
1

VHDL Primer

Tutorial #2
Mike Goldsmith

Feb 3, 2004, ~ 2 hr duration

2

Outline

• IEEE 1164 and Built-In Data types
• Arithmetic and Logic operators
• More VHDL Syntax
• Modularization and Instantiation
• Test benches

3

IEEE 1164 Data types
• std_ulogic

– ‘U’ => Uninitialized
– ‘0’ => Strong (forced) Zero
– ‘1’ => Strong One
– ‘X’ => Strong Unknown
– ‘Z’ => High Impedance
– ‘L’ => Weak Zero
– ‘H’ => Weak One
– ‘W’ => Weak Unknown
– ‘-’ => Don’t Care

SEE: http://www.ecs.soton.ac.uk/~ajr1/vhdl_faq/std_logic_1164.html for gory details.

4

Built-in Data types
• Bit – ‘0’,’1’
• Boolean – true, false
• Integer – integer numbers, eg: 25
• Real – floating point numbers, eg: 2.57
• Time – an integer value + unit,eg: 5 ms

– Time has units of fs, ps, ns, us, ms, sec, min, hr
• Character – ASCII char set

5

Arithmetic Operators
• + addition
• - subtraction
• / division
• * multiplication
• ** exponential
• mod modulus
• rem remainder
• abs absolute value

6

Logic Operators
• not – negation
• and – logical and
• or – logical inclusive or
• xor – logical exclusive or
• nand – negated logical and
• nor – negated logical inclusive or
• xnor – negated logical exclusive or

7

Comparison Operators
• = equals
• /= inequality
• <= less than or equals
• >= greater than or equals
• < less than
• > greater than

8

More VHDL Syntax

• Conditional and Looping constructs must be
within processes

• Conditional Statements
– If-then constructs
– Switch / Case constructs
– ‘Condensed’ processes (when construct)

• Loops
– Simple loops
– While loops
– For loops

9

More VHDL Syntax

• If-Then: basic conditional, if ‘a’ then ‘b’
• Sample code:

[if_label:] if condition then
--statements

elsif alt_condition then
--statements

else
--statements

end if [if_label];

10

More VHDL Syntax

• Switch / Case – because writing ‘elsif’ 55
times really sucks.

• Sample code:
[case_label :] case signal_name is

when value_1 => --if sig = value_1 then

--statements

when value_n => --elsif sig = value_n then

when default => --else

end case [case label];

11

More VHDL Syntax
• Condensed conditional processes: write a

conditional process on one line
• Sample code:

signal_1 <= signal_2 when condition else signal_3;

Replaces:
process(signal_2, signal_3, …) is
begin

if condition then
signal_1 <= signal_2;

else
signal_1 <= signal_3;

end if;
end process;

12

More VHDL Syntax
• Simple loops: repeat a sequence of

statements multiple times.
• Sample code:

[loop_label :] loop

--statement(s)

exit [loop_ label] [when condition];

next [loop_ label] [when condition];

--conditionally executed statement(s)

end loop [loop_ label];

13

More VHDL Syntax
• While loops: execute loop while exit

conditions are unmet.
• Sample code:

[loop_label :] while condition loop

--statement(s)

next [loop_ label] [when condition];

--conditionally executed statement(s)

end loop [loop_ label];

14

More VHDL Syntax
• For loops: execute loop a fixed number of

times
• Sample code:

[loop_label :] for index in range loop
--statement(s)
next [loop_ label] [when condition];
--conditionally executed statement(s)

end loop [loop_ label];

• Loop index is a variable with scope limited
to the loop

15

More VHDL Syntax
• Sequential (clocked) processes
• Sample code:

[process_label :] process(clk, d, q)is

begin

if clk’event and clk = ‘1’ then

q <= d; --simple D flip-flop, notice no

--‘else’ case

end if;

end process [process_ label];

16

More VHDL Syntax
• Sequential processes (again)
• Sample code:

[process_label :] process(clk, d, q)is

begin

if rising_edge(clk) then

q <= d; --simple D flip-flop, notice no

--‘else’ case

end if;

end process [process_ label];

17

More VHDL Syntax
• Sequential processes (yet again)
• Sample code:

[process_label :] process is

begin

wait until clk’event and clk = ‘1’

q <= d; --simple D flip-flop, notice no

--‘else’ case

end process [process_ label];

• Processes with ‘wait’ statements cannot
have sensitivity lists

18

Modularization and Instantiation

• How to make one module talk to another
• All modules are instantiated by other

modules; the entire design falls under a
‘top-level’ module

• The interface of a module must be defined
for that module to be used. The
implementation of the modules is selectable

19

Modularization and Instantiation

• Source code:
architecture arch_name of entity_name is

component comp_name is

port(inport: in type;

outport: out type
);

end component comp_name;

begin

--statements

20

Modularization and Instantiation

• Source code:
begin

[inst_label :] comp_name
port map(inport => signal_1, outport => signal_2);

--statements

end architecture arch_name;

21

Modularization and Instantiation
• Example:

architecture foo of bar is
component inv is
port(d : in std_logic;

q : out std_logic
);
end component inv;
signal s_in, s_out : std_logic;

begin
my_inverter: inv port map(d => s_in, q => s_out);
--statements

end architecture foo;

22

Test Benches

• Used for simulation and verification
• Entity has no ports
• Architecture instantiates one main module

to be tested, plus optionally support
modules

• Module to be tested referred to as device
under test (dut) or unit under test (uut)

23

Test Benches
• Sample code:

entity comp_name_tb is

end entity comp_name_tb;

architecture test_name of comp_name_tb is

component comp_name is

…

begin

uut: comp_name port map(…);

24

Test Benches
• Test benches use control and status signals

to force operating conditions on the UUT
and monitor the results

• Test benches can be executed in simulation
and results displayed on a waveform
viewer

• Test benches can also interact with the
computer system, including file reading and
writing, display to standard output, etc.

25

Test Benches
• Example:

entity int_tb is
end entity inv_tb;
architecture tb of inv_tb is

component inv is
port(d : in std_logic;

q : out std_logic
);
end component inv;
signal t_in : std_logic := ‘0’;
signal t_out : std_logic;

26

Test Benches
• Example:

begin

uut: inv port map(d => t_in, q => t_out);

t_in <= not t_in after 20 us; --create a 50 kHz clk

end architecture tb;

• Test bench must have some form of signal
that changes with time

	VHDL Primer
	Outline
	IEEE 1164 Data types
	Built-in Data types
	Arithmetic Operators
	Logic Operators
	Comparison Operators
	More VHDL Syntax
	More VHDL Syntax
	More VHDL Syntax
	More VHDL Syntax
	More VHDL Syntax
	More VHDL Syntax
	More VHDL Syntax
	More VHDL Syntax
	More VHDL Syntax
	More VHDL Syntax
	Modularization and Instantiation
	Modularization and Instantiation
	Modularization and Instantiation
	Modularization and Instantiation
	Test Benches
	Test Benches
	Test Benches
	Test Benches
	Test Benches

