

IEEE
LANGUAGE REFERENCE MANUAL Std P1076a-1999 2000/D3

Clause 2 19
Copyright © 2000, IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

Clause 2

Subprograms and packages

Subprograms define algorithms for computing values or exhibiting behavior. They may be used as computational
resources to convert between values of different types, to define the resolution of output values driving a common
signal, or to define portions of a process. Packages provide a means of defining these and other resources in a
way that allows different design units to share the same declarations.

There are two forms of subprograms: procedures and functions. A procedure call is a statement; a function call
is an expression and returns a value. Certain functions, designated

pure

 functions, return the same value each time
they are called with the same values as actual parameters; the remainder,

impure

 functions, may return a different
value each time they are called, even when multiple calls have the same actual parameter values. In addition, im-
pure functions can update objects outside of their scope and can access a broader class of values than can pure
functions. The definition of a subprogram can be given in two parts: a subprogram declaration defining its calling
conventions, and a subprogram body defining its execution.

Packages may also be defined in two parts. A package declaration defines the visible contents of a package; a
package body provides hidden details. In particular, a package body contains the bodies of any subprograms de-
clared in the package declaration.

2.1 Subprogram declarations

A subprogram declaration declares a procedure or a function, as indicated by the appropriate reserved word.

subprogram_declaration ::=
subprogram_specification ;

subprogram_specification ::=

procedure

 designator [(formal_parameter_list)]
| [

pure

 |

impure

]

function

 designator [(formal_parameter_list)]

return

 type_mark

designator ::= identifier | operator_symbol

operator_symbol ::= string_literal

The specification of a procedure specifies its designator and its formal parameters (if any). The specification of
a function specifies its designator, its formal parameters (if any), the subtype of the returned value (the

result sub-
type

), and whether or not the function is pure. A function is

impure

 if its specification contains the reserved word

impure

; otherwise, it is said to be

pure

. A procedure designator is always an identifier. A function designator is
either an identifier or an operator symbol. A designator that is an operator symbol is used for the overloading of
an operator (see 2.3.1). The sequence of characters represented by an operator symbol must be an operator be-
longing to one of the classes of operators defined in 7.2. Extra spaces are not allowed in an operator symbol, and
the case of letters is not significant.

IEEE
Std P1076a-1999 2000/D3 IEEE STANDARD VHDL

20 Clause 2
Copyright © 2000, IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

NOTES

1—All subprograms can be called recursively.

2—The restrictions on pure functions are enforced even when the function appears within a protected type. That is, pure func-
tions whose body appears in the protected type body may must

1

 not directly reference variables declared immediately
within the declarative region associated with the protected type. However, impure functions and procedures whose bodies
appear in the protected type body may make such references. Such references are made only when the referencing sub-
program has exclusive access to the declarative region associated with the protected type.

2.1.1 Formal parameters

The formal parameter list in a subprogram specification defines the formal parameters of the subprogram.

formal_parameter_list ::=

parameter

_interface_list

Formal parameters of subprograms may be constants, variables, signals, or files. In the first three cases, the mode
of a parameter determines how a given formal parameter may be is

2

 accessed within the subprogram. The mode
of a formal parameter, together with its class, may also determine also determines

3

 how such access is implement-
ed. In the fourth case, that of files, the parameters have no mode.

For those parameters with modes, the only modes that are allowed for formal parameters of a procedure are

in

,

inout

, and

out

. If the mode is

in

 and no object class is explicitly specified,

constant

 is assumed. If the mode is

inout

 or

out

, and no object class is explicitly specified,

variable

 is assumed.

For those parameters with modes, the only mode that is allowed for formal parameters of a function is the mode

in

 (whether this mode is specified explicitly or implicitly). The object class must be

constant

,

signal

, or

file

. If
no object class is explicitly given,

constant

 is assumed.

In a subprogram call, the actual designator (see 4.3.2.2) associated with a formal parameter of class

signal

 must
be a name denoting

4

 a signal. The actual designator associated with a formal of class

variable

 must be a name
denoting

5

 a variable. The actual designator associated with a formal of class

constant

 must be an expression. The
actual designator associated with a formal of class

file

 must be a name denoting

6

 a file.

NOTE

—

Attributes of an actual are never passed into a subprogram: references to an attribute of a formal parameter are legal only if
that formal has such an attribute. Such references retrieve the value of the attribute associated with the formal.

2.1.1.1 Constant and variable parameters

For parameters of class

constant

 or

variable

, only the values of the actual or formal are transferred into or out of
the subprogram call. The manner of such transfers, and the accompanying access privileges that are granted for
constant and variable parameters, are described in this subclause.

For a nonforeign subprogram having a parameter of a scalar type or an access type, the parameter is passed by
copy. At the start of each call, if the mode is

in

 or

inout

, the value of the actual parameter is copied into the as-
sociated formal parameter; it is an error if, after applying any conversion function or type conversion present in
the actual part of the applicable association element (see 4.3.2.2), the value of the actual parameter does not belong
to the subtype denoted by the subtype indication of the formal. After completion of the subprogram body, if the
mode is

inout

or

out

, the value of the formal parameter is copied back into the associated actual parameter; it is

1. IR1000.4.7.
2. IR1000.4.7.
3. IR1000.4.7.
4. IR1000.4.1.
5. IR1000.4.1.
6. IR1000.4.1.

IEEE
LANGUAGE REFERENCE MANUAL Std P1076a-1999 2000/D3

Clause 2 21
Copyright © 2000, IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

similarly an error if, after applying any conversion function or type conversion present in the formal part of the
applicable association element, the value of the formal parameter does not belong to the subtype denoted by the
subtype indication of the actual.

For a nonforeign subprogram having a parameter whose type is an array or record, an implementation may pass
parameter values by copy, as for scalar types. If a parameter of mode

out

is passed by copy, then the range of
each index position of the actual parameter is copied in, and likewise for its subelements or slices. Alternatively,
an implementation may achieve these effects by reference; that is, by arranging that every use of the formal pa-
rameter (to read or update its value) be treated as a use of the associated actual parameter throughout the execution
of the subprogram call. The language does not define which of these two mechanisms is to be adopted for param-
eter passing, nor whether different calls to the same subprogram are to use the same mechanism. The execution
of a subprogram is erroneous if its effect depends on which mechanism is selected by the implementation.

For a subprogram having a parameter whose type is a protected type, the parameter is passed by reference. It is
an error if the mode of the parameter is other than

inout

.

For a formal parameter of a constrained array subtype of mode

in

 or

inout

, it is an error if the value of the asso-
ciated actual parameter (after application of any conversion function or type conversion present in the actual part)
does not contain a matching element for each element of the formal. For a formal parameter whose declaration
contains a subtype indication denoting an unconstrained array type, the subtype of the formal in any call to the
subprogram is taken from the actual associated with that formal in the call to the subprogram. It is also an error
if, in either case, the value of each element of the actual array (after applying any conversion function or type con-
version present in the actual part) does not belong to the element subtype of the formal. If the formal parameter
is of mode

out

 or

inout

, it is also an error if, at the end of the subprogram call, the value of each element of the
formal (after applying any conversion function or type conversion present in the formal part) does not belong to
the element subtype of the actual.

NOTE

—For parameters of array and record types, the parameter passing rules imply that if no actual parameter of such a type is
accessible by more than one path, then the effect of a subprogram call is the same whether or not the implementation uses
copying for parameter passing. If, however, there are multiple access paths to such a parameter (for example, if another
formal parameter is associated with the same actual parameter), then the value of the formal is undefined after updating the
actual other than by updating the formal. A description using such an undefined value is erroneous.

2.1.1.2 Signal parameters

For a formal parameter of class

signal

, references to the signal, the driver of the signal, or both, are passed into
the subprogram call.

For a signal parameter of mode

in

 or

inout

, the actual signal is associated with the corresponding formal signal
parameter at the start of each call. Thereafter, during the execution of the subprogram body, a reference to the
formal signal parameter within an expression is equivalent to a reference to the actual signal.

It is an error if signal-valued attributes 'STABLE, 'QUIET, 'TRANSACTION, and 'DELAYED of formal signal
parameters of any mode are read within a subprogram.

A process statement contains a driver for each actual signal associated with a formal signal parameter of mode

out

 or

inout

 in a subprogram call. Similarly, a subprogram contains a driver for each formal signal parameter of
mode

out

 or

inout

 declared in its subprogram specification.

For a signal parameter of mode

inout

or

out

, the driver of an actual signal is associated with the corresponding
driver of the formal signal parameter at the start of each call. Thereafter, during the execution of the subprogram
body, an assignment to the driver of a formal signal parameter is equivalent to an assignment to the driver of the
actual signal.

IEEE
Std P1076a-1999 2000/D3 IEEE STANDARD VHDL

22 Clause 2
Copyright © 2000, IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

If an actual signal is associated with a signal parameter of any mode, the actual must be denoted by a static signal
name. It is an error if a conversion function or type conversion appears in either the formal part or the actual part
of an association element that associates an actual signal with a formal signal parameter.

If an actual signal is associated with a signal parameter of any mode, and if the type of the formal is a scalar type,
then it is an error if the bounds and direction of the subtype denoted by the subtype indication of the formal are
not identical to the bounds and direction of the subtype denoted by the subtype indication of the actual.

If an actual signal is associated with a formal signal parameter, and if the formal is of a constrained array subtype,
then it is an error if the actual does not contain a matching element for each element of the formal. If an actual
signal is associated with a formal signal parameter, and if the subtype denoted by the subtype indication of the
declaration of the formal is an unconstrained array type, then the subtype of the formal in any call to the subpro-
gram is taken from the actual associated with that formal in the call to the subprogram. It is also an error if the
mode of the formal is

in

 or

inout

 and if the value of each element of the actual array does not belong to the element
subtype of the formal.

A formal signal parameter is a guarded signal if and only if it is associated with an actual signal that is a guarded
signal. It is an error if the declaration of a formal signal parameter includes the reserved word

bus

 (see 4.3.2).

NOTE

—It is a consequence of the preceding rules that a procedure with an

out

 or

inout

 signal parameter called by a process does
not have to complete in order for any assignments to that signal parameter within the procedure to take effect. Assignments
to the driver of a formal signal parameter are equivalent to assignments directly to the actual driver contained in the process
calling the procedure.

2.1.1.3 File parameters

For parameters of class

file

, references to the actual file are passed into the subprogram. No particular parameter–
passing mechanism is defined by the language, but a reference to the formal parameter must be equivalent to a
reference to the actual parameter. It is an error if an association element associates an actual with a formal param-
eter of a file type and that association element contains a conversion function or type conversion. It is also an
error if a formal of a file type is associated with an actual that is not of a file type.

At the beginning of a given subprogram call, a file parameter is open (see 3.4.1) if and only if the actual file object
associated with the given parameter in a given subprogram call is also open. Similarly, at the beginning of a given
subprogram call, both the access mode of and external file associated with (see 3.4.1) an open file parameter are
the same as, respectively, the access mode of and the external file associated with the actual file object associated
with the given parameter in the subprogram call.

At the completion of the execution of a given subprogram call, the actual file object associated with a given file
parameter is open if and only if the formal parameter is also open. Similarly, at the completion of the execution
of a given subprogram call, the access mode of and the external file associated with an open actual file object as-
sociated with a given file parameter are the same as, respectively, the access mode of and the external file associ-
ated with the associated formal parameter.

2.2 Subprogram bodies

A subprogram body specifies the execution of a subprogram.

subprogram_body ::=
subprogram_specification

is

subprogram_declarative_part

begin

subprogram_statement_part

end

 [subprogram_kind] [designator] ;

IEEE
LANGUAGE REFERENCE MANUAL Std P1076a-1999 2000/D3

Clause 2 23
Copyright © 2000, IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

subprogram_declarative_part ::=
{ subprogram_declarative_item }

subprogram_declarative_item ::=
 subprogram_declaration
| subprogram_body
| type_declaration
| subtype_declaration
| constant_declaration
| variable_declaration
| file_declaration
| alias_declaration
| attribute_declaration
| attribute_specification
| use_clause
| group_template_declaration
| group_declaration

subprogram_statement_part ::=
{ sequential_statement }

subprogram_kind ::=

procedure

 |

function

The declaration of a subprogram is optional. In the absence of such a declaration, the subprogram specification
of the subprogram body acts as the declaration. For each subprogram declaration, there must be a corresponding
body. If both a declaration and a body are given, the subprogram specification of the body must conform (see 2.7)
to the subprogram specification of the declaration. Furthermore, both the declaration and the body must occur
immediately within the same declarative region (see 10.1).

If a subprogram kind appears at the end of a subprogram body, it must repeat the reserved word given in the sub-
program specification. If a designator appears at the end of a subprogram body, it must repeat the designator of
the subprogram.

It is an error if a variable declaration in a subprogram declarative part declares a shared variable. (See 4.3.1.3 and
8.1.4.)

A

foreign subprogram

 is one that is decorated with the attribute 'FOREIGN, defined in package STANDARD (see
14.2). The STRING value of the attribute may specify implementation-dependent information about the foreign
subprogram. Foreign subprograms may have non-VHDL implementations. An implementation may place re-
strictions on the allowable modes, classes, and types of the formal parameters to a foreign subprogram; such re-
strictions may include restrictions on the number and allowable order of the parameters.

Excepting foreign subprograms, the algorithm performed by a subprogram is defined by the sequence of state-
ments that appears in the subprogram statement part. For a foreign subprogram, the algorithm performed is im-
plementation defined.

The execution of a subprogram body is invoked by a subprogram call. For this execution, after establishing the
association between the formal and actual parameters, the sequence of statements of the body is executed if the
subprogram is not a foreign subprogram; otherwise, an implementation-defined action occurs. Upon completion
of the body or implementation-dependent action, if exclusive access to an object of a protected type was granted
during elaboration of the declaration of the subprogram (see 12.5), the exclusive access is rescinded. Then, return
is made to the caller (and any necessary copying back of formal to actual parameters occurs).

A process or a subprogram is said to be a

parent

 of a given subprogram S if that process or subprogram contains
a procedure call or function call for S or for a parent of S.

An

explicit signal

 is a signal other than an implicit signal GUARD or other than one of the implicit signals defined
by the predefined attributes 'DELAYED, 'STABLE, 'QUIET, or 'TRANSACTION. The

explicit ancestor

 of an

IEEE
Std P1076a-1999 2000/D3 IEEE STANDARD VHDL

24 Clause 2
Copyright © 2000, IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

implicit signal is found as follows. The implicit signal GUARD has no explicit ancestor. An explicit ancestor of
an implicit signal defined by the predefined attributes 'DELAYED, 'STABLE, 'QUIET, or 'TRANSACTION is
the signal found by recursively examining the prefix of the attribute. If the prefix denotes an explicit signal, a
slice, or a member (see Section Clause

7

 3) of an explicit signal, then that is the explicit ancestor of the implicit
signal. Otherwise, if the prefix is one of the implicit signals defined by the predefined attributes 'DELAYED,
'STABLE, 'QUIET, or 'TRANSACTION, this rule is recursively applied. If the prefix is an implicit signal
GUARD, then the signal has no explicit ancestor.

If a pure function subprogram is a parent of a given procedure and if that procedure contains a reference to an
explicitly declared signal or variable object, or a slice or subelement (or slice thereof) of an explicit signal, then
that object must be declared within the declarative region formed by the function (see 10.1) or within the declar-
ative region formed by the procedure; this rule also holds for the explicit ancestor, if any, of an implicit signal and
also for the implicit signal GUARD. If a pure function is the parent of a given procedure, then that procedure
must not contain a reference to an explicitly declared file object (see 4.3.1.4) or to a shared variable (see 4.3.1.3).

Similarly, if a pure function subprogram contains a reference to an explicitly declared signal or variable object,
or a slice or subelement (or slice thereof) of an explicit signal, then that object must be declared within the declar-
ative region formed by the function; this rule also holds for the explicit ancestor, if any, of an implicit signal and
also for the implicit signal GUARD. A pure function must not contain a reference to an explicitly declared file
object.

A pure function must not be the parent of an impure function.

The rules of the preceding four three

8

 paragraphs apply to all pure function subprograms. For pure functions that
are not foreign subprograms, violations of any of these rules are errors. However, since implementations cannot
in general check that such rules hold for pure function subprograms that are foreign subprograms, a description
calling pure foreign function subprograms not adhering to these rules is erroneous.

Example:

-- The declaration of a foreign function subprogram:

package

 P

is
function

 F

return

 INTEGER;

attribute

 FOREIGN

of

 F:

function

is

 "implementation-dependent information";

end

package

 P;

NOTES

1—It follows from the visibility rules that a subprogram declaration must be given if a call of the subprogram occurs textually
before the subprogram body, and that such a declaration must occur before the call itself.

2—The preceding rules concerning pure function subprograms, together with the fact that function parameters may only must

9

be of mode

in

, imply that a pure function has no effect other than the computation of the returned value. Thus, a pure
function invoked explicitly as part of the elaboration of a declaration, or one invoked implicitly as part of the simulation
cycle, is guaranteed to have no effect on other objects in the description.

3—VHDL does not define the parameter-passing mechanisms for foreign subprograms.

4—The declarative parts and statement parts of subprograms decorated with the 'FOREIGN attribute are subject to special
elaboration rules. See 12.3 and 12.4.

7. To conform to IEEE rules.
8. Typo noted by Steve Bailey.
9. IR1000.4.7.

IEEE
LANGUAGE REFERENCE MANUAL Std P1076a-1999 2000/D3

Clause 2 25
Copyright © 2000, IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

5—A pure function subprogram may must

10

 not reference a shared variable. This prohibition exists because a shared variable
may not cannot

11

 be declared in a subprogram declarative part and a pure function may not cannot

12

 reference any variable
declared outside of its declarative region.

6—A subprogram containing a wait statement must not have an ancestor that is a subprogram declared within either a protected
type declaration or a protected type body.

2.3 Subprogram overloading

Two formal parameter lists are said to have the same

parameter type profile

 if and only if they have the same num-
ber of parameters, and if at each parameter position the corresponding parameters have the same base type. Two
subprograms are said to have the same

parameter and result type profile

 if and only if both have the same param-
eter type profile, and if either both are functions with the same result base type or neither of the two is a function.

A given subprogram designator can be used in several subprogram specifications to designate multiple subpro-
grams

13

. The subprogram designator is then said to be overloaded; the designated subprograms are also said to
be overloaded and to overload each other. If two subprograms overload each other, one of them can hide the other
only if both subprograms have the same parameter and result type profile.

A call to an overloaded subprogram is ambiguous (and therefore is an error) if the name of the subprogram, the
number of parameter associations, the types and order of the actual parameters, the names of the formal parame-
ters (if named associations are used), and the result type (for functions) are not sufficient to identify exactly one
(overloaded) subprogram specification

14

.

Similarly, a reference to an overloaded resolution function name in a subtype indication is ambiguous (and is
therefore an error) if the name of the function, the number of formal parameters, the result type, and the relation-
ships between the result type and the types of the formal parameters (as defined in 2.4) are not sufficient to identify
exactly one (overloaded) subprogram specification.

Examples:

--Declarations of overloaded subprograms:

procedure

 Dump(F:

inout

 Text; Value: Integer);

procedure

 Dump(F:

inout

 Text; Value: String);

procedure

 Check (Setup: Time;

signal

 D: Data;

signal

 C: Clock);

procedure Check (Hold: Time; signal C: Clock; signal D: Data);

--Calls to overloaded subprograms:

Dump (Sys_Output, 12) ;
Dump (Sys_Error, "Actual output does not match expected output") ;

Check (Setup=>10 ns, D=>DataBus, C=>Clk1) ;
Check (Hold=>5 ns, D=>DataBus, C=>Clk2);
Check (15 ns, DataBus, Clk) ;

-- Ambiguous if the base type of DataBus is the same type as the base type of Clk.

10. IR1000.4.7.
11. IR1000.4.7.
12. IR1000.4.7.
13. IR1000.4.3.
14. IR1000.2.7.

IEEE
Std P1076a-1999 2000/D3 IEEE STANDARD VHDL

26 Clause 2
Copyright © 2000, IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

NOTES

1—The notion of parameter and result type profile does not include parameter names, parameter classes, parameter modes,
parameter subtypes, or default expressions or their presence or absence.

2—Ambiguities may (but need not) arise when actual parameters of the call of an overloaded subprogram are themselves over-
loaded function calls, literals, or aggregates. Ambiguities may also (but need not) arise when several overloaded subpro-
grams belonging to different packages are visible. These ambiguities can usually be solved in two ways: qualified
expressions can be used for some or all actual parameters and for the result, if any; or the name of the subprogram can be
expressed more explicitly as an expanded name (see 6.3).

2.3.1 Operator overloading

The declaration of a function whose designator is an operator symbol is used to overload an operator. The se-
quence of characters of the operator symbol must be one of the operators in the operator classes defined in 7.2.

The subprogram specification of a unary operator must have a single parameter, unless the subprogram specifica-
tion is a method (see 3.5.1) of a protected type. In this latter case, the subprogram specification must have no
parameters15. The subprogram specification of a binary operator must have two parameters;, unless the subpro-
gram specification is a method of a protected type, in which case, the subprogram specification must have a single
parameter. If the subprogram specification of a binary operator has two parameters,16 for each use of this opera-
tor, the first parameter is associated with the left operand, and the second parameter is associated with the right
operand.

For each of the operators “+” and “–”, overloading is allowed both as a unary operator and as a binary operator.

NOTES

1—Overloading of the equality operator does not affect the selection of choices in a case statement in a selected signal assign-
ment statement; nor does it have an affect on affect17 the propagation of signal values.

2—A user-defined operator that has the same designator as a short-circuit operator (that is, that overloads the short-circuit op-
erator) is not invoked in a short-circuit manner. Specifically, calls to the user-defined operator always evaluate both argu-
ments prior to the execution of the function.

3—Functions that overload operator symbols may also be called using function call notation rather than operator notation.
This statement is also true of the predefined operators themselves.

Examples:

type MVL is ('0', '1', 'Z', 'X') ;

function "and" (Left, Right: MVL) return MVL ;
function "or" (Left, Right: MVL) return MVL ;
function "not" (Value: MVL) return MVL ;

signal Q,R,S: MVL ;

Q <= 'X' or '1';
R <= "or" ('0','Z');
S <= (Q and R) or not S;

15. LCS 26.
16. LCS 26.
17. IR1000.1.4, as modified by Ashenden.

IEEE
LANGUAGE REFERENCE MANUAL Std P1076a-1999 2000/D3

Clause 2 27
Copyright © 2000, IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

2.3.2 Signatures

A signature distinguishes between overloaded subprograms and overloaded enumeration literals based on their
parameter and result type profiles. A signature can be used in an attribute name, entity designator, or alias decla-
ration.

signature ::= [[type_mark { , type_mark }] [return type_mark]]

(Note that the initial and terminal brackets are part of the syntax of signatures and do not indicate that the entire
right-hand side of the production is optional.) A signature is said to match the parameter and result type profile
of a given subprogram if and only if all of the following conditions hold:

— The number of type marks prior to the reserved word return, if any, matches the number of formal
parameters of the subprogram

— At each parameter position, the base type denoted by the type mark of the signature is the same as the
base type of the corresponding formal parameter of the subprogram

— If the reserved word return is present, the subprogram is a function and the base type of the type mark
following the reserved word in the signature is the same as the base type of the return type of the func-
tion, or the reserved word return is absent and the subprogram is a procedure

Similarly, a signature is said to match the parameter and result type profile of a given enumeration literal if the
signature matches the parameter and result type profile of the subprogram equivalent to the enumeration literal
defined in 3.1.1.

Example:

attribute BuiltIn of "or" [MVL, MVL return MVL]: function is TRUE;
-- Because of the presence of the signature, this attribute specification
-- decorates only the "or" function defined in the previous section subclause18.

attribute Mapping of JMP [return OpCode] : literal is “001”;

2.4 Resolution functions

A resolution function is a function that defines how the values of multiple sources of a given signal are to be re-
solved into a single value for that signal. Resolution functions are associated with signals that require resolution
by including the name of the resolution function in the declaration of the signal or in the declaration of the subtype
of the signal. A signal with an associated resolution function is called a resolved signal (see 4.3.1.2).

A resolution function must be a pure function (see 2.1); moreover, it must have a single input parameter of class
constant that is a one-dimensional, unconstrained array whose element type is that of the resolved signal. The
type of the return value of the function must also be that of the signal. Errors occur at the place of the subtype
indication containing the name of the resolution function if any of these checks fail (see 4.2).

The resolution function associated with a resolved signal determines the resolved value of the signal as a function
of the collection of inputs from its multiple sources. If a resolved signal is of a composite type, and if subelements
of that type also have associated resolution functions, such resolution functions have no effect on the process of
determining the resolved value of the signal. It is an error if a resolved signal has more connected sources than
the number of elements in the index type of the unconstrained array type used to define the parameter of the cor-
responding resolution function.

Resolution functions are implicitly invoked during each simulation cycle in which corresponding resolved signals
are active (see 12.6.1). Each time a resolution function is invoked, it is passed an array value, each element of

18. To conform to IEEE rules.

IEEE
Std P1076a-1999 2000/D3 IEEE STANDARD VHDL

28 Clause 2
Copyright © 2000, IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

which is determined by a corresponding source of the resolved signal, but excluding those sources that are drivers
whose values are determined by null transactions (see 8.4.1). Such drivers are said to be off. For certain invoca-
tions (specifically, those involving the resolution of sources of a signal declared with the signal kind bus), a res-
olution function may thus be invoked with an input parameter that is a null array; this occurs when all sources of
the bus are drivers, and they are all off. In such a case, the resolution function returns a value representing the
value of the bus when no source is driving it.

Example:

function WIRED_OR (Inputs: BIT_VECTOR) return BIT is
constant FloatValue: BIT := '0';

begin
if Inputs'Length = 0 then

-- This is a bus whose drivers are all off.
return FloatValue;

else
for I in Inputs'Range loop

if Inputs(I) = '1' then
return '1';

end if;
end loop;
return '0';

end if;
end function WIRED_OR;

2.5 Package declarations

A package declaration defines the interface to a package. The scope of a declaration within a package can be ex-
tended to other design units.

package_declaration ::=
package identifier is

package_declarative_part
end [package] [package_simple_name] ;

package_declarative_part ::=
{ package_declarative_item }

package_declarative_item ::=
 subprogram_declaration
| type_declaration
| subtype_declaration
| constant_declaration
| signal_declaration
| shared_variable_declaration
| file_declaration
| alias_declaration
| component_declaration
| attribute_declaration
| attribute_specification
| disconnection_specification
| use_clause
| group_template_declaration
| group_declaration

If a simple name appears at the end of the package declaration, it must repeat the identifier of the package decla-
ration.

IEEE
LANGUAGE REFERENCE MANUAL Std P1076a-1999 2000/D3

Clause 2 29
Copyright © 2000, IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

If a package declarative item is a type declaration that is a full type declaration whose type definition is a
protected_type definition, then that protected type definition must not be a protected type body.

Items declared immediately within a package declaration become visible by selection within a given design unit
wherever the name of that package is visible in the given unit. Such items may also be made directly visible by
an appropriate use clause (see 10.4).

NOTE

—Not all packages will have a package body. In particular, a package body is unnecessary if no subprograms, deferred con-
stants, or protected type definitions are declared in the package declaration.

Examples:

--A package declaration that needs no package body:

package TimeConstants is
constant tPLH :Time := 10 ns;
constant tPHL :Time := 12 ns;
constant tPLZ :Time := 7 ns;
constant tPZL :Time := 8 ns;
constant tPHZ :Time := 8 ns;
constant tPZH :Time := 9 ns;

end TimeConstants ;

--A package declaration that needs a package body:

package TriState is
type Tri is ('0', '1', 'Z', 'E');
function BitVal (Value: Tri) return Bit ;
function TriVal (Value: Bit) return Tri;
type TriVector is array (Natural range <>) of Tri ;
function Resolve (Sources: TriVector) return Tri ;

end package TriState ;

2.6 Package bodies

A package body defines the bodies of subprograms and the values of deferred constants declared in the interface
to the package.

package_body ::=
package body package_simple_name is

package_body_declarative_part
end [package body] [package_simple_name] ;

package_body_declarative_part ::=
{ package_body_declarative_item }

IEEE
Std P1076a-1999 2000/D3 IEEE STANDARD VHDL

30 Clause 2
Copyright © 2000, IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

package_body_declarative_item ::=
 subprogram_declaration
| subprogram_body
| type_declaration
| subtype_declaration
| constant_declaration
| shared_variable_declaration
| file_declaration
| alias_declaration
| use_clause
| group_template_declaration
| group_declaration

The simple name at the start of a package body must repeat the package identifier. If a simple name appears at
the end of the package body, it must be the same as the identifier in the package declaration.

In addition to subprogram body and constant declarative items, a package body may contain certain other declar-
ative items to facilitate the definition of the bodies of subprograms declared in the interface. Items declared in the
body of a package cannot be made visible outside of the package body.

If a given package declaration contains a deferred constant declaration (see 4.3.1.1), then a constant declaration
with the same identifier must appear as a declarative item in the corresponding package body. This object decla-
ration is called the full declaration of the deferred constant. The subtype indication given in the full declaration
must conform to that given in the deferred constant declaration.

Within a package declaration that contains the declaration of a deferred constant, and within the body of that pack-
age (before the end of the corresponding full declaration), the use of a name that denotes the deferred constant is
only allowed in the default expression for a local generic, local port, or formal parameter. The result of evaluating
an expression that references a deferred constant before the elaboration of the corresponding full declaration is
not defined by the language.

Example:

package body TriState is

function BitVal (Value: Tri) return Bit is
constant Bits : Bit_Vector := "0100";

begin
return Bits(Tri'Pos(Value));

end;

function TriVal (Value: Bit) return Tri is
begin

return Tri'Val(Bit'Pos(Value));
end;

IEEE
LANGUAGE REFERENCE MANUAL Std P1076a-1999 2000/D3

Clause 2 31
Copyright © 2000, IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

function Resolve (Sources: TriVector) return Tri is
variable V: Tri := 'Z';

begin
for i in Sources'Range loop

if Sources(i) /= 'Z' then
if V = 'Z' then

V := Sources(i);
else

return 'E';
end if;

end if;
end loop;
return V;

end;

end package body TriState ;

2.7 Conformance rules

Whenever the language rules either require or allow the specification of a given subprogram to be provided in
more than one place, the following variations are allowed at each place:

— A numeric literal can be replaced by a different numeric literal if and only if both have the same value.

— A simple name can be replaced by an expanded name in which this simple name is the selector if and
only if at both places the meaning of the simple name is given by the same declaration.

Two subprogram specifications are said to conform if, apart from comments and the above allowed variations,
both specifications are formed by the same sequence of lexical elements and if corresponding lexical elements are
given the same meaning by the visibility rules.

Conformance is likewise defined for subtype indications in deferred constant declarations.

NOTES

1—A simple name can be replaced by an expanded name even if the simple name is itself the prefix of a selected name. For
example, Q.R can be replaced by P.Q.R if Q is declared immediately within P.

2—The subprogram specification of an impure function is never conformant to a subprogram specification of a pure function.

3—The following specifications do not conform since they are not formed by the same sequence of lexical elements:

procedure P (X,Y : INTEGER)
procedure P (X: INTEGER; Y : INTEGER)
procedure P (X,Y : in INTEGER)

IEEE
Std P1076a-1999 2000/D3 IEEE STANDARD VHDL

32 Clause 2
Copyright © 2000, IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

