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VHDL Primer
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Mike Goldsmith

Feb 3, 2004, ~ 2 hr duration
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Outline

• IEEE 1164 and Built-In Data types
• Arithmetic and Logic operators
• More VHDL Syntax
• Modularization and Instantiation
• Test benches
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IEEE 1164 Data types
• std_ulogic

– ‘U’ => Uninitialized
– ‘0’ => Strong (forced) Zero
– ‘1’ => Strong One
– ‘X’ => Strong Unknown
– ‘Z’ => High Impedance
– ‘L’ => Weak Zero
– ‘H’ => Weak One
– ‘W’ => Weak Unknown
– ‘-’ => Don’t Care

SEE: http://www.ecs.soton.ac.uk/~ajr1/vhdl_faq/std_logic_1164.html for gory details.
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Built-in Data types
• Bit – ‘0’,’1’
• Boolean – true, false
• Integer – integer numbers, eg: 25
• Real – floating point numbers, eg: 2.57
• Time – an integer value + unit,eg: 5 ms

– Time has units of fs, ps, ns, us, ms, sec, min, hr
• Character – ASCII char set
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Arithmetic Operators
• + addition
• - subtraction
• / division
• * multiplication
• ** exponential
• mod modulus
• rem remainder
• abs absolute value
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Logic Operators
• not – negation
• and – logical and
• or – logical inclusive or
• xor – logical exclusive or
• nand – negated logical and
• nor – negated logical inclusive or
• xnor – negated logical exclusive or
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Comparison Operators
• = equals
• /= inequality
• <= less than or equals
• >= greater than or equals
• < less than
• > greater than
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More VHDL Syntax

• Conditional and Looping constructs must be 
within processes

• Conditional Statements
– If-then constructs
– Switch / Case constructs
– ‘Condensed’ processes (when construct) 

• Loops
– Simple loops
– While loops
– For loops
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More VHDL Syntax

• If-Then: basic conditional, if ‘a’ then ‘b’
• Sample code:

[if_label:] if condition then
--statements

elsif alt_condition then
--statements

else
--statements

end if [if_label];
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More VHDL Syntax

• Switch / Case – because writing ‘elsif’ 55 
times really sucks.

• Sample code:
[case_label :] case signal_name is

when value_1 => --if sig = value_1 then

--statements

when value_n => --elsif sig = value_n then

when default => --else

end case [case label];
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More VHDL Syntax
• Condensed conditional processes: write a 

conditional process on one line
• Sample code:

signal_1 <= signal_2 when condition else signal_3;

Replaces:
process( signal_2, signal_3, …) is
begin

if condition then
signal_1 <= signal_2;

else
signal_1 <= signal_3;

end if;
end process;
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More VHDL Syntax
• Simple loops: repeat a sequence of 

statements multiple times.
• Sample code:

[loop_label :] loop

--statement(s)

exit [loop_ label] [when condition];

next [loop_ label] [when condition];

--conditionally executed statement(s)

end loop [loop_ label];
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More VHDL Syntax
• While loops: execute loop while exit 

conditions are unmet.
• Sample code:

[loop_label :] while condition loop

--statement(s)

next [loop_ label] [when condition];

--conditionally executed statement(s)

end loop [loop_ label];
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More VHDL Syntax
• For loops: execute loop a fixed number of 

times
• Sample code:

[loop_label :] for index in range loop
--statement(s)
next [loop_ label] [when condition];
--conditionally executed statement(s)

end loop [loop_ label];

• Loop index is a variable with scope limited 
to the loop
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More VHDL Syntax
• Sequential (clocked) processes
• Sample code:

[process_label :] process( clk, d, q )is

begin

if clk’event and clk = ‘1’ then

q <= d; --simple D flip-flop, notice no 

--‘else’ case

end if;

end process [process_ label];
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More VHDL Syntax
• Sequential processes (again)
• Sample code:

[process_label :] process( clk, d, q )is

begin

if rising_edge( clk ) then

q <= d; --simple D flip-flop, notice no 

--‘else’ case

end if;

end process [process_ label];
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More VHDL Syntax
• Sequential processes (yet again)
• Sample code:

[process_label :] process is

begin

wait until clk’event and clk = ‘1’

q <= d; --simple D flip-flop, notice no 

--‘else’ case

end process [process_ label];

• Processes with ‘wait’ statements cannot 
have sensitivity lists
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Modularization and Instantiation

• How to make one module talk to another
• All modules are instantiated by other 

modules; the entire design falls under a 
‘top-level’ module

• The interface of a module must be defined 
for that module to be used.  The 
implementation of the modules is selectable
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Modularization and Instantiation

• Source code:
architecture arch_name of entity_name is

component comp_name is

port( inport: in type;

outport: out type
);

end component comp_name;

begin

--statements
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Modularization and Instantiation

• Source code:
begin

[inst_label :] comp_name
port map( inport => signal_1, outport => signal_2 );

--statements

end architecture arch_name;
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Modularization and Instantiation
• Example:

architecture foo of bar is
component inv is
port( d : in std_logic;

q : out std_logic
);
end component inv;
signal s_in, s_out : std_logic;

begin
my_inverter: inv port map( d => s_in, q => s_out);
--statements

end architecture foo;
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Test Benches

• Used for simulation and verification
• Entity has no ports
• Architecture instantiates one main module 

to be tested, plus optionally support 
modules

• Module to be tested referred to as device 
under test (dut) or unit under test (uut)
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Test Benches
• Sample code:

entity comp_name_tb is

end entity comp_name_tb;

architecture test_name of comp_name_tb is

component comp_name is

…

begin

uut: comp_name port map( … );
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Test Benches
• Test benches use control and status signals 

to force operating conditions on the UUT 
and monitor the results

• Test benches can be executed in simulation 
and results displayed on a waveform 
viewer

• Test benches can also interact with the 
computer system, including file reading and 
writing, display to standard output, etc.
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Test Benches
• Example:

entity int_tb is
end entity inv_tb;
architecture tb of inv_tb is

component inv is
port( d : in std_logic;

q : out std_logic
);
end component inv;
signal t_in : std_logic := ‘0’;
signal t_out : std_logic;
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Test Benches
• Example:

begin

uut: inv port map( d => t_in, q => t_out);

t_in <= not t_in after 20 us; --create a 50 kHz clk

end architecture tb;

• Test bench must have some form of signal 
that changes with time
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