IEEE
LANGUAGE REFERENCE MANUAL Std P1076a-1999 2000/D3

Clause 12

Elaboration and execution

The process by which a declaration achieves its effect is called the elaboration of the declaration. After its elab-
oration, adeclaration is said to be elaborated. Prior to the completion of its elaboration (including before the elab-
oration), the declaration is not yet elaborated.

Elaboration is also defined for design hierarchies, declarative parts, statement parts (containing concurrent state-
ments), and concurrent statements. Elaboration of such constructs is necessary in order ultimately to elaborate
declarative items that are declared within those constructs.

In order to execute amodel, the design hierarchy defining the model must first be elaborated. Initialization of nets
(see 12.6.2) in the model then occurs. Finally, simulation of the model proceeds. Simulation consists of the re-
petitive execution of the simulation cycle, during which processes are executed and nets updated.

12.1 Elaboration of a design hierarchy

The elaboration of a design hierarchy creates a collection of processes interconnected by nets; this collection of
processes and nets can then be executed to simulate the behavior of the design.

A design hierarchy is defined either by a design entity or by a configuration.t

ity.? Elaboration of adesi gn hierarchy defined inthismanner

by a dea an en'uty consi sts of the eIaboratlon of the block statement equivalent to the external block defined by
the design entity. The architecture of this design entity is assumed to contain an implicit configuration specifica
tion (see 5.2) for each component instance that is unbound in this architecture; each configuration specification
has an entity aspect denoting an anonymous configuration declaration identifying the visible entity declaration
(see 5.2) and supplying an implicit block configuration (see 1.3.1) that binds and configures a design entity iden-
tified according to the rules of 5.2.2. The equivalent block statement is defined in 9.6.2. Elaboration of a block
statement is defined in 12.4.1.

4 Elaboration of a configuration consists of the elab-
oration of the bI ock siatement equwal ent to the external block defined by the design entity configured by the con-
figuration. The configuration contains an implicit component configuration (see 1.3.2) for each unbound
component instance contained within the external block and an implicit block configuration (see 1.3.1) for each
internal block contained within the external block.

Animplementation may allow, but isnot required to allow, adesign entity at the root of adesign hierarchy to have
generics and ports. If an implementation allows these top-level interface objects, it may restrict their allowed
types and modes in an implementation-defined manner. Similarly, the means by which top-level interface objects

1. IR1000.4.7.
2. IR1000.4.7.
3. IR1000.4.7.
4. 1R1000.4.7.
Clause 12 165

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

IEEE
Std P1076a-1999 2000/D3 IEEE STANDARD VHDL

are associated with the external environment of the hierarchy are also defined by an implementation supporting
top-level interface objects.

Elaboration of a block statement involves first elaborating each not-yet-elaborated package containing declara-
tions referenced by the block. Similarly, elaboration of a given package involves first elaborating each not-yet-
elaborated package containing declarations referenced by the given package. Elaboration of a package addition-
aly consists of the

a) Elaboration of the declarative part of the package declaration, eventually followed by

b) Elaboration of thedeclarative part of the corresponding package body, if the package has a correspond-
ing package body

Step b above, the el aboration of a package body, may be deferred until the declarative parts of other packages have
been elaborated, if necessary, because of the dependencies created between packages by their interpackage refer-
ences.

Elaboration of a declarative part is defined in 12.3.
Examples:

-- In the following example, because of the dependencies between the packages, the
-- elaboration of either package body must follow the elaboration of both package
-- declarations.

packagePlis
constant C1: INTEGER := 42;
constant C2: INTEGER,;

end package P1;

package P2 is
constant C1: INTEGER :=17;
constant C2: INTEGER,

end package P2;

package body Pl is
constant C2: INTEGER := Work.P2.C1;
end package body P1;

package body P2 is
constant C2: INTEGER := Work.P1.C1;
end package body P2;

-- If adesign hierarchy is described by the following design entity:
entity Eisend;

architecture A of Eis
component comp
port (...);
end component;
begin

166 Clause 12

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

IEEE
LANGUAGE REFERENCE MANUAL Std P1076a-1999 2000/D3

C: compport map (...);
B: block

begin

end b.l.ock B;
end architecture A;

then its architecture contains the following implicit configuration specification at the
end of its declarative part:

for C: comp use configuration anonymous;

and the following configuration declaration is assumed to exist when E(A) is

-- elaborated:
configuration anonymous of L.E is -- L isthelibrary in which E(A) isfound.
for A -- The most recently analyzed architecture
-- of L.E.
end for;

end configuration anonymous,
12.2 Elaboration of a block header

Elaboration of a block header consists of the elaboration of the generic clause, the generic map aspect, the port
clause, and the port map aspect, in that order.

12.2.1 The generic clause

Elaboration of a generic clause consists of the elaboration of each of the equivalent single generic declarations
contained in the clause, in the order given. The elaboration of a generic declaration consists of elaborating the
subtype indication and then creating a generic constant of that subtype.

Thevalue of ageneric constant is not defined until asubseguent generic map aspect is evaluated or, in the absence
of ageneric map aspect, until the default expression associated with the generic constant is eval uated to determine
the value of the constant.

12.2.2 The generic map aspect

Elaboration of a generic map aspect consists of elaborating the generic association list. The generic association
list contains an implicit association el ement for each generic constant that is not explicitly associated with an ac-
tual or that is associated with the reserved word open; the actual part of such an implicit association element is
the default expression appearing in the declaration of that generic constant.

Elaboration of a generic association list consists of the elaboration of each generic association element in the as-
sociation list. Elaboration of a generic association element consists of the elaboration of the formal part and the
evauation of the actual part. The generic constant or subelement or dlice thereof designated by the formal partis
then initialized with the value resulting from the evaluation of the corresponding actual part. It isan error if the
value of the actual does not belong to the subtype denoted by the subtype indication of the formal. If the subtype
denoted by the subtype indication of the declaration of the formal is a constrained array subtype, then an implicit
subtype conversion is performed prior to this check. It isalso an error if the type of the formal is an array type
and the value of each element of the actual does not belong to the element subtype of the formal.

Clause 12 167

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

IEEE
Std P1076a-1999 2000/D3 IEEE STANDARD VHDL

12.2.3 The port clause

Elaboration of aport clause consists of the elaboration of each of the equivalent single port declarations contained
in the clause, in the order given. The elaboration of aport declaration consists of elaborating the subtype indica-
tion and then creating a port of that subtype.

12.2.4 The port map aspect
Elaboration of aport map aspect consists of elaborating the port association list.

Elaboration of aport association list consists of the elaboration of each port association element in the association
list whose actual is not the reserved word open. Elaboration of a port association element consists of the elabo-
ration of the formal part; the port or subelement or slice thereof designated by the formal part is then associated
with the signal or expression designated by the actual part. This association involves a check that the restrictions
on port associations (see 1.1.1.2) are met. It isan error if this check fails.

If agiven port isa port of mode in whose declaration includes a default expression, and if no association element
associates asignal or expression with that port, then the default expression is evaluated and the effective and driv-
ing value of the port is set to the value of the default expression. Similarly, if agiven port of modein is associated
with an expression, that expression is evaluated and the effective and driving value of the port is set to the value
of the expression. In the event that the value of a port is derived from an expression in either fashion, references
to the predefined attributes 'DELAYED, 'STABLE, 'QUIET, 'EVENT, 'ACTIVE, 'LAST_EVENT,
'‘LAST_ACTIVE, 'LAST_VALUE, DRIVING, and 'DRIVING_VALUE of the port return values indicating that
the port has the given driving value with no activity at any time (see 12.6.3).

If an actual signal is associated with a port of any mode, and if the type of the formal isascalar type, thenitisan
error if (after applying any conversion function or type conversion expression present in the actual part) the
bounds and direction of the subtype denoted by the subtype indication of the formal are not identical to the bounds
and direction of the subtype denoted by the subtype indication of the actual. If an actual expression is associated
with aformal port (of modein), and if the type of the formal isascalar type, then it is an error if the value of the
expression does not belong to the subtype denoted by the subtype indication of the declaration of the formal.

If an actual signal or expression isassociated with aformal port, and if theformal isof aconstrained array subtype,
thenitisan error if the actual does not contain a matching element for each element of the formal. In the case of
an actual signal, this check is made after applying any conversion function or type conversion that is present in
the actual part. If an actual signal or expression is associated with aformal port, and if the subtype denoted by the
subtype indication of the declaration of the formal is an unconstrained array type, then the subtype of the formal
istaken from the actual associated with that formal. It isalso an error if the mode of the formal isin or inout and
the value of each element of the actual array (after applying any conversion function or type conversion present
in the actual part) does not belong to the element subtype of the formal. If the formal port is of mode out, inout,
or buffer, it isalso an error if the value of each element of the formal (after applying any conversion function or
type conversion present in the formal part) does not belong to the element subtype of the actual.

If an actual signal or expression is associated with aformal port, and if the formal is of a record subtype, then it
is an error if the rules of the preceding three paragraphs do not apply to each element of the record subtype. In
the case of an actual signal, these checks are made after applying any conversion function or type conversion that
is present in the actual part.

12.3 Elaboration of a declarative part

The elaboration of a declarative part consists of the elaboration of the declarative items, if any, in the order in
which they are given in the declarative part. Thisrule holdsfor all declarative parts, with three exceptions:

a) The entity declarative part of a design entity whose corresponding architecture is decorated with the
'FOREIGN attribute defined in package STANDARD (see 5.1 and 14.2)

168 Clause 12

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

IEEE
LANGUAGE REFERENCE MANUAL Std P1076a-1999 2000/D3

b) Thearchitecture declarative part of adesign entity whose architectureis decorated with the'FOREIGN
attribute defined in package STANDARD

¢) A subprogram declarative part whose subprogram is decorated with the 'FOREIGN attribute defined
in package STANDARD

For these cases, the declarative items are not el aborated; instead, the design entity or subprogram is subject to im-
plementation-dependent elaboration.

In certain cases, the elaboration of adeclarative item involves the evaluation of expressionsthat appear within the
declarativeitem. The value of any object denoted by aprimary in such an expression must be defined at the time
the primary isread (see 4.3.2). Inaddition, if aprimary in such an expression is afunction call, then the value of
any object denoted by or appearing as a part of an actual designator in the function call must be defined at thetime
the expression is evaluated. Additionally, it isan error if a primary that denotes a shared variable or amethod of
the protected type of ashared variableis evaluated during the elaboration of adeclarativeitem._During static elab-

oration, the function STD.STANDARD.NOW (see 14.2) returns the value 0 ns.®

NOTE

—Itisaconsequence of thisrulethat the name of asignal declared within ablock cannot be referenced in expressions appear-
ing in declarative items within that block, an inner block, or process statement; nor can it be passed as a parameter to afunc-
tion called during the elaboration of the block. These restrictions exist because the value of asignal is hot defined until after
the design hierarchy is elaborated. However, asignal parameter name may be used within expressionsin declarative items
within asubprogram declarative part, provided that the subprogram is only called after simulation begins, because the value
of every signal will be defined by that time.

12.3.1 Elaboration of a declaration

Elaboration of adeclaration has the effect of creating the declared item.

For each declaration, thelanguage rules (in particular scope and visibility rules) are such that it is either impossible
or illegal to use agiven item before the elaboration of its corresponding declaration. For example, itisnot possible
to use the name of atype for an object declaration before the corresponding type declaration is elaborated. Sim-
ilarly, it isillegal to call a subprogram before its corresponding body is elaborated.

12.3.1.1 Subprogram declarations and bodies

Elaboration of asubprogram declaration involvesthe elaboration of the parameter interface list of the subprogram
declaration; thisin turn involves the elaboration of the subtype indication of each interface element to determine
the subtype of each formal parameter of the subprogram.

Elaboration of a subprogram body has no effect other than to establish that the body can, from then on, be used
for the execution of calls of the subprogram.

12.3.1.2 Type declarations

Elaboration of atype declaration generally consists of the elaboration of the definition of the type and the creation
of that type. For a constrained array type declaration, however, elaboration consists of the elaboration of the
equivalent anonymous unconstrained array type followed by the elaboration of the named subtype of that uncon-
strained type.

Elaboration of an enumeration type definition has no effect other than the creation of the corresponding type.

5. LCSO.

Clause 12 169

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

IEEE
Std P1076a-1999 2000/D3 IEEE STANDARD VHDL

Elaboration of an integer, floating point, or physical type definition consists of the elaboration of the correspond-
ing range constraint. For aphysical type definition, each unit declaration in the definitionisalso elaborated. Elab-
oration of aphysical unit declaration has no effect other than to create the unit defined by the unit declaration.

Elaboration of an unconstrained array type definition consists of the elaboration of the element subtype indication
of the array type.

Elaboration of arecord type definition consists of the elaboration of the equivalent single element declarationsin
the given order. Elaboration of an element declaration consists of elaboration of the element subtype indication.

Elaboration of an access type definition consists of the elaboration of the corresponding subtype indication.

Elaboration of aprotected type definition consists of the elaboration, inthe order given, of each of the declarations
occurring immediately within the protected type definition.

Elaboration of aprotected type body has no effect other than to establish that the body can, from then on, be used
during the elaboration of objects of the given protected type.

12.3.1.3 Subtype declarations

Elaboration of a subtype declaration consists of the elaboration of the subtype indication. The elaboration of a
subtype indication creates a subtype. |If the subtype does not include a constraint, then the subtype is the same as
that denoted by the type mark. The elaboration of a subtype indication that includes a constraint proceeds as fol-
lows:

a) Theconstraint isfirst elaborated.

b) A check isthen made that the constraint is compatible with the type or subtype denoted by the type
mark (see 3.1 and 3.2.1.1).

Elaboration of arange constraint consists of the evaluation of the range. The evaluation of a range defines the
bounds and direction of the range. Elaboration of an index constraint consists of the elaboration of each of the
discrete ranges in the index constraint in some order that is not defined by the language.

12.3.1.4 Object declarations

Elaboration of an object declaration that declares an object other than afile object or an object of a protected type
proceeds as follows:

a) Thesubtypeindication isfirst elaborated. This establishes the subtype of the object.

b) If theobject declaration includesan explicit initialization expression, then theinitial value of the object
is obtained by evaluating the expression. It is an error if the value of the expression does not belong
to the subtype of the object; if the object is an array object, then an implicit subtype conversionisfirst
performed on the value unless the object is a constant whose subtype indication denotes an uncon-
strained array type. Otherwise, any implicit initial value for the object is determined.

¢) Theobjectiscreated.
d) Anyinitia valueisassigned to the object.

The initialization of such an object (either the declared object or one of its subelements) involves a check that the
initial value belongsto the subtype of the object. For an array object declared by an object declaration, an implicit
subtype conversion isfirst applied as for an assignment statement, unless the object is a constant whose subtype
is an unconstrained array type.

170 Clause 12

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

IEEE
LANGUAGE REFERENCE MANUAL Std P1076a-1999 2000/D3

The elaboration of afile object declaration consists of the elaboration of the subtype indication followed by the
creation of the object. If the file object declaration contains file open information, then the implicit call to
FILE_OPEN isthen executed (see 4.3.1.4).

The elaboration of an object of a protected type consists of the elaboration of the subtype indication, followed by
creation of the object. Creation of the object consists of elaborating, in the order given, each of the declarative
itemsin the protected type body.

NOTES

1—These rules apply to all object declarations other than port and generic declarations, which are elaborated as outlined in
12.2.1 through 12.2.4.

2—The expression initializing a constant object need not be a static expression.

3—Each object whose type is a protected type creates an instance of the shared objects.

12.3.1.5 Alias declarations

Elaboration of an alias declaration consists of the elaboration of the subtype indication to establish the subtype
associated with the alias, followed by the creation of the alias as an alternative name for the named entity. The
creation of an aliasfor an array object involves acheck that the subtype associated with the aliasincludes amatch-
ing element for each element of the named object. Itisan error if this check fails.

12.3.1.6 Attribute declarations

Elaboration of an attribute declaration has no effect other than to create atemplate for defining attributes of items.

12.3.1.7 Component declarations

Elaboration of a component declaration has no effect other than to create a template for instantiating component
instances.

12.3.2 Elaboration of a specification

Elaboration of a specification has the effect of associating additional information with apreviously declared item.
12.3.2.1 Attribute specifications

Elaboration of an attribute specification proceeds as follows:

a) The entity specification is elaborated in order to determine which items are affected by the attribute
specification.

b) The expression is evaluated to determine the value of the attribute. It is an error if the value of the
expression does not belong to the subtype of the attribute; if the attribute is of an array type, then an
implicit subtype conversion is first performed on the value, unless the subtype indication of the at-
tribute denotes an unconstrained array type.

¢) A new instance of the designated attribute is created and associated with each of the affected items.
d) Each new attribute instance is assigned the value of the expression.

The assignment of avalueto aninstance of agiven attribute involves a check that the value bel ongs to the subtype
of the designated attribute. For an attribute of a constrained array type, an implicit subtype conversion isfirst ap-
plied as for an assignment statement. No such conversion is necessary for an attribute of an unconstrained array
type; the constraints on the value determine the constraints on the attribute.

Clause 12 171

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

IEEE
Std P1076a-1999 2000/D3 IEEE STANDARD VHDL

NOTE

—The expression in an attribute specification need not be a static expression.
12.3.2.2 Configuration specifications

Elaboration of a configuration specification proceeds as follows:

a Thecomponent specification iselaborated in order to determine which component instances are affect-
ed by the configuration specification.

b) Thebinding indication is elaborated to identify the design entity to which the affected component in-
stances will be bound.

¢) Thebinding information is associated with each affected component instance label for later useinin-
stantiating those component instances.

As part of this elaboration process, a check is made that both the entity declaration and the corresponding archi-
tecture body implied by the binding indication exist within the specified library. It isan error if this check fails.

12.3.2.3 Disconnection specifications
Elaboration of a disconnection specification proceeds as follows:

a) Theguarded signa specification is elaborated in order to identify the signals affected by the discon-
nection specification.

b) Thetimeexpressionisevaluated to determinethe disconnection timefor drivers of the affected signals.

¢) Thedisconnection timeisassociated with each affected signal for later use in constructing disconnec-
tion statements in the equivalent processes for guarded assignments to the affected signals.

12.4 Elaboration of a statement part

Concurrent statements appearing in the statement part of a block must be elaborated before execution begins.
Elaboration of the statement part of a block consists of the elaboration of each concurrent statement in the order
given. Thisrule holds for all block statement parts except for those blocks equivalent to a design entity whose
corresponding architectureis decorated with the 'FOREIGN attribute defined in package STANDARD (see 14.2).

For this case, the statements are not elaborated; instead, the design entity is subject to implementati on-dependent
elaboration.

12.4.1 Block statements

Elaboration of ablock statement consists of the elaboration of the block header, if present, followed by the elab-
oration of the block declarative part, followed by the elaboration of the block statement part.

Elaboration of ablock statement may occur under the control of aconfiguration declaration. In particular, ablock
configuration, whether implicit or explicit, within aconfiguration declaration may supply asequence of additional
implicit configuration specificationsto be applied during the elaboration of the corresponding block statement. If
ablock statement isbeing elaborated under the control of aconfiguration declaration, then the sequence of implicit
configuration specifications supplied by the block configuration is elaborated as part of the block declarative part,
following all other declarativeitemsin that part.

The sequence of implicit configuration specifications supplied by a block configuration, whether implicit or ex-
plicit, consists of each of the configuration specificationsimplied by component configurations (see 1.3.2) occur-

172 Clause 12

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

IEEE
LANGUAGE REFERENCE MANUAL Std P1076a-1999 2000/D3

ring immediately within the block configuration, in the order in which the component configurations themselves
appear.

12.4.2 Generate statements

Elaboration of agenerate statement consists of the replacement of the generate statement with zero or more copies
of ablock statement whose declarative part consists of the declarative items contained within the generate state-
ment and whose statement part consists of the concurrent statements contained within the generate statement.
These block statements are said to be represented by the generate statement. Each block statement is then elabo-
rated.

For agenerate statement with afor generation scheme, elaboration consists of the elaboration of the discreterange,
followed by the generation of one block statement for each valuein therange. The block statements all have the
following form:

a) Thelabel of the block statement is the same as the label of the generate statement.

b) Theblock declarative part has, as its first item, a single constant declaration that declares a constant
with the same simple name as that of the applicable generate parameter; the value of the constant isthe
value of the generate parameter for the generation of this particular block statement. The type of this
declaration is determined by the base type of the discrete range of the generate parameter. Theremain-
der of the block declarative part consists of a copy of the declarative items contained within the gen-
erate statement.

¢) Theblock statement part consists of acopy of the concurrent statements contained within the generate
statement.

For a generate statement with an if generation scheme, elaboration consists of the evaluation of the Boolean ex-
pression, followed by the generation of exactly one block statement if the expression evaluatesto TRUE, and no
block statement otherwise. If generated, the block statement has the following form:

— Theblock label isthe same as the label of the generate statement.

— Theblock declarative part consists of a copy of the declarative items contained within the generate
Statement.

— Theblock statement part consists of acopy of the concurrent statements contained within the generate
Statement.

Examples:
-- Thefollowing generate statement:

LABL : for I in 1to 2 generate

signal sl : INTEGER,;
begin

sl <=pl;

Instl : and_gate port map (s1, p2(1), p3);
end generate LABL;

Clause 12 173

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

IEEE
Std P1076a-1999 2000/D3 IEEE STANDARD VHDL

-- isequivalent to the following two block statements:

LABL : block

constant | : INTEGER :=1;

signal sl : INTEGER,;
begin

sl <=pl;

Instl : and_gate port map (s1, p2(l), p3);
end block LABL;

LABL : block

constant | : INTEGER = 2;

signal sl : INTEGER,;
begin

sl <=pl;

Instl: and_gate port map (s1, p2(1), p3);
end block LABL;

-- The following generate statement:

LABL :if (g1 = g2) generate

signal sl : INTEGER,;
begin

sl <=pl;

Instl : and_gate port map (s1, p4, p3);
end generate LABL;

-- isequivalent to the following statement if g1 = g2;
-- otherwiseg, it is equivalent to no statement at al:

LABL : block

signal sl : INTEGER,;
begin

sl <=pl;

Instl : and_gate port map (s1, p4, p3);
end block LABL;

NOTE

—The repetition of the block labelsin the case of afor generation scheme does not produce multiple declarations of the label
on the generate statement. The multiple block statements represented by the generate statement constitute multiple refer-
ences to the same implicitly declared label.

12.4.3 Component instantiation statements

Elaboration of a component instantiation statement that instantiates a component declaration has no effect unless
the component instance is either fully bound to a design entity defined by an entity declaration and architecture
body or bound to a configuration of such adesign entity. If a component instance is so bound, then elaboration
of the corresponding component instantiation statement consists of the elaboration of theimplied block statement
representing the component instance and (within that block) theimplied block statements® representing the design
entity to which the component instance is bound. Theimplied block statements are defined in 9.6.1.

Elaboration of acomponent instantiation statement whose instantiated unit denotes either adesign entity or acon-
figuration declaration consists of the elaboration of the implied block statement representing the component in-

6. LCS3.

174 Clause 12

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

IEEE
LANGUAGE REFERENCE MANUAL Std P1076a-1999 2000/D3

stantiation statement and (within that block) the implied block statements’ representing the design entity to which
the component instanceis bound. The implied block statements are defined in 9.6.2.

12.4.4 Other concurrent statements

All other concurrent statements are either process statements or are statements for which there is an equivalent
process statement.

Elaboration of a process statement proceeds as follows:
a) The process declarative part is elaborated.
b) Thedriversrequired by the process statement are created.

¢) Theinitial transaction defined by the default value associated with each scalar signal driven by the pro-
cess statement is inserted into the corresponding driver.

Elaboration of all concurrent signal assignment statements and concurrent assertion statements consi sts of the con-
struction of the equivalent process statement followed by the elaboration of the equivalent process statement.

12.5 Dynamic elaboration

The execution of certain constructs that involve sequential statements rather than concurrent statements also in-
volves elaboration. Such elaboration occurs during the execution of the model.

There are three particular instances in which elaboration occurs dynamically during simulation. These are as fol-
lows:

a) Execution of aloop statement with afor iteration scheme involves the elaboration of the loop param-
eter specification prior to the execution of the statements enclosed by the loop (see 8.9). This elabo-
ration creates the loop parameter and eval uates the discrete range.

b) Execution of a subprogram call involves the elaboration of the parameter interface list of the corre-
sponding subprogram declaration; thisinvolves the elaboration of each interface declaration to create
the corresponding formal parameters. Actual garameters are then associated with formal parameters.
Next, if the subprogram isamethod of agiven® protected type (see 3.5.1) or an implicitly declared file
operation (see 3.4.1)°, the el aboration blocks (suspends execution while retaining all state)”, if neces-
sary, until exclusive access to the object denoted be/ the prefix_of the method or to the file objected
denoted by the file parameter of the file operation'® is secured. Finally, if the designator of the sub-
program is not decorated with the 'FOREIGN attribute defined in package STANDARD, the declara-
tive part of the corresponding subprogram body is elaborated and the sequence of statements in the
subprogram body is executed. |If the designator of the subprogram is decorated with the 'FOREIGN
attribute defined in package STANDARD, then the subprogram body is subject to implementation-de-
pendent elaboration and execution.

c¢) Evaluation of an alocator that contains a subtype indication involves the elaboration of the subtype
indication prior to the allocation of the created object.

LCS3.
Usage correction noted by Ashenden.
Ashenden, P1076-2000/D1 review.
0. Added definition as part of D1 review.
1. Ashenden, P1076-2000/D1 review.

BB oo~

Clause 12 175

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

IEEE
Std P1076a-1999 2000/D3 IEEE STANDARD VHDL

NOTES

1—It is a consequence of these rules that declarative items appearing within the declarative part of a subprogram body are
elaborated each time the corresponding subprogram is called; thus, successive elaborations of agiven declarative item ap-
pearing in such a place may create items with different characteristics. For example, successive elaborations of the same
subtype declaration appearing in a subprogram body may create subtypes with different constraints.

2—If two or more processes access the same set of shared variables, livelock or deadlock may occur. That is, it may not be
possible to ever grant exclusive access to the shared variable as outlined in b), above. Implementations are allowed to, but
not required to, detect and, if possible, resolve such conditions.

12.6 Execution of a model

The elaboration of a design hierarchy produces a model that can be executed in order to simulate the design rep-
resented by the model. Simulation involves the execution of user-defined processes that interact with each other
and with the environment.

The kernel processis a conceptual representation of the agent that coordinates the activity of user-defined pro-
cesses during asimulation. This agent causes the propagation of signal values to occur and causes the values of
implicit signals [such as S'Stable(T)] to be updated. Furthermore, this processis responsible for detecting events
that occur and for causing the appropriate processes to execute in response to those events.

For any given signal that is explicitly declared within amodel, the kernel process contains a variable representing
the current value of that signal. Any evaluation of a name denoting a given signal retrieves the current value of
the corresponding variable in the kernel process. During simulation, the kernel process updates that variable from
time to time, based upon the current values of sources of the corresponding signal.

In addition, the kernel process contains a variable representing the current value of any implicitly declared
GUARD signal resulting from the appearance of aguard expression on a given block statement. Furthermore, the
kernel process contains both adriver for, and a variable representing the current value of, any signal SStable(T),
for any prefix Sand any time T, that is referenced within the model; likewise, for any signal SQuiet(T) or STrans-
action.

12.6.1 Drivers

Every signal assignment statement in a process statement defines a set of driversfor certain scalar signals. There
isasingledriver for agiven scalar signal Sin a process statement, provided that thereisat least one signal assign-
ment statement in that process statement and that the longest static prefix of the target signal of that signal assign-
ment statement denotes S or denotes a composite signal of which Sisasubelement. Each such signal assignment
statement is said to be associated with that driver. Execution of a signal assignment statement affects only the
associated driver(s).

A driver for ascalar signal is represented by a projected output waveform. A projected output waveform consists
of a sequence of one or more transactions, where each transaction is a pair consisting of a value component and
atime component. For agiven transaction, the value component represents a value that the driver of the signal is
to assume at some point in time, and the time component specifies which point in time. These transactions are
ordered with respect to their time components.

A driver always contains at least one transaction. The initial contents of a driver associated with a given signal
are defined by the default value associated with the signal (see 4.3.1.2).

For any driver, there is exactly one transaction whose time component is not greater than the current simulation
time. The current value of the driver is the value component of this transaction. If, asthe result of the advance
of time, the current time becomes equal to the time component of the next transaction, then thefirst transaction is
deleted from the projected output waveform and the next becomes the current value of the driver.

176 Clause 12

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

IEEE
LANGUAGE REFERENCE MANUAL Std P1076a-1999 2000/D3

12.6.2 Propagation of signal values
As simulation time advances, the transactionsin the projected output waveform of agiven driver (see 12.6.1) will
each, in succession, become the value of the driver. When a driver acquires a new value in this way, regardless
of whether the new valueis different from the previous value, that driver is said to be active during that simulation
cycle. For the purposes of defining driver activity, adriver acquiring a value from a null transaction is assumed
to have acquired anew value. A signal is said to be active during a given simulation cycle

— If oneof itssourcesis active

— If one of its subelementsis active

— Ifthesignal isnamed in the formal part of an association element in a port association list and the cor-
responding actual is active

— If thesignal isasubelement of aresolved signal and the resolved signal is active
If asignal of agiven composite type has a source that is of a different type (and therefore a conversion function
or type conversion appears in the corresponding association element), then each scalar subelement of that signal
is considered to be active if the source itself isactive. Similarly, if a port of agiven composite typeis associated
with asignal that is of a different type (and therefore a conversion function or type conversion appears in the cor-
responding association element), then each scalar subelement of that port is considered to be active if the actual
signal itself is active.

In addition to the preceding information, an implicit signal is said to be active during a given simulation cycle if
the kernel process updates that implicit signal within the given cycle.

If asignal is not active during a given simulation cycle, then the signal is said to be quiet during that simulation
cycle.

Thekernel process determinestwo valuesfor certain signals during any given simulation cycle. Thedriving value
of agiven signa isthe value that signal provides as asource of other signals. The effective value of agiven signal
is the value obtainable by evaluating a reference to the signal within an expression. The driving value and the
effective value of asignal are not always the same, especially when resol ution functions and conversion functions
or type conversions are involved in the propagation of signal values.
A basic signal isasignal that has al of the following properties:

— Itiseither ascalar signal or aresolved signal (see 4.3.1.2);

— Itisnot asubelement of aresolved signal;

— Isnot animplicit signal of the form SStable(T), SQuiet(T), or STransaction (see 14.1); and

— Itisnot animplicit signal GUARD (see9.1).
Basic signals are those that determine the driving values for all other signals.

The driving value of any basic signal Sis determined as follows:

— If S has no source, then the driving value of S is given by the default value associated with S (see
4.3.1.2).

— If Shasone sourcethat isadriver and Sisnot aresolved signal (see 4.3.1.2), then the driving value of
Sisthe current value of that driver.

12. Boyer.

Clause 12 177

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

IEEE

Std P1076a-1999 2000/D3 IEEE STANDARD VHDL

If Shas one sourcethat isaport and Sisnot aresolved signal, then the driving value of Sisthedriving
value of the formal part of the association element that associates S with that port (see 4.3.2.2). The
driving value of aformal part is obtained by evaluating the formal part as follows. If no conversion
function or type conversion is present in the formal part, then the driving value of theformal partisthe
driving value of the signal denoted by the formal designator. Otherwise, the driving value of the for-
mal part is the value obtained by applying either the conversion function or type conversion (which-
ever iscontained in theformal part) to the driving value of the signal denoted by the formal designator.

If Sisaresolved signal and has one or more sources, then the driving values of the sources of S are
examined. Itisan error if any of these driving values is a composite where one or more subelement
values are determined by the null transaction (see 8.4.1) and one or more subelement values are not
determined by the null transaction. If Sisof signal kind register and al the sources of S have values
determined by the null transaction, then the driving value of S is unchanged from its previous value.
Otherwise, the driving value of Sis obtained by executing the resolution function associated with S,
wherethat function is called with an input parameter consisting of the concatenation of thedriving val-
ues of the sources of S, with the exception of the value of any source of S whose current value is de-
termined by the null transaction.

The driving value of any signal Sthat isnot abasic signal is determined as follows:

If Sisasubelement of aresolved signal R, thedriving value of Sisthe corresponding subelement value
of the driving value of R.

Otherwise (Sis a nonresolved, composite signal), the driving value of Sis equal to the aggregate of
the driving values of each of the basic signalsthat are the subelements of S.

For ascalar signal S, the effective value of Sis determined in the following manner:

If Sisasignal declared by asignal declaration, aport of mode buffer, or an unconnected port of mode
inout, then the effective value of Sisthe same asthe driving value of S.

If Sisaconnected port of modein or inout, then the effective value of Sisthe same as the effective
value of the actual part of the association element that associates an actual with S (see 4.3.2.2). The
effective value of an actual part is obtained by evaluating the actual part, using the effective value of
the signal denoted by the actual designator in place of the actual designator.

If Sisan unconnected port of mode in, the effective value of Sis given by the default value associated
with S (see 4.3.1.2).

For a composite signal R, the effective value of R is the aggregate of the effective values of each of the subele-
ments of R.

For ascalar signal S, both the driving and effective values must belong to the subtype of the signal. For a com-
positesigna R, animplicit subtype conversion is performed to the subtype of R; for each element of R, there must
be amatching element in both the driving and the resehved effective!® value, and vice versa

In order to update a signal during a given simulation cycle, the kernel process first determines the driving and
effective values of that signal. The kernel process then updates the variable containing the current value of the
signal with the newly determined effective value, as follows:

a) If Sisasigna of sometypethat isnot an array type, the effective value of Sisused to update the cur-
rent value of S. A check is made that the effective value of S belongs to the subtype of S. An error
occursif this subtype check fails. Finaly, the effective value of Sisassigned to the variable represent-
ing the current value of the signal.

13. Boyer.
178 Clause 12

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

IEEE
LANGUAGE REFERENCE MANUAL Std P1076a-1999 2000/D3

b) If Sisanarray signal (including adlice of an array), the effective value of Sisimplicitly converted to
the subtype of S. The subtype conversion checksthat for each element of Sthereisamatching element
in the effective value and vice versa. An error occurs if this check fails. The result of this subtype
conversion is then assigned to the variable representing the current value of S.

Updating asignal Sof type T issaid to change the current value of Sif and only if the expression “S= S Delayed”
evaluatesto False, where the "=" operator in the expression is the predefined "=" on type T.'* If updating asignal
causes the current value of that signal to change, then an event is said to have occurred on the signal. This defi-
nition appliesto any updating of asignal, whether such updating occurs according to the above rules or according
to the rules for updating implicit signalsgiven in 12.6.3. The occurrence of an event may will'® cause the resump-
tion and subsequent execution of certain processes during the simulation cycle in which the event occurs, if and

only if those processes are currently sensitive to the signal on which the event has occurred?®.

For any signal other than one declared with the signal kind register, the driving and effective values of the signa
are determined and the current value of that signal is updated as described above in every simulation cycle. A
signal declared with the signal kind register is updated in the same fashion during every simulation cycle except
those in which all of its sources have current values that are determined by null transactions.

A netisacollection of drivers, signals (including ports and implicit signals), conversion functions, and resolution
functions that, taken together, determine the effective and driving values of every signal on the net.

Implicit signals GUARD,” SStable(T), SQuiet(T), and STransaction, for any prefix S and any time T, are not
updated according to the above rules; such signals are updated according to the rules described in 12.6.3.

NOTES

1—In agiven!8 simulation cycle, situations can occur where® a subelement of acomposite signal may-beis? quiet, but and®!
the signal itself may-beis?? active.

2—The rules concerning association of actuals with formals (see 4.3.2.2) imply that, if a composite signal is associated with
acomposite port of mode out, inout, or buffer, and if no conversion function or type conversion appearsin either the actual
or formal part of the association element, then each scalar subelement of the formal is a source of the matching subelement
of the actual. In such acase, a given subelement of the actual will be active if and only if the matching subelement of the
formal is active.

3—Theagorithm for computing the driving value of ascalar signal Sisrecursive. For example, if Sisalocal signal appearing
as an actua in aport association list whose formal is of mode out or inout, the driving value of S can only be obtained
after the driving value of the corresponding formal part is computed. This computation may involve multiple executions
of the above algorithm.

4—Similarly, the algorithm for computing the effective value of asignal Sisrecursive. For example, if aformal port S of mode
in correspondsto an actual A, the effective value of A must be computed before the effective value of S can be computed.
The actual A may itself appear asaformal port in a port association list.

5—No effective value is specified for out and linkage ports, since these ports may-net cannot?® be read.

6—Overloading the operator “=" has no effect on the propagation of signal values.

14. LCS14.

15. IR1000.4.7.
16. IR1000.4.7.
17. Boyer.

18. 1R1000.4.7.
19. IR1000.4.7.
20. 1R1000.4.7.
21. 1R1000.4.7.
22. IR1000.4.7.
23. IR1000.4.7.

Clause 12 179

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

IEEE
Std P1076a-1999 2000/D3 IEEE STANDARD VHDL

7—A signal of kind register may be active even if its associated resolution function does not execute in the current simulation
cycleif the values of all of its drivers are determined by the null transaction and at |east one of itsdriversis also active.

8—The definition of the driving value of a basic signal exhausts al cases, with the exception of a non-resolved signal with
more than one source. This condition is defined as an error in 4.3.1.2.

12.6.3 Updating implicit signals

The kernel process updates the value of each implicit signal GUARD associated with a block statement that has
aguard expression. Similarly, the kernel process updates the values of each implicit signal S'Stable(T), SQui-
et(T), or STransaction for any prefix S and any time T; this also involves updating the drivers of SStable(T) and
SQuiet(T).

For any implicit signal GUARD, the current value of the signal ismaodified if and only if the corresponding guard
expression contains areferenceto asignal Sand if Sisactive during the current simulation cycle. In such acase,
theimplicit signal GUARD is updated by evaluating the corresponding guard expression and assigning the result
of that evaluation to the variable representing the current value of the signal.

For any implicit signal S'Stable(T), the current value of the signal (and likewise the current state of the correspond-
ing driver) ismodified if and only if one of the following statementsistrue:

— Anevent hasoccurred on Sin this simulation cycle.
— Thedriver of SStable(T) isactive.

If an event has occurred on signal S, then S'Stable(T) is updated by assigning the value FAL SE to the variable
representing the current value of SStable(T), and the driver of SStable(T) is assigned the waveform TRUE after
T. Otherwise, if the driver of SStable(T) is active, then SStable(T) is updated by assigning the current value of
the driver to the variable representing the current value of SStable(T). Otherwise, neither the variable nor the
driver is modified.

Similarly, for any implicit signal SQuiet(T), the current value of the signal (and likewise the current state of the
corresponding driver) is modified if and only if one of the following statementsis true:

— Sisactive.
— Thedriver of SQuiet(T) isactive.

If signal Sisactive, then SQuiet(T) isupdated by assigning the value FAL SE to the variable representing the cur-
rent value of SQuiet(T), and the driver of SQuiet(T) is assigned the waveform TRUE after T. Otherwisg, if the
driver of SQuiet(T) isactive, then SQuiet(T) isupdated by assigning the current value of the driver to thevariable
representing the current value of SQuiet(T). Otherwise, neither the variable nor the driver is modified.

Finally, for any implicit signal STransaction, the current value of the signal is modified if and only if Sisactive.
If signal Sisactive, then STransaction is updated by assigning the value of the expression (not STransaction) to
the variable representing the current value of STransaction. At most one such assignment will occur during any
given simulation cycle.

For any implicit signal SDelayed(T), the signal is not updated by the kernel process. Instead, it is updated by
constructing an equivalent process (see 14.1) and executing that process.

The current value of agiven implicit signal denoted by R is said to depend upon the current value of another signal
Sif one of the following statementsis true:

— Rdenotesanimplicit GUARD signal and Sisany other implicit signal named within the guard expres-
sion that defines the current value of R.

180 Clause 12

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

IEEE
LANGUAGE REFERENCE MANUAL Std P1076a-1999 2000/D3

— Rdenotesan implicit signal SStable(T).

— R denotesan implicit signal SQuiet(T).

— R denotesan implicit signal STransaction.—R denotes an implicit signal SDelayed(T).
These rules define apartial ordering on all signalswithin amodel. The updating of implicit signals by the kernel
processis guaranteed to proceed in such a manner that, if agivenimplicit signal R depends upon the current value
of another signal S, then the current value of S will be updated during a particular simulation cycle prior to the
updating of the current value of R.

NOTE

—These rules imply that, if the driver of S'Stable(T) is active, then the new current value of that driver is the value TRUE.
Furthermore, these rulesimply that, if an event occurs on S during a given simulation cycle, and if the driver of SStable(T)
becomes active during the same cycle, the variable representing the current value of S'Stable(T) will be assigned the value
FALSE, and the current value of the driver of SStable(T) during the given cycle will never be assigned to that signal.

12.6.4 The simulation cycle
The execution of amodel consists of an initialization phase followed by the repetitive execution of process state-
ments in the description of that model. Each such repetition is said to be a simulation cycle. In each cycle, the
values of all signalsin the description are computed. If asaresult of this computation an event occurs on agiven
signal, process statementsthat are sensitive to that signal will resume and will be executed as part of the simulation
cycle.
At the beginning of initialization, the current time, T, is assumed to be O ns.
Theinitialization phase consists of the following steps:
— Thedriving value and the effective value of each explicitly declared signal are computed, and the current
value of the signal is set to the effective value. Thisvaueisassumed to have been the value of the signal
for an infinite length of time prior to the start of simulation.

— Thevalue of each implicit signa of the form S'Stable(T) or SQuiet(T) is set to True. The value of each
implicit signal of the form SDelayed(T) is set to theinitia value of its prefix, S.

— The value of each implicit GUARD signal is set to the result of evaluating the corresponding guard ex-
pression.

— Each nonpostponed process in the model is executed until it suspends.
— Each postponed process in the model is executed until it suspends.

— Thetime of the next simulation cycle (which in this case is the first simulation cycle), Ty, is calculated
according to the rules of step f of the simulation cycle, below.

A simulation cycle consists of the following steps:

a) Thecurrenttime, T.isset equal to T,, Simulation is complete when T, = TIME'HIGH and there are
no active drivers or process resumptions at Tp,

b) Each active explicit signal in the model is updated. (Events may occur on signals as aresult.)

¢) Eachimplicit signal in the model is updated. (Events may occur on signals as aresult.)

Clause 12 181

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

IEEE

Std P1076a-1999 2000/D3 IEEE STANDARD VHDL

d) For each process P, if P is currently sensitive to asignal S and if an event has occurred on Sin this
simulation cycle, then P resumes.

€) Each nonpostponed process that has resumed in the current simulation cycle is executed until it sus-
pends.

f) Thetime of the next simulation cycle, Ty, is determined by setting it to the earliest of
1) TIMEHIGH,

2) Thenext time at which adriver becomes active, or
3) Thenext time at which a process resumes.
If Tp = T, then the next simulation cycle (if any) will be adelta cycle.

g) Ifthenext ssimulation cyclewill beadeltacycle, the remainder of thisstep isskipped. Otherwise, each
postponed process that has resumed but has not been executed sinceitslast resumption is executed un-
til it suspends. Then T, is recalculated according to the rules of step f. It isan error if the execution
of any postponed process causes a delta cycle to occur immediately after the current simulation cycle.

NOTES

1—Theinitial value of any implicit signal of the form STransaction is not defined.

2—Updating of explicit signalsisdescribed in 12.6.2; updating of implicit signalsis described in 12.6.3.

3—When a process resumes, it is added to one of two sets of processes to be executed (the set of postponed processes and the
set of nonpostponed processes). However, no process actually begins to execute until al signals have been updated and
al executable processes for this simulation cycle have been identified. Nonpostponed processes are always executed dur-
ing step e of every simulation cycle, while postponed processes are executed during step g of every simulation cycle that
does not immediately precede a delta cycle.

4—The second and third steps of the initialization phase and steps b and ¢ of the simulation cycle may occur in interleaved
fashion. This interleaving may occur because the implicit signal GUARD may be used as the prefix of another implicit
signal; moreover, implicit signals may be associated as actuals with explicit signal's, making the value of an explicit signal
afunction of an implicit signal.

182

Clause 12

Copyright © 2000, IEEE. All rights reserved.
Thisis an unapproved |EEE Standards Draft, subject to change.

