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Goals and Background 
 

A purpose of this lab is to design, implement and experimentally check a 4-bit 
Arithmetic Logic Unit (ALU). An ALU is a combinational circuit that performs 
arithmetic and logic operations on a pair of n-bit operands. The operations 
performed by an ALU are controlled by a set of function-select inputs. In this lab 
we will create a 4-bit ALU with 3 function-select inputs: Mode M, Select S1 and 
S0 inputs. The mode input (M) selects between a Logic (M=0) and an Arithmetic 
(M=1) operation. The functions performed by the ALU are given in the below 
table.  

 
Table 1: Functions of ALU 

M = 0 Logic 
S1 S0 C0 FUNCTION OPERATION (bit wise) 
0 0 X AiBi AND 
0 1 X Ai + Bi OR 
1 0 X Ai⊕ Bi XOR 
1 1 X (Ai⊕ Bi)’ XNOR 

M = 1 Arithmetic 
S1 S0 C0 FUNCTION OPERATION 
0 0 0 A Transfer A 
0 0 1 A + 1 Increment A by 1 
0 1 0 A + B Add A and B 
0 1 1 A + B + 1 Increment the sum of A and B by 1 
1 0 0 A + B' A plus one's complement of B 
1 0 1 A – B Subtract B from A (i.e. B' + A + 1) 
1 1 0 A' + B B plus one's complement of A 
1 1 1 B – A B minus A (or A' + B + 1) 

Table 1: Functions of ALU on individual bits 
 

  
The numbers we will use will be inputted and displayed in two’s complement 
form. This form was chosen because it is easier and more accurate to execute 
arithmetic operations this way. However there is a potential for overflow, which is 
dealt with by using an overflow detector (V) in the circuit. This will be explained 
in greater detail later. 

 
 

The block diagram for a 4-bit ALU can be seen below along with the given 
implementation method:  
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Figure 1: 4-bit ALU with Accompanying Implementation and Display Units 

 
 
 
In order to begin designing this system of combinational circuits we first had to 
decide how the ALU will work. One option was to write out the full truth table 
and derive equations for F and V from that. The other option, which we chose to 
execute, was to design a 1-bit ALU, and then combine four of them to create a 4-
bit ALU.  
 
Since the output of the 4-bit ALU (F[3:0]) is dependant on the signal M, we have 
two ways of displaying our results. When M=0, and the result from the 4-bit ALU 
is Logic based, the result is displayed on an array of LEDs. On the other hand, 
when M=1, the output of the 4-bit ALU is a 2’s complement digit. Using a 
decoder, we can display this digit’s sign and magnitude on a 7-segment display. 
However, because the four 7-segment displays on our Spartan XL board are 
linked together, we must create a Display Switch Circuit that alternates displaying 
the resulting sign and magnitude. 
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Section I – Designing the Bit-Slice ALU (1-bit) 
In order to design a bit-slice ALU, we needed to design three components: the 
arithmetic unit, the logic unit, and the 2:1 MUX which combines them and 
outputs the value specified by the Select bit (M). A block diagram of the entire 
unit is seen below. 

 

 
Figure 2: Block Diagram of bit-slice ALU 

 
Task 1 – Designing the 2:1 MUX 

The function of this component is to select either G or H based on the value of M.  
We designed this multiplexer using VHDL code, and created a macro from it. The 
code can be seen below: 

 
VHDL Code for 2:1 MUX 

library IEEE; 
use IEEE.std_logic_1164.all; 
 
entity mux21 is 
    port ( 
 G: in STD_LOGIC; 
        H: in STD_LOGIC; 
        M: in STD_LOGIC; 
 F: out STD_LOGIC; 
        ); 
 
end mux21; 
 
architecture mux21_arch of mux21 is 
  
begin 
  -- <<enter your statements here>> 
 F <= (M and G) or ((not M) and H);   
end mux21_arch; 
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Our macro was then tested using Functional Simulation in Xilinx Foundation 
Software. 
 

 
Figure 2: Functional Simulation of 2:1 MUX 

 
Analysis of this waveform verifies that our multiplexer works properly since the 
output F takes the value of H when M=0, and G when M=1. 

 
Task 2 – Designing the Logic Unit 

Using the Logic segment of Table 1, we created the VHDL code for our Logic 
Unit. The code resembles a multiplexer with additional gates already factored in. 
Our VHDL Code is shown below, combined with a screen capture of it. 
 

VHDL Code for the Logic Unit 
library IEEE; 
use IEEE.std_logic_1164.all; 
 
entity LOGIC is 
    port ( 
 A: in STD_LOGIC; 
      B: in STD_LOGIC; 
 S1: in STD_LOGIC; 
 S0: in STD_LOGIC; 
 H: out STD_LOGIC; 
        ); 
 
end LOGIC; 
 
architecture LOGIC_arch of LOGIC is 
  
begin 
  -- <<enter your statements here>> 
 H <= ((not S1) and (not S0) and A and B) or ((not S1) and S0 and 
(A or B)) or (S1 and (not SO) and (A xor B)) or (S1 and S0 and (A xnor 
B));  
 
end LOGIC_arch; 
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Figure 3: Screen Capture of HDL code for our Logic Unit (LOGIC) 

 
In order to verify that the LOGIC macro we created based on the codes above 
functions properly, we performed Functional Simulation on it. The waveform 
generated is shown below: 

 

 
Figure 4: Functional Simulation of Logic Macro 

 
Analysis of this waveform successfully verifies that our Logic Unit functions 
properly. The S1 Bus in Figure 4 displays the hexadecimal values which are 
assigned to the certain logic operations in Table 1. A reference table is below: 
 

Hex Value Binary Value 
     S1 S0  

0  0 0 
1  0 1 
2  1 0 
3  1 1 
 

Table 2: Reference Table for Figure 4  
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Task 3- Designing the Arithmetic Unit 

The Arithmetic Unit can be designed by using a Full Adder and two additional 
components for A and B logic, which modifies the inputs A and B in such a way 
the Full Adder performs what it is assigned to do in the Arithmetic segment of 
Table 1.  
 

 
Figure 5: Schematic Block Diagram of the Arithmetic Unit 

 
a. Designing the A Logic Unit 

In order to design the A-logic unit, we had to develop an equation that gives 
the values of Xi as a function of S1, S0 and Ai. To design this we used a truth 
table to solve for the expected values of Xi. 
 

S1 S0 Ai Xi (A Logic) 
0 0 0 0 
0 0 1 1 
0 1 0 0 
0 1 1 1 
1 0 0 0 
1 0 1 1 
1 1 0 1 
1 1 1 0 

Table 3: A-Logic Table 
 
 K-map: 
  

Xi   S0 
 0 1 1 0 
S1 0 1 0 1 
  Ai  

 
 Equations: 

Xi = S1’Ai + S0’Ai + S1S0Ai’ 
 

Our next step was to write the VHDL code based on the equation above to create 
the A-logic macro. The VHDL code can be seen below: 
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VHDL Code for A-Logic Block 
library IEEE; 
use IEEE.std_logic_1164.all; 
 
entity alogic is 
    port ( 
 Ai: in STD_LOGIC; 
      S1: in STD_LOGIC; 
 S0: in STD_LOGIC; 
 X: out STD_LOGIC; 
        ); 
 
end alogic; 
 
architecture alogic_arch of alogic is 
  
begin 
  -- <<enter your statements here>> 
 X <= (S1 and S0) xor (Ai); 
 
end alogic_arch; 
 

 
Figure 6: Schematic Capture of VHDL Code of A-Logic macro 

 
We then tested our A-logic macro in order to verify that it worked properly. The 
Functional Simulation generated using Xilinx Foundation Software is pictured 
below: 
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Figure 7: Functional Simulation of A-Logic Macro 

 
Comparing the output X to those in Table 3, it is evident that our macro works 
correctly. If we look in between 5 ns and 10 ns, we see that S1=S0= 0 and Ai=1. 
At this point if we look at Table 3, it is clear that X=1, which the Functional 
Waveform above illustrates.  

 
 

b. Designing the B-Logic Unit 
In order to design the B-logic unit, we used a similar method as we had in 
designing the A-logic unit. First, we had to develop an equation that gives the 
values of Yi, in this case, as a function of S1, S0 and Bi. To design this we 
used a truth table to solve for the expected values of Yi. 
 

S1 S0 Bi Yi (B Logic) 
0 0 0 0 
0 0 1 0 
0 1 0 0 
0 1 1 1 
1 0 0 1 
1 0 1 0 
1 1 0 0 
1 1 1 1 

Table 4: B-Logic Table 
 
 K-map: 
  

Yi   S0 
 0 0 1 0 
S1 1 0 1 0 
  Bi  

 
 Equation derived: 

Yi = (S0Bi + S1S0’Bi’)  
 

Our next step was to write the VHDL code based on the equation above to create 
the B-logic macro. The VHDL code can be seen below: 
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VHDL Code for B-Logic Block 
library IEEE; 
use IEEE.std_logic_1164.all; 
 

entity blogic is 
    port ( 
 Bi: in STD_LOGIC; 
      S1: in STD_LOGIC; 
 S0: in STD_LOGIC; 
 Y: out STD_LOGIC; 
        ); 
 
end blogic; 
 
architecture blogic_arch of blogic is 
  
begin 
  -- <<enter your statements here>> 
 Y <= (S0 and Bi) or (S1 and (not Bi) and (not S0)); 
 
end blogic_arch; 
 

 
Figure 8: Schematic Capture of VHDL Code of B-Logic macro 

 
We then tested our B-logic macro in order to verify that it worked properly. The 
Functional Simulation generated using Xilinx Foundation Software is pictured 
below: 
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Figure 9: Functional Simulation of A-Logic Macro 

 
Comparing the output Y to those in Table 3, it is evident that our macro works 
correctly. If we look in between 15 ns and 20 ns, we see that S1= 0, S0=Bi=1. At 
this point if we look at Table 4, it is clear that Y=1, which the Functional 
Waveform above verifies. 

 
  

c. Designing the Full Adder 
In order to design our Full Adder we used equations derived in Lab #2 (The 
Full Adder Project). The truth table we used to derive these equations can be 
seen below.  
 

    
Inputs Outputs 

X Y C G Co 
0 0 0 0 0 
0 0 1 1 0 
0 1 0 1 0 
0 1 1 0 1 
1 0 0 1 0 
1 0 0 1 0 
1 1 0 0 1 
1 1 1 1 1 

Table 5: Truth Table of a Full Adder 
 

 
The equations derived are as follows: 

G = (X xor Y) xor C 
Co = (X and Y) or ((X xor Y) and C) 

 
 
 
With these equations we created a Full-Adder macro using VHDL code. The 
screen capture of the code can be seen below: 
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Figure 10: Screen Capture of the VHDL Code for our Full Adder 

 
In order to test that our Full Adder worked correctly we executed a Functional 
Simulation of the macro in Xilinx. The generated waveform can be seen and 
analyzed below. 
 

 
Figure 11: Functional Simulation of a Full Adder 

 
Analysis of this waveform illustrates that the Full Adder we created functions 
properly. If we look between 20ns and 30ns we will see two changes in G and 
Cout. Between 20ns and 25ns, C=1, X=Y=0, the expected value according to 
Table 5 is that G=1 and Cout= 0, because 1+0+0=1 without a carry. This is 
verified on the simulation above. On the other hand, between 25 and 30ns, C=1, 
X=1, and Y=0. In this case 1+1+0 = 10 which is 0 and a carry-bit. This is again, 
proven to be the case in the Functional Simulation above.  
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d. Compiling the Arithmetic Unit 
  

After testing each of the components of our Arithmetic Unit we went back to 
the Schematic Editor in Xilinx Foundation Software and put all the pieces 
together.  Our schematic is shown below. 

 

 
Figure 12: Schematic Diagram of Arithmetic Unit 

 
 

In order to test that the Arithmetic Unit functioned properly, we used 
Functional Simulation in Xilinx to check our circuit. Our functional 
simulation can is seen below: 

 

 
Figure 13: Functional Simulation of Arithmetic Unit 

 
Analysis of the above waveforms illustrates that our Arithmetic Unit 
actually does function properly. If we look at the first segment in green, 
between 0 and 20 ns, (000 which is representative of S1, S0, and C, 
respectively), we can see that as expected, the value A is transferred to G. 
If we look between 20 and 30 ns, 001, A is transferred and then 1 is added. 
Hence, as illustrated above, the value of G gains the value of ‘1’ and the 
carry-out ‘0’, to illustrate A, ‘0’ and ‘1’ being added together. 
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Task 4 - Compiling the 1-bit ALU 
 

After testing our Arithmetic and Logic units we  generated macros out of 
them and were ready to put all the units together with the 2:1 multiplexer 
designed in part A. A schematic of our 1-bit ALU is shown below: 
 

 
Figure 14: Schematic Diagram of 1-bit ALU 

 
In order to test that our 1-bit ALU we worked properly, we executed 
Functional Simulation on the inputs and outputs of the above. The 
generated waveforms are shown below at times when M=0 (Logic) and 
M=1 (Arithmetic): 
 

 
Figure 15a: Functional Simulation of 1-bit ALU in Logic Mode (M=0) 
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Figure 15b: Functional Simulation of 1-bit ALU in Logic Mode (M=1) 

 
Analysis of Figure 15a (M=0) between 0 and 20ns illustrates that our 1-bit ALU 
logic block works properly. Between these times, S1=S0 = 0, which means that 
the A and B are ANDed together to return the value of F. Due to the fact that F=1 
if and only if A=B=1 during this time frame it is evident that our 1-bit ALU 
works correctly in Logic Mode. 
 
In arithmetic mode (Figure 15b), we know that when S1=S0=C=0 the value of A 
is transferred to the value of F. If you look between 160ns and 180ns, it is clear 
that this indeed the case. Hence, because both our Logic and Arithmetic Units and 
the multiplexer that combines them both works properly, we have successfully 
designed a 1-bit ALU. 
 

Task 5 – Compiling the 4-bit ALU 
In order to create a 4-bit ALU, we compiled four 1-bit ALUs and added an 
overflow detector (V = C3 XOR C4) between the Carry-outs of the third and 
fourth 1-bit ALUs. Our schematic is illustrated below:  
 



 17

 
Figure 16: Schematic Diagram of 4-bit ALU with Overflow Detector 

 
In order to test that our 4-bit ALU worked correctly we executed a Functional Simulation 
on the inputs and outputs of our above schematic prior to making it into a macro.  
  

 
Figure 17a: Functional Simulation of 4-bit ALU with Overflow Detector in Logic Mode (M=0) 
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Figure 17b: Functional Simulation of 4-bit ALU with Overflow Detector in Arithmetic Mode (M=1) 

 
Analysis of the above waveforms, illustrates that just as with our 1-bit ALU, our 
4-bit ALU was designed correctly and works properly. Looking at our ALU in 
Logic Operation (figure 17a), when S1 = S0 = 1 (15-20 ns) our output represents 
that of the XNOR function which is what is supposed to occur. Hence, our logic 
works properly.  
 
For the Arithmetic operation of our ALU, when S1=0, S0=1, C=0, ABUS3 = 
0000, and BBUS=0001, A and B are added together, and returns 0001. This is 
proof that our ALU operates correctly in arithmetic operation. Successful 
operation in both modes verifies that our 4-bit ALU works correctly. Our next 
step was to design the implementation portion of our ALU so it can be tested on a 
Digilab Board.   

 
Task 6- Designing the Main Decoder 

Implementation of our 4-bit ALU requires multiple smaller decoders. In this case 
we created decoders for the LEDs, the 7-segment display and the sign of the 
result.  

  
 

a. Designing the LED Decoder (Logic) 
Our LED decoder takes the input F and displays its value on an array of LEDs 
if M=1 after it has been inverted, seen in the schematic of the main decoder 
(Figure 21). The code and it’s simulated waveform shown below: 

 
VHDL Code for LED Decoder 

library IEEE; 
use IEEE.std_logic_1164.all; 
 
entity leddecod is 
    port ( 
        FBUS: in STD_LOGIC_VECTOR (3 downto 0); 
        M: in STD_LOGIC; 
 SIGN: out STD_LOGIC; 
        LEDS: out STD_LOGIC_VECTOR (3 downto 0) 
    ); 
end leddecod; 
 
architecture leddecod_arch of leddecod is 
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 signal INPUTS: std_logic_vector (4 downto 0); 
begin 
  -- <<enter your statements here>> 
  INPUTS(4) <= M; 
  INPUTS(3) <= FBUS(3); 
  INPUTS(2) <= FBUS(2); 
  INPUTS(1) <= FBUS(1); 
  INPUTS(0) <= FBUS(0); 
   
  with INPUTS select 
   LEDS <=  ("0000") when "10000", 
         ("0001") when "10001", 
         ("0010") when "10010", 
         ("0011") when "10011", 
         ("0100") when "10100", 
         ("0101") when "10101", 
         ("0110") when "10110", 
         ("0111") when "10111", 
   ("1000") when "11000", 
         ("1001") when "11001", 
         ("1010") when "11010", 
         ("1011") when "11011", 
         ("1100") when "11100", 
         ("1101") when "11101", 
         ("1110") when "11110", 
         ("1111") when "11111", 
          ("0000") when others;    
    
    
end leddecod_arch; 
 

 
Figure 18: Functional Simulation of LED Decoder 

In each case the LEDs light up accordingly to the output of the FBUS, 
whenever M=1. Our next step was to design the 7-segment decoder. 

 
b. Designing the 7-Segment Decoder (Arithmetic) 

The 7-segment display takes the output value from the ALU Arithmetic 
operation and displays it on the Digilab board as a digit. The coding for this 
display and its generated waveform is shown below: 

 
 

VHDL Code for 7-Segment Display 
library IEEE; 
use IEEE.std_logic_1164.all; 
 
entity sevensegdec is 
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    port ( 
        XBUS: in STD_LOGIC_VECTOR (3 downto 0); 
        Carry: in STD_LOGIC; 
        Error: out STD_LOGIC; 
        TENS: out STD_LOGIC; 
        LEDONE: out STD_LOGIC_VECTOR (6 downto 0) 
    ); 
end sevensegdec; 
 
architecture sevensegdec_arch of sevensegdec is 
        signal INPUTS: std_logic_vector (4 downto 0); 
begin 
  -- <<enter your statements here>> 
  INPUTS(4) <= Carry; 
  INPUTS(3) <= XBUS(3); 
  INPUTS(2) <= XBUS(2); 
  INPUTS(1) <= XBUS(1); 
  INPUTS(0) <= XBUS(0); 
   
  with INPUTS select 
        LEDONE <=       ("0000001") when "00000", 
                        ("1001111") when "00001", 
                        ("0010010") when "00010", 
                        ("0000110") when "00011", 
                        ("1001100") when "00100", 
                        ("0100100") when "00101", 
                        ("0100000") when "00110", 
                        ("0001111") when "00111", 
                        ("0000000") when "01000", 
                        ("0000100") when "01001", 
                        ("0000001") when "01010", 
                        ("1001111") when "01011", 
                        ("0010010") when "01100", 
                        ("0000110") when "01101", 
                        ("1001100") when "01110", 
                        ("0100100") when "01111", 
                        ("0100000") when "10000", 
                        ("0001111") when "10001", 
                        ("0000000") when "10010", 
                        ("1111111") when others;         
 
    
  TENS <= Carry or (XBUS(3) and XBUS(2)) or (XBUS(3) and XBUS(1)); 
  Error <= (Carry and XBUS(3)) or (Carry and XBUS(2)) or (Carry and 
XBUS(1) and XBUS(0)); 
   
   
end sevensegdec_arch; 
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 Analysis of this waveform between 5 and 10 ns illustrates proper 
operation of the seven segment display. When the ALU returns a value of 0001, 
binary code for the decimal number “1”, the LEDs illuminate in a fashion which 
displays “1” on the Digilab board. The code it returns “1001111” is the 7-bit code 
sent to the cathodes of the 7-segment display (hence because it is active-low, 
illuminating the 2nd and 3rd segments of the display).  
 
 
c. Designing the Sign Decoder 

 
The 7-segment display above, also returns a sign bit as its output. The below 
code takes this bit, and determines whether to display the negative sign 
(“1111110”) on the Digilab Board. The code and accompanying waveform are 
shown below: 
 

 
Figure 19: Screen Capture of VHDL Code for our Sign Decoder 
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Figure 20: Functional Simulation of our Sign Decoder 

 
Analysis of this waveform illustrates the sign decoder functions properly, 
because when the Sign takes the value of logic ‘1’ between 10 and 20ns, the 
negative sign is displayed on the Digilab board. 

  
 
 

d. Compiling the Main Decoder 
We then compiled each of these components in the below schematic, and 
created a macro.  

 
Figure 21: Schematic Diagram of Main Decoder composed of (a) a  7-segment decoder, (b) a LED 

Decoder, and a (c) sign decoder to generate the “-“ sign alongside the number generated  
by the 7-segment Decoder. 

 
 
 

 
Figure 22a: Functional Simulation of the Main Decoder in Logic Mode 
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Figure 22b: Functional Simulation of the Main Decoder in Arithmetic Mode 

 
In Figure 22a, between 10 and 15ns, the input value from the ALU is 0010, and 
the output LED form is 0100. It is apparent that if we change the direction of the 
LED bus, each of the input and output LED values will match, and the LEDs will 
illuminate according to the input.  
 
In Figure 22b, between 40ns and 45ns, the ALU returns a value of 1000, which is 
the decimal equivalent of ‘-8’. Hence, the sign bus (LEDTWO) displays the 
negative sign, and the magnitude bus (LEDONE) displays the number 8 on the 7-
segment display. Analysis of the above waveform proves that this is the case and 
our Decoder works properly.  

 
Task 7- Designing the Display Switch Circuit 

In order to display both the sign and magnitude values alongside each other, a 
Display Switch Circuit is needed to flip back and forth between the outputs of 
LEDONE and LEDTWO. To execute this, the Display Switch Circuit needs to 
consist of a multiplexer driven by a clock. The value we chose to run the clock on 
is 490Hz, which is fast enough so that both the sign and magnitude can be seen. 
The coding for our multiplexer is shown below:  

 
VHDL Code for Display Switch Circuit 

library IEEE; 
use IEEE.std_logic_1164.all; 
  
entity MUX is 
    port ( 
        SIGN: in STD_LOGIC_VECTOR (6 downto 0); 
        DSP: in STD_LOGIC_VECTOR (6 downto 0); 
        D: out STD_LOGIC_VECTOR (6 downto 0); 
        S: in STD_LOGIC 
    ); 
end MUX; 
  
architecture MUX_arch of MUX is 
begin 
 
PRO: process (SEQ, DSP, S) 
begin 
    if (S = '1') then 
        D <= SIGN; 
    else 
       D <= DSP; 
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        end if; 
 
end process PRO; 
end MUX_arch; 
 
 
 

 
Figure 23: Functional Simulation of our Display Switch Circuit Multiplexer 

 
Analysis of this waveform illustrates that our Multiplexer functions correctly on 
any input. When the value of S is ‘0’, between 10 and 20ns, the output D is that of 
DSP (Display = LEDONE), and when S is ‘1’, between 20ns and 30ns, D is SIGN 
(LEDTWO). Hence, our multiplexer alternates properly between the two Display 
buses.   

 
Task 8- Testing the Entire System 

Once each of our components worked properly, we compiled and connected them 
appropriately to IBUFs, OBUFs, IPADs and OPADs, as well as connected the 
clock to our Switch Display Multiplexer. In order to ground the two left segments 
of our 7-segment display on the Digilab board we grounded the OPADs 
connected to pin locations 44 and 40. This is illustrated in the upper right hand 
corner of the below schematic. We also put the pin locations of the two right-
segments of the 7-segment display on a clock, inverting one of the clock signals. 
Hence, the values generated on the display will alternate between the farthest 
right and second from right hand segments. 
 
Our schematic diagram and its accompanying waveforms are illustrated below: 
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Figure 24: Schematic Diagram of Entire 4-bit ALU System 

 

 
Figure 25a: Functional Simulation in Logic Mode 
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Figure 25b: Functional Simulation in Arithmetic Mode, with Clock = 0 

 
 

 
Figure 25c: Functional Simulation in Arithmetic Mode, with Clock =1 

 
Analysis of waveform 25a illustrates our 4-bit ALU in logic operation. When A is 
0000, and B is 0001, and the command S1S0C, 000, ANDs A and B together 
returning the result 0000. 
 
In Figure 25b, between 80 and 90ns, S1=S0=C=0, hence, the value of A is 
transferred and displayed on the 7-segment displays. With clock=0, the result is 
the correct code to display 0 and 1, respectively. This is seen in that diagram. 
 
In Figure 25c, between 300 and 305ns, the system operates in Arithmetic mode 
adding A and B’. In this case, adding 1100 (-4) to 1110 (-2) gives the value of -6. 
When the clock has the value of ‘1’, it displays the sign of this returned value, 
which is -. As explained earlier, “1111110” is the equivalent of the ‘-‘ sign. 
Hence, our entire system works properly. 
 
We then demonstrated our implemented 4-bit ALU to our TA, and tested each of 
the situations in Table 1 on the Digilab Board.  

 
 
Task 9- Timing & Speed of our 4-bit ALU System 
  

Upon Implementation we looked up our Timing Report, and found our Maximum 
Delay to be 35.467 ns.  
 
Hence our Maximum Speed = 2.81 x 107 Hz. 
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Conclusion 
 

In conclusion, our 4-bit ALU design and implementation worked correctly. The 
methods we used to design each component in the system made for proper 
execution of the ALU. While at first we had issues turning off the required 7-
segment displays, and switching between them. Once we figured this out, the 
project worked correctly. This lab let us use the knowledge we have gained over 
the past labs, to design a given project. We also kept in mind making our project 
as time efficient as possible.   
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