IEEE
LANGUAGE REFERENCE MANUAL Std P1076a-1999 2000/D3

Clause 3

Types

This seetion clause! describes the various categories of types that are provided by the language as well as those
specific typesthat are predefined. The declarations of all predefined types are contained in package STANDARD,
the declaration of which appearsin Section Cl ause? 14.

A type is characterized by a set of values and a set of operations. The set of operations of a type includes the
explicitly declared subprograms that have a parameter or result of the type. The remaining operations of atype
are the basic operations and the predefined operators (see 7.2). These operations are each implicitly declared for
agiven type declaration immediately after the type declaration and before the next explicit declaration, if any.

A basic operation isan operation that is inherent in one of the following:
— Anassignment (in assignment statements and initializations)
— Anadlocator
— A sdlected name, an indexed name, or aslice name

— A qudification (in a qualified expression), an explicit type conversion, aformal or actual part in the
form of a type conversion, or an implicit type conversion of a value of type universal_integer or
universal_real to the corresponding value of another numeric type

— A numeric literal (for auniversal type), the literal null (for an accesstype), astring literal, abit string
literal, an aggregate, or a predefined attribute

There are five classes of types. Scalar types are integer types, floating point types, physical types, and types de-
fined by an enumeration of their values; values of these types have no elements. Composite types are array and
record types; values of these types consist of element values. Access types provide access to objects of a given
type. Filetypes provide access to objects that contain a sequence of values of agiven type. Protected types pro-
vide atomic and exclusive access to variables accessible to multiple processes.

The set of possible values for an object of a given type can be subjected to a condition that is called a constraint
(the case where the constraint imposes no restriction is also included); a value is said to satisfy a constraint if it
satisfies the corresponding condition. A subtypeis atype together with a constraint. A valueissaid to belong to
a subtype of agiven typeif it belongsto the type and satisfies the constraint; the given typeis called the base type
of the subtype. A typeis asubtype of itself; such a subtype is said to be unconstrained (it corresponds to a con-
dition that imposes no restriction). The base type of atypeisthe typeitself.

1. Toconformto |EEE rules.
2. Toconform to |EEE rules.

Clause 3 33

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

IEEE
Std P1076a-1999 2000/D3 IEEE STANDARD VHDL

The set of operations defined for a subtype of a given type includes the operations defined for the type; however,
the assignment operation to an object having a given subtype only assigns values that belong to the subtype. Ad-
ditional operations, such as qualification (in a qualified expression) are implicitly defined by a subtype declara
tion.

Theterm subelement isused in thismanual in place of theterm element to indicate either an element, or an element
of another element or subelement. Where other subelements are excluded, the term element is used instead.

A given type must not have a subelement whose type is the given type itself.
A member of an object is either
—A dlice eif of the object,
—A subelement of the object, or
—A dlice of asubelement of the object.
The name of aclass of typesisused in thismanual asaqualifier for objects and valuesthat have atype of the class
considered. For example, the term array object is used for an object whose type is an array type; similarly, the
term access value is used for avalue of an accesstype.
NOTE
—The set of values of a subtypeis asubset of the values of the base type. This subset need not be a proper subset.

3.1 Scalar Types

Scalar types consist of enumeration types, integer types, physical types, and floating point types. Enumeration
types and integer types are called discrete types. Integer types, floating point types, and physical types are called
numeric types. All scalar types are ordered; that is, all relational operators are predefined for their values. Each
value of adiscrete or physical type has a position number that is an integer value.

scalar_type definition ::=
enumeration_type definition | integer_type_definition
| floating_type_definition | physical_type_definition

range_constraint ::= range range

range ::=
range_attribute_name
| ssimple_expression direction simple_expression

direction ::= to | downto

A range specifies a subset of values of a scalar type. A rangeissaid to be anull range if the specified subset is
empty.

Therange L to Riscaled an ascending range; if L > R, then therangeisanull range. TherangeL downtoRis
called a descending range; if L < R, then the range is a null range. The smaller of L and R is called the lower
bound, and the larger, the upper bound, of the range. The value V is said to belong to the range if the relations
(lower bound <= V) and (V <= upper bound) are both true and the range is not anull range. The operators >, <,
and <= in the preceding definitions are the predefined operators of the applicable scalar type.

3. Typo.

34 Clause 3
Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

IEEE
LANGUAGE REFERENCE MANUAL Std P1076a-1999 2000/D3

For values of discrete or physical types, avalue V1 is said to be to the left of a value V2 within a given range if
both V1 and V2 belong to the range and either the range is an ascending range and V2 is the successor of V1 or
the range is adescending range and V2 isthe predecessor of V1. A list of values of agivenrangeisinleft toright
order if each value in the list is to the left of the next value in the list within that range, except for the last value
inthelist.

If arange constraint is used in a subtype indication, the type of the expressions (likewise, of the bounds of arange
attribute) must be the same as the base type of the type mark of the subtypeindication. A range constraint iscom-
patible with a subtype if each bound of the range belongs to the subtype or if the range constraint defines a null
range. Otherwise, the range constraint is not compatible with the subtype.

The direction of arange constraint is the same as the direction of its range.

NOTE

—Indexing and iteration rules use values of discrete types.

3.1.1 Enumeration types

An enumeration type definition defines an enumeration type.

enumeration_type definition ::=
(enumeration_literal { , enumeration literal })

enumeration_litera ::= identifier | character_literal

Theidentifiers and character literals listed by an enumeration type definition must be distinct within the enumer-
ation type definition. Each enumeration literal is the declaration of the corresponding enumeration literal; for the
purpose of determining the parameter and result type profile of an enumeration literal, this declaration is equiva
lent to the declaration of a parameterless function whose designator is the same as the enumeration literal and
whose result type is the same as the enumeration type.

An enumeration type is said to be a character typeif at least one of its enumeration literalsis a character literal.
Each enumeration literal yields a different enumeration value. The predefined order relations between enumera
tion valuesfollow the order of corresponding position numbers. The position number of thevalue of thefirst listed
enumeration literal is zero; the position number for each additional enumeration literal is one more than that of its
predecessor in thelist.
If the same identifier or character literal is specified in more than one enumeration type definition, the correspond-
ing literals are said to be overloaded. At any place where an overloaded enumeration literal occursin the text of
a program, the type of the enumeration literal is determined according to the rules for overloaded subprograms
(see 2.3).
Each enumeration type definition defines an ascending range.
Examples:
type MULTI_LEVEL_LOGIC is(LOW, HIGH, RISING, FALLING, AMBIGUOUS) ;
typeBITis(0,1);

type SWITCH_LEVEL is (0,1, X’) ; - Overloads'0' and 'L’

Clause 3 35

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

IEEE
Std P1076a-1999 2000/D3 IEEE STANDARD VHDL

3.1.1.1 Predefined enumeration types

The predefined enumeration types are CHARACTER, BIT, BOOLEAN, SEVERITY_LEVEL,
FILE_OPEN_KIND, and FILE_OPEN_STATUS.

The predefined type CHARACTER is a character type whose values are the 256 characters of the 1SO 8859-1
character set. Each of the 191 graphic characters of this character set is denoted by the corresponding character
literal.

The declarations of the predefined types CHARACTER, BIT, BOOLEAN, SEVERITY_LEVEL,
FILE_OPEN_KIND, and FILE_OPEN_STATUS appear in package STANDARD in Section Clause® 14.

NOTES

1—Thefirst 17 33° nongraphic elements of the predefined type CHARACTER (from NUL through DEL) are the ASCI| ab-
breviations for the nonprinting characters in the ASCII set (except for those noted in Seetien Clause® 14). The ASCII
names are chosen as | SO 8859-1 does not assign them abbreviations. The next 16 327 (C128 through C159) are also not
assigned abbreviations, so names unique to VHDL are assigned.

2—Type BOOLEAN can be used to model either active high or active low logic depending on the particular conversion func-
tions chosen to and from type BIT.

3.1.2 Integer types
An integer type definition defines an integer type whose set of values includes those of the specified range.
integer_type definition ::= range_constraint

Aninteger type definition defines both atype and a subtype of that type. Thetypeisan anonymoustype, therange
of which is selected by the implementation; this range must be such that it wholly contains the range given in the
integer type definition. The subtype isanamed subtype of this anonymous base type, where the name of the sub-
typeisthat given by the corresponding type declaration and the range of the subtypeis the given range.

Each bound of a range constraint that is used in an integer type definition must be alocally static expression of
some integer type, but the two bounds need not have the same integer type. (Negative bounds are allowed.)

Integer literals are the literals of an anonymous predefined type that is called universal_integer in this standard.
Other integer types have no literals. However, for each integer type there exists an implicit conversion that con-
verts avalue of type universal_integer into the corresponding value (if any) of the integer type (see 7.3.5).

The position number of an integer value is the corresponding value of the type universal_integer.

The same arithmetic operators are predefined for all integer types (see 7.2). Itisan error if the execution of such
an operation (in particular, an implicit conversion) cannot deliver the correct result (that is, if the value corre-
sponding to the mathematical result is not avalue of the integer type).

An implementation may restrict the bounds of the range constraint of integer types other than type
universal_integer. However, an implementation must allow the declaration of any integer type whose range is
wholly contained within the bounds —2147483647 and +2147483647 inclusive.

To conform to |EEE rules.
IR1000.1.5.
To conform to |EEE rules.
IR1000.1.5.

No oM~

36 Clause 3

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

IEEE
LANGUAGE REFERENCE MANUAL Std P1076a-1999 2000/D3

Examples:

type TWOS _COMPLEMENT _INTEGER isrange —32768 to 32767,

type BYTE _LENGTH_INTEGER isrange 0 to 255;

type WORD_INDEX isrange 31 downto 0;

subtype HIGH_BIT_LOW isBYTE_LENGTH_INTEGER range 0 to 127;
3.1.2.1 Predefined integer types

The only predefined integer type is the type INTEGER. The range of INTEGER is implementation dependent,
but it is guaranteed to include the range —2147483647 to +2147483647. It is defined with an ascending range.

NOTE

—Therange of INTEGER in a particular implementation may-be determined-from the is determinable from the values of its®
'‘LOW and 'HIGH attributes.

3.1.3 Physical types

Values of aphysical type represent measurements of some quantity. Any value of a physical typeis an integral
multiple of the primary unit of measurement for that type.

physical_type definition ::=
range_constraint
units
primary_unit_declaration
{ secondary_unit_declaration }
end units[physical_type simple name]

primary_unit_declaration ::= identifier ;°
secondary_unit_declaration ::= identifier = physical_litera ;
physical_literal ::= [abstract_literal] unit_name

A physical type definition defines both atype and a subtype of that type. Thetypeisan anonymoustype, therange
of which is selected by the implementation; this range must be such that it wholly contains the range given in the
physical type definition. The subtype is a named subtype of this anonymous base type, where the name of the
subtype isthat given by the corresponding type declaration and the range of the subtype is the given range.

Each bound of a range constraint that is used in a physical type definition must be a locally static expression of
some integer type, but the two bounds need not have the same integer type. (Negative bounds are allowed.)

Each unit declaration (either the primary unit declaration or a secondary unit declaration) defines a unit name.
Unit names declared in secondary unit declarations must be directly or indirectly defined in terms of integral mul-
tiples of the primary unit of the type declaration in which they appear. The position numbers of unit names need
not lie within the range specified by the range constraint.

If asimple name appears at the end of a physical type declaration, it must repeat the identifier of the type decla
ration in which the physical type definition isincluded.

8. IR1000.4.7.
9. Noted by Bert Molenkamp.

Clause 3 37

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

IEEE
Std P1076a-1999 2000/D3 IEEE STANDARD VHDL

The abstract literal portion (if present) of a physical literal appearing in a secondary unit declaration must be an
integer literal.

A physical literal consisting solely of a unit name is equivalent to the integer 1 followed by the unit name.

Thereisaposition number corresponding to each value of aphysical type. The position number of the value cor-
responding to a unit name is the number of primary units represented by that unit name. The position number of
the value corresponding to aphysical literal with an abstract literal part isthelargest integer that is not greater than
the product of the value of the abstract literal and the position number of the accompanying unit name.

The same arithmetic operators are predefined for all physical types (see 7.2). Itisan error if the execution of such
an operation cannot deliver the correct result (that is, if the value corresponding to the mathematical result is not
avalue of the physical type).

An implementation may restrict the bounds of the range constraint of a physical type. However, an imple-
mentation must allow the declaration of any physical type whose range iswholly contained within the bounds
—2147483647 and +2147483647 inclusive.

Examples:

type DURATION isrange—1E18to 1E18

units
fs; -- femtosecond
ps = 1000fs; -- picosecond
ns = 1000 ps, -- nanosecond
us = 1000 ns; -- microsecond
ms = 1000 us; -- millisecond
sec = 1000 ms; -- second
min = 60 sec; -- minute

end units;

type DISTANCE israngeOto 1E16

units
-- primarX unit:
A AL -- angstrom
-- metric lengths:
nm = 10A A -- nanometer
um = 1000 nm; -- micrometer (or micron)
mm = 1000 um; -- millimeter
cm = 10mm; -- centimeter
m = 1000 mm; -- meter
km = 1000m; -- kilometer
-- English lengths:
mil = 254000A A% - mil
inch = 1000 mil; -- inch
ft = 12inch; -- foot
yd = 3ft -- yard
fm = 6ft -- fathom
mi = 5280 ft; -- mile
Ig = 3mi; -- league

end units DISTANCE;

10. Change that should have been made in 1076-1993.
11. Change that should have been madein 1076-1993.
12. Change that should have been madein 1076-1993.

38 Clause 3

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

IEEE
LANGUAGE REFERENCE MANUAL Std P1076a-1999 2000/D3

variable x: distance; variabley: duration; variable z: integer;

x:=5A A3 +13ft—27inch;
y:=3ns+5min;

z:=ns/ ps
X:=z* mi;
y :=y/10;

z:=39.34inch/m;
NOTES
1— The'POS and 'V AL attributes may be used to convert between abstract values and physical values.

2— The value of aphysical literal whose abstract literal is either the integer value zero or the floating-point value zero isthe
same value (specifically zero primary units) no matter what unit name follows the abstract literal.

3.1.3.1 Predefined physical types

The only predefined physical typeistype TIME. Therange of TIME isimplementation dependent, but it is guar-
anteed to include the range —2147483647 to +2147483647. It isdefined with an ascending range. All specifica
tions of delaysand pulserejection limitsmust be of type TIME. Thedeclaration of type TIME appearsin package
STANDARD in Sestion Clause'* 14.

By default, the primary unit of type TIME (1 femtosecond) istheresolution limit for type TIME. Any TIME value
whose absolute value is smaller than this limit is truncated to zero (0) time units. An implementation may allow
agiven execution of amodel (see 12.6) to select a secondary unit of type TIME as the resolution limit. Further-
more, an implementation may restrict the precision of the representation of values of type TIME and the results
of expressions of type TIME, provided that values as small as the resolution limit are representable within those
restrictions. Itisan error if agiven unit of type TIME appears anywhere within the design hierarchy defining a
model to be executed, and if the position number of that unit isless than that of the secondary unit selected asthe
resolution limit for type TIME during the execution of the model, unlessthat unit is part of aphysical literal whose
abstract literal is either the integer value zero or the floating-point value zero™®.

NOTE

—By selecting asecondary unit of type TIME asthe resolution limit for type TIME, it may be possible to simulate for alonger
period of simulated time, with reduced accuracy, or to simulate with greater accuracy for a shorter period of simulated time.

Cross-References. Delay and rejection limit in asignal assignment, 8.4; Disconnection, delay of aguarded signal,
5.3; Function NOW, 14.2; Predefined attributes, functions of TIME, 14.1; Simulation time, 12.6.2 and 12.6.3;
Type TIME, 14.2; Updating a projected waveform, 8.4.1; Wait statements, timeout clause in, 8.1; Elaboration of

adeclarative part, 12.3%6,

3.1.4 Floating-point types
FIo_ati ng-point types provide approxi mation_s to the real numbers_ Floatingpoint-types-are useful-for modelsin

17

h tha nrecica ch

floating_type_definition ::= range_constraint

13. Change that should have been made in 1076-1993.
14. To conform to |EEE rules.

15. LCS9.

16. LCSO.

17. LCS22.

Clause 3 39

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

IEEE
Std P1076a-1999 2000/D3 IEEE STANDARD VHDL

A floating type definition defines both atype and a subtype of that type. Thetypeisan anonymoustype, therange
of which is selected by the implementation; this range must be such that it wholly contains the range given in the
floating type definition. The subtypeisanamed subtype of this anonymous base type, where the name of the sub-
typeisthat given by the corresponding type declaration and the range of the subtypeis the given range.

Each bound of arange constraint that is used in afloating type definition must be alocally static expression of
some floating-point type, but the two bounds need not have the same floating point type. (Negative bounds are
alowed.)

Floating-point literals are the literals of an anonymous predefined type that is called universal_real in this stan-
dard. Other floating-point types have no literals. However, for each floating-point type there exists an implicit
conversion that converts avalue of type universal_real into the corresponding value (if any) of the floating-point
type (see 7.3.5).

The same arithmetic operations are predefined for al floating-point types (see 7.2). A designis erroneous if the
execution of such an operation cannot deliver the correct result (that is, if the value corresponding to the mathe-
matical result is not a value of the floating-point type).

An implementation must choose a representation for all floating-point types except for universal_real that con-
forms either to IEEE Std 754 or to |IEEE Std 854; in either case, a minimum representation size of 64 bitsis re-

quired for this chosen representation.’®

An implementation may restrict the bounds of the range constraint of floating-point types other than type
universal_real. However, an implementation must allow the declaration of any floating-point type whose range
is whoIIy contaj ned W|th|n the bounds +OE38—and4=1—9E38-|-nel-us¥e aIIowed by the chosen rgpraentation .

diai "3‘

NOTE

—Animplementation is not required to detect errorsin the execution of a predefined floating point arithmetic operation, since
the detection of overflow conditions resulting from such operations may might21 not be easily accomplished on many host
systems.

3.1.4.1 Predefined floating point types

The only predefined floating point type is the type REAL. The range of REAL is host-dependent, but it is guar—
anteed to inchude the range —1.0E38 to+1.0E38 inclusive be the largest allowed by the chosen representation?

It is defined with an ascending range.

NOTE

—The range of REAL in a particular implementation may-be-determined-from-the is determinable from the values of its®®
'LOW and 'HIGH attributes.

3.2 Composite types

Composite types are used to define collections of values. These include both arrays of values (collections of val-
ues of a homogeneous type) and records of values (collections of values of potentially heterogeneous types).

18. LCS22
19. LCS22
20. LCSs22
21. IR1000.4.7.
22. LCS22
23. IR1000.4.7.

40 Clause 3

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

IEEE
LANGUAGE REFERENCE MANUAL Std P1076a-1999 2000/D3

composite_type definition ::=
array_type_definition
| record _type definition

An obj ect of a composte type represents a coI I ectlon of objects, one for each element of the composite object. A

, ‘ ypes; It is an error if a com-
posite type contai n524 elements of file types or protected typesapenet—al-tewed—i-n—aeempesﬁe—typez Thus an
object of acompositetype ultimately represents a collection of objects of scalar or access types, one for each non-
composite subelement of the composite object.

3.2.1 Array types

An array object isacomposite object consisting of elementsthat have the same subtype. The namefor an element
of an array uses one or more index values belonging to specified discrete types. The value of an array objectisa
composite value consisting of the values of its elements.

array_type_definition ::=
unconstrained_array_definition | constrained_array_definition

unconstrained_array_definition ::=
array (index_subtype definition { , index_subtype definition})
of element_subtype indication

constrained_array _definition ::=
array index_constraint of element_subtype_indication

index_subtype _definition ::= type mark range <>
index_constraint ::= (discrete range{ , discrete range})
discrete range ::= discrete_subtype indication | range

An array object is characterized by the number of indices (the dimensionality of the array); the type, position, and
range of each index; and the type and possible constraints of the elements. The order of theindicesis significant.

A one-dimensional array has a distinct element for each possible index value. A multidimensional array has a
distinct element for each possible sequence of index values that can be formed by selecting one value for each
index (inthegiven order). Thepossiblevauesfor agivenindex areall the valuesthat bel ong to the corresponding
range; this range of valuesis called the index range.

An unconstrained array definition defines an array type and a name denoting that type. For each object that has
the array type, the number of indices, the type and position of each index, and the subtype of the elements are as
in the type definition. The index subtype for a given index position is, by definition, the subtype denoted by the
type mark of the corresponding index subtype definition. The values of the |eft and right bounds of each index
range are not defined but must belong to the corresponding index subtype; similarly, the direction of each index
range is not defined. The symbol <> (called abox) in an index subtype definition stands for an undefined range
(different objects of the type need not have the same bounds and direction).

A constrained array definition defines both an array type and a subtype of thistype:

— Thearray typeis an implicitly declared anonymous type; this type is defined by an (implicit) uncon-
strained array definition, in which the element subtype indication is that of the constrained array defi-
nition and in which the type mark of each index subtype definition denotes the subtype defined by the
corresponding discrete range.

24. |IR1000.4.7.
25. IR1000.4.7.
Clause 3 41

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

IEEE
Std P1076a-1999 2000/D3 IEEE STANDARD VHDL

— Thearray subtype is the subtype obtained by imposition of the index constraint on the array type.

If aconstrained array definition is given for atype declaration, the simple name declared by this declaration de-
notes the array subtype.

The direction of a discrete range is the same as the direction of the range or the discrete subtype indication that

definesthe discrete range. If asubtype indication appears as a discrete range, the subtype indication must not con-
tain aresolution function.

Examples:
—Examples of constrained array declarations:

typeMY_WORD isarray (0to 31) of BIT ;
-- A memory word type with an ascending range.

type DATA INisarray (7 downto 0) of FIVE LEVEL_LOGIC;
-- Aninput port type with a descending range.

—Example of unconstrained array declarations:

type MEMORY isarray (INTEGER range <>) of MY_WORD ;
-- A memory array type.

—Examples of array object declarations:

signal DATA_LINE : DATA_IN ;
-- Definesadatainput line.

variableMY_MEMORY : MEMORY (0to 2**n-1) ;
-- Defines amemory of 2" 32-bit words.

NOTE
—The rules concerning constrained type declarations mean that a type declaration with a constrained array definition such as
type T isarray (POSITIVE range MINIMUM to MAX) of ELEMENT;
is equivalent to the sequence of declarations
subtype index_subtype is POSITIVE range MINIMUM to MAX;
type array_typeisarray (index_subtype range <>) of ELEMENT;

subtype T isarray_type (index_subtype);

whereindex_subtypeand array_type are both anonymous. Consequently, T isthe name of a subtype and all objects declared
with this type mark are arrays that have the same index range.

3.2.1.1 Index constraints and discrete ranges

An index constraint determines the index range for every index of an array type and, thereby, the corresponding
array bounds.

For a discrete range used in a constrained array definition and defined by a range, an implicit conversion to the
predefined type INTEGER is assumed if each bound is either a numeric literal or an attribute, and if the type of
both bounds (prior to the implicit conversion) is the type universal_integer. Otherwise, both bounds must be of
the same discrete type, other than universal_integer; this type must be determined independently of the context,

42 Clause 3

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

IEEE
LANGUAGE REFERENCE MANUAL Std P1076a-1999 2000/D3

but using the fact that the type must be discrete and that both bounds must have the same type. These rules apply
also to adiscrete range used in an iteration scheme (see 8.9) or a generation scheme (see 9.7).

If an index constraint appears after atype mark in a subtype indication, then the type or subtype denoted by the
type mark must not already impose an index constraint. The type mark must denote either an unconstrained array
type or an access type whose designated type is such an array type. In either case, the index constraint must pro-
vide a discrete range for each index of the array type, and the type of each discrete range must be the same as that
of the corresponding index.

Anindex constraint is compatible with the type denoted by the type mark if and only if the constraint defined by
each discrete range is compatible with the corresponding index subtype. If any of the discrete ranges defines a
null range, any array thus constrained is anull array, having no eempenents elements®®. An array value satisfies
an index constraint if at each index position the array value and the index constraint have the same index range.
(Note, however, that assignment and certain other operations on arrays involve an implicit subtype conversion.)

The index range for each index of an array object is determined as follows:

— Foravariable or signal declared by an object declaration, the subtype indication of the corresponding
object declaration must define a constrained array subtype (and thereby, theindex range for each index
of the object). The same requirement exists for the subtype indication of an element declaration, if the
type of therecord element isan array type, and for the el ement subtype indication of an array type def-
inition, if the type of the array element isitself an array type.

— For aconstant declared by an object declaration, the index ranges are defined by theinitial value, if the
subtype of the constant is unconstrained; otherwise, they are defined by this subtype (in which casethe
initial value isthe result of an implicit subtype conversion).

— For an attribute whose value is specified by an attribute specification, the index ranges are defined by
the expression given in the specification, if the subtype of the attribute is unconstrained; otherwise,
they are defined by this subtype (in which case the value of the attribute isthe result of animplicit sub-
type conversion).

— For an array object designated by an access value, the index ranges are defined by the allocator that
creates the array object (see 7.3.6).

— For aninterface object declared with a subtype indication that defines a constrained array subtype, the
index ranges are defined by that subtype.

— For aformal parameter of asubprogram that is of an unconstrained array type and that is associated in
whole (see 4.3.2.2), the index ranges are obtained from the corresponding association element in the
applicable subprogram call.

— For aformal parameter of asubprogram that is of an unconstrained array type and whose subelements
are associated individually (see 4.3.2.2), the index ranges are obtained as follows:

The directions of the index ranges of the formal parameter are that-of-the those of the base?’ type of
the formal; the high and low bounds of the index ranges are respectively determined from the maxi-
mum and minimum values of theindices given in the associ ation elements corresponding to theformal.

— For aformal generic or aformal port of a design entity or of a block statement that is of an uncon-
strained array type and that is associated in whole, the index ranges are obtained from the correspond-
ing association element in the generic map aspect (in the case of aformal generic) or port map aspect
(in the case of aformal port) of the applicable (implicit or explicit) binding indication.

26. IR1000.2.3.
27. IR1000.1.10.

Clause 3 43

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

IEEE
Std P1076a-1999 2000/D3 IEEE STANDARD VHDL

— For aformal generic or aformal port of a design entity or of a block statement that is of an uncon-
strained array type and whose subelements are associated individually, the index ranges are obtained
asfollows:

Thedirections of theindex ranges of the formal generic or formal port are that-of-the those of the base?®
type of the formal; the high and low bounds of the index ranges are respectively determined from the
maximum and minimum values of the indices given in the association elements corresponding to the
formal.

— For alocal generic or alocal port of acomponent that is of an unconstrained array type and that is as-
sociated in whol e, theindex ranges are obtained from the corresponding association element in the ge-
neric map aspect (in the case of alocal generic) or port map aspect (in the case of alocal port) of the
applicable component instantiation statement.

— For alocal generic or alocal port of a component that is of an unconstrained array type and whose
subelements are associated individually, the index ranges are obtained as follows:

The directions of the index ranges of the local generic or local port are that-of-the those of the base®
type of the local; the high and low bounds of the index ranges are respectively determined from the
maximum and minimum values of the indices given in the association elements corresponding to the
local.

If the index ranges for an interface object or member of an interface object are obtained from the corresponding
association element (when associating in whole) or elements (when associating individually), then they are deter-
mined either by the actual part(s) or by the formal part(s) of the association element(s), depending upon the mode
of the interface object, asfollows:

— For an interface object or member of an interface object whose mode isin, inout, or linkage, if the
actual part includes a conversion function or atype conversion, then the result type of that function or
the type mark of the type conversion must be a constrained array subtype, and the index ranges are
obtained from this constrained subtype; otherwise, theindex ranges are obtained from the object or val-
ue denoted by the actual designator(s).

— For aninterface object or member of an interface object whose mode isout, buffer, inout, or linkage,
if the formal part includes a conversion function or atype conversion, then the parameter subytpe of
that function or the type mark of the type conversion must be a constrained array subtype, and thein-
dex ranges are obtained from this constrained subtype; otherwise, the index ranges are obtained from
the object denoted by the actual designator(s).

For an interface object of mode inout or linkage, the index ranges determined by the first rule must be identical
to the index ranges determined by the second rule.

Examples:

type Wordisarray (NATURAL range <>) of BIT;
type Memory isarray (NATURAL range <>) of Word (31 downto 0);

constant A_Word: Word :="10011";
-- Theindex range of A_WordisOto 4

28. IR1000.1.10.
29. IR1000.1.10.

44 Clause 3

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

IEEE
LANGUAGE REFERENCE MANUAL Std P1076a-1999 2000/D3

entity Eis
generic (ROM: Memory);
port (Opl, Op2: in Word; Result: out Word);

end entity E;
-- Theindex ranges of the generic and the ports are defined by the actual s associated
-- with an instance bound to E; these index ranges are accessible via the predefined
-- array attributes (see 14.1).

signal A, B: Word (1to 4);
signal C: Word (5 downto 0);

Instance: entity E
generic map ((&te-2=>(ethers=>'0) (1t0 2 => (cthers=>'0))%%)
port map (A, Op2(3to 4) =>B (1to 2), Op2(2) => B (3), Result => C (3 downto 1));
-- Inthisinstance, the index range of ROM is 1 to 2 (matching that of the actual),
-- Theindex range of Opl is1to 4 (matching the index range of A), the index range
-- of Op2is2to 4, and theindex range of Result is (3 downto 1)
-- (again matching the index range of the actual).

3.2.1.2 Predefined array types

The pr??fiefined array types are STRING and BIT_VECTOR, defined in package STANDARD in Section
Clause®* 14.

The values of the predefined type STRING are one-dimensional arrays of the predefined type CHARACTER, in-
dexed by values of the predefined subtype POSITIVE:

subtype POSITIVE isINTEGER range 1to INTEGER'HIGH ;
type STRING isarray (POSITIVE range <>) of CHARACTER;

The values of the predefined type BIT_VECTOR are one-dimensional arrays of the predefined type BIT, indexed
by values of the predefined subtype NATURAL:

subtype NATURAL isINTEGER range 0 to INTEGER'HIGH ;
typeBIT_VECTOR isarray (NATURAL range<>) of BIT ;

Examples:
variable MESSAGE : STRING(1to 17) :="THISISA MESSAGE" ;
signal LOW_BYTE: BIT_VECTOR (0t07);

3.2.2 Record types

A record type is a composite type, objects of which consist of named elements. The value of arecord object isa
composite value consisting of the values of its elements.

record_type definition ::=
record
element_declaration
{ element_declaration }
end record [record_type simple_name]

30. IR1000.1.3 (as corrected by Ashenden).
31. Toconformto |EEE rules.

Clause 3 45

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

IEEE
Std P1076a-1999 2000/D3 IEEE STANDARD VHDL

element_declaration ::=
identifier_list : element_subtype_definition ;

identifier_list ::= identifier { , identifier }
element_subtype definition ::= subtype_indication

Each element declaration declares an element of the record type. The identifiers of all elements of arecord type
must be distinct. The use of a name that denotes arecord element is not allowed within the record type definition
that declares the element.

An element declaration with several identifiersis equivalent to a sequence of single element declarations. Each
single element declaration declaresarecord element whose subtypeis specified by the element subtype definition.

If asimple name appears at the end of arecord type declaration, it must repeat theidentifier of the type declaration
in which the record type definition is included.

A record type definition creates a record type; it consists of the element declarations in the order in which they
appear in the type definition.

Example:

type DATEis
record
DAY: INTEGER range 1 to 31,
MONTH: MONTH_NAME;
YEAR: INTEGER range 0 to 4000;
end record;

3.3 Access types

An object declared by an object declaration is created by the elaboration of the object declaration and is denoted
by a simple name or by some other form of name. In contrast, objects that are created by the evaluation of allo-
cators (see 7.3.6) have no simple name. Access to such an object is achieved by an access value returned by an
alocator; the access value is said to designate the object.

access _type definition ::= access subtype indication

For each accesstype, thereisaliteral null that has anull access value designating no object at all. The null value
of an accesstypeisthe default initial value of thetype. Other values of an accesstype are obtained by evaluation
of aspecial operation of the type, called an allocator. Each such access value designates an object of the subtype
defined by the subtype indication of the access type definition. This subtypeis called the designated subtype and
the base type of this subtype is called the designated type. The designated type must not be afile type or a pro-
tected type; moreover, it may must® not have a subelement that is afile type or a protected type.

An object declared to be of an access type must be an object of classvariable. An object designated by an access
value is always an object of class variable.

The only form of constraint that is allowed after the name of an access type in a subtype indication is an index
constraint. An access value belongs to a corresponding subtype of an access type either if the access valueis the
null value or if the value of the designated object satisfies the constraint.

32. IR1000.4.7.

46 Clause 3

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

IEEE
LANGUAGE REFERENCE MANUAL Std P1076a-1999 2000/D3

Examples:

type ADDRESS is access MEMORY;;
type BUFFER_PTR isaccess TEMP_BUFFER;

NOTES

1—An access value delivered by an allocator can be assigned to severa variables of the corresponding accesstype. Hence, it
is possible for an object created by an allocator to be designated by more than one variable of the accesstype. An access
value can only designate an object created by an allocator; in particular, it cannot designate an object declared by an object
declaration.

2—If the type of the object designated by the access value is an array type, this object is constrained with the array bounds
supplied implicitly or explicitly for the corresponding allocator.

3.3.1 Incomplete type declarations

The designated type of an access type can be of any type except a file type or a protected type™ (see3.3). In
particular, the type of an element of the designated type can be another access type or even the same access type.
Thispermits mutually dependent and recursive accesstypes. Declarations of such typesrequire aprior incomplete
type declaration for one or more types.

incomplete type declaration ::= typeidentifier ;

For each incompl ete type declaration there must be a corresponding full type declaration with the same identifier.
Thisfull type declaration must occur later and immediately within the same declarative part astheincompletetype
declaration to which it corresponds.

Prior to the end of the corresponding full type declaration, the only allowed use of a name that denotes a type de-
clared by an incomplete type declaration is as the type mark in the subtype indication of an accesstype definition;
no constraints are allowed in this subtype indication.

Example of a recursive type:
type CELL,; -- Anincomplete type declaration.
type LINK isaccess CELL;

type CELL is
record
VALUE: INTEGER;
SUCC: LINK;
PRED: LINK;
end record CELL;
variable HEAD : LINK :=new CELL'(0, null, null);
variable \NEXT\ : LINK := HEAD.SUCC,;

Examples of mutually dependent access types:

type PART; -- Incomplete type declarations.
type WIRE;

type PART_PTR isaccess PART;
type WIRE_PTR isaccess WIRE;

33. Correction—missed during P1076a.

Clause 3 47

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

IEEE
Std P1076a-1999 2000/D3 IEEE STANDARD VHDL

type PART_LIST isarray (POSITIVE range <>) of PART_PTR,;
type WIRE_LIST isarray (POSITIVE range <>) of WIRE_PTR,;

type PART_LIST PTRisaccess PART _LIST;
type WIRE_LIST_PTR isaccess WIRE_LIST;

type PART isrecord
PART_NAME: STRING (1to MAX_STRING_LEN);
CONNECTIONS: WIRE_LIST_PTR;

end record;

type WIRE isrecord
WIRE_NAME: STRING (1to MAX_STRING_LEN);
CONNECTS: PART_LIST PTR;

end record;

3.3.2 Allocation and deallocation of objects
An object designated by an access valueis allocated by an allocator for that type. An allocator isaprimary of an
expression; allocators are described in 7.3.6. For each access type, a deallocation operation isimplicitly declared
immediately following the full type declaration for thetype. Thisdeallocation operation makesit possibleto deal-
locate explicitly the storage occupied by a designated object.
Given the following access type declaration:

type AT isaccess T,
the following operation isimplicitly declared immediately following the access type declaration:

procedure DEALLOCATE (P: inout AT) ;
Procedure DEALLOCATE takes asits single parameter avariable of the specified accesstype. If thevalue of that
variableisthe null valuefor the specified access type, then the operation has no effect. If the value of that variable
is an access value that designates an object, the storage occupied by that object is returned to the system and may
then be reused for subsequent object creation through the invocation of an allocator. The access parameter P is
set to the null value for the specified type.
NOTE

—If apeinter an access value®* is copied to a second variable and is then deallocated, the second variable is not set to null
and thus referencesinvalid storage.

3.4 File types

A filetype definition defines afiletype. Filetypes are used to define objects representing filesin the host system
environment. The value of afile object is the sequence of values contained in the host system file.

file_type definition ::= file of type _mark

The type mark in afile type definition defines the subtype of the values contained in the file. The type mark may
denote either a constrained or an unconstrained subtype. The base type of this subtype must not be afile type, an
accesstype, or aprotected type. If the base type isacompositetype, it must not contain a subelement of an access
type, afiletype, or aprotected type. If the base typeisan array type, it must be aone-dimensional array type.

34. Terminological correction.

48 Clause 3

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

IEEE
LANGUAGE REFERENCE MANUAL Std P1076a-1999 2000/D3

Examples:

file of STRING Defines afile type that can contain
an indefinite number of strings of arbitrary length.
Defines afile type that can contain

only nonnegative integer values.

fileof NATURAL

3.4.1 File operations
The language implicitly definesthe operationsfor objects of afiletype. Given thefollowing file type declaration:
type FT isfileof TM;

wheretype mark TM denotes ascalar type, arecord type, or aconstrained array subtype, the following operations
areimplicitly declared immediately following the file type declaration:

procedure FILE_OPEN (fileF: FT;
External_Name: in STRING,;
Open_Kind: in FILE_OPEN_KIND := READ_MODE);

procedure FILE_OPEN (Status: out FILE_ OPEN_STATUS;
fileF: FT;
External_Name: in STRING;
Open_Kind: in FILE_OPEN_KIND := READ_MODE);

procedure FILE_CLOSE (fileF: FT);

procedure READ (fileF: FT; VALUE: out TM);
procedure WRITE (fileF: FT; VALUE: in TM);
function ENDFILE (file F: FT) return BOOLEAN;

TheFILE_OPEN procedures open an external file specified by the External_Name parameter and associate it with
thefile object F. If the call to FILE_OPEN is successful (see below), thefile object is said to be open and the file
object has an access mode dependent on the value supplied to the Open_Kind parameter (see 14.2).

— If thevalue supplied to the Open_Kind parameter is READ_MODE, the access mode of thefile object
isread-only. In addition, the file object is initialized so that a subsequent READ will return the first
value in the external file. Vaues are read from the file object in the order that they appear in the ex-
ternal file.

— Ifthevauesupplied to the Open_Kind parameter isWRITE_MODE, the access mode of thefile object
iswrite-only. In addition, the external fileismadeinitially empty. Vaueswritten to thefile object are
placed in the externa file in the order in which they are written.

— If thevalue supplied to the Open_Kind parameter is APPEND_MODE, the access mode of thefile ob-
jectiswrite-only. In addition, the file object isinitialized so that values written to it will be added to
the end of the external filein the order in which they are written.

In the second form of FILE_OPEN, the value returned through the Status parameter indicates the results of the
procedure call:

— Avaueof OPEN_OK indicatesthat the call to FILE_OPEN was successful. If thecall to FILE_OPEN
specifies an external file that does not exist at the beginning of the call, and if the access mode of the
file object passed to the call is write-only, then the external file is created.

Clause 3 49

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

IEEE
Std P1076a-1999 2000/D3 IEEE STANDARD VHDL

— Avaueof STATUS ERROR indicates that the file object already has an external file associated with
it.

— Avaueof NAME_ERROR indicates that the external file does not exist (in the case of an attempt to
read from the external file) or the external file cannot be created (in the case of an attempt to write or
append to an external file that does not exist). Thisvalueisalso returned if the externa file cannot be
associated with the file object for any reason.

— A vaue of MODE_ERROR indicates that the external file cannot be opened with the requested
Open_Kind.

Thefirst form of FILE_OPEN causesan error to occur if the second form of FILE_OPEN, when called under iden-
tical conditions, would return a Status value other than OPEN_OK.

A call to FILE_OPEN of thefirst form is successful if and only if the call does not cause an error to occur. Sim-
ilarly, acall to FILE_OPEN of the second form is successful if and only if it returns a Status value of OPEN_OK.

If afile object F is associated with an external file, procedure FILE_CL OSE terminates access to the externa file
associated with F and closes the external file. If Fisnot associated with an external file, then FILE_CLOSE has
no effect. In either case, thefile object isno longer open after acall to FILE_CL OSE that associatesthe file object
with the formal parameter F.

Animplicit call to FILE_CLOSE existsin a subprogram body for every file object declared in the corresponding
subprogram declarative part. Each such call associates a unique file object with the formal parameter F and is
called whenever the corresponding subprogram completes its execution.

Procedure READ retrieves the next value from afile; it is an error if the access mode of the file object is write-
only or if the file object is not open. Procedure WRITE appends a value to afile; it is similarly an error if the
access mode of the file object isread-only or if thefileis not open. Function ENDFILE returns FALSE if asub-
sequent READ operation on an open file object whose access mode is read-only can retrieve another value from
thefile; otherwise, it returns TRUE. Function ENDFILE always returns TRUE for an open file object whose ac-
cess modeiswrite-only. Itisanerror if ENDFILE iscalled on afile object that is not open.

For afile type declaration in which the type mark denotes an unconstrained array type, the same operations are
implicitly declared, except that the READ operation is declared as follows:

procedure READ (fileF: FT; VALUE: out TM; LENGTH: out Natural);

The READ operation for such a type performs the same function as the READ operation for other types, but in
addition it returns a value in parameter LENGTH that specifies the actual length of the array value read by the
operation. If the object associated with formal parameter VALUE is shorter than thislength, then only that portion
of thearray value read by the operation that can be contained in the object isreturned by the READ operation, and
therest of thevalueislost. If the object associated with formal parameter VALUE islonger than thislength, then
the entire value is returned and remaining elements of the object are unaffected by the READ operation.

An error will occur when a READ operation is performed on file F if ENDFILE(F) would return TRUE at that
point.

At the beginning of the execution of any file operation, the execution of the file operation blocks (see 12.5) until
exclusive accessto thefile object denoted by the formal parameter F can be granted. Exclusive accessto thegiven

file object is then granted and the execution of the file operation proceeds. Once the file operation completes,

exclusive access to the given file object is rescinded.>2

35. Noted as part of the P1076a cleanup initiated by Peter Ashenden.

50 Clause 3

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

IEEE
LANGUAGE REFERENCE MANUAL Std P1076a-1999 2000/D3

NOTE

—Predefined package TEXTIO is provided to support formatted human-readable I/O. It definestype TEXT (afile type rep-
resenting files of variable-length text strings) and type LINE (an access type that designates such strings). READ and
WRITE operations are provided in package TEXTIO that append or extract data from asingle line. Additional operations
are provided to read or write entire lines and to determine the status of the current line or of thefileitself. Package TEXTIO
is defined in Section Clause™ 14.

3.5 Protected types

A protected type definition defines a protected type. A protected type implements instantiatiable regions of se-
quential statements, each of which are guaranteed exclusive accessto shared data. Shared dataisa set of variable
objects that may be potentially accessed as a unit by multiple processes.

protected type definition ::=
protected type declaration
| protected_type body

Each protected type declaration appearing immediately within agiven declarative region (see 10.1) must have ex-
actly one corresponding protected type body appearing immediately within the same declarative region and tex-
tually subsequent to the protected type declaration. Similarly, each protected type body appearing immediately
within a given declarative region must have exactly one corresponding protected type declaration appearing im-
mediately within the same declarative region and textually prior to the protected type body.

3.5.1 Protected type declarations
A protected type declaration declares the external interface to a protected type.

protected type declaration ::=
protected
protected type declarative part
end protected [protected type simple_name]

protected type declarative part ::=
{ protected_type declarative item}

protected type declarative item ::=
subprogram_declaration

| attribute_specification

| use_clause

If asimple name appears at the end of a protected type declaration, it must repeat the identifier of the type decla-
ration in which the protected type definition isincluded.

Each subprogram specified within a given protected type declaration defines an abstract operation, called a meth-
od, that operates atomically and exclusively on a single object of the protected type. In addition to the (implied)
object of the protected type operated on by the subprogram, additional parameters may be explicitly specified in
the formal parameter list of the subprogram declaration of the subprogram. Such formal parameters must not be
of an access type or afile type; moreover, they must not have a subelement that is an access type or afile type.
Additionally, in the case of afunction subprogram, the return type of the function must not be of an access type
or file type; moreover, it must not have a subelement that is an accesstype or afile type.

36. To conform to |EEE rules.

Clause 3 51

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

IEEE
Std P1076a-1999 2000/D3 IEEE STANDARD VHDL

Examples:

type SharedCounter is protected
procedureincrement (N: Integer :=1);
procedur e decrement (N: Integer := 1);
impure function valuereturn Integer;
end protected SharedCounter;

type ComplexNumber is protected

procedure extract (variabler, i: out Real);

procedure add (variable a, b: inout ComplexNumber);
end protected ComplexNumber;

type VariableSizedBitArray is protected
procedure add_bit (index: Positive; value: Bit);
impure function size return Natural;

end protected VariableSizedBitArray;

3.5.2 Protected type bodies
A protected type body provides the implementation for a protected type.

protected type body ::=
protected body
protected type body declarative part
end protected body [protected_type simple name]

protected type body declarative part ::=
{ protected_type body declarative item}

protected type body declarative item ::=
subprogram_declaration
| subprogram_body
| type_declaration
| subtype_declaration
| constant_declaration
| variable_declaration
| file_declaration
| alias_declaration
| attribute_declaration
| attribute_specification
| use_clause
| group_template declaration
| group_declaration

Each subprogram declaration appearing in a given protected type declaration shall have a corresponding subpro-
gram body appearing in the corresponding protected type body.

NOTE

—Subprogram bodies appearing in a protected type body not conformant to any of the subprogram declarations in the corre-
sponding protected type declaration are visible only within the protected type body. Such subprograms may have parame-
tersand (in the case of functions) return types that are or contain access and file types.

52 Clause 3

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

LANGUAGE REFERENCE MANUAL

Examples:
type SharedCounter is protected body
variable counter: Integer :=0;

procedureincrement (N: Integer := 1) is
begin

counter := counter + N;
end procedur e increment;

procedure decrement (N: Integer := 1) is
begin

counter := counter — N;
end procedur e decrement;

impure function vauereturn Integer is
begin
return counter;
end function value;
end protected body SharedCounter;

type ComplexNumber is protected body
variablere, im: Real;

procedure extract (r, i: out Real) is
begin

r:=re

i=im;
end procedur e extract;

procedure add (variable g, b: inout ComplexNumber) is
variablea real, b_real: Redl;
variablea imag, b_imag: Real;

begin
a.extract (a_real, a_imag);
b.extract (b_real, b_imag);
re :=area +b rea;
im:=a imag+b_imag;

end procedur e add;

end protected body ComplexNumber;

type VariableSizeBitArray is protected body
type bit_vector_accessis access Bit_Vector;

variable bit_array: bit_vector_access := null;
variablebit_array length: Natura :=0;

Clause 3

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

IEEE
Std P1076a-1999 2000/D3

53

IEEE
Std P1076a-1999 2000/D3

procedure add_bit (index: Positive; value: Bit) is
variable tmp: bit_vector_access;
begin
if index > bit_array_length then
tmp := bit_array;
bit_array := new bit_vector (1 to index);
if tmp /= null then
bit_array (1to bit_array_length) :=tmp.all;
deallocate (tmp);
end if;
bit_array_length := index;
end if;
bit_array (index) := value;
end procedure add_bit;

impure function sizereturn Natura is
begin
return bit_array_length;
end function size;
end protected body VariableSizeBitArray;

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

IEEE STANDARD VHDL

Clause 3

