IEEE
LANGUAGE REFERENCE MANUAL Std P1076a-1999 2000/D3

Clause 4

Declarations

The language defines several kinds of entities that are declared explicitly or implicitly by declarations.

declaration ::=

type declaration

| subtype_declaration

| object_declaration

| interface_declaration

| alias_declaration

| attribute_declaration

| component_declaration

| group_template declaration

| group_declaration

| entity_declaration

| configuration_declaration

| subprogram_declaration

| package declaration
primary_unit

| architecture_body?

For each form of declaration, the language rules define a certain region of text called the scope of the declaration
(see 10.2). Eachform of declaration associates an identifier with anamed entity. Only within its scope, there are
places where it is possible to use the identifier to refer to the associated declared entity; these places are defined
by the visibility rules (see 10.3). At such places the identifier is said to be a name of the entity; the nameis said
to denote the associated entity.

This sestion clause? describes type and subtype declarations, the various kinds of object declarations, alias decla
rations, attribute declarations, component declarations, and group and group template declarations. The other
kinds of declarations are described in Section Clause® 1 and Sestion Clause® 2.

A declzération takes effect through the process of elaboration. Elaboration of declarationsis discussed in Section
Clause® 12.

4.1 Type declarations

A type declaration declares atype.

1. LCSs.
2. Toconform to |EEE rules.
3. Toconformto |EEE rules.
4. Toconform to |IEEE rules.
5. Toconform to |EEE rules.
Clause 4 55

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

IEEE
Std P1076a-1999 2000/D3 IEEE STANDARD VHDL

type declaration ::=
full_type declaration
| incomplete _type declaration

full_type declaration ::=
type identifier istype_definition ;

type_definition ::=
scalar_type_definition
| composite_type_definition
| access type definition
| file_type definition
| protected_type definition

The types created by the elaboration of distinct type definitions are distinct types. The elaboration of the type defini-
tion for a scalar type or aconstrained array type creates both a base type and a subtype of the base type.

The simple name declared by a type declaration denotes the declared type, unless the type declaration declares both a
base type and a subtype of the base type, in which case the simple name denotes the subtype and the base type is anon-
ymous. A typeissaid to be anonymousif it has no simple name. For explanatory purposes, this standard sometimes
refers to an anonymous type by a pseudo-name, written in italics, and uses such pseudo-names at places where the
syntax normally requires an identifier.

NOTES

1—Two type definitions always define two distinct types, even if they arelexicaly identical. Thus, the type definitionsin the fol-
lowing two integer type declarations define distinct types:

typeA isrange1to 10;
type B isrange 1to 10;

This appliesto type declarations for other classes of types as well.

2—The various forms of type definition are described in Section Clause® 3. Examples of type declarations are also given in that
section clause’.

4.2 Subtype declarations
A subtype declaration declares a subtype.

subtype declaration ::=
subtype identifier is subtype_indication ;

subtype indication ::=
[resolution_function_name] type_mark [constraint |

type mark ::=
type_name
| subtype name

congtraint ::=
range_constraint
| index_constraint

6. Toconformto |EEE rules.
7. Toconformto |EEE rules.

56 Clause 4

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

IEEE
LANGUAGE REFERENCE MANUAL Std P1076a-1999 2000/D3

A type mark denotes atype or asubtype. If atype mark isthe name of atype, the type mark denotesthistype and
also the corresponding unconstrained subtype. The base type of atype mark is, by definition, the base type of the
type or subtype denoted by the type mark.

A subtype indication defines a subtype of the base type of the type mark.

If a subtype indication includes a resolution function name, then any signal declared to be of that subtype will be
resolved, if necessary, by the named function (see 2.4); for an overloaded function name, the meaning of the func-
tion nameis determined by context (see 2.3 and 10.5). Itisan error if the function does not meet the requirements
of aresolution function (see 2.4). The presence of aresolution function name has no effect on the declarations of
objects other than signals or on the declarations of files, aliases, attributes, or other subtypes.

If the subtype indication does not include a constraint, the subtype is the same as that denoted by the type mark.
The condition imposed by a constraint is the condition obtained after evaluation of the expressions and ranges
forming the constraint. The rules defining compatibility are given for each form of constraint in the appropriate
section clause®. Theserulesare such that if aconstraint is compatible with a subtype, then the condition imposed
by the constraint cannot contradict any condition already imposed by the subtype on its values. An error occurs
if any check of compatibility fails.

The direction of a discrete subtype indication is the same as the direction of the range constraint that appears as
the constraint of the subtype indication. If no constraint is present, and the type mark denotes a subtype, the di-
rection of the subtype indication is the same as that of the denoted subtype. If no constraint is present, and the
type mark denotes atype, the direction of the subtype indication is the same as that of the range used to define the
denoted type. The direction of a discrete subtype is the same as the direction of its subtype indication.

A subtype indication denoting an access type, afile type, or a protected type may must® not contain a resolution
function. Furthermore, the only allowable constraint on a subtype indication denoting an access type is an index
constraint (and then only if the designated type is an array type).

A subtype indication denoting a subtype of arecord type, afile type, or a protected type may must'© not contain
aconstraint.

NOTE
—A subtype declaration does not define a new type.
4.3 Objects
An object is a named entity that contains (has) avalue of agiven type. An object isone of the following:
— Anobject declared by an object declaration (see 4.3.1)
— Aloop or generate parameter (see 8.9 and 9.7)
— A formal parameter of a subprogram (see 2.1.1)
— A formal port (see1.1.1.2 and 9.1)
— Aformal generic (see1.1.1.1and 9.1)
— Alocal port (see 4.5)

— Alocal generic (see 4.5)

8. Toconform to |EEE rules.

9. 1R1000.4.7.
10. 1R1000.4.7.
Clause 4 57

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

IEEE
Std P1076a-1999 2000/D3 IEEE STANDARD VHDL

— Animplicit signal GUARD defined by the guard expression of ablock statement (see 9.1)In addition, the fol-
lowing are objects, but are not named entities:

— An implicit signal defined by any of the predefined attributes 'DELAYED, 'STABLE, 'QUIET, and
'TRANSACTION (see 14.1)

— Anédement or slice of another object (see 6.3, 6.4, and 6.5)
— Anobject designated by a value of an access type (see 3.3)

There are four classes of objects. constants, signals, variables, and files. The variable class of objects also has an ad-
ditional subclass: shared variables. The class of an explicitly declared object is specified by the reserved word that
must or may appear at the beginning of the declaration of that object. For a given object of a composite type, each
subelement of that object isitself an object of the same class and subclass, if any, as the given object. The value of a
composite object is the aggregation of the values of its subelements.

Objects declared by object declarations are available for use within blocks, processes, subprograms, or packages.
Loop and generate parameters are implicitly declared by the corresponding statement and are available for use only
within that statement. Other objects, declared by interface declarations, create channelsfor the communication of val-
ues between independent parts of a description.

4.3.1 Object declarations
An object declaration declares an object of a specified type. Such an object is called an explicitly declared object.

object_declaration ::=
constant_declaration
| signal_declaration
| variable declaration
| file_declaration

An object declaration is called a single-object declaration if itsidentifier list has asingleidentifier; it is called amul-
tiple-object declaration if the identifier list has two or more identifiers. A multiple-object declaration is equivalent to
a sequence of the corresponding number of single-object declarations. For each identifier of the list, the equivalent

seguence has a single-object declaration formed by thisidentifier, followed by a colon and by whatever appears at the
right of the colon in the multiple-object declaration; the equivalent sequenceisin the same order as the identifier list.

A similar equivalence applies also for interface object declarations (see 4.3.2).

NOTE

—The subelements of a composite, declared object are not declared objects.

4.3.1.1 Constant declarations

A constant declaration declares a constant of the specified type. Such a constant is an explicitly declared constant.

constant_declaration ::=
constant identifier_list : subtype indication [:= expression] ;

If the assignment symbol ":=" followed by an expression is present in a constant declaration, the expression specifies
the value of the constant; the type of the expression must be that of the constant. The value of a constant cannot be
modified after the declaration is elaborated.

If the assignment symbol ":=" followed by an expression is not present in a constant declaration, then the declaration
declares a deferred constant. Such a constant declaration may-enty must'! appear in a package declaration. The cor-

58 Clause 4

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

IEEE
LANGUAGE REFERENCE MANUAL Std P1076a-1999 2000/D3

responding full constant declaration, which defines the val ue of the constant, must appear in the body of the pack-
age (see 2.6).

Formal parameters of subprogramsthat are of modein may be constants, and local and formal genericsare always
constants; the declarations of such objects are discussed in 4.3.2. A loop parameter is a constant within the cor-
responding loop (see 8.9); similarly, a generate parameter is a constant within the corresponding generate state-
ment (see 9.7). A subelement or slice of aconstant is a constant.

Itisan error if aconstant declaration declares a constant that is of afile type, an access type, a protected type, or
acomposite type that has a subelement that is afile type, an access type, or a protected type.

NOTE
—The subelements of a composite, declared constant are not declared constants.
Examples:

constant TOLERANCE : DISTANCE := 1.5 nm;

constant Pl : REAL :=3.141592 ;

constant CYCLE_TIME : TIME := 100 ns;

constant Propagation_Delay : DELAY_LENGTH; -- adeferred constant

4.3.1.2 Signal declarations
A signal declaration declares asignal of the specified type. Such asignal isan explicitly declared signal.

signal_declaration ::=
signal identifier_list : subtype indication [signa_kind] [:= expression] ;

signal_kind ::= register | bus

If the name of aresolution function appears in the declaration of asignal or in the declaration of the subtype used
to declare the signal, then that resolution function is associated with the declared signal. Such asignal iscalled a
resolved signal.

If asignal kind appears in asignal declaration, then the signals so declared are guarded signals of the kind indi-
cated. For aguarded signal that isof acomposite type, each subelement islikewise aguarded signal. For aguard-
ed signal that is of an array type, each dice (see 6.5) is likewise a guarded signal. A guarded signal may be
assigned values under the control of Boolean-valued guard expressions (or guards).When a given guard becomes
False, the drivers of the corresponding guarded signals are implicitly assigned a null transaction (see 8.4.1) to
cause those drivers to turn off. A disconnection specification (see 5.3) is used to specify the time required for
those driversto turn off.

If the signal declaration includes the assignment symbol followed by an expression, it must be of the same type
asthesignal. Such an expression issaid to be adefault expression. The default expression defines adefault value
associated with the signal or, for a composite signal, with each scalar subelement thereof. For a signal declared
to be of ascalar subtype, the value of the default expression isthe default value of the signal. For asignal declared
to be of acomposite subtype, each scalar subelement of the value of the default expression is the default value of
the corresponding subelement of the signal.

In the absence of an explicit default expression, an implicit default valueis assumed for asignal of ascalar subtype
or for each scalar subelement of a composite signal, each of which isitself asignal of ascalar subtype. Theim-
plicit default value for asignal of ascalar subtype T is defined to be that given by T'LEFT.

11. IR1000.4.7.

Clause 4 59

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

IEEE
Std P1076a-1999 2000/D3 IEEE STANDARD VHDL

Itisanerror if asignal declaration declaresasignal that is of afiletype, an accesstype, aprotected type, or acomposite
type having a subelement that is afile type, an access type, or a protected type. Itisalso an error if aguarded signal
of ascalar typeis neither aresolved signal nor a subelement of aresolved signal.

A signal may have one or more sources. For asignal of ascalar type, each sourceis either adriver (see 12.6.1) or an
out, inout, buffer, or linkage port of acomponent instance or of ablock statement with which the signal is associated.
For asignal of acompositetype, each composite sourceisacollection of scalar sources, onefor each scalar subelement
of thesignal. Itisanerror if, after the elaboration of adescription, asignal has multiple sourcesand it is not aresolved
signal. Itisalsoan error if, after the elaboration of adescription, aresolved signal has more sources than the number
of elements in the index range of the type of the formal parameter of the resolution function associated with the re-
solved signal.

If asubelement or slice of aresolved signal of composite typeis associated as an actual in aport map aspect (either in
a component instantiation statement, a block statement,*? or in a bindi ng indication), and if the corresponding formal
isof mode out, inout, buffer, or linkage, then every scalar subelement of that signal must be associated exactly once
with such aformal in the same port map aspect, and the collection of the corresponding formal parts taken together
constitute one source of thesignal. If aresolved signal of compositetypeisassociated asan actual in aport map aspect,
that is equivalent to each of its subelements being associated in the same port map aspect.

If asubelement of aresolved signal of composite type has a driver in agiven process, then every scalar subelement of
that signal must have a driver in the same process, and the collection of all of those drivers taken together constitute
one source of the signal.
The default value associated with ascalar signal defines the value component of atransaction that istheinitial contents
of each driver (if any) of that signal. The time component of the transaction is not defined, but the transaction is un-
derstood to have already occurred by the start of simulation.
Examples:

signal S: STANDARD.BIT_VECTOR (1to 10) ;

signal CLK1, CLK2: TIME;

signal OUTPUT : WIRED_OR MULTI_VALUED_LOGIC;
NOTES

1—Ports of any mode are also signals. The term signal is used in this standard to refer to objects declared either by signal decla-
rationsor by port declarations (or to subelements, slices, or aliases of such objects). It asoreferstotheimplicit signal GUARD
(see 9.1) and to implicit signals defined by the predefined attributes'DELAY ED, 'STABLE, 'QUIET, and TRANSACTION.
The term port is used to refer to objects declared by port declarations only.

2—Signals are given initial values by initializing their drivers. Theinitial values of drivers are then propagated through the corre-
sponding net to determine the initial values of the signals that make up the net (see 12.6.3).

3—The vaue of asigna may-be is'3 indi rectly modified by a signal assignment statement (see 8.4); such assignments affect the
future values of the signal.

4—The subelements of a composite, declared signal are not declared signals.

Cross-References: Disconnection specifications, 5.3; Disconnection statements, 9.5; Guarded assignment, 9.5; Guarded blocks,
9.1; Guarded targets, 9.5; Signal guard, 9.1.

12. 1R1000.3.2.
13. IR1000.4.7.

60 Clause 4

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

IEEE
LANGUAGE REFERENCE MANUAL Std P1076a-1999 2000/D3

4.3.1.3 Variable declarations
A variable declaration declares avariable of the specified type. Such avariableisan explicitly declared variable.

variable declaration ::=
[shared] variableidentifier_list : subtype indication [:= expression] ;

A variable declaration that includes the reserved word shar ed isashared variable declaration. A shared variable
declaration declares a shared variable. Shared variables are a subclass of the variable class of objects. The base
type of the subtype indication of a shared variable declaration must be a protected type. Variables declared im-
mediately within entity declarations, architecture bodies, packages, package bodies, and blocks must be shared
variables. Variablesdeclared immediately within subprograms and processes must not be shared variables. Vari-
ables may appear in protected type bodies; such variables, which must not be shared variables, represent shared
data.

If agiven variable declaration appears (directly or indirectly) within a Protected type body, then the base type de-
noted by the subtype indication of the variable declaration may must™ not be the protected type defined by the
protected type body.

If the variable declaration includes the assignment symbol followed by an expression, the expression specifies an
initial value for the declared variable; the type of the expression must be that of the variable. Such an expression
issaid to beaninitial value expression. A variable declaration, whether it is a shared variable declaration or not,
whose subtype |nd|cat|on denotes a protected type may must must? 15 not have an initial value expression (hRermay-it
moreover, it must not!® include the immediately preceding assignment symbol).

If aninitial value expression appearsin the declaration of avariable, then theinitia value of the variable is deter-
mined by that expression each time the variable declaration is elaborated. In the absence of an initial value ex-
pression, adefault initial value applies. The default initial value for avariable of ascalar subtype T is defined to
be the value given by T'LEFT. The default initial value of avariable of a composite typeis defined to be the ag-
gregate of the default initial values of al of its scalar subelements, each of which isitself a variable of a scalar
subtype. The default initial value of avariable of an access type is defined to be the value null for that type.

NOTES

1—Thevalue of avariablethat is not ashared variable may-beis!’ modified by avariable assignment statement (see 8.5); such
assignments take effect immediately.

2—The variables declared within a given procedure persist until that procedure completes and returns to the caller. For pro-
cedures that contain wait statements, a variable may-therefore persist therefore persists'® from one point in simulation
timeto another, and the value in the variable is thus maintained over time. For processes, which never complete, al vari-
ables persist from the beginning of simulation until the end of simulation.

3—The subelements of a composite, declared variable are not declared variables.4— Since the language guarantees mutual
exclusion of accesses to shared data, but not the order of access to such data by multiple processesin the same simulation
cycle, the use of shared varaibles can be both non-portable and non-deterministic. For example, consider the following

architecture:
14. IR1000.4.7.
15. IR1000.4.7.
16. IR1000.4.7.
17. 1R1000.4.7.
18. 1R1000.4.7.
Clause 4 61

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

IEEE
Std P1076a-1999 2000/D3 IEEE STANDARD VHDL

ar chitectur e UseSharedVariables of SomeEntity is
subtype ShortRange is INTEGER range-1to 1;
type ShortRangeProtected is protected
procedure Set(V: ShortRange);
procedure Get(V: out ShortRange);
end protected;

type ShortRangeProtectedis protected body
variable Local: ShortRange := 0;
begin
procedure Set(V: ShortRange) is
begin
Locd :=V;
end procedure Set;

procedure Get(V: out ShortRange) is
begin
V :=Locd,
end procedur e Get;
end protected body;

shared variable Counter: ShortRangeProtected;

begin
PROC1.: process
variable V: ShortRange;
begin
Counter,Get(V);
Counter.Set(V+1);
wait;
end process PROCY;

PROC?2: process
variable V: ShortRange;
begin
Counter,Get(V);
Counter.Set(V-1);
wait;
end process PROC2;
end ar chitectur e UseSharedV ariables;

In particular, the value of Counter after the execution of both processes is not guaranteed to be 0. The possible values of
Counter could be—1, 0, or 1.

5—Variablesthat are not shared variables may have a subtype indication denoting a protected type.
Examples:

variable INDEX : INTEGER range0t099:=0;
-- Initial valueis determined by the initial value expression

variable COUNT : POSITIVE;
-- Initial valueis POSITIVE'LEFT; that is,1.

variable MEMORY : BIT_MATRIX (Oto 7, 0to0 1023) ;
-- Initial valueisthe aggregate of the initial values of each element

62 Clause 4

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

IEEE
LANGUAGE REFERENCE MANUAL Std P1076a-1999 2000/D3

shared variable Counter: SharedCounter;
-- See 3.5.1 and 3.5.2 for the definitions of SharedCounter

shared variable addend, augend, result: ComplexNumber;
-- See 3.5.1 and 3.5.2 for the definition of ComplexNumber

variable bit_stack: VariableSizeBitArray;
-- See 3.5.1 and 3.5.2 for the definition of VariableSizeBitArray;

4.3.1.4 File declarations
A file declaration declares afile of the specified type. Such afileisan explicitly declared file.

file_declaration ::=
fileidentifier_list : subtype indication [file_open_information] ;

file_open_information ::= [open file_open_kind_expression] isfile_logical_name
file_logical_name ::= string_expression
The subtype indication of afile declaration must define afile subtype.

If file open information isincluded in a given file declaration, then the file declared by the declaration is opened
(see3.4.1) withanimplicit call to FILE_OPEN when thefiledeclaration is elaborated (see 12.3.1.4). Thisimplicit
cal istothe FILE_OPEN procedure of thefirst form, and it associates the identifier with the file parameter F, the
filelogical name with the External_Name parameter, and the file open kind expression with the Open_Kind pa-
rameter. If afile open kind expression isnot included in the file open information of agiven file declaration, then
the default value of READ_MODE is used during elaboration of the file declaration.

If file open information is not included in a given file declaration, then the file declared by the declaration is not
opened when the file declaration is elaborated.

The file logical name must be an expression of predefined type STRING. The value of this expression is inter-
preted as alogical name for afilein the host system environment. Animplementation must provide some mech-
anism to associate a file logical name with a host-dependent file. Such a mechanism is not defined by the
language.

Thefilelogical nameidentifies an external file in the host file system that is associated with the file object. This
association provides a mechanism for either importing data contained in an externa file into the design during
simulation or exporting data generated during simulation to an external file.

If multiple file objects are associated with the same external file, and each file object has an access mode that is
read-only (see 3.4.1), then values read from each file object are read from the external file associated with thefile
object. The language does not define the order in which such values are read from the externa file, nor does it
define whether each value is read once or multiple times (once per file object).

The language does not define the order of and the relationship, if any, between values read from and written to
multiple file objects that are associated with the same external file. An implementation may restrict the number
of file objects that may-be are'® associated at one time with a given external file.

If aformal subprogram parameter is of the classfile, it must be associated with an actual that is afile object.
Examples:

type IntegerFileisfile of INTEGER,;

19. IR1000.4.7.

Clause 4 63

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

IEEE
Std P1076a-1999 2000/D3 IEEE STANDARD VHDL

No implicit FILE_OPEN is performed
during elaboration.

file F1: IntegerFile;

At elaboration, an implicit call is performed:
FILE_OPEN (F2, "test.dat");

The OPEN_KIND parameter defaults to

-- READ_MODE.

file F2: IntegerFileis "test.dat";

file F3: IntegerFile open WRITE_MODE is "test.dat";

At elaboration, an implicit call is performed:
FILE_OPEN (F3, "test.dat", WRITE_MODE);

NOTE

—All file objects associated with the same external file should be of the same base type.
4.3.2 Interface declarations

An interface declaration declares an interface object of a specified type. Interface objects include interface constants
that appear as generics of adesign entity, acomponent, or ablock, or as constant parameters of subprograms; interface
signals that appear as ports of a design entity, component, or block, or as signal parameters of subprograms; interface
variables that appear as variable parameters of subprograms; and interface files that appear as file parameters of sub-
programs.

interface_declaration ::=
interface_constant_declaration
| interface signal_declaration
| interface variable declaration
| interface_file_declaration

interface_constant_declaration ::=
[constant] identifier_list: [in] subtype_indication [:= static_expression]

interface signal_declaration ::=
[signal] identifier_list: [mode] subtype indication [bus] [:= static_expression]

interface variable declaration ::=
[variable] identifier_list : [mode] subtype indication [:= static_expression]

interface file declaration ::
fileidentifier list:%0 subtype_indication

mode ::= in | out | inout | buffer | linkage
If no mode is explicitly given in an interface declaration other than an interface file declaration, mode in is assumed.
For an interface constant declaration or an interface signal declaration, the subtgf)e indication must define asubtype
that isneither afiletype, an accesstype, nor aprotected type. Morover Moreover?!, the subtypeindication may must?

not denote a composite type with a subelement that is afile type, an access type, or a protected type.

For an interface file declaration, it is an error if the subtype indication does not denote a subtype of afile type.

20. 1R1000.1.12.
21. Typo (noted by Ashenden).
22. 1R1000.4.7.
64 Clause 4

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

IEEE
LANGUAGE REFERENCE MANUAL Std P1076a-1999 2000/D3

If aninterface signal declaration includes the reserved word bus, then the signal declared by that interface decla-
ration is aguarded signal of signal kind bus.

If an interface declaration contains a":=" symbol followed by an expression, the expression is said to be the de-
fault expression of the interface object. Thetype of adefault expression must be that of the corresponding inter-
face object. It is an error if a default expression appears in an interface declaration and any of the following
conditions hold:

— Themodeislinkage

— Theinterface object isaformal signal parameter

— Theinterface object is aformal variable parameter of mode other thanin

— Thesubtypeindication of the interface declaration denotes a protected type
In an interface signal declaration appearing in a port list, the default expression defines the default value(s) asso-
ciated with the interface signal or its subelements. In the absence of adefault expression, animplicit default value
isassumed for the signal or for each scalar subelement, as defined for signal declarations (see4.3.1.2). Thevalue,
whether implicitly or explicitly provided, isused to determinetheinitial contentsof drivers, if any, of theinterface
signal as specified for signal declarations.
An interface object provides a channel of communication between the environment and a particular portion of a
description. Thevalue of an interface object may be determined by the value of an associated object or expression
in the environment; similarly, the value of an object in the environment may be determined by the value of an
associated interface object. The manner in which such associations are made is described in 4.3.2.2.
The value of an object is said to be read when one of the following conditions is satisfied:

— When the object is evaluated, and a so (indirectly) when the object is associated with an interface ob-
ject of the modesin, inout, or linkage.

— When the object isasignal and a name denoting the object appears in a sensitivity list in await state-
ment or a process statement.

— When the object isasignal and the value of any of its predefined attributes 'STABLE, 'QUIET, 'DE-
LAYED, 'TRANSACTION, 'EVENT, 'ACTIVE, 'LAST_EVENT, 'LAST_ACTIVE, or
'LAST_VALUE isread.

— When one of its subelementsis read.

— When the object isafile and a READ operation is performed on the file.

— When the object is afile of type STD.TEXTIO.TEXT and the procedure STD.TEXTIO.READLINE
is called with the given object associated with the formal parameter F of the given procedure.®®

The value of an object is said to be updated when one of the following conditions is satisfied:

— When it isthe target of an assignment, and also (indirectly) when the object is associated with an in-
terface object of the modes out, buffer, inout, or linkage.

— When one of its subelementsis updated.

— Whenthe object isafile and aWRITE operation is performed on thefile.

23. Inspired by Steve Bailey.

Clause 4 65

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

IEEE

Std P1076a-1999 2000/D3 IEEE STANDARD VHDL

When the object is afile of type STD.TEXTIO.TEXT and the procedure STD.TEXTIO.WRITELINE is
called with the given object associated with the formal parameter F of the given procedure.ﬁ

Only It is an error if an object other than a? signal, variable, or file objectsmay-be object is? updated.

An interface object has one of the following modes:

in. Thevalue of theinterface object may—etz«—baead—knaddcﬂen—any—eﬂmbut&s is allowed to be read, but
it must not be updated. Reading an attribute®’ of the interface object-may-beread,-exceptthat-attributes is

al lowed, unI essthe interface object isa subprogram s gnal parameter and the attri bute isone of 'STABLE,
VALUE?® of asubprogramsig-
Fer—&ﬁ-teelqeet,—eper%on-END—

out. Thevalue of the interface object may-beupdated is allowed to be updated, but it must not be read®.
Reading the attributes of the interface element, other than the predefined attributes 'STABLE, 'QUIET,
'DELAYED, 'TRANSACTION, 'EVENT, ‘ACTIVE, 'LAST_EVENT, 'LAST_ACTIVE, and
'LAST_VALUE, isallowed. No other reading is allowed.

inout. Ihe Reading and updating the3! value of the interface object may-be-beoth-read-and-updated is al-
lowed®. Readi ng the attributes of the interface object, other than the attributes 'STABLE, 'QUIET, 'DE-
LAYED, and TRANSACTION of asignal parameter, isalso permitted. Ferafileobject;-al-fileoperations

(—99&3449-apeal+ewed-.

buffer. Fhe Reading and updating the®3 value of the interface object may-be-bethread-and-updated is al-
lowed®*. Reading the attributes of the interface object is also permitted.

Imkage IFhe Reading and updatl ng the3 value of the interface object may-be-beth-read-and-updated is

allowed®, but only by appearl ng as an actua corresponding to an interface object of mode linkage. No
other readl ng or updating is permitted.

2—37A subprogram parameter that is of afile type must be declared as afile parameter.3 23—Since shared variables are asubclass
of variables, a shared variable may be associated as an actual with aformal of class variable.

3—Ports of mode linkage may be removed from a future version of the language. See Annex F.39

24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.

66

Noted by Steve Bailey.
IR1000.4.7.
IR1000.4.7.
IR1000.4.7.

Missed in 1076-1993; noted by Bert Molenkamp.
IR1000.4.7.
IR1000.4.7.
IR1000.4.7.
IR1000.4.7.
IR1000.4.7.
IR1000.4.7.
IR1000.4.7.
IR1000.4.7.

LCS24.

LCS 24.

LCS 25.

Clause 4

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

IEEE
LANGUAGE REFERENCE MANUAL Std P1076a-1999 2000/D3

4—Interface file objects are modeless 40

4.3.2.1 Interface lists

Aninterfacelist containsthe declarations of the interface objects required by a subprogram, acomponent, adesign
entity, or ablock statement.

interface list ::=
interface_element { ; interface_element }

interface_element ::= interface declaration
A generic interface list consists entirely of interface constant declarations. A port interface list consists entirely
of interface signal declarations. A parameter interface list may contain interface constant declarations, interface
signal declarations, interface variable declarations, interface file declarations, or any combination thereof.

A name that denotes an interface object may must*! not appear in any interface declaration within the interface

list containing the denoted interface object except to declare this object.
NOTE

—The above restriction makes the following three interface listsillegal:

entity Eis
generic (GL:INTEGER; G2:INTEGER := G1); - illegal
port (P1:STRING; P2: STRING(P1'RANGE)); - illegal
procedure X (Y1, Y2: INTEGER;Y3: INTEGER range Y1 to Y2); --illegal
end E;

However, the following interface lists are legal:

entity Eis
generic(Gl, G2, G3, G4 INTEGER);
port(P1, P2:STRING (G1to G2));

procedure X(Y3:INTEGER range G3 to G4);
end E;

4.3.2.2 Association lists

An association list establishes correspondences between formal or local generic, port, or parameter names on the
one hand and local or actual names or expressions on the other.

association _list ::=
association_element { , association_element }

association_element ::=
[formal_part =>] actua_part

formal_part ::=
formal_designator
| function_name (formal _designator)
| type_mark (formal_designator)

40. Suggested by Steve Bailey.
41. IR1000.4.7.

Clause 4 67

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

IEEE
Std P1076a-1999 2000/D3 IEEE STANDARD VHDL

formal_designator ::=
generic_name
| port_name
| parameter _name

actual_part ::=
actual_designator
| function_name (actual_designator)
| type_mark (actual_designator)

actual_designator ::=
expression
| signal_name
| variable_name
| file_name
| open

Each association element in an association list associates one actual designator with the corresponding interface ele-
ment in the interface list of a subprogram declaration, component declaration, entity declaration, or block statement.
The corresponding interface element is determined either by position or by name.

An association element is said to be named if the formal designator appears explicitly; otherwise, it is said to be posi-
tional. For a positional association, an actual designator at a given position in an association list corresponds to the
interface element at the same position in the interface list.

Named associations can be given in any order, but if both positional and named associations appear in the same asso-
ciation list, then all positional associations must occur first at their normal position. Hence once a named association
is used, the rest of the association list must use only hamed associations.

In the following, the term actual refers to an actual designator, and the term formal refersto aformal designator.

Theformal part of a named element-association association element*? may bein theform of afunction call, wherethe
single argument of the function isthe formal designator itself, if and only if the mode of the formal isout, inout, buff-
er, or linkage, and if the actual is not open. In this case, the function name must denote a function whose single pa-
rameter is of thetype of the formal and whose result isthe type of the corresponding actual. Such aconversion function
provides for type conversion in the event that data flows from the formal to the actual.

Alternatively, the formal part of anamed element-asseciation association element*? may be in the form of atype con-
version, where the expression to be converted is the formal designator itself, if and only if the mode of the formal is
out, inout, buffer, or linkage, and if the actual isnot open. In this case, the base type denoted by the type mark must
be the same as the base type of the corresponding actual. Such atype conversion provides for type conversion in the
event that data flows from the formal to the actual. It isan error if the type of the formal is not closely related to the
type of the actual. (See 7.3.5.)

Similarly, the actual part of a (hamed or positional) element-association association element** may be in the form of
afunction call, where the single argument of the function is the actual designator itself, if and only if the mode of the
formal isin, inout, or linkage, and if the actual is not open. In this case, the function name must denote a function
whose single parameter is of the type of the actual, and whose result is the type of the corresponding formal. In addi-
tion, the formal must not be of class constant for this interpretation to hold (the actua is interpreted as an expression
that isafunction call if the class of the formal is constant). Such a conversion function provides for type conversion
in the event that data flows from the actual to the formal.

42. 1R1000.2.1.
43. IR1000.2.1.
44. |1R1000.2.1.
68 Clause 4

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

IEEE
LANGUAGE REFERENCE MANUAL Std P1076a-1999 2000/D3

Alternatively, the actual part of a (named or positional) element-association association element® may bein the
form of atype conversion, where the expression to be type converted is the actual designator itself, if and only if
the mode of the formal isin, inout, or linkage, and if the actual is not open. In this case, the base type denoted
by the type mark must be the same as the base type of the corresponding formal. Such atype conversion provides
for type conversion in the event that data flows from the actual to theformal. Itisan error if the type of the actual
isnot closely related to the type of the formal.

Thetype of the actual (after applying the conversion function or type conversion, if present in the actual part) must
be the same as the type of the corresponding formal, if the mode of the formal isin, inout, or linkage, and if the
actual is not open. Similarly, if the mode of the formal is out, inout, buffer, or linkage, and if the actual is not
open, then the type of the formal (after applying the conversion function or type conversion, if present in the for-
mal part) must be the same as the corresponding actual .

For the association of signals with corresponding formal ports, association of aformal of a given composite type
with an actual of the same typeis equivalent to the association of each scalar subelement of the formal with the
matching subelement of the actual, provided that no conversion function or type conversion is present in either
the actual part or theformal part of the association element. If aconversion function or type conversion ispresent,
then the entire formal is considered to be associated with the entire actual.

Similarly, for the association of actualswith corresponding formal subprogram parameters, association of aformal
parameter of agiven composite type with an actual of the same typeis equivalent to the association of each scalar
subelement of the formal parameter with the matching subelement of the actual. Different parameter passing
mechanisms may be required in each case, but in both cases the associations will have an equivalent effect. This
equivalence applies provided that no actual is accessible by more than one path (see 2.1.1.1).

A formal may must*® be either an explicitly declared interface object or member (see Sestion Clause™ 3) of such
aninterface object. Intheformer case, such aformal issaid to be associated in whole. In the latter cases, named
association must be used to associate the formal and actual; the subelements of such aformal are said to be asso-
ciated individually. Furthermore, every scalar subelement of the explicitly declared interface object must be as-
sociated exactly once with an actual (or subelement thereof) in the same association list, and all such associations
must appear in a contiguous sequence within that association list. Each association element that associatesaslice
or subelement (or slice thereof) of an interface object must identify the formal with alocally static name.

If an interface element in an interface list includes a default expression for a formal generic, for aformal port of
any mode other than linkage, or for aformal variable or constant parameter of mode in, then any corresponding
association list need not include an association element for that interface element. If the association element is
not included in the association list, or if the actual is open, then the value of the default expression is used as the
actual expression or signal valuein an implicit association element for that interface element.

It is an error if an actual of open is associated with a formal that is associated individually. An actual of open
counts as the single association allowed for the corresponding formal but does not supply a constant, signal, or
variable (asis appropriate to the object class of the formal) to the formal.

NOTES

1—It isaconsegquence of these rulesthat, if an association element is omitted from an association list in order to make use of
the default expression on the corresponding interface element, all subsequent association elements in that association list
must be named associations.

2—Although a default expression can appear in an interface element that declares a (local or formal) port, such a default ex-
pression is not interpreted as the value of an implicit association element for that port. Instead, the value of the expression
is used to determine the effective value of that port during simulation if the port is left unconnected (see 12.6.2).

45, 1R1000.2.1.
46. IR1000.4.7.
47. To conform to |IEEE rules.

Clause 4 69

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

IEEE
Std P1076a-1999 2000/D3 IEEE STANDARD VHDL

3—Named association may not be used when invoking implicitly defined eperations operators48, since the formal parameters of
these operators are not named (see 7.2).

4—Since information flows only from the actual to the formal when the mode of the formal isin, and since afunction call isitself
an expression, the actual associated with aformal of object class constant isnever interpreted as a conversion function or atype
conversion converting an actual designator that is an expression. Thus, the following association element is legal:

Param => F (open)

under the conditions that Param is a constant formal and F is a function returning the same base type as that of Param and having
one or more parameters, all of which may be defaulted.5—Ne It is an error if &*° conversion function or type conversion may
appear gppear§° in the actual part when the actual designator is open.

4.3.3 Alias declarations
An alias declaration declares an alternate name for an existing named entity.

dlias declaration ::=
aliasalias _designator [: subtype indication] isname[signature] ;

alias_designator ::= identifier | character_literal | operator_symbol

An object aliasis an alias whose alias designator denotes an object (that is, a constant, a variable, asignal, or afile).
A nonobject aliasis an alias whose alias designator denotes some named entity other than an object. An alias can be
declared for all named entities except for labels, loop parameters, and generate parameters.

Thealiasdesignator in an alias declaration denotes the named entity specified by the name and, if present, the signature
in the alias declaration. An alias of asignal denotes a signal; an alias of a variable denotes a variable; an alias of a
constant denotes a constant; and an alias of afile denotesafile. Similarly, an alias of a subprogram (including an op-
erator) denotes a subprogram, an alias of an enumeration literal denotes an enumeration literal, and so forth.

If the dlias designator is a character literal, the name must denote an enumeration literal. If the alias designator is an
operator symbol, the name must denote afunction, and that function then overloads the operator symbol. In thislatter
case, the operator symbol and the function both must meet the requirements of 2.3.1.5%

NOTES

1—Since, for example, the dlias of avariableis avariable, every reference within this document to a designator (a name, character
literal, or operator symbol) that requires the designator to denote a named entity with certain characteristics (for example, to
be avariable) alows the designator to denote an alias, so long as the aliased hame denotes a named entity having the required
characteristics. This situation holds except where aliases are specifically prohibited.

2—The dlias of an overloadable ebject named entity® is itself overloadable.
4.3.3.1 Object aliases
The following rules apply to object aiases:

a) A signature may must®® not appear in adeclaration of an object alias.

48. 1R1000.2.4.
49. 1R1000.4.7.
50. IR1000.4.7.
51. LCS7.
52. IR1000.2.2.
53. IR1000.4.7.
70 Clause 4

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

IEEE

LANGUAGE REFERENCE MANUAL Std P1076a-1999 2000/D3

b)

0)
d)

The name must be a static name (see 6.1) that denotes an object. The base type of the name specified
in an alias declaration must be the same as the base type of the type mark in the subtype indication (if
the subtype indication is present); thistype must not be a multi-dimensional array type. When the ob-
ject denoted by the nameisreferenced viathe alias defined by the alias declaration, the following rules

apply:
— If the subtypeindication is absent or if it is present and denotes an unconstrained array type:

— If thealias designator denotes a slice of an object, then the subtype of the object is viewed
asif it were of the subtype specified by the dice

— Otherwise, the object is viewed as if it were of the subtype specified in the declaration of
the object denoted by the name

— If the subtype indication is present and denotes a constrained array subtype, then the object is
viewed as if it were of the subtype specified by the subtype indication; moreover, the subtype
denoted by the subtype indication must include a matching element (see 7.2.2) for each element
of the object denoted by the name;

— If the subtype indication denotes a scalar subtype, then the object is viewed as if it were of the
subtype specified by the subtype indication; moreover, it isan error if this subtype does not have
the same bounds and direction as the subtype denoted by the object name.

The same applies to attribute references where the prefix of the attribute name denotes the alias.

A reference to an element of an object aliasis implicitly a reference to the matching element of the
object denoted by the alias. A reference to aslice of an object alias consisting of the elements g, e,,

..., &, isimplicitly a reference to a slice of the object denoted by the alias consisting of the matching
elements corresponding to each of e, through e,

4.3.3.2 Nonobject aliases

The following rules apply to nonobject aliases:

a)

b)

d)

A subtype indication may must>* not appear in anonabject alias.

A signature is required if the name denotes a subprogram (including an operator) or enumeration lit-
era. Inthis case, the signature is required to match (see 2.3) the parameter and result type profile of
exactly one of the subprograms or enumeration literals denoted by the name.

If the name denotes an enumeration type, then one implicit alias declaration for each of the litera's of
the type immediately follows the alias declaration for the enumeration type; each such implicit decla-
ration has, asits alias designator, the simple name or character literal of theliteral and has, asits name,
aname constructed by taking the name of the aliasfor the enumeration type and substituting the smple
name or character literal being aliased for the simple name of the type. Each implicit alias has a sig-
nature that matches the parameter and result type profile of the literal being aiased.

Alternatively, if the name denotes a physical type, then one implicit alias declaration for each of the
units of thetypeimmediately followsthe alias declaration for the physical type; each such implicit dec-
laration has, as its alias designator, the simple name of the unit and has, as its>® name, a name con-
structed by taking the name of the alias for the physical type and substituting the simple name of the
unit being aliased for the simple name of the type.

54,

IR1000.4.7.

55. Omission noted by Boyer.

Clause 4

71

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

IEEE

Std P1076a-1999 2000/D3 IEEE STANDARD VHDL

e) Finadly, if the name denotes atype, then implicit alias declarations for each predefined operator for the type
immediately follow the explicit alias declaration for the type and, if present, any implicit alias declarations
for literals or units of the type. Each implicit alias has a signature that matches the parameter and result
type profile of the implicit operator being aliased.

Examples:

72

variable REAL_NUMBER : BIT_VECTOR (0 to 31);

aliasSIGN : BIT isREAL_NUMBER (0);
-- SIGN isnow ascalar (BIT) vaue

aliasMANTISSA : BIT_VECTOR (23 downto 0) isREAL_NUMBER (8 to 31);
-- MANTISSA isa24b value whose range is 23 downto 0.
-- Note that the ranges of MANTISSA and REAL_NUMBER (81to 31)
-- have opposite directions. A referenceto MANTISSA (23 downto 18)
-- isequivaent to areferenceto REAL_NUMBER (8t0 13).

alias EXPONENT : BIT_VECTOR (1to 7) isREAL_NUMBER (1to 7);
-- EXPONENT isa 7-bit value whose rangeis 1 to 7.

-- explicit alias:
aliasSTD_BITis STD.STANDARD.BIT;

-- implicit aliases...
-- alias'0’ isSTD.STANDARD.'0' [return STD.STANDARD.BIT];

--alias'l isSTD.STANDARD.'1' [return STD.STANDARD.BIT];

--alias"and" isSTD.STANDARD."and"
-- [STD.STANDARD.BIT, STD.STANDARD.BIT return STD.STANDARD.BIT];

--alias"or" isSTD.STANDARD."or"
-- [STD.STANDARD.BIT, STD.STANDARD.BIT return STD.STANDARD.BIT];

--alias"nand" is STD.STANDARD."nand"
-- [STD.STANDARD.BIT, STD.STANDARD.BIT return STD.STANDARD.BIT];

--alias"nor" isSTD.STANDARD."nor"
-- [STD.STANDARD.BIT, STD.STANDARD.BIT return STD.STANDARD.BIT];

-- alias"xor" isSTD.STANDARD."xor"
-- [STD.STANDARD.BIT, STD.STANDARD.BIT return STD.STANDARD.BIT];

-- alias"xnor" is STD.STANDARD."xnor"
-- [STD.STANDARD.BIT, STD.STANDARD.BIT return STD.STANDARD.BIT];

-- alias"not"is STD.STANDARD."not"
-- [STD.STANDARD.BIT, STD.STANDARD.BIT
-- return STD.STANDARD.BIT];

-- alias"=" is STD.STANDARD."="
-- [STD.STANDARD.BIT, STD.STANDARD.BIT return STD.STANDARD.BOOLEAN];

--alias"/=" isSTD.STANDARD."/="
-- [STD.STANDARD.BIT, STD.STANDARD.BIT return STD.STANDARD.BOOLEAN];

Clause 4

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

IEEE
LANGUAGE REFERENCE MANUAL Std P1076a-1999 2000/D3

-- alias"<" isSTD.STANDARD."<"
-- [STD.STANDARD.BIT, STD.STANDARD.BIT return STD.STANDARD.BOOLEAN];

--alias"<=" isSTD.STANDARD."<="
-- [STD.STANDARD.BIT, STD.STANDARD.BIT return STD.STANDARD.BOOLEAN];

-- alias">" isSTD.STANDARD.">"
-- [STD.STANDARD.BIT, STD.STANDARD.BIT return STD.STANDARD.BOOLEAN];

--alias">=" isSTD.STANDARD.">="
-- [STD.STANDARD.BIT, STD.STANDARD.BIT return STD.STANDARD.BOOLEAN];

NOTE

—An dias of an explicitly declared object is not an explicitly declared object, nor is the aias of a subelement or slice of an
explicitly declared object an explicitly declared object.

4.4 Attribute declarations

An attribute is a value, function, type, range, signal, or constant that may be associated with one or more named
entitiesin adescription. There are two categories of attributes: predefined attributes and user- defmed attributes.
Predefined attributes provide information about named entities in a description. Seeﬂen Clause™ 14 contains the
definition of all predefined attributes. Predefined attributes that are signals may must must®’ not be updated.

User-defined attributes are constants of arbitrary type. Such attributes are defined by an attribute declaration.

attribute_declaration ::=
attribute identifier: type mark ;

Theidentifier is said to be the designator of the attribute. An attribute may be associated with an entity declara-
tion, an architecture, a configuration, a procedure, afunction, a package, atype, a subtype, a constant, asignal, a
variable, acomponent, alabel, aliteral, aunit, agroup, or afile.

Itisan error if the type mark denotes an accesstype, afile type, a protected type, or a composite type with a sub-
element that isan accesstype, afiletype, or aprotected type. The denoted type or subtype need not be constrained.

Examples:

type COORDINATE isrecord X,Y: INTEGER; end record;
subtype POSITIVE isINTEGER range 1 to INTEGER'HIGH;
attribute LOCATION: COORDINATE;

attribute PIN_NO: POSITIVE;

NOTES

1—A given named entity E will be decorated with the user-defined attribute A if and only if an attribute specification for the
value of attribute A exists in the same declarative part as the declaration of E. In the absence of such a specification, an
attribute name of the form E'A isillegal.

2—A user-defined attribute is associated with the named entity denoted by the name specified in a declaration, not with the
name itself. Hence, an attribute of an object can be referenced by using an alias for that object rather than the declared
name of the object as the prefix of the attribute name, and the attribute referenced in such away is the same attribute (and
therefore has the same value) as the attribute referenced by using the declared name of the object as the prefix.

56. To conform to |EEE rules.
57. 1R1000.4.7.

Clause 4 73

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

IEEE
Std P1076a-1999 2000/D3 IEEE STANDARD VHDL

3—A user-defined attribute of a port, signal, variable, or constant of some composite type is an attribute of the entire port, signal,
variable, or constant, not of itselements. If it isnecessary to associate an attribute with each element of some composite object,
then the attribute itself can be declared to be of acomposite type such that for each element of the object, thereisacorresponding
element of the attribute.

4.5 Component declarations

A component declaration declares avirtual-design-entity-interface an interface to avirtual design enti'[y58 that may be
used in acomponent instantiation statement. A component configuration or a configuration specification can be used

to associate a component instance with a design entity that residesin alibrary.

component_declaration ::=
component identifier [is]
[local_generic clause]
[local_port_clause]
end component [component_simple_name] ;

Each interface object in the local generic clause declares alocal generic. Each interface abject in thelocal port clause
declares alocal port.

If asimple name appears at the end of a component declaration, it must repeat the identifier of the component decla-
ration.

4.6 Group template declarations

A group template declaration declares a group template, which definesthe allowabl e classes of named entitiesthat can
appear in a group.

group_template declaration ::=
group identifier is (entity_class entry list) ;

entity_class_entry_list ::=
entity class entry { , entity_class entry }

entity class entry ::= entity class[<>]

A group template is characterized by the number of entity class entries and the entity class at each position. Entity
classes are described in 5.1.

An entity class entry that is an entity class defines the entity class that may appear at that position in the group type.
An entity class entry that includes a box (<>) allows zero or more group constituents to appear in this position in the
corresponding group declaration; such an entity class entry must be the last one within the entity class entry list.

Examples:
group PIN2PIN is (signal, signal); -- Groups of this type consist of two signals.
group RESOURCE is (label <>); -- Groups of this type consist of any number of 1abels.
group DIFF_CYCLESIs(group <>); -- A group of groups.

4.7 Group declarations

A group declaration declares agroup, a named collection of named entities. Named entities are described
in5.1.

58. Terminological correction.

74 Clause 4

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

IEEE
LANGUAGE REFERENCE MANUAL Std P1076a-1999 2000/D3

group_declaration ::=
group identifier : group_template_name (group_constituent_list) ;

group_constituent_list ::= group_constituent { , group_constituent }
group_constituent ::= name | character_literal

Itisan error if the class of any group constituent in the group constituent list is not the same as the class specified
by the corresponding entity class entry in the entity class entry list of the group template.

A name that is a group constituent may must® not be an attribute name (see 6.6)-noer-i j o
that-prefix-be . Moreover, if such aname contains a prefix, it is an error if the prefix is®® a function call.

If agroup declaration appears within a package body, and a group constituent within that group declaration isthe
same as the simple name of the package body, then the group constituent denotes the package declaration and not
the package body. The same rule holds for group declarations appearing within subprogram bodies containing
group constituents with the same designator as that of the enclosing subprogram body.

If agroup declaration contains a group constituent that denotes a variable of an access type, the group declaration
declares a group incorporating the variable itself, and not the designated object, if any.

Examples:

group G1: RESOURCE (L1, L2); A group of two labels.

group G2: RESOURCE (L3, L4, L5);

A group of three labels.

group C2Q: PIN2PIN (PROJECT.GLOBALS.CK, Q); Groups may associate named
entitiesin different declarative

parts (and regions).

group CONSTRAINTL: DIFF_CYCLES (G1, G3);

A group of groups.

59. IR1000.4.7.
60. IR1000.4.7.

Clause 4 75

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

IEEE
Std P1076a-1999 2000/D3 IEEE STANDARD VHDL

76 Clause 4

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

