resume a previously saved session, sekgld - Open Sessiohand choose a session name from the

list. After clicking on Open’, the entireDDD state will be restored from the given session.

The session name@None] is the default sessiomhich is active when startingDD. To save options for

default sessions, open the default session and save optiorSagieg ‘Options below for details.

£2 DDD: Open 3ession | %]

Sessions

Default session —————————tnonel
cornands4s
ctest+dbx
ctest

Saved sessions —————————thuao

Open Session
I crxtest]

Click to open Open | Delete Cancel Help

Opening a Session

If a the restored session includes a core dump, the program being debugged will be in the same state at the
time the session was saved; in particular, you can examine the program data. However, you will not be able
to resume program execution since the environment (open files, resources, etc.) will be lost. However, you

can restart the program, re-using the restored breakpoints and data displays.

Opening sessions also restores command definitions, buttons, display shortcuts and the source tab width.

This way, you can maintain a different set of definitions for each session.

DDD 3.1 1998-12-01

52

Deleting Sessions
To delete sessions that are no longer needed, sElkect. Open Sessiohor ‘ File » Save Sessidn Select
the sessions you want to delete and click@eléte.

The default session cannot be deleted.

Starting DDD with a Session
To start-upDDD with a given session namedssiorinstead of the default session, use

ddd ——sessiorsession

There is also a shortcut that opens the sessgmsionand also invokes the inferior debugger on an
executable namesgkssior(in casesessiorcannot be opened):

ddd =session

There is no need to give further command-line options when restarting a session, as they will be overridden
by the options saved in the session.

INTEGRATING DDD
You can runDDD as an inferior debugger in other debugger front-ends, combining their special abilities
with those ofbDD.

General Information
To haveDDD run as an inferior debugger in other front-ends, set up your debugger front-end sutdthdthat *
——tty’ is invoked instead of the inferior debugger. WhenD is invoked using the—-tty’ option, it
enables it§ TYinterface taking additional debugger commands from standard input and forwarding debug-
ger output to standard output, just as if the inferior debugger had been invoked directly. All remBiDing
functionality stays unchanged.

In case your debugger front-end uses@mB ‘—fullname’ option to haveGDB report source code posi-
tions, the ~—tty’ option is not required.DDD recognizes the—fullname’ option, finds that it has been
invoked from a debugger front-end and automatically enablegthénterface.

You may also invokeddd —-tty’ directly, enteringDDD commands from yourTY, or useDDD as the end
of a pipe, controlled by a remote program. Be aware, however, thatthiaterface does not support line
editing and command completion and tbaD exits as soon as it detects &DF condition on its standard
input. Also, do not try to rubDD with DDD as inferior debugger.

UsingDDD in TTY mode automatically disables somBD windows, because it is assumed that their facili-
ties are provided by the remote program:

+ If DDD is invoked with the ~—tty’ option, the debugger console is initially disabled, as its facilities are
supposed to be provided by the integrating front-end.

« If DDD is invoked with the +fullname’ option, the debugger console and the source window are initially
disabled, as their facilities are supposed to be provided by the integrating front-end.

In case of need, you can use thieeiv’ menu to re-enable these windows.

Using DDD with GNU Emacs
Use M-x gdb’ or ‘ M-x dbx’ to start a debugging session. At the prompt, erddd‘——tty’, followed by
‘——dbx’ or ‘ ——gdb’, if required, and the name of the program to be debugged. Proceed as usual.

Using DDD with XEmacs
Set the variablgdb-command-nameto "ddd" , by inserting the following line in yolBHOME/.emacs
file or evaluating it by pressirgSC : (ESC ESCfor XEmacs 19.13 and earlier):
(setq gdb-command-name "ddd")

Use M-x gdb’ or * M-x gdbsrc’ to start a debugging session. Proceed as usual.

DDD 3.1 1998-12-01 53

Using DDD with XXGDB
Invokexxgdb as

xxgdb —db_name ddd —db_prompt '(gdb) ’

USING DDD WITH LESSTIF
DDD 2.1.1 and later include a number of hacks that ke run with LessTif,a free Motif clone, without
loss of functionality. Since BDD binary may be dynamically bound and used with either an OSF/Motif or
LessTif library, thesdesstif hackgan be enabled and disabled at run time.

Whether thdesstif hacksare included at run-time depends on the setting ofléissTif\ersion resource.
‘lessTifVersion indicates the LessTif version against whiobD is linked. For LessTif versior.y, its
value isx multiplied by 1000 plug—for instance, the valu@5 stands for LessTif 0.95 and the valL@00
stands for LessTif 1.0. To specify the version number of the LessTif librabp@tinvocation, you can
also use the option-*lesstif-versionversion.

The default value of thdessTifVersion resource is derived from the LessTif librabypD was compiled
against (ort000when compiled against OSF/Motif). Hence, you normally don't need to worry about the
value of this resource. However, if you use a dynamically lir@®0 binary with a library other than the

one DDD was compiled against, you must specify the version number of the library using this resource.
(Unfortunately,DDD cannot detect this at run-time.)

Here are a few scenarios to illustrate this scheme:

* Your DDD binary was compiled against OSF/Motif, but you use a LessTif 0.85 dynamic library instead.
Invoke DDD with ‘——lesstif-version 85

* Your DDD binary was compiled against LessTif, but you use a OSF/Motif dynamic library instead.
Invoke DDD with ‘—-lesstif-version 100Q

* Your DDD binary was compiled against LessTif 0.85, and you have upgraded to LessTif 0.90. Invoke
DDD with ‘——lesstif-version 90.

To find out the LessTif or OSF/Motif versi@DD was compiled against, invokeEDD with the ‘——configu-
ration’ option.

In theDDD source, LessTif-specific hacks are controlled by the stiasgtif version.

REMOTE DEBUGGING
It is possible to have the inferior debugger run on a retigt& host. This is useful when the remote host
has a slow network connection or whHebD is available on the local host only.

Furthermore, the inferior debugger may support debugging a program on a remote host. This is useful
when the inferior debugger is not available on the remote host—for instance, because the remote system
does not have a general purpose operating system powerful enough to run a full-featured debugger.

Using DDD with a Remote Debugger
In order to run the inferior debugger on a remote host, you mestwh' (called ‘rsh’ on BSD systems)
access on the remote host.

To run the debugger on a remote HustthameinvokeDDD as
ddd ——hosthostname remote-program

If your remote usernamaliffers from the local username, use
ddd ——hosthostname-—login username remote-program

or

ddd ——hostusernamé@hostname remote-program

DDD 3.1 1998-12-01 54

instead.
There are a fewaveatsn remote mode:

» The remote debugger is started in your remote home directory. Hence, you must specify an absolute path
name forremote-program(or a path name relative to your remote home directory). Same applies to
remote core files. Also, be sure to specify a remote process id when debugging a running program.

* The remote debugger is started non-interactively. SDBX versions have trouble with this. If you
don't get a prompt from the remote debugger, use thehost’ option instead of ~—host. This will
invoke the remote debugger via an interactive shell on the remote host, which may lead to better results.
Note: using ~-rhost’, DDD invokes the inferior debugger as soon as a shell prompt appears. The first
output on the remote host ending in a space characteramd not followed by a newline is assumed to
be a shell prompt. If necessary, adjust your shell prompt on the remote host.

» To run the remote progrardDD invokes an xterm’ terminal emulator on the remote host, giving your
current DISPLAY’ environment variable as address. If the remote host cannot invteken’, or does
not have access to your X display, staBD with the ‘——no-exec-window option. The program
input/output will then go through thEDD debugger console.

» In remote mode, all sources are loaded from the remote host; file dialogs scan remote directories. This
may result in somewhat slower operation than normal.

» To help you find problems due to remote execution,DDB with the ——trace’ option. This prints the
shell commands issued BYpD on standard error.

» See also theshCommand resource, below.

Using DDD with a Remote Program
The GDB debugger allows you to run thliebugged prograron a remote machine (calleemote target
while GDB runs on the local machine.

The sectionRemote debuggingin the GDB documentation contains all the details. Basically, the follow-
ing steps are required:

» Transfer the executable to the remote target.

 Start ‘gdbserver on the remote target.

 StartDDD usingGDB on the local machine, and load the same executable usinfgeheommand.
» Attach to the remotegdbserver using the target remote command.

The local ‘gdbinit’ file is useful for setting up directory search paths, etc.

Of course, you can also combip®D remote mode an@DB remote mode, runningDD, GDB, and the
debugged program each on a different machine.

ROOT DEBUGGING
Sometimes, you may require to debug programs with root privileges, but without actually logging in as
root. This is usually done by installing the debugsstuid root that is, having the debugger run with root
privileges. For security reasons, you cannot insialb as a setuid progrardDD invokes shell commands
and even shell scripts, such that all known problems of setuid shell scripts apply. Instead, you should
invoke DDD such that aetuidcopy of the inferior debugger is used.

Here is an example. Havesatuid rootcopy of GDB installed asrootgdb’. Then invoke
ddd —-debugger rootgdb

to debug programs with root privileges.

Since a program likerbotgdb’ grants root privileges to any invoking user, you should give it very limited
access.

DDD 3.1 1998-12-01 55

RESOURCES
DDD understands all of the core X Toolkit resource names and classes. The following resources are spe-
cific to DDD.

Setting DDD Fonts
DDD uses the following resources to set up its fonts:

defaultFont (class Font)
The defaultbDD font to use for labels, menus, buttons, etc. The font is specified as an X font
spec, where the initial specification afteamily. Default value is helvetica-bold.

To set the defauldDD font to, sayhelvetica medium insert a line
Ddd*defaultFont: helvetica-medium

in your ‘SHOME/.ddd/init’ file.

defaultFontSize €lass FontSize)
The size of the defaultDD font, in 1710 points. This resource overrides any font size specifica-
tion in the defaultFont’ resource (see above). The default valugZ2@for a 12.0 point font.

variableWidthFont (class Font)
The variable widtibDD font to use for help texts and messages. The font is specified as an X font
spec, where the initial specification afteamily. Defaults to helvetica-medium-r.

To set the variable widthDD font family to, saytimes, insert a line
Ddd*fixedWidthFont: times-medium

in your ‘SHOME/.ddd/init " file.

variableWidthFontSize (class FontSize)
The size of the variable widthDD font, in 1710 points. This resource overrides any font size
specification in thevariableWidthFont’ resource (see above). The default valugZ8for a 12.0
point font.

fixedWidthFont (class Font)
The fixed widthDDD font to use for source code, the debugger console, text fields, data displays,
and the execution window. The font is specified as an X font spec, where the initial specification
after Family. Defaults to lucidatypewriter-medium’.

To set the fixed widtbDD font family to, saygcourier, insert a line
Ddd*fixedWidthFont: courier-medium

in your ‘SHOME/.ddd/init’ file.

fixedWidthFontSize (class FontSize)
The size of the fixed widthDD font, in 1710 points. This resource overrides any font size specifi-
cation in the fixedWidthFont’ resource (see above). The default valud2$ for a 12.0 point
font.

As all font size resources have the same class (and by default the same value), you can easily change the
defaultDDD font size to, say, 9.0 points by inserting a line

Ddd*FontSize: 90

in your ‘SHOME/.ddd/init " file.
To find out your favorite font size, try+fontsizeSIZE. This also sets all font sizes 81ZE

DDD 3.1 1998-12-01 56

If you want to set the fonts of specific items, see By’ application defaults file for instructions.

Setting DDD Colors
These are the most important color resources usedin

Ddd*foreground: black
Ddd*background: grey
Ddd*XmText.background: grey96

Ddd*XmTextField.background: grey96
Ddd*GraphEdit.background: grey96

Ddd*XmList.background: grey96
Ddd*graph_edit.nodeColor: black
Ddd*graph_edit.edgeColor: blue4
Ddd*graph_edit.selectColor: black
Ddd*graph_edit.gridColor: black

Ddd*graph_edit.frameColor: grey50
Ddd*graph_edit.outlineColor: grey50

You can copy and modify the appropriate resources to W®OME/.ddd/init ’ file. For colors within the
data display, things are slightly more complicated—seeviBéfs resource, below.

General Preferences
The following resources determid®D general behavior.

buttonTips (classTips)
Whether button tips are enabledr{, default) or not (6ff"). Button tips are helpful for novices,
but may be distracting for experienced users.

buttonDocs (classDocs)
Whether the display of button hints in the status line is enatdad ¢efault) or not (6ff’).

checkGrabs €lassCheckGrabs)
When debugging a modal X applicatiabDD may interrupt it while it has grabbed the pointer,
making further interaction impossible. If this ' (default), DDD will check after each interac-
tion whether the pointer is grabbed. If this is BOD will automatically continue execution of
debugged program.

checkGrabDelay ¢lassCheckGrabDelay)
The time to wait (in ms) after a debugger command before checking for a grabbed poibib&. If
sees some pointer event within this delay, the pointer cannot be grabbed and an explicit check for a
grabbed pointer is unnecessary. Defau(8Q or 5 seconds.

checkOptions €lassCheckOptions)
Every N seconds, wherdl is the value of this resourcepD checks whether the options file has
changed. Default i80, which means that every 30 secoriBp checks for the options file. Set-
ting this resource t0 disables checking for changed option files.

cutCopyPasteBindings ¢lassBindingStyle)
Controls the key bindings for cut, copy, and paste operations.

* If this is ‘Motif * (default), Cut/Copy/Paste is d@hift+Del/Ctrl+Ins /Shift+Ins. This is confor-
mant to the Motif style guide.

* If this is ‘KDE’, Cut/Copy/Paste is o8trl+X /Ctrl+C /Ctrl+V . This is conformant to th€DE
style guide. Note that this means tl@irl+C no longer interrupts the debuggee; ERC
instead.

DDD 3.1 1998-12-01 57

filterFiles (classFilterFiles)
If this is ‘on’ (default), DDD filters files when opening execution files, core dumps, or source files,
such that the selection shows only suitable files. This require®biatpens each file, which
may take time. If this isoff’, DDD always presents all available files.

globalTabCompletion (classGlobalTabCompletion)
If this is ‘on’ (default), theTAB key completes arguments in all windows. If thisaf”, the TAB
key completes arguments in the debugger console only.

grabAction (classgrabAction)
The action to take after having detected a grabbed mouse pointer. This is a list of newline-
separated commands. Default sont, meaning to continue the debuggee. Other possible
choices includekill * (killing the debuggee) ordquit’ (exiting DDD).

grabActionDelay (classgrabActionDelay)
The time to wait (in ms) before taking an action due to having detected a grabbed pointer. During
this delay, a working dialog pops up telling the user about imminent execution of the grab action
(see thegrabAction’ resource, above). If the pointer grab is released within this delay, the work-
ing dialog pops down and no action is taken. This is done to exclude pointer grabs from sources
other than the debugged program (includip). Default is1000Q or 10 seconds.

grouplconify (classGrouplconify)
If this is ‘on’, (un)iconifying anyDDD window causes all othédDD windows to (un)iconify as
well. Default is bff’, meaning that eachDD window can be iconified on its own.

saveHistoryOnExit (classSaveHistoryOnExit)
If *on’ (default), the command history is automatically saved wbieb exits.

selectAlIBindings €lassBindingStyle)
Controls the key bindings for the select all operation.

 [f this is ‘Motif’, Select All onShift+Ctrl+A .

* If this is ‘KDE’ (default), Select All is orCtrl+A . This is conformant to thEDE style guide.
Note that this means th@trl+A no longer moves the cursor to the beginning of a line; use the
HOME key instead.

splashScreenglassSplashScreen)
If ‘on’ (default), show &DDD splash screen upon start-up.

splashScreenColorKey ¢lassColorKey)
The color key to use for theDD splash screen. Possible values include:

» ‘C’ (default) for a color visual,

» ‘g for a multi-level greyscale visual,

» ‘g4 for a 4-level greyscale visual, and

» ‘m’ for a dithered monochrome visual.

* ‘best chooses the best visual available for your display.

Note: if DDD runs on a monochrome display, orDbD was compiled without th&PM library,
only the monochrome versiomg{') can be shown.

startupTips (classStartupTips)
Whether a tip of the day is to be shown at startop',(default) or not (6ff’).

startupTipCount (classStartupTipCount)
The numben of the tip of the day to be shown at startup. See alsdif@ resources.

suppressWarnings ¢lassSuppressWarnings)
If “on’, X warnings are suppressed. This is sometimes useful for executables that were built on a
machine with a different X or Motif configuration. By default, thisof"

DDD 3.1 1998-12-01 58

tipn (classTip)
The tip of the day numberet(a string).

maxUndoDepth €lassMaxUndoDepth)
The maximum number of entries in the undo buffer. This limits the number of actions that can be
undone, and the number of states that can be shown in historic mode. Useful for Ibiting
memory usage. A negative value (default) means to place no limit.

maxUndoSize ¢lassMaxUndoSize)
The maximum memory usage (in bytes) of the undo buffer. Useful for limitiig memory
usage. A negative value means to place no limit. Defagl@§000

uniconifyWhenReady (€lassUniconifyWhenReady)
If this is ‘on’ (default), theDDD windows are uniconified automatically whene®@®B becomes
ready. This way, you can iconifyDD during some longer operation and have it uniconify itself as
soon as the program stops. Setting thioff leaves theDDD windows iconified.

valueTips (classTips)
Whether value tips are enabledr(, default) or not (bff’). Value tips affectDDD performance
and may be distracting for some experienced users.

valueDocs ¢€lassDocs)
Whether the display of variable values in the status line is enabléddgfault) or not (6ff’).

warnlfLocked (classWarnlfLocked)
Whether to warn if multipl®DD instances are runningofY’) or not (‘off’, default).

Source Window
The following resources determine thBD source window.

cacheGlyphlmages ¢lassCacheMachineCode)
Whether to cache (share) glyph images '} or not (‘off’). Caching glyph images requires less X
resources, but has been reported to fail with Motif 2.1 on XFree86 servers. Defaffit fior’
Motif 2.1 or later on Linux machines, anah’ otherwise.

cacheMachineCode ¢lassCacheMachineCode)
Whether to cache disassembled machine cautg, (lefault) or not (bff"). Caching machine code
requires more memory, but make®D run faster.

cacheSourceFilesqlassCacheSourceFiles)
Whether to cache source file®rf’, default) or not (6ff'). Caching source files requires more
memory, but makeBDD run faster.

disassemble ¢lassDisassemble)
If this is ‘on’, the source code is automatically disassembled. The defawltfis See also the
‘——disassembleand ‘-—no-disassembleoptions, below.

displayGlyphs (classDisplayGlyphs)
If this is ‘on’, the current execution position and breakpoints are displayed as glyphs; otherwise,
they are shown through characters in the text. The defauwhis See also the-—glyphs and
‘——no-glyphs options, below.

displayLineNumbers (classDisplayLineNumbers)
If this is ‘on’, lines in the source text are prefixed with their respective line number. The default is
‘off’.

findCaseSensitive lassFindCaseSensitive)
If this is ‘on’ (default), the Find’ commands are case-sensitive. Otherwise, occurrences are found
regardless of case.

findWordsOnly (classFindWordsOnly)
If this is ‘on’ (default), the Find’ commands find complete words only. Otherwise, arbitrary
occurrences are found.

DDD 3.1 1998-12-01 59

glyphUpdateDelay €lassGlyphUpdateDelay)
A delay (in ms) that says how much time to wait before updating glyphs while scrolling the source
text. A small value results in glyphs being scrolled with the text, a large value disables glyphs
while scrolling and makes scrolling faster. Defali(:

indentCode (lassindent)
The number of columns to indent the machine code, such that there is enough place to display
breakpoint locations. Defaul:

indentSource €lassindent)
The number of columns to indent the source code, such that there is enough place to display
breakpoint locations. Defauld.

indentScript (classindent)
The minimum indentation for script languages, such as Perl and Python. Défault:

lineNumberWidth (classLineNumberWidth)
The number of columns to use for line numbers (if displaying line numbers is enabled). Line
numbers wider than this value extend into the breakpoint space. Défault:

linesAboveCursor lassLinesAboveCursor)
The minimum number of lines to show before the current location. Defdllt is

linesBelowCursor lassLinesBelowCursor)
The minimum number of lines to show after the current location. Defalilt is

maxDisassembledlassMaxDisassemble)
Maximum number of bytes to disassemble (def&88). If this is zero, the entire current func-
tion is disassembled.

maxGlyphs (classMaxGlyphs)
The maximum number of glyphs to be displayed (defdult: Raising this value causes more
glyphs to be allocated, possibly wasting resources that are never needed.

sourceEditing (classSourceEditing)
If this is ‘on’, the displayed source code becomes editable. This is an experimental feature and
may become obsolete in futub®D releases. Default ibff’.

tabWidth (classTabWidth)
The tab width used in the source window (defa)It:

useSourcePath¢lassUseSourcePath)
If this is ‘off’ (default), the inferior debugger refers to source code locations only by their base
names. If this ison’ (default), DDD uses the full source code paths.

Window Creation and Layout
The following resources determim®D window creation and layout as well as the interaction with the X
window manager.

autoRaiseTool tlassAutoRaiseTool)
If “on’ (default), DDD will always keep the command tool on top of otb®D windows. If this
setting interferes with your window manager, or if your window manager keeps the command tool
on top anyway, set this resource off*.

autoRaiseMenu €lassAutoRaiseMenu)
If “on’ (default), DDD will always keep the pull down menu on top of BD main window. If
this setting interferes with your window manager, or if your window manager does not auto-raise
windows, set this resource toff’:

Ddd*autoRaiseMenu: off

DDD 3.1 1998-12-01 60

colorWMlcons (classColorwWMlcons)
If ‘on’ (default), DDD uses multi-color icons. If your window manager has trouble with multi-
color icons, set this resource tff* and DDD will use black-and-white icons instead.

decorateTool ¢lassDecorate)
This resource controls the decoration of the command tool.

« If this is ‘off’, the command tool is created asransient window Several window managers
keep transient windows automatically on top of their parents, which is appropriate for the com-
mand tool. However, your window manager may be configured not to decorate transient win-
dows, which means that you cannot easitywathe command tool around.

« If this is ‘on’, DDD realizes the command tool asop-level window Such windows are always
decorated by the window manager. However, top-level windows are not automatically kept on
top of other windows, such that you may wish to setaléoRaiseTool resource, too.

« If this is ‘auto’ (default), DDD checks whether the window manager decorates transients. If
yes, the command tool is realized as a transient window (as infthsé€tting); if no, the com-
mand tool is realized as a top-level window (as in tre setting). Hence, the command tool is
always decorated using the “best” method, but the extra check takes some time.

openDataWindow (classWindow)
If * off’ (default), the data window is closed upon start-up.

openDebuggerConsolec{asswWindow)
If * off’, the debugger console is closed upon start-up.

openSourceWindow ¢lassWindow)
If off’, the source window is closed upon start-up.

separateDataWindow €lassSeparate)
If ‘on’, the data window and the debugger console are realized in different top-level windows. |If
‘off’ (default), the data window is attached to the debugger console. See also-#teach-
windows' and ‘—-attach-data-window options, below.

separateExecWindow ¢lassSeparate)
If ‘on’, the debugged program is executed in a separate execution windaff’ (flefault), the
debugged program is executed in the console window. See alse--thret—window and
‘——no-exec—-windowoptions, below.

separateSourceWindow ¢lassSeparate)
If “on’, the source window and the debugger console are realized in different top-level windows.
If “ off’ (default), the source window is attached to the debugger console. See alsedtiach-
windows' and ‘—-attach-source-window options, below.

statusAtBottom (classStatusAtBottom)
If *on’ (default), the status line is placed at the bottom ofih® source window. If6ff’, the sta-
tus line is placed at the top of th®D source window (as iDDD 1.x). See also the--status-at-
bottom’ and ‘——status-at-tog options, below.

stickyTool (classStickyTool)
If ‘on’ (default), the command tool automatically follows every movement of the source window.
Whenever the source window is moved, the command tool is moved by the same offset such that
its position relative to the source window remains unchangeafflf the command tool does not
follow source window movements.

transientDialogs (lassTransientDialogs)
If ‘on’ (default), all dialogs are created as transient windows—that is, they always stay on top of
the mainDDD windows, and they iconify with it. Ifoff’, the important selection dialogs, such as
the breakpoint and display editors, are created as top-level windows on their own, and may be
obscured by theDD main windows.

DDD 3.1 1998-12-01 61

Debugger Settings
The following resources determine the inferior debugger.

autoCommands €¢lassAutoCommands)
If this is ‘on’ (default), each line output by the inferior debugger beginning with the value of the
‘“autoCommandPrefiX resource (see below) will be interpretedzzD command and executed.
Useful for user-defined commands; S6SER-DEFINED COMMANDS’, above.

autoCommandPrefix classAutoCommandPrefix)
The prefix for auto-commands. By default, an empty string, meaning to generate a new prefix for
eachDDD session. If this is set taldd: ’, for example, eacl&DB output in the formddd: com-
mand will causeDDD to executeeommand

autoDebugger €lassAutoDebugger)
If this is ‘on’ (default), DDD will attempt to determine the debugger type from its arguments, pos-
sibly overriding the debugger resource (see below). If this isff’, DDD will invoke the debug-
ger specified by thalebugger resource regardless DDD arguments.

blockTTYInput (classBlockTTYInput)
WhetherDDD should block when reading data from the inferior debugger via the pseudo-tty inter-
face. Some systemequire this, such as Linux with libc 5.4.33 and earlier; set itaig. Some
other systemgrohibit this, such as Linux with GNU libc 6 and later; set it ®ff: The value
‘auto’ (default) will always select the “best” choice (that is, the best choice known tolthe
developers).

dbxInitCommands (classlnitCommands)
This string contains a list of newline-separated commands that are initially sBBiXto By
default, it is empty.
Do not use this resource to customizBX; instead, use a persongdHOME/.dbxinit’ or
‘$HOME/.dbxrc’ file. See youDBX documentation for details.

dbxSettings €lassSettings)
This string contains a list of newline-separated commands that are also initially B&ix. t@y
default, it is empty.

debugger €lassDebugger)
The type of the inferior debugger to invokgdb’, ‘dbx’, ‘xdb’, ‘jdb’, ‘pydb’, or ‘perl’). This
resource is usually set through the-gdb’, ‘ ——dbx’, * ——xdb’, * ——jdb’, * ——pydb’, and ‘——perl’,
options; see below for details.

debuggerCommand ¢lassDebuggerCommand)
The name under which the inferior debugger is to be invoked. If this string is empty, the debugger
type (‘debugger resource) is used. This resource is usually set through-treebugget option;
see below for details.

debuggerHost tlassDebuggerHost)
The host where the inferior debugger is to be executed; an empty string (default) means the local
host. See the-—host option, below, andREMOTE DEBUGGING ’, above.

debuggerHostLogin ¢lassDebuggerHostLogin)
The login user name on the remote host; an empty string (default) means using the local user
name. See the-~login’ option, below, andREMOTE DEBUGGING ’, above.

debuggerRHost ¢lassDebuggerRHost)
The host where the inferior debugger is to be executed; an empty string (default) means to use the
‘debuggerHost resource. In contrast talébuggerHost, using this resource causebD to login
interactively to the remote host and invoke the inferior debugger from the remote shell. See also
the ‘——rhost’ option, below, andREMOTE DEBUGGING ', above.

fullNameMode (classTTYMode)
If this is ‘on’, DDD reports the current source position on standard outgsDB’ —fullname’ for-
mat. As a side effect, the source window is disabled by default. See alse-tluiname’

DDD 3.1 1998-12-01 62

option, below.

gdblnitCommands (classinitCommands)
This string contains a list of newline-separated commands that are initially S5B.toAs a side-
effect, all settings specified in this resource are considered fixed and cannot be changed through
the GDB settings panel, unless preceded by white space. By defauligdbnitCommands’
resource contains some settings vitabom:

Ddd*gdbinitCommands: \
set height 0\n\

set width 0\n\

set verbose offin\

set prompt (gdb) \n

While the Set height, ‘ set width’, and ‘set prompt settings are fixed, thesét verbosésettings
can be changed through t@8®B settings panel (although being reset upon eachDiEWwinvoca-
tion).

Do not use this resource to customi®eB; instead, use a person®@HOME/.gdbinit’ file. See
your GDB documentation for details.

gdbSettings tlassSettings)
This string contains a list of newline-separated commands that are also initially &&m8. tdts
default value is

Ddd*gdbSettings: \
set print asm-demangle on\n

This resource is used to save and restore the debugger settings.

jdblnitCommands (classinitCommands)
This string contains a list of newline-separated commands that are initially s&bB.torlhis
resource may be used to customi28. By default, it is empty.

jdbSettings (classSettings)
This string contains a list of newline-separated commands that are also initially 308t tBy
default, it is empty.

This resource is used IDPD to save and restod®B settings.

openSelection ¢lassOpenSelection)
If this is ‘on’, DDD invoked without argument checks whether the current selection or clipboard
contains the file name afRL of an executable program. If this is €aDD will automatically
open this program for debugging. If this resourceof§ (default), DDD invoked without argu-
ments will always start without a debugged program.

perlinitCommands (classlinitCommands)
This string contains a list of newline-separated commands that are initially sent to the Perl debug-
ger. By default, it is empty.
This resource may be used to customize the Perl debugger.

pydbSettings ¢lassSettings)
This string contains a list of newline-separated commands that are also initially sent to the Perl
debugger. By default, it is empty.

This resource is used IBPD to save and restore Perl debugger settings.

DDD 3.1 1998-12-01 63

pydbinitCommands (classinitCommands)
This string contains a list of newline-separated commands that are initially seviDB> By
default, it is empty.
This resource may be used to custon®y®B.

pydbSettings €lassSettings)
This string contains a list of newline-separated commands that are also initially BebBtoBy
default, it is empty.

This resource is used IDPD to save and restoreYDB settings.

guestionTimeout classQuestionTimeout)
The time (in seconds) to wait for the inferior debugger to reply. Defallt is

rHostInitCommands (classRHostInitCommands)
These commands are initially executed in a remote interactive session, usingritiost option.
By default, it sets up the remote terminal such that it SU3:

Ddd*rHostInitCommands: stty —echo —onlcr

You may add other commands here—for instance, to set the executable path or to invoke a suitable
shell.

sourcelnitCommands €lassSourcelnitCommands)
If “on’ (default), DDD writes all GDB initialization commands into a temporary file and makes
GDB read this file, rather than sending each initialization command separately. This results in
faster startup (especially if you have several user-defined commandsif’, IbDD makesGDB
process each command separately.

synchronousDebugger¢lassSynchronousDebugger)
If ‘on’, X events are not processed while the debugger is busy. This may result in slightly better
performance on single-processor systems. See alse-thgric-debuggeroption, below.

terminateONEOF (classTerminateOnEOF)
If “on’, DDD terminates the inferior debugger whebD detects an EOF condition (that is, as
soon as the inferior debugger closes its output channel). This was the default betlzbDRix
and earlier. If bff’ (default), DDD takes no special action.

ttyMode (classTTYMode)
If ‘on’, enableTTY interface, taking additional debugger commands from standard input and for-
warding debugger output on standard output. As a side effect, the debugger console is disabled by
default. See also the+tty’ and ‘——fullname’ options, below.

useTTYCommand ClassUseTTYCommand)
If “on’, use theGDB ‘tty’ command for redirecting input/output to the separate execution window.
If * off’, use explicit redirection through shell redirection operaterand >’. The default is off’
(explicit redirection), since on some systems, theg tommand does not work properly on some
GDB versions.

xdbInitCommands (classinitCommands)
This string contains a list of newline-separated commands that are initially sgbpBto By
default, it is empty.
Do not use this resource to customiz@X; instead, use a person@HOME/.xdbrc’ file. See
your XDB documentation for details.

xdbSettings €lassSettings)
This string contains a list of newline-separated commands that are also initially Xext. t®y
default, it is empty.

DDD 3.1 1998-12-01 64

User-defined Buttons
The following resources can be used to create and control tool bars and user-defined buttons.

activeButtonColorKey (classColorKey)
TheXPM color key to use for the images of active buttons (entered or arneéd)eans color, ¢’
(default) means grey, anth* means monochrome.

buttonCaptions (classButtonCaptions)
Whether the tool bar buttons should be shown using captions ¢efault) or not (6ff"). If nei-
ther captions nor images are enabled, tool bar buttons are shown using ordinary labels. See also
‘buttonimages, below.

buttonCaptionGeometry (classButtonCaptionGeometry)
The geometry of the caption subimage within the button icons. Defa@fxg+0-0.

buttonimages (lassButtonimages)
Whether the tool bar buttons should be shown using images default) or not (6ff’). If neither
captions nor images are enabled, tool bar buttons are shown using ordinary labels. e also
tonCaptions, above.

buttonimageGeometry (lassButtonimageGeometry)
The geometry of the image within the button icon. Defaul2s21+2+0'.

buttonColorKey (classColorKey)
The XPM color key to use for the images of inactive buttons (non-entered or insensitive).
means color,d’ (default) means grey, anth” means monochrome.

commandToolBar (classToolBar)
Whether the tool buttons (see thieclButtons’ resource, below) should be shown in a tool bar
abovethe source window @n’) or within the command tool §ff’, default). Enabling the com-
mand tool bar disables the command tool and vice versa.

commonToolBar (classToolBar)
Whether the tool bar buttons should be shown in one common tool bar at the top of the common
DDD window (‘on’, default), or whether they should be placed in two separate tool bars, one for
data, and one for source operations, as0p 2.x (‘off’).

consoleButtons ¢lassButtons)
A newline-separated list of buttons to be added under the debugger console. Each button issues
the command given by its name.

The following characters have special meanings:
» Commands ending with.” insert their name, followed by a space, in the debugger console.

» Commands ending with a control character (that"iSollowed by a letter or ?’) insert the
given control character.

* The string ()’ is replaced by the current contents of the argument f{§ld *

» The string specified in théabelDelimiter’ resource (usually/I') separates the command name
from the button label. If no button label is specified, the capitalized command will be used as
button label.

The following button names are reserved:

Apply Send the given command to the debugger.
Back Lookup previously selected source position.
Clear Clear current command

Complete Complete current command.

DDD 3.1 1998-12-01 65

Edit Edit current source file.
Forward Lookup next selected source position.

Make Invoke the make’ program, using the most recently given arguments.
Next Show next command
No Answer current debugger prompt witho'. This button is visible only if the debug-

ger asks a yes/no question.
Prev Show previous command
Reload Reload source file.

Yes Answer current debugger prompt wityeS. This button is visible only if the debug-
ger asks a yes/no question.

The default resource value is empty—no console buttons are created.

Here are some examples to insert into y@HOME/.ddd/init’ file. These are the settings of
DDD 1.x:

Ddd*consoleButtons: Yes\nNo\nbreak™C
This setting creates some more buttons:

Ddd*consoleButtons: \
Yes\nNo\nrun\nClear\nPrevinNext\nApply\nbreak™C

See also thedataButtons, ‘ sourceButtons and ‘toolButtons’ resources, below.

dataButtons (classButtons)
A newline-separated list of buttons to be added under the data display. Each button issues the
command given by its name. See therisoleButtonsresource, above, for details on button syn-
tax.

The default resource value is empty—no source buttons are created.

flatToolbarButtons (classFlatButtons)
If “on’ (default), all tool bar buttons with images or captions are given a ‘flat’ appearance—the
3-D border only shows up when the pointer is over the iconofff, the 3-D border is shown all
the time.

flatDialogButtons (classFlatButtons)
If ‘on’ (default), all dialog buttons with images or captions are given a ‘flat’ appearance—the 3-D
border only shows up when the pointer is over the iconofif, ‘the 3-D border is shown all the
time.

labelDelimiter (classLabelDelimiter)
The string used to separate labels from commands and shortcuts. Deféult is *

sourceButtons €lassButtons)
A newline-separated list of buttons to be added under the debugger console. Each button issues
the command given by its name. See thensoleButtonsresource, above, for details on button
syntax.

The default resource value is empty—no source buttons are created.
Here are some example to insert into y@HOME/.ddd/init ’ file. These are the settings bDD
1.x:

Ddd*sourceButtons: \

DDD 3.1 1998-12-01 66

run\nstep\nnext\nstepi\nnexti\ncont\n\
finish\nkil\nup\ndown\n\
Back\nForward\nEdit\ninterrupt™C

This setting creates some buttons which are not found on the command tool:

Ddd*sourceButtons: \
print *()\ngraph display *()\nprint /x ()\n\
whatis ()\nptype ()\nwatch ()\nuntil\nshell

An even more professional setting uses customized button labels.

Ddd*sourceButtons: \

print *(()) // Print *()\n\

graph display *(()) // Display *()\n\
print /x ()\n\

whatis () // What is ()\n\

ptype ()\n\

watch ()\n\

until\n\

shell

See also thecbnsoleButtons and ‘dataButtons resources, above, and théoolButtons'
resource, below.

toolbarsAtBottom (classToolbarsAtBottom)
Whether source and data tool bars should be placedkaburce and data, respectivelpft’,
default), or below, as iDDD 2.x (‘on’). See also the—-toolbars-at-bottom’ and ‘——toolbars-
at-top’ options, below.

toolButtons (classButtons)
A newline-separated list of buttons to be included in the command tool or the command tool bar
(see the commandToolBar resource, above). Each button issues the command given by its
name. See theonsoleButtonsresource, above, for details on button syntax.

The default resource value is

Ddd*toolButtons: \
run\nbreak”C\nstep\nstepi\nnext\nnexti\n\
until\nfinish\ncont\n\kill\n\
up\ndown\nBack\nForward\nEdit\nMake

For each button, its location in the command tool must be specified Xisifgrm constraint
resources. See thBdd’ application defaults file for instructions.

If the ‘toolButtons’ resource value is empty, the command tool is not created.

toolRightOffset (classOffset)
The distance between the right border of the command tool and the right border of the source text
(in pixels). Default is 8 pixels.

toolTopOffset (classOffset)
The distance between the upper border of the command tool and the upper border of the source
text (in pixels). Default is 8 pixels.

verifyButtons (classVerifyButtons)
If “on’ (default), verify for each button whether its command is actually supported by the inferior
debugger. If the command is unknown, the button is disabled. If this resouatg,ig¢d check-
ing is done: all commands are accepted “as is”.

DDD 3.1 1998-12-01 67

User-Defined New Display Menu
The following resources control the user-defingdw Display menu.

dbxDisplayShortcuts lassDisplayShortcuts)
A newline-separated list of display expressions to be included inNke Display menu for
DBX. If a line contains a label delimiter (the string;'can be changed via th&abelDelimiter’
resource), the string before the delimiter is useelxpsessionand the string after the delimiter is
used as label. Otherwise, the label Esplay expression Upon activation, the string()’ in
expressiors replaced by the name of the currently selected display.

gdbDisplayShortcuts €lassDisplayShortcuts)
A newline-separated list of display expressions to be included inNke Display menu for
GDB. See the description odbxDisplayShortcuts, above.

jdbDisplayShortcuts (classDisplayShortcuts)
A newline-separated list of display expressions to be included itNthe Display menu forJDB.
See the description ofibxDisplayShortcuts, above.

labelDelimiter (classLabelDelimiter)
The string used to separate labels from commands and shortcuts. Deféult is *

perlDisplayShortcuts (classDisplayShortcuts)
A newline-separated list of display expressions to be included iN#e Display menu for Perl.
See the description ofibxDisplayShortcuts, above.

pydbDisplayShortcuts €lassDisplayShortcuts)
A newline-separated list of display expressions to be included inNe Display menu for
PYDB. See the description afbxDisplayShortcuts, above.

xdbDisplayShortcuts (lassDisplayShortcuts)

A newline-separated list of display expressions to be included inNke Display menu for
XDB. See the description aflbxDisplayShortcuts, above.

Data Display
The following resources control the data display.

align2dArrays (classAlign2dArrays)
If “on’ (default), DDD lays out two-dimensional arrays as tables, such that all array elements are
aligned with each other. Ifoff’, DDD treats a two-dimensional array as an array of one-
dimensional arrays, each aligned on its own.

autoCloseDataWindow ¢lassAutoClose)
If this is ‘on’ (default) andDDD is in stacked window mode, deleting the last display automatically
closes the data window. If this isff’, the data window stays open even after deleting the last dis-
play.

bumpDisplays lassBumpDisplays)
If some displayD changes size and this resourceos’ (default), DDD assigns new positions to
displays below and on the right BDfsuch that the distance between displays remains constant. If
this is ‘off’, other displays are not rearranged.

clusterDisplays €lassClusterDisplays)
If “on’, new independent data displays will automatically be clustered. Defawlffisrheaning
to leave new displays unclustered.

deleteAliasDisplays ¢lassDeleteAliasDisplays)

If this is ‘on’ (default), the Undisplay ()’ button also deletes all aliases of the selected displays.

If this is ‘off’, only the selected displays are deleted; the aliases remain, and one of the aliases will
be unsuppressed.

detectAliases ¢lassDetectAliases)

If ‘on’, DDD attempts to recognize shared data structures. Bamiining shared data struc-
tures’, above, for a discussion. The default &f', meaning that shared data structures are not

DDD 3.1 1998-12-01 68

recognized.

expandRepeatedValuesolassExpandRepeatedValues)
GDB can print repeated array elements ALUE <repeatedN times>. If ‘ expandRepeated-
Values is ‘on’, DDD will display N instances o/ALUE instead. If expandRepeatedValuess
‘off’ (default), DDD will display VALUE with ‘<Nx>’ appended to indicate the repetition.

hidelnactiveDisplays (class HidelnactiveDisplays)
If some display gets out of scope and this resouraanigdefault), DDD removes it from the data
display. If this is off’, it is simply disabled.

pannedGraphEditor (classPannedGraphEditor)
The control to scroll the graph.
* Ifthis is ‘on’, an Athena panner is used (a kind of two-directional scrollbar).
* Ifthis is ‘off’ (default), two Motif scrollbars are used.
See also the~-scrolled-graph-editor and ‘——panned-graph-editor options, below.

paperSize ¢lassPaperSize)
The paper size used for printing, in formaatith x height The default is A4 format, o0210mm x
297mm.

showBaseDisplayTitles lassShowDisplayTitles)
Whether to assign titles to base (independent) displays or not. Defawuit is *

showDependentDisplayTitles¢lassShowDisplayTitles)
Whether to assign titles to dependent displays or not. Defaolffis *

typedAliases €lassTypedAliases)
If “on’ (default), DDD requires structural equivalence in order to recognize shared data structures.
If this is ‘off’, two displays at the same address are considered aliases, regardless of their structure.

vsiBaseDefs¢lassVSLDefs)
A string with additionaVSL definitions that are appended to the buMBL library. This resource
is prepended to thessiDefs resource below and set in tHEDD application defaults file; don’t
change it.

vsIDefs €lassVSLDefs)
A string with additionalSL definitions that are appended to the buit8L library. The default
value is an empty string. This resource can be used to override sgétifiefinitions that affect
the data display.

The general pattern to replace a function definitimctionwith a new definitiomew_defs:

#pragma replacefunction
function(args..) = new_def

The followingVSL functions are frequently used:

color(box, foreground[, background)
Set theforegroundandbackgroundcolors ofbox

display_color(box
The color used in data displays. Defaatilor(box, "black", "white")

titte_color(box
The color used in the title bar. Defaudblor(box "black")

disabled_colorpox
The color used for disabled boxes. Defacdior(box "white", "grey50")

DDD 3.1 1998-12-01 69

simple_color(pox
The color used for simple values. Defaatilor(box "black™)

pointer_color(box
The color used for pointers. Defautblor(box "blue4")

struct_color(box
The color used for structures. Defawltlor(box "black")

array_color(box
The color used for arrays. Defaublor(box, "blue4")

reference_colorpox
The color used for references. Defaatilor(box "blue4™)

changed_colorbox
The color used for changed values. Defadtor(box "black", "#ffffcc")

stdfontfamily()
The font family used. One damily_times(), family_courier(), family_helvetica(),
family_new_century(), or family_typewriter() (default).

stdfontsize()
The font size used (in pixelsP (default) means to ustdfontpoints() instead.

stdfontpoints()
The font size used (in /710 points). means to usstdfontsize() instead. Default
value:90.

stdfontweight()
The font weight used. Eith&reight_medium()(default) orweight_bold().

To set the pointer color to "red4", use

Ddd*vsIDefs: \
#pragma replace pointer_color\n\
pointer_color(box) = color(box, "red4");\n

To set the default font size to resolution-independent 10.0 points, use

Ddd*vsIDefs: \

#pragma replace stdfontsize\n\
#pragma replace stdfontpoints\n\
stdfontsize() = O;\n
stdfontpoints() = 100;\n

To set the default font to 12-pixel courier, use

Ddd*vslIDefs: \

#pragma replace stdfontsize\n\
#pragma replace stdfontfamily\n\
stdfontsize() = 12;\n\
stdfontfamily() = family_courier();\n

See the fileddd.vsI for further definitions to override using thesiDefs resource.

vslLibrary (classVSLLibrary)
TheVSL library to use. builtin * (default) means to use the built-in library, any other value is used
as file name.

DDD 3.1 1998-12-01 70

vslPath (classVSLPath)

A colon-separated list of directories to search VSt include files. Default is.”, the current
directory.

If your DDD source distribution is installed ivopt/src’, you can use the following settings to read
theVSL library from /home/joe/ddd.vst:

Ddd*vslLibrary: /home/joe/ddd.vsl
Ddd*vslPath: \
.:lopt/src/ddd/ddd:/opt/src/ddd/vsllib

VSL include files referenced byhome/joe/ddd.vsl are searched first in the current directory *
then in Yopt/src/ddd/ddd/, and then infopt/src/ddd/vsllib/.

Instead of supplying anoth&sSL library, it is often easier to specify some minor changes to the
built-in library. See thevsIDefs resource, above, for details.

Plot Window
The following resources control the plot window.

plotTermType (classPlotTermType)
The Gnuplot terminal type. Can have one of two values:

* If this is ‘'x11', DDD “swallows” the Gnuplot output window into its own user interface. Some window
managers, notablwM, have trouble with swallowing techniques.

* Setting this resource talib’ (default) makeDDD provide abuiltin plot windowinstead. In this mode,
plots work well with any window manager, but are less customizable (Gnuplot resources are not under-
stood).

plotCommand (classPlotCommand)
The name of a Gnuplot executable. Defaulgisuplot’, followed by some options to set up colors and
the initial geometry.

plotwWindowClass (classPlotWindowClass)
The class of the Gnuplot output window. When invoking Gnuo) waits for a window with this
class and incorporates it into its own user interface (unigssTérmType’ is ‘xlib’; see above).
Default is Gnuplot’.

plotWindowDelay (classWindowDelay)
The time (in ms) to wait for the creation of the Gnuplot window. Before this defdy,looks at each
newly created window to see whether this is the plot window to swallow. This is cheap, but unfortu-
nately, some window managers do not pass the creation evebbtolf this delay has passed, aboD
has not found the plot windowDD searchesll existing windows, which is pretty expensive. Default
time is200Q

plotinitCommands (classPlotinitCommands)
The initial Gnuplot commands issued bpD. Default is:

set parametric

set urange [0:1]
set vrange [0:1]
set trange [0:1]

The ‘parametric’ setting is required to make Gnuplot understand the data files as gerizb@ted he
range commands are used to plot scalars.

plot2dSettings €lassPlotSettings)
Additional initial settings for 2-D plots. Default isét noborder. Feel free to customize these settings
as desired.

DDD 3.1 1998-12-01 71

plot3dSettings €lassPlotSettings)
Additional initial settings for 3-D plots. Default isét border. Feel free to customize these settings as
desired.
Debugger Console
The following resources control the debugger console.
lineBufferedConsole tlassLineBuffered)
If this is ‘on’ (default), each line from the inferior is output on each own, such that the final line is
placed at the bottom of the debugger console. If thigff§ all lines are output as a whole. This
is faster, but results in a random position of the last line.
Value Histories
The following resources control the pop-down value histories associated with various text fields.
popdownHistorySize €lassHistorySize)

The maximum number of items to display in pop-down value histories. A valOg(ddfault)
means an unlimited number of values.

sortPopdownHistory (classSortPopdownHistory)
If ‘on’ (default), items in the pop-down value histories are sorted alphabeticallgff’lf most
recently used values will appear at the top.
Customizing Helpers
The following resources determine external programs invokézDimy
editCommand (classEditCommand)

A command string to invoke an editor on the specific fil@LINE@' is replaced by the current

line number, @FILE@’ by the file name. The default is to invoBXEDITOR first, then$EDI-
TOR, thenvi:

Ddd*editCommand: \
${XEDITOR-false} +@LINE@ @FILE@ \
[| xterm —e ${EDITOR-vi} +@LINE@ @FILE@

This ‘.ddd/init’ setting invokes an editing session forXBmacsditor runninggnuserv

Ddd*editCommand: gnuclient +@LINE@ @FILE@

This ‘.ddd/init’ setting invokes an editing session forBmacseditor runningemacsserver

Ddd*editCommand: emacsclient +@LINE@ @FILE@

fontSelectCommand ¢lassFontSelectCommand)

A command to select from a list of fonts. The stri@FONT@' is replaced by the curremDD
default font; the string@ TYPE@' is replaced by a symbolic name of th®&D font to edit. The

program must either place the name of the selected font iRRIMARY selection or print the
selected font on standard output. A typical value is:

Ddd*fontSelectCommand: xfontsel —print

getCoreCommand ¢lassGetCoreCommand)

A command to get a core dump of a running process (typicglipre) ‘ @FILE@’ is replaced

by the base name of the file to crea@PID@ is replaced by the process id. The output must be
written to ‘@FILE@.@PID@'.

Leave this entry empty if you have rgrore or similar command.

DDD 3.1 1998-12-01 72

lessTifVersion lassLessTifVersion)
Indicates the LessTif versiadDD is running against. For LessTif versirty, the value isc multi-
plied by 1000 plug—for instance, the valugd stands for LessTif 0.79 and the vall@05stands
for LessTif 1.5.
If the value of this resource is less than 1000, indicating LessTif 0.99 or dablizenables ver-
sion-specific hacks to makeD work around LessTif bugs and deficiencies.
If DDD was compiled against LessTif, the default value is the value ofE#ssTifVersion' macro
in <Xm/Xm.h>. If DDD was compiled against OSF/Motif, the default valu#d8Q disabling all
LessTif-specific hacks.

listCoreCommand (classlistCoreCommand)
The command to list all core files on the remote host. The stGigASK@' is replaced by a
file filter. The default setting is:

Ddd*listCoreCommand: \
file @MASK@ | grep ’.*:.*core.*" \
| cut —d: —f1

listDirCommand (classlistDirCommand)
The command to list all directories on the remote host. The s@MASK@'’ is replaced by a
file filter. The default setting is:

Ddd*listDirCommand: \
file @MASK@ | grep ’.*:.*directory.*’ \
| cut —d: —f1

listExecCommand ¢lasslistExecCommand)
The command to list all executable files on the remote host. The SBIRASK@' is replaced
by a file filter. The default setting is:

Ddd*listExecCommand: \

file @MASK@ | grep ’.*:.*exec.*’ \
| grep —v ".*: . *script.*’ \

| cut —d: —f1 | grep —v ".*\.0$’

listSourceCommand €lasslistSourceCommand)
The command to list all source files on the remote host. The s@IMASK@' is replaced by a
file filter. The default setting is:

Ddd*listSourceCommand: \
file @MASK@ | grep ’.*:.*text.*" \
| cut —d: —f1

printCommand (classPrintCommand)
The command to print a postscript file. Usualfy or ‘lpr’.

psCommand ¢lassPsCommand)
The command to get a list of processes. Usuphy ‘Depending on your system, useful alternate
values includeps -ef and ‘ps uxX. The first line of the output must either contairP&D’ title, or
each line must begin with a process ID.
Note that the output of this command is filtereddfD; a process is only shown if it can be
attached to. TheDD process itself as well as the process of the inferior debugger are suppressed,
too.

DDD 3.1 1998-12-01 73

rshCommand (classRshCommand)
The remote shell command to invok&Y-based commands on remote hosts. Usuakynsh,
‘rsh’, ‘ssH, or ‘on’.

termCommand (classTermCommand)
The command to invoke a separate for showing the input/output of the debugged program. A
Bourne shell command to run in the separat® is appended to this string. The string
‘@FONT@ is replaced by the name of the fixed width font use®bp. A simple value is

Ddd*termCommand: xterm —fn @FONT@ —e /bin/sh —c

termType (classTermType)
The terminal type provided by theetmCommand’ resource—that is, the value of ti&ERM
environment variable to be passed to the debugged program. Deftauin’™

uncompressCommand ¢lassUncompressCommand)
The command to uncompress the builtBBD manual, theDDD license, and th@®DD news.
Takes a compressed text from standard input and writes the uncompressed text to standard output.
The default value igyzip -d -c; typical values includezcat and ‘gunzip -C.

wwwCommand (classwWWwWCommand)
The command to invoke\WWW browser. The string@URL@'’ is replaced by th&JRL to open.
Default is to try a running Netscape first, th@WWWBROWSER, then to invoke a new
Netscape process, then to let a running Emacs do the job, then to invoke Mosaic, then to invoke
Lynx in an xterm.

To specify hetscape-4.0as browser, use the setting:

Ddd*wwwCommand: \
netscape-4.0 —-remote 'openURL(@QURL@)’ \
|| netscape-4.0 '@URL@’

This command first tries to connect to a runniegscape-4.drowser; if this fails, it starts a new
netscape-4.(rocess.

wwwPage tlasswWWPage)
TheDDD WWW page. Value:

Ddd*wwwPage: http://www.cs.tu-bs.de/softech/ddd/

Obtaining Diagnostics
The following resources are used for debug@bg and to obtain specifioDD information.

appDefaultsVersion ¢lassVversion)
The version of th®DD app-defaults file. If this string does not match the version of the current
DDD executableDDD issues a warning.

checkConfiguration (classCheckConfiguration)
If “on’, check theDDD environment (in particular, the X configuration), report any possible prob-
lem causes and exit. See also thecheck-configuratiori option, below.

dddinitVersion (classVersion)
The version of th®DD executable that last wrote tftBHOME/.ddd/init ’ file. If this string does
not match the version of the curr@iD executableDDD issues a warning.

debugCoreDumps ¢lassDebugCoreDumps)
If *on’, DDD invokes a debugger on itself when receiving a fatal signal.

dumpCore (classDumpCore)
If *on’ (default), DDD dumps core when receiving a fatal signal.

DDD 3.1 1998-12-01 74

maintenance ¢lassMaintenance)
If *on’, enables a top-leveMaintenance menu with additional options. See also themainte-
nance option, below.

showConfiguration (classShowConfiguration)
If “on’, show theDDD configuration on standard output and exit. See also-theonfiguration’
option, below.

showFonts ¢lassShowFonts)
If “on’, show theDDD font definitions on standard output and exit. See also-thints’ option,
below.

showlnvocation lassShowlnvocation)
If “on’, show theDDD invocation options on standard output and exit. See also—tHeelp’
option, below.

showLicense ¢lassShowLicense)
If ‘on’, show theDDD license on standard output and exit. See also-thiécense option, below.

showManual (classShowManual)
If *on’, show thisDDD manual page on standard output and exit. If the standard output is a termi-
nal, the manual page is shown in a pa@®AGER, ‘less or ‘more’). See also the-“-manual
option, below.

showNews ¢lassShowNews)
If ‘on’, show theDDD news on standard output and exit. See alsotheeéws option, below.

showVersion €lassShowVersion)
If ‘on’, show theDDD version on standard output and exit. See also th&ersion option,
below.

trace (classTrace)
If ‘on’, show the dialog betweenDD and the inferior debugger on standard output. Default is
‘off.
More Resources
The ‘Ddd’ application defaults file contains even more information about selilbig resources. The
‘Ddd’ file comes with thedbDD distribution.

OPTIONS
You can use the following options when startibigD. All options may be abbreviated, as long as they are
unambiguous; single dashes may also be up&b also understands the usual X options such-ds-
play’ or ‘ —geometry; seeX(1) for details.

All other arguments and options are passed to the inferior debugger. To pass an option to the inferior
debugger that conflicts with an X option, or wittbBD option listed here, use the-debugget option,
below.

——attach-windows
Attach the source and data windows to the debugger console, creating one simgh® lvign-
dow. This is the default setting.

——attach-source-window
Attaches only the source window to the debugger console.

——attach-data-window
Attaches only the source window to the debugger console.

——automatic-debugger
Determine the inferior debugger automatically.

——button-tips
Enable button tips.

DDD 3.1 1998-12-01 75

——configuration
Show theDDD configuration settings and exit.

——check-configuration
Check theDDD environment (in particular, the X configuration), report any possible problem
causes and exit.

——data-window
Create the data window upon start-up.

——dbx Run theDBX debugger as inferior debugger.

——debuggername
Invoke the inferior debuggerame This is useful if you have several debugger versions around, or
if the inferior debugger cannot be invoked gdly, ‘ dbx’, ‘xdb’, ‘jdb’, ‘ pydb’, or ‘perl’ respec-
tively.
This option can also be used to pass options to the inferior debugger that would otherwise conflict
with DDD options. For instance, to pass the optied directory to XDB, use:

ddd —-debugger "xdb —ddirectory’

If you use the+—debugget option, be sure that the type of inferior debugger is specified as well.
That is, use one of the options—gdb’, ‘—-dbx’, ‘—=—xdb’, ‘——jdb’ ‘ ——pydb’, or ‘——perl’
(unless the default setting works fine).

——debugger-console
Create the debugger console upon start-up.

——disassemble
Disassemble the source code. See also-thed-disassembleoption, below.

——exec-window
Run the debugged program in a specially created execution window. This is useful for programs
that have special terminal requirements not provided by the debugger window, as raw keyboard
processing or terminal control sequences.

——fonts
Show the font definitions used BYD on standard output.

——fontsizesize
Set the default font size #zel/10 points. To use 12-point fonts, say-fontsize 120

——fullname
EnableTTY interface, taking additional debugger commands from standard input and forwarding
debugger output on standard output. Current positions are iss@&air-fullname’ format suit-
able for debugger front-ends. By default, both the debugger console and source window are dis-
abled.

——gdb Run theGDB debugger as inferior debugger.

——glyphs
Display the current execution position and breakpoints as glyphs. See also-tioeglyphs
option, below.

——help Give a list of frequently used options. Show options of the inferior debugger as well.

——host[usernamé@] hostname
Invoke the inferior debugger directly on the remote Ihostname If usernameés given and the
‘——login’ option is not used, useasernameas remote user name. S&REMOTE DEBUG-
GING’, above.

——jdb RunJDB as inferior debugger.

DDD 3.1 1998-12-01 76

——lesstif-hacks
Equivalent to ~—lesstif-version 999 Deprecated.

——lesstif-versionversion
Enable some hacks to mak®D run properly with LessTif. See théessTifVersion resource
and USING DDD WITH LESSTIF ’, above, for a discussion.

—license
Show theDDD license and exit.

—login username
Useusernameas remote user name. S&EMOTE DEBUGGING ', above.

—maintenance
Enable the top-leveMaintenance€ menu with options for debuggir@bD.

—manual
Show this manual page and exit.

-—news
Show theDDD news and exit.

—no-button-tips
Disable button tips.

—no-data-window
Do not create the data window upon start-up.

—no-debugger-console
Do not create the debugger console upon start-up.

—no-disassemble
Do not disassemble the source code.

—no-exec-window
Do not run the debugged program in a specially created execution window; use the debugger con-
sole instead. Useful for programs that have little terminal input/output, or for remote debugging.

—no-glyphs
Display the current execution position and breakpoints as text characters. Do not use glyphs.

—no-lesstif-hacks
Equivalent to ~-lesstif-version 1000 Deprecated.

—no-source-window
Do not create the source window upon start-up.

—no-value-tips
Disable value tips.

——nw Do not use the X window interface. Start the inferior debugger on the local host.

—perl Run Perl as inferior debugger.

——pydb
RunPYDB as inferior debugger.

——panned-graph-editor
Use an Athena panner to scroll the data window. Most people prefer panners on scroll bars, since
panners allow two-dimensional scrolling. However, the panner is off by default, since some Motif
implementations do not work well with Athena widgets. See atsscrolled-graph-editor,
below.

——play log-file
Recapitulate a previou3DD session. Invoke ‘dded—PLAY log-file' as inferior debugger, simu-
lating the inferior debugger given og-file (see below). This is useful for debuggibpD.

DDD 3.1 1998-12-01 77

——PLAY log-file
Simulate an inferior debuggeiog-fileis a $HOME/.ddd/log’ file as generated by some previous
DDD session. When a command is entered, scarotiile for this command and re-issue the
logged reply; if the command is not found, do nothing. This is used by-tipday’ option.

——rhost [usernam@] hostname
Run the inferior debugger interactively on the remote hostname If usernames given and the
‘——login’ option is not used, usasernameas remote user name. SEREMOTE DEBUG-
GING’, above.

——separate-windows
Separate the console, source and data windows. See alsedliach’ options, above.

—-scrolled-graph-editor
Use Motif scroll bars to scroll the data window. This is the default in DBt configurations.
See alse-—panned-graph-editor, above.

—-source-window
Create the source window upon start-up.

——status-at-bottom
Place the status line at the bottom of the source window.

——status-at-top
Place the status line at the top of the source window.

—-sync-debugger
Do not process X events while the debugger is busy. This may result in slightly better perfor-
mance on single-processor systems.

——toolbars-at-bottom
Place the toolbars the bottom of the window.

——toolbars-at-top
Place the toolbars at the top of the window.

——trace
Show the interaction betwe®DD and the inferior debugger on standard error. This is useful for
debuggingdDD. If ‘ ——trace’ is not specified, this information is written intBFfOME/.ddd/log’,
such that you can also do a post-mortem debugging.

—-—tty EnableTTY interface, taking additional debugger commands from standard input and forwarding
debugger output on standard output. Current positions are issued in a format readable for humans.
By default, the debugger console is disabled.

——value-tips
Enable value tips.

——version
Show theDDD version and exit.

——vsl-library library
Load thevsL library library instead of using thBDD built-in library. This is useful for customiz-
ing display shapes and fonts.

—-vsl-path path
SearchvSL libraries inpath (a colon-separated directory list).

—-vsl-help
Show a list of further options controlling théSL interpreter. These options are intended for
debugging purposes and are subject to change without further notice.

——xdb RunXDB as inferior debugger.

DDD 3.1 1998-12-01 78

ACTIONS
The followingDDD actions may be used in translation tables.

General Actions
These actions are used to assign the keyboard focus.

ddd-get-focus ()
Assign focus to the element that just received input.

ddd-next-tab-group ()
Assign focus to the next tab group.

ddd-prev-tab-group ()
Assign focus to the previous tab group.

ddd-previous-tab-group ()
Assign focus to the previous tab group.

Data Display Actions
These actions are used in gD graph editor.

end () End the action initiated bgelect Bound to a button up event.

extend ()
Extend the current selection. Bound to a button down event.

extend-or-move ()
Extend the current selection. Bound to a button down event. If the pointer is dragyedthe
selection.

follow ()
Continue the action initiated Iselect Bound to a pointer motion event.

graph-select ()
Equivalent teselect but also updates the current argument.

graph-select-or-move ()
Equivalent toselect-or-move but also updates the current argument.

graph-extend ()
Equivalent teextend, but also updates the current argument.

graph-extend-or-move ()
Equivalent toextend-or-move but also updates the current argument.

graph-toggle ()

Equivalent tatoggle, but also updates the current argument.
graph-toggle-or-move ()

Equivalent tatoggle-or-move but also updates the current argument.

graph-popup-menu (graph|nodgshortcut])
Pops up a menugraph pops up a menu with global graph operationsle pops up a menu with
node operations, amshortcut pops up a menu with display shortcuts. If no argument is given,
pops up a menu depending on the context: when pointing on a node wahifthkey pressed,
behaves likeshortcut; when pointing on a without thghift key pressed, behaves likede other-
wise, behaves asdfraph was given.

graph-dereference ()
Dereference the selected display.

graph-detail ()
Show or hide detail of the selected display.

DDD 3.1 1998-12-01 79

graph-rotate ()
Rotate the selected display.

graph-dependent ()
Pop up a dialog to create a dependent display.

hide-edges [any|both|from [to])
Hide some edgesany means to process all edges where either source or target node are selected.
both means to process all edges where both nodes are sefemtedneans to process all edges
where at least the source node is seledtetheans to process all edges where at least the target
node is selected. Defaultasy.

layout ([regularjcompaci, [[+|-]degree})
Layout the graph.regular means to use the regular layout algoritlmmmpactuses an alternate
layout algorithm, where successors are placed next to their parents. Defaglilés. degrees
indicates in which direction the graph should be layouted. Default is the current graph direction.

move-selectedx-offset y-offse}
Move all selected nodes in the direction given opffsetand y-offset x-offsetand y-offsetis
either given as a numeric pixel value, or &grid’, or ‘—grid’, meaning the current grid size.

normalize ()
Place all nodes on their positions and redraw the graph.

rotate ([[+|-]degreed
Rotate the graph aroumiggreesiegrees.degreesnust be a multiple of 90. Default+80.

select ()
Select the node pointed at. Clear all other selections. Bound to a button down event.

select-all ()
Select all nodes in the graph.

select-first ()
Select the first node in the graph.

select-next ()
Select the next node in the graph.

select-or-move ()
Select the node pointed at. Clear all other selections. Bound to a button down event. If the pointer
is dragged, mvethe selected node.

select-prev ()
Select the previous node in the graph.

show-edges|[any|both|from |to])
Show some edgesany means to process all edges where either source or target node are selected.
both means to process all edges where both nodes are sefemtedneans to process all edges
where at least the source node is seledtetheans to process all edges where at least the target
node is selected. Defaultasy.

snap-to-grid ()
Place all nodes on the nearest grid position.

toggle ()
Toggle the current selection—if the node pointed at is selected, it will be unselected, and vice

versa. Bound to a button down event.

toggle-or-move ()
Toggle the current selection—if the node pointed at is selected, it will be unselected, and vice
versa. Bound to a button down event. If the pointer is draggedk tine selection.

DDD 3.1 1998-12-01 80

unselect-all ()
Clear the selection.

Debugger Console Actions
These actions are used in the debugger console and other text fields.

gdb-backward-character ()

Move one character to the left. BoundLlteft.
gdb-beginning-of-line ()

Move cursor to the beginning of the current line, after the prompt. BOUHOME .
gdb-control (control-charactey

Send the giverontrol-characterto the inferior debugger. Theontrol-charactermust be speci-
fied in the form "X, whereXis an upper-case letter &'

gdb-command ¢ommanl
Executecommandn the debugger console. The following replacements are performednen
mand

» If commandhas the formriame.., insertname followed by a space, in the debugger console.
» All occurrences of()’ are replaced by the current contents of the argument jld *

gdb-complete-arg Eommanjl
Complete current argument acd@mmandvas prepended. Bound @irl+T .

gdb-complete-command ()
Complete current command line in the debugger console. Boumdto

gdb-complete-tab €ommanyl
If global TAB completion is enabled, complete current argument asnfmandwas prepended.
Otherwise, proceed as if thaB key was hit. Bound tGAB.

gdb-delete-or-control control-charactey
Like gdb-control, but effective only if the cursor is at the end of a line. Otherwdeatrol-
characteris ignored and the character following the cursor is deleted. Bouduil#d .
gdb-end-of-line ()
Move cursor to the end of the current line. Boundtal.
gdb-forward-character ()
Move one character to the right. BoundRaght.
gdb-insert-graph-arg ()
Insert the contents of the data display argument f{gld *
gdb-insert-source-arg ()
Insert the contents of the source argument fi@ld
gdb-interrupt ()
If DDD is in incremental search mode, exit it; otherwise gaii-control("C).

gdb-isearch-prev ()
Enter reverse incremental search mode. BourittrieB .

gdb-isearch-next ()
Enter incremental search mode. Boun€td+F .

gdb-isearch-exit ()
Exit incremental search mode. Bound=®C.

gdb-next-history ()
Recall next command from history. Bounddown.

DDD 3.1 1998-12-01 81

gdb-prev-history ()
Recall previous command from history. BoundJjo.

gdb-previous-history ()
Recall previous command from history. BoundJjo.

gdb-process (pction[, args..]])
Process the given event in the debugger console. Bound to key events in the source and data win-
dow. If this action is bound to the source window, and the source window is editable, perform
action(args..) on the source window insteadgi€tionis not given, performself-insert().

gdb-select-all ()
If the ‘selectAllBindings resource is set tMotif , performbeginning-of-line Otherwise, perform
select-all Bound toCtrl+A .

gdb-set-line galue
Set the current line tealue Bound toCtrl+U .

Source Window Actions
These actions are used in the source and code windows.

source-delete-glyph ()
Delete the breakpoint related to the glyph at cursor position.

source-double-click (fext-action[,line-action[,function-actiof]])
The double-click action in the source window.

* If this action is taken on a breakpoint glyph, edit the breakpoint properties.

« If this action is taken in the breakpoint area, inval@b-command(ine-actior)’. If line-action
is not given, it defaults tdoreak ().

« If this action is taken in the source text, and the next character following the current selection is
a ‘(’, invoke ‘gdb-commandfunction-actiony. If function-actionis not given, it defaults to
‘list ().
» Otherwise, invoke ddb-commandfext-actior)’. If text-actionis not given, it defaults to
‘graph display ().
source-drag-glyph ()
Initiate a drag on the glyph at cursor position.

source-drop-glyph (faction])
Drop the dragged glyph at cursor positiattionis either move, meaning to mvethe dragged
glyph, or copy, meaning to copy the dragged glyph. If actionis given, move is assumed.

source-end-select-word ()
End selecting a word.

source-follow-glyph ()
Continue a drag on the glyph at cursor position. Usually bound to some motion event.

source-popup-menu ()
Pop up a menu, depending on the location.

source-set-arg ()
Set the argument field to the current selection. Typically bound to some selection operation.

source-start-select-word ()
Start selecting a word.

source-update-glyphs ()
Update all visible glyphs. Usually invoked after a scrolling operation.

DDD 3.1 1998-12-01 82

IMAGES
DDD installs a number of images that may be used as pixmap resources, simply by giving a symbolic hame.
For button images, three variants are installed as well:

» The suffix “hi’ indicates a highlighted variant (Button is entered).
» The suffix “arm’ indicates an armed variant (Button is pushed).
» The suffix “xx’ indicates a disabled (insensitive) variant.

break_at
‘Break at ()’ button.

clear_at
‘Clear at ()’ button.

ddd
DDD icon.

delete
‘Delete () button.

disable
‘Disabl€ button.

dispref

‘Display * ()’ button.
display

‘Display () button.

drag_arrow
The execution pointer (being dragged).

drag_cond
A conditional breakpoint (being dragged).

drag_stop
A breakpoint (being dragged).

drag_temp
A temporary breakpoint (being dragged).

enable
‘Enable’ button.

find_forward
‘Find>> ()’ button.

find_backward
‘Find<< ()’ button.

grey_arrow
The execution pointer (not in lowest frame).

grey_cond
A conditional breakpoint (disabled).

grey_stop
A breakpoint (disabled).

grey_temp
A temporary breakpoint (disabled).

hide
‘Hide ()’ button.

DDD 3.1 1998-12-01 83

lookup
‘Lookup ()’ button.

maketemp
‘Make Temporary’ button.

new_break
‘New Breakpoint button.

new_display
‘New Display button.

new_watch
‘New Watchpoint button.

plain_arrow
The execution pointer.

plain_cond
A conditional breakpoint (enabled).

plain_stop

A breakpoint (enabled).
plain_temp

A temporary breakpoint (enabled).
print

‘Print ()’ button.

properties
‘Properties’ button.

rotate
‘Rotate () button.

set
‘Set () button.

show
‘Show () button.

signal_arrow
The execution pointer (stopped by signal).

undisplay
‘Undisplay () button.

unwatch
‘Unwatch () button.

watch
‘Watch ()’ button.

ENVIRONMENT
DDD is controlled by the following environment variables:

DDD_NO_SIGNAL_HANDLERS
If set,DDD does not catch fatal errors. This is sometimes useful when debugging

DDD.
DDD_STATE Root of DDD state directory. Default iSHOME/.ddd/".
DDD_SESSION If set, indicates a session to start, overriding all options. This is us&bby

when restarting itself.

DDD 3.1 1998-12-01 84

DDD_SESSIONS DDD session directory. Default i$DDD_STATE/sessions/

EDITOR The text editor to invoke for editing source code. See #wWtCommand
resource, above.
VSL_INCLUDE Where to search farSL include files. Default is the current directory.

WWWBROWSER The WWW browser to invoke for viewing theDD WWW page. See thenmww-
Command resource, above.

XEDITOR The X editor to invoke for editing source code. See ¢ldtCommand resource,
above.

The following environment variables are setdiyD:
DDD Set to a string indicating theDD version. By testing whethedDD is set, a
debuggee (or inferior debugger) can determine whether it was invokalthy

TERM Set to dumb’, the DDD terminal type. This is set for the inferior debugger only.
If the debuggee runs in a separate execution window, the debu@gés value
is set according to théermType’ resource (SeeRESOURCES, above).

TERMCAP Set to " (none), th®DD terminal capabilities.
PAGER Set to tat, the preferredDD pagetr.
FILES
$HOME/.ddd/ DDD state directory.
$HOME/.ddd/init Individual DDD resource file.DDD options are saved here.
$HOME/.ddd/history DefaultDDD command history file.
$HOME/.ddd/lock DDD lock file; indicates that BDD is running.
$HOME/.ddd/log Trace of the current interaction betwesDD and the inferior debugger.
$HOME/.ddd/sessions/
DDD session directory. One subdirectory per session.
$HOME/.ddd/sessionsgessiofdddcore
DDD core file forsession
$HOME/.ddd/sessionsgessiofinit
DDD resource file fosession
$HOME/.ddd/sessionsgessiorhistory
DDD command history fosession
$HOME/.ddd/sessions/.ddd/
TheDDD ‘restart’ session.
$HOME/.ddd/tips DDD tips resource file. Contains the number of the next tip of the day.
$HOME/.gdbinit GDB initialization file.
$HOME/.dbxinit DBX initialization file.
$HOME/.dbxrc AlternateDBX initialization file.
$HOME/.xdbrc XDB initialization file.
$HOME/.gnuplot Gnuplot initialization file.
$HOME/.dddinit Old-styleDDD initialization file; used only iSHOME/.ddd/init does not exist.
SEE ALSO

X(1), gdb(1), dbx(1), xdb(1), perldebug(1), remsh(1), rsh(1), gnuplot(1),
‘gdb’ entry ininfo.
Using GDB: A Guide to theGNU Source-Level Debuggeny Richard M. Stallman and Roland H. Pesch.

jdb—The Java Debugger at http://java.sun.com/ (and its mirrors) in /prod-
ucts/jdk/1.1/docs/tooldocs/solaris/jdb.html

Java Language Debuggingthttp://java.sun.com/(and its mirrors) irproducts/jdk/1.1/debugging/
The Python Languagethttp://www.python.org/ and its mirrors.

DDD 3.1 1998-12-01 85

DDD—A Free Graphical Front-End fasNIX Debuggersby Andreas Zeller and Dorothea Litkehaus, Com-
puter Science Report 95-07, Technische Universitat Braunschweig, 1995.

DDD — ein Debugger mit graphischer Datendarstelluby Dorothea Liutkehaus, Diploma Thesis, Technis-
che Universitat Braunschweig, 1994.

TheDDD FTP site,

ftp://ftp.ips.cs.tu-bs.de/pub/local/softech/ddd/

TheDDD WWWwpage,

http://www.cs.tu-bs.de/softech/ddd/

TheDDD Mailing List,
ddd-users@ips.cs.tu-bs.de
For more information on this list, send a mail to

ddd-users-request@ips.cs.tu-bs.de

LIMITATIONS
General Limitations
If command output is sent to the debugger console, it is impossitid®to distinguish between the out-
put of the debugged program and the output of the inferior debugger. This problem can be avoided by run-
ning the program in the separate execution window.

Output that confuseBDD includes:

» Primary debugger prompts (e.¢gdb) ' or * (dbx))

» Secondary debugger prompts (exg) *

» Confirmation prompts (e.g(y or n) ")

» Prompts for more output (e.d?ressRETURN to continu€)

« Display output (e.g.$pc = 0x1232%)

If your program outputs any of these strings, you should run it in the separate execution window.

If the inferior debugger changes the defauly settings, for instance through stty’ command in its ini-
tialization file,DDD will likely become confused. The same applies to debugged programs which change
the defaulTTY settings.

Limitations using GDB
SomeGDB settings are essential fobD to work correctly. These settings with their correct values are:

set height 0

set width O

set verbose off
set prompt (gdb)

DDD sets these values automatically when involk®@B; if these values are changed, there may be some
malfunctions, especially in the data display.

When debugging at the machine level w@bB 4.12 and earlier as inferior debugger, useliaplay /x
$pc command to ensure the program counter value is updated correctly at each stop. You may also enter
the command iI$SHOME/.gdbinit or (better yet) upgrade to the most recebB version.

DDD 3.1 1998-12-01 86

Limitations using DBX

When used for debugging Pascal-like prograbBD does not infer correct array subscripts and always
starts to count with 1.

With someDBX versions (notably Solari®BX), DDD strips C-style and C++-style comments from the
DBX output in order to interpret it properly. This also affects the output of the debugged program when
sent to the debugger console. Using the separate execution window avoids these problems.

In someDBX versions (notablypEC DBX andAIX DBX), there is no automatic data display. As an alterna-
tive, DDD uses thedBX ‘print’ command to access data values. This means that variable names are inter-
preted according to the current frame; variables outside the current frame cannot be displayed.

Limitations using XDB
There is no automatic data displayXbB. As a workaroundPDD uses thep’ command to access data

values. This means that variable names are interpreted according to the current frame; variables outside the
current frame cannot be displayed.

Limitations using JDB
There is no automatic data displayJibB. As a workaroundPDD uses thedump’ command to access

data values. This means that variable names are interpreted according to the current frame; variables out-
side the current frame cannot be displayed.

The JDB ‘dump’ and ‘print’ commands do not support expression evaluation. Hence, you cannot display
arbitrary expressions.

Parsing ofJDB output is quite CPU-intensive, due to the recognition of asynchronous prompts (any thread
may output anything at any time, including prompts). Hence, a program producing much console output is
likely to slow downDDD considerably. In such a case, have the program run-wi#bugin a separate
window and attacliDBto it using the-passwdoption.
Limitations using Perl

There is no automatic data display in Perl. As a workaroDb@, uses theX’ command to access data
values. This means that variable names are interpreted according to the current frame; variables outside the
current frame cannot be displayed.

REPORTING BUGS
If you find a bug irDDD, please send us a bug report. We will either attempt to fix the bug—or include the
bug description in th®DD ‘BUGS file, such that others can attempt to fix it. (Instead of sending bug
reports, you may also sefiges DDD is an excellent tool for debugging itself :-)

Where to Send Bug Reports
We recommend that you send bug report®iob via electronic mail to

ddd-bugs@ips.cs.tu-bs.de
As a last resort, send bug reports on paper to:

Technische Universitat Braunschweig
Abteilung Softwaretechnologie
DDD-Bugs

Bultenweg 88

D-38092 Braunschweig

GERMANY

Is it a DDD Bug?

Before sending in a bug report, try to find out whether the problem cause really liesDEithinA com-
mon cause of problems are incomplete or missing X or Motif installations, for instance, or bugs in the X
server or Motif itself. Runnin@DD as

ddd ——check-configuration

DDD 3.1 1998-12-01 87

checks for common problems and gives hints on how to repair them.

Another potential cause of problems is the inferior debugger; occasionally, they show bugs, too. To find out
whether a bug was caused by the inferior debuggebhbinas

ddd ——trace

This shows the interaction betweDD and the inferior debugger on standard error whid® is running.
(If * ——trace’ is not given, this interaction is logged in the fig#HOME/.ddd/log’.) Compare the debugger
output to the output adDD and determine which one is wrong.

How to Report Bugs
Here are some guidelines for bug reports:

* The fundamental principle of reporting bugs usefully is trégort all the facts If you are not sure
whether to state a fact or leave it out, state it!

» Keep in mind that the purpose of a bug report is to enable someone to fix the bug if it is not known. Itis
not very important what happens if the bug is already known. Therefore, always write your bug reports
on the assumption that the bug is not known.

* Your bug report should be self-contained. Do not refer to information sent in previous mails; your previ-
ous mail may have been forwarded to somebody else.

* Please report each bug in a separate message. This makes it easier for us to track which bugs have been
fixed and to forward your bugs reports to the appropriate maintainer.

* Please report bugs in English; this increases the chances of finding someone who can fix the bug. Do not
assume one particular person will receive your bug report.
What to Include in a Bug Report
To enable us to fix BDD bug, youmustinclude the following information:
* Your DDD configuration. Invoké®DD as

ddd —-configuration

to get the configuration information. If this does not work, please include at leaxbtheersion, the
type of machine you are using, and its operating system name and version number.

» The debugger you are using and its version (egggh-4.17 or ‘ dbx as shipped with Solaris 2.9.
* The compiler you used to compi¥D and its version (e.g.gtc-2.8.1).

» A description of what behavior you observe that you believe is incorrect. For exabpizgéts a fatal
signal” or “DDD exits immediately after attempting to create the data window".

» A log file showing the interaction betwe&bD and the inferior debugger. By default, this interaction is
logged in the file $SHOME/.ddd/log’. Include all trace output from theDD invocation up to the first
bug occurrence; insert own comments where necessary.

« If you wish to suggest changes to D source, send us context diffs. If you even discuss something
in theDDD source, refer to it by contexteverby line number.

Be sure to include this information @verysingle bug report.

HISTORY
The history ofDDD is a story of code recycling. The oldest partDoD were written in 1990, when
Andreas Zelledesigned/SL, a box-based visual structure language for visualizing data and program struc-
tures. ThevsSL interpreter and thBOX library became part of Andreas’ Diploma Thesis, a graphical syn-
tax editor based on the Programming System Gendtatar

In 1992, thevSL andBOX libraries were recycled for ti¢ORA project. FOINORA, an experimental infer-
ence-based software development tool set, Andreas wrote a graph editor (bastd amd theBOX

DDD 3.1 1998-12-01 88

libraries) and facilities for inter-process knowledge exchange. Based on thes®urothea Litkehaus
(now Dorothea Krabiel) realizedDDD as her Diploma Thesis, 1994.

The originalDDD had no source window; this was added by Dorothea during the winter of 1994-1995. In
the first quarter of 1995, finally, Andreas completfaD by adding command and execution windows,
extensions fobBX and remote debugging as well as configuration support for several architectures. Since
then, Andreas has further maintained and extebds based on the comments and suggestions of several
DDD users around the world. See the comments DD source for details.

Major DDD events:

April, 1995 DDD 0.9: FirstDDD beta release.

May, 1995 DDD 1.0: First publiddDD release.

December, 1995 DDD 1.4: Machine-level debugging, glypfMACS integration.

October, 1996 DDD 2.0: Color displaysxDB support, generidBX support, command tool.
May, 1997 DDD 2.1: Alias detection, button tips, status displays.

November, 1997 DDD 2.2: Persistent sessions, display shortcuts.

June, 1998 DDD 3.0: Icon tool bar, Java suppalDB support.

December, 1998 DDD 3.1: Data plotting, Perl support, Python support, Undo/Redo.

EXTENDING DDD
If you have any contributions to be incorporated ibfaD, please send them tddd@ips.cs.tu-bs.de
For suggestions on what might be done, see thelfd®O’ in the DDD distribution.

DDD NEEDS YOUR SUPPORT!
DDD needs your support! If you have any success stories related to DDD, please write them down on a
picture postcard and send them to us:

Technische Universitat Braunschweig
Abteilung Softwaretechnologie
Bultenweg 88

D-38092 Braunschweig

GERMANY

You may also leave a message inbimd Guestbooklt is accessible via theDD WwWW page,

http://lwww.cs.tu-bs.de/softech/ddd!/

PRINTING THIS MANUAL
Invoke DDD with the ~—manual option to show this manual page on standard output. This text output is
suitable for installation as formatted manual page/(ess/local/man/catl/ddd.1 or similar) onUNIX sys-
tems.

A PostScript copy of this manual page, including sevetdb screen shots and diagrams, is included in the
DDD source distribution and available separatelydasl‘man.ps.gzin

ftp://ftp.ips.cs.tu-bs.de/pub/local/softech/ddd/doc/

This directory also contains other documentation relat&bm

A ROFF copy of this manual page, suitable for installation as manual paggNox systems (as
‘/usr/local/man/manl/ddd.1 or similar), is included in th®DD source distribution.

COPYRIGHT
DDD
DDD is Copyright © 1995, 1996, 1997, 1998 Technische Universitat Braunschweig, Germany.

DDD is free software; you can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either version 2 of the License, or (at your option)
any later version.

DDD 3.1 1998-12-01 89

DDD is distributed in the hope that it will be useful, ithout any warrantywithout even the implied
warranty ofmerchantabilityor fithess for a particular purposeSee the License for more details.

You should have received a copy of the License along Riiib. If not, invokeDDD with the —-licensé
option; this will print a copy on standard output. To read the License from viithiy) use Help - DDD
Licensé.

DDD Manual
This DDD manual is Copyright © 1995, 1996, 1997, 1998 Technische Universitat Braunschweig, Germany.

Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice
and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the conditions for ver-
batim copying, provided that the entire resulting derived work is distributed under the terms of a permission
notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language, under the
aboveconditions for modified versions, except that this permission notice may be included in translations
approved by the Free Software Foundation instead of in the original English.

DDD 3.1 1998-12-01 90

