LAB 6: ALU Design

Desion and Implementation of a

4-bit Arithmetic Logic Unit

November 8, 2002

Note: This lab report serves as an example to illustrate the formatting and discussions that w
looking for. HOWEVER, do not copy (and paste) material from this report (even is you refern
You need to write your own reports, make your own tables and figures. This servers only as i

guideline!

Tradition Meets Innovation

150 YEARS OF ENGINEERING AT PENN

jan
Samuel Siegel Starr
Emir Tumen

jan
Note: This lab report serves as an example to illustrate the formatting and discussions that we are looking for. HOWEVER, do not copy (and paste) material from this report (even is you refernce it). You need to write your own reports, make your own tables and figures. This servers only as a guideline!

jan
do not copy (and paste) material from this reports

Table of Contents

Goals and Background..........ccoveeviiiiiiiniiiiiiinniiieiinnniecesennnsccnes 3

Task 1: Designing the 2:1 MUX. . ciiiiiiiiiiiiinniiiiimmnniiccsesnssccsennsses 5
Task 2: Designing the Logic Unit.......ccccviiiiiiiiiiiiiiiiiiiiiiiiiiniiinnn. 6
Task 3: Designing the Arithmetic Unit........ccooveiiiiiiiiiiiiiiiiiiiniinnn 8
Task 4: Compiling the 1-bit ALU.....ccccoiiiiiiiiiiiiiiniiiiiiinnniiiiinne 15
Task 5: Compiling the 4-bit ALU.....ccccciiiiiiimiiiiiinnniiiiiinniicecnnnne 16
Task 6: Main Decoder Design......cccoeveiiiiiniiiiuiiiiiniiiiiniiiieiiennnnn 18
Task 7: Designing the Display Switch Circuit........c.ccooveviiniiinninneen. 23
Task 8: Testing the Entire System......ccccoeviiiniiiiiiiiniiiiiiinniicncnnes 24
Task 9: Timing & Speed of our 4-bit ALU System........ccccevvveiinnnnnns 26
Discussion of Results & Conclusion.......ccceveiieiieiiiniiiiiiiiiiecinecnn. 27

Goals and Background

A purpose of this lab is to design, implement and experimentally check a 4-bit
Arithmetic Logic Unit (ALU). An ALU is a combinational circuit that performs
arithmetic and logic operations on a pair of n-bit operands. The operations
performed by an ALU are controlled by a set of function-select inputs. In this lab
we will create a 4-bit ALU with 3 function-select inputs: Mode M, Select S1 and
SO inputs. The mode input (M) selects between a Logic (M=0) and an Arithmetic
(M=1) operation. The functions performed by the ALU are given in the below

table.
Table 1: Functions of ALU
M =0 Logic

S1 SO | CO FUNCTION OPERATION (bit wise)

0 0 X AiB; AND

0 1 X A; + B; OR

1 0 X Ai® B; XOR

1 1 X (Ai® By’ XNOR

M =1 Arithmetic

S1 SO | CO FUNCTION OPERATION

0 0 0 A Transfer A

0 0 1 A+1 Increment A by 1

0 1 0 A+B Add A and B

0 1 1 A+B+1 |Increment the sum of A and B by 1
1 0 0 A+B' A plus one's complement of B

1 0 1 A-B Subtract B from A (i.e. B'+ A + 1)
1 1 0 A'+B B plus one's complement of A

1 1 1 B-A B minus A (or A'+B + 1)

Table 1: Functions of ALU on individual bits

The numbers we will use will be inputted and displayed in two’s complement
form. This form was chosen because it is easier and more accurate to execute
arithmetic operations this way. However there is a potential for overflow, which is
dealt with by using an overflow detector (V) in the circuit. This will be explained
in greater detail later.

The block diagram for a 4-bit ALU can be seen below along with the given
implementation method:

ATy W C H
:... o "] =___!§I "-‘-"
ap0) gt la P —
B20] 4.0 ' LEDs
—<r | B . i
1 4'h“ ALU))) 1 Anndes
Cperation® ' 4 L = = = Das_pla@' l T =
!"!rF:-"rT—'.'- 51 F[3:0] § 5 Switch || ;_ll
- A . Cire it R .
1 j SEL! . cathodes
' 1 :
: FPGA L :

Figure 1: 4-bit ALU with Accompanying Implementation and Display Units

In order to begin designing this system of combinational circuits we first had to
decide how the ALU will work. One option was to write out the full truth table
and derive equations for F and V from that. The other option, which we chose to
execute, was to design a 1-bit ALU, and then combine four of them to create a 4-
bit ALU.

Since the output of the 4-bit ALU (F[3:0]) is dependant on the signal M, we have
two ways of displaying our results. When M=0, and the result from the 4-bit ALU
is Logic based, the result is displayed on an array of LEDs. On the other hand,
when M=1, the output of the 4-bit ALU is a 2’s complement digit. Using a
decoder, we can display this digit’s sign and magnitude on a 7-segment display.
However, because the four 7-segment displays on our Spartan XL board are
linked together, we must create a Display Switch Circuit that alternates displaying
the resulting sign and magnitude.

Section I — Designing the Bit-Slice ALU (1-bit)
In order to design a bit-slice ALU, we needed to design three components: the

arithmetic unit, the logic unit, and the 2:1 MUX which combines them and
outputs the value specified by the Select bit (M). A block diagram of the entire

unit is seen below.

#4 —“_--.... C.:-"
B o] ARITHMETIC |6 1+1
T

-
1
' J
= T e
|| LOGIC = | M
UMIT I
51 - H
S0 —————

|
Figure 2: Block Diagram of bit-slice ALU

Task 1 — Designing the 2:1 MUX
The function of this component is to select either G or H based on the value of M.
We designed this multiplexer using VHDL code, and created a macro from it. The

code can be seen below:
VHDL Code for 2:1 MUX

library IEEE;
use IEEE.std logic 1164.all;

entity mux2l is

port (
G: in STD LOGIC;

H: in STD LOGIC;
M: in STD LOGIC;
out STD_ LOGIC;

) 4

F:

end mux21;

architecture mux2l arch of mux2l is

begin
-- <<enter your statements here>>
F <= (M and G) or ((not M) and H);

end mux2l arch;

Our macro was then tested using Functional Simulation in Xilinx Foundation
Software.

UM!_E_DD_ps_{d&zlﬂi |'5n5 |lETns |J.5ns |‘_ZIIIn5
| 0.0 i||||||||| ||||||||||||I||I||

EEns |3E|ns |35ns |4Dn5
||||||||| |||||||||

Emir Tumen & Sam Starr 1072502
Figure 2: Functional Simulation of 2:1 MUX

Analysis of this waveform verifies that our multiplexer works properly since the
output F takes the value of H when M=0, and G when M=1.

Task 2 — Designing the Logic Unit
Using the Logic segment of Table 1, we created the VHDL code for our Logic
Unit. The code resembles a multiplexer with additional gates already factored in.
Our VHDL Code is shown below, combined with a screen capture of it.

VHDL Code for the Logic Unit
library IEEE;
use IEEE.std logic 1164.all;

entity LOGIC is
port (
A: in STD LOGIC;
B: in STD LOGIC;
Sl: in STD LOGIC;
S0: in STD LOGIC;
H: out STD LOGIC;
);

end LOGIC;
architecture LOGIC arch of LOGIC is
begin
-- <<enter your statements here>>
H <= ((not S1) and (not S0) and A and B) or ((not S1) and SO and
(A or B)) or (S1 and (not SO) and (A xor B)) or (S1 and SO and (A xnor
B));

end LOGIC arch;

BN LOGIC - HDL Editor _

File: EdiE Search View Synbthesis - Proijgct Tools -Help
D] =|&| & %[5 @] | | = fel|ile
1 1library IEEE;
2 use IEEE.std logic 1164%.all;
o
L entity LOGIC is
L port (
[Az in STD_LOGIC;
¥ B: in STD LOGIC;
8 81: in STD LOGIC;
9 S8: in STD LOGIC;
1A H: out S5TD LOGIC
11)
12 end LOGIC;
13
14 architecture LOGIC_arch of LOGIC is
15 begin
16 —— £<enter your statements herel’
17 H <= {{not 51) and {(not 58) and (A and B)) or {({not 51)
18 and 58 and (A or B)) or (51 and (not 58) and (A =or B))
19 o (51 and 58 and (A =no+~ B));:
28 end LOGIC archg
o4
Figure 3: Screen Capture of HDL code for our Logic Unit (LOGIC)
In order to verify that the LOGIC macro we created based on the codes above
functions properly, we performed Functional Simulation on it. The waveform
generated is shown below:
wii] gy sy | Lu] |1nhs FDnE Fnﬁs d0ris |5nhs FDnE |Tﬂﬂs =0t
| (HEn IIII|I]lIIIII|lIIlII]I|IIIIIlII|JII]IIII|IllIIIII|lIIlII]I|IIIIIlII|JII]IIII
H i] | e B e B e e N e SN e
1UEB Bl; L0 e e e e e e T o) TR EE T, RSOt L, Py L Ao R LS
BlU2 .51 (hex)# e |0|[E 2 iR
e S e i ek e Sm et
Emir Tumen é& Sam Starr 102502

Figure 4: Functional Simulation of Logic Macro

Analysis of this waveform successfully verifies that our Logic Unit functions
properly. The S1 Bus in Figure 4 displays the hexadecimal values which are
assigned to the certain logic operations in Table 1. A reference table is below:

Hex Value Binary Value

S1 S0
0 0 0
1 0 1
2 1 0
3 1 1

Table 2: Reference Table for Figure 4

Task 3- Designing the Arithmetic Unit
The Arithmetic Unit can be designed by using a Full Adder and two additional
components for A and B logic, which modifies the inputs A and B in such a way
the Full Adder performs what it is assigned to do in the Arithmetic segment of

Table 1.
i Ci+1
— -
'I:il - A P 5‘:1 -
Fuil Adder G
S1| |SDI FuU -—hl
B. — - E logic l]_...'

51 T Tsu
Figure 5: Schematic Block Diagram of the Arithmetic Unit
a. Designing the A Logic Unit
In order to design the A-logic unit, we had to develop an equation that gives

the values of Xi as a function of S1, SO and Ai. To design this we used a truth
table to solve for the expected values of Xi.

S1 SO Ai Xi (A Logic)
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0
Table 3: A-Logic Table
K-map:
Xi
0 1 1 0
0 1 0 1
Equations:

Xi = S1’Ai + S0’Ai + S1S0AY’

Our next step was to write the VHDL code based on the equation above to create
the A-logic macro. The VHDL code can be seen below:

VHDL Code for A-Logic Block

library IEEE;
use IEEE.std logic 1164.all;

entity alogic is
port (
Ai: in STD LOGIC;
Sl: in STD LOGIC;
S0: in STD LOGIC;
X: out STD LOGIC;
) ;

end alogic;
architecture alogic_arch of alogic is
begin

-- <<enter your statements here>>

X <= (S1 and S0) xor (Ai);

end alogic arch;

BN ALOGIC - HOL Editor

File= Eaqit Search Vies| Syrchesis Project Tools Helo

D[w|6] & 5] (1] vl] =l

(2[4 lela] 2]

17 end ALOGIC arch;

A1 1library IEEE;

2 wuse IEEE.std_logic 1164.a3ll;

3

4 eptity ALDGIC is

L port ¢

& fi: in STD_LOGIC;

7 S$1: in STD_LOGIC;

ﬂ $8: in STD LOGIC;

9 #: oub STD LOGICGC
1a ¥

11 end ALODGIC;

12
13 architecture ALOGIC arch of ALOGIC is
14 begin

15 -- <{enter your statements here>>
16 ¥ <= {({(not S$1) and Ai) or {({not 58) and Ai) or (51 and SA and (not Ai));

Figure 6: Schematic Capture of VHDL Code of A-Logic macro

We then tested our A-logic macro in order to verify that it worked properly. The
Functional Simulation generated using Xilinx Foundation Software is pictured

below:

_“LLLL”J]_E-_U.E'EE{E?E_| i‘-“_!l |5n5 |lIIl!15 |lEnE |2|:|ns |25n5 |3III!15 |35n5 |4Dn:

| o_o illlllllllIIII|IIIIIIII|IIIIIIII|IIIIIIII|IIIIIIII|IIIIIIII|IIIIIIII|IIIIIIII

i
....|....................|....................|....................I;

Emir Tumen & Sam Starr 10-25-02

Figure 7: Functional Simulation of A-Logic Macro
Comparing the output X to those in Table 3, it is evident that our macro works
correctly. If we look in between 5 ns and 10 ns, we see that SI=S0= 0 and Ai=1.

At this point if we look at Table 3, it is clear that X=1, which the Functional
Waveform above illustrates.

b. Designing the B-Logic Unit
In order to design the B-logic unit, we used a similar method as we had in
designing the A-logic unit. First, we had to develop an equation that gives the
values of Yi, in this case, as a function of S1, SO and Bi. To design this we
used a truth table to solve for the expected values of Yi.

S1 S0 Bi Yi (B Logic)
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 0
| 1 | 1

Table 4: B-Logic Table
K-map:
Yi

Equation derived:
Yi = (SOBi + S1S0’Bi’)

Our next step was to write the VHDL code based on the equation above to create
the B-logic macro. The VHDL code can be seen below:

10

VHDL Code for B-Logic Block
library IEEE;
use IEEE.std logic 1164.all;

entity blogic is
port (
Bi: in STD LOGIC;
Sl: in STD LOGIC;
S0: in STD LOGIC;
Y: out STD LOGIC;
) ;

end blogic;
architecture blogic_arch of blogic is
begin

-- <<enter your statements here>>

Y <= (SO0 and Bi) or (S1 and (not Bi) and (not SO0));

end blogic arch;

MR BLOGIC - HBL Editar

File Edit Search View, Synthesis FProject Tools Help

D|w|E| & 5 |=[@] o] |

1 1library IEEE;

2 wuse IEEE.std logic 1164.all;

3

4 entity BLOGIC is

5 port {

6 Bi: in STD LOGIC;

7 S1: in STD_LOGIC;

8 $8: in STD_LOGIC;

9 ¥: oput STD _LOGIC
18)s

11 end BLOGIC;
12

13 architecture BLOGIC_arch of BLOGIC is
14 beqgin

15 -— {<{enter pour statements herel>

16 ¥ &= (58 and Bi) or (S1 and (not Bi) and {not S8));
17 end BLOGIG_arch;

Figure 8: Schematic Capture of VHDL Code of B-Logic macro

We then tested our B-logic macro in order to verify that it worked properly. The
Functional Simulation generated using Xilinx Foundation Software is pictured
below:

i | EDUPSfﬂiV!'—L_L_U_; Cyie |lEIn5 |lE-nE |ZIIInE |25n5 |3|:|ns |35n5 |?4I2In:

| |:|.|:|_ llllllIIII|IIII|IIII IIII|IIIIIIII|IIIIIIII|IIIIIIII|IIIIIIII|IIIIIIII

i

...|....................I....................|.................... Ry

..................I....................I.................... e e m e e
Enir Tumen & Sam Stearr 102502
Figure 9: Functional Simulation of A-Logic Macro

Comparing the output Y to those in Table 3, it is evident that our macro works
correctly. If we look in between 15 ns and 20 ns, we see that S1= 0, SO=Bi=1. At
this point if we look at Table 4, it is clear that Y=1, which the Functional
Waveform above verifies.

c. Designing the Full Adder
In order to design our Full Adder we used equations derived in Lab #2 (The
Full Adder Project). The truth table we used to derive these equations can be

seen below.
Inputs Outputs
X Y C G Co
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 0 1 0
1 1 0 0 1
1 1 1 1 1

Table 5: Truth Table of a Full Adder

The equations derived are as follows:
G =Xxor Y)xor C
Co=(Xand Y) or (X xor Y) and C)

With these equations we created a Full-Adder macro using VHDL code. The
screen capture of the code can be seen below:

12

File: EdiE Ssarch View Synthesis . Project - Tools Help

Dlhlﬂ! &S| k=@ e -

library IEEE;
2 use IEEE.std logic 1164.all;
3
4 entity FADDER is
5 port
i] C: in STD LOGIC;
F o in STD LOGIC;
8 ¥z in STD _LOGIC;
o G: out STD _LOGIC;
18 Cout: out STD_LOGIC
11 h
12 end FADDER;
13
14 architecture FADDER arch of FADDER is
15 begin
16 —-— L<enter your statements herel>
17 G <= (X =or YY) =or G
18 Cout <= (X and ¥y or ({(X =or ¥) and C);
12 end FADDER_arch;
28

Figure 10: Screen Capture of the VHDL Code for our Full Adder

In order to test that our Full Adder worked correctly we executed a Functional
Simulation of the macro in Xilinx. The generated waveform can be seen and
analyzed below.

lqzié}E_iniﬁﬂ 10ms [20ns |[30n= [0ns |SOns |G0ns Dris
I |:|'.|':|_ ‘IllllIIII|IIII|IIII|IIII|IIII IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|-Tllllllll|
o U O | i | e e et IR T e |
54 T b2 | e et i el et el o RVt R it R e e e ot
if0a. ¥........ Bl[--
o3 G =
qE$ﬁ$ﬂT =
Emir Tumen & Sam Starr 10-25-02

Figure 11: Functional Simulation of a Full Adder

Analysis of this waveform illustrates that the Full Adder we created functions
properly. If we look between 20ns and 30ns we will see two changes in G and
Cout. Between 20ns and 25ns, C=1, X=Y=0, the expected value according to
Table 5 is that G=1 and Cout= 0, because 1+0+0=1 without a carry. This is
verified on the simulation above. On the other hand, between 25 and 30ns, C=1,
X=1, and Y=0. In this case 1+1+0 = 10 which is 0 and a carry-bit. This is again,
proven to be the case in the Functional Simulation above.

13

d. Compiling the Arithmetic Unit

After testing each of the components of our Arithmetic Unit we went back to
the Schematic Editor in Xilinx Foundation Software and put all the pieces
together. Our schematic is shown below.

LT
v o elco
=
a1 O i LR —Tr @
Widlcod
81 [ALDGIC
F couT]
= [0 g i L scouT
Al FADDER
z | —=
=0 D i =1
=
BLOGIC

Figure 12: Schematic Diagram of Arithmetic Unit

In order to test that the Arithmetic Unit functioned properly, we used
Functional Simulation in Xilinx to check our circuit. Our functional
simulation can is seen below:

wl_,@ggfﬁiﬂ_!'—'—'—'—ﬂ Z0ns |£.LI:In5 |6EIn5 |8I3n5 |lI:lEIn5 |lZEInE |14|:|ns |16E

i oo |IIII|IIII|IIII|IIIIIIII|IIIIIIII|IIIIIIII|IIIIIIII|IIIIIIII|IIIIIIII|IIII

11
B[H1 .51 (binj#]x (0|00 Em) Eao) S Eam e A m
e e A Bl e b e e e e
ilH1.B1....... = i ! i] o S ! i e i o e e e o e S s s L
oHL.G. =
ofHl.COUT. . . . =

Emir Tumen & Sam Starr 10-25-02

Figure 13: Functional Simulation of Arithmetic Unit
Analysis of the above waveforms illustrates that our Arithmetic Unit
actually does function properly. If we look at the first segment in green,
between 0 and 20 ns, (000 which is representative of S1, SO, and C,
respectively), we can see that as expected, the value A is transferred to G.
If we look between 20 and 30 ns, 001, A is transferred and then 1 is added.

Hence, as illustrated above, the value of G gains the value of ‘1’ and the
carry-out ‘0’, to illustrate A, ‘0’ and ‘1’ being added together.

14

Task 4 - Compiling the 1-bit ALU

After testing our Arithmetic and Logic units we generated macros out of
them and were ready to put all the units together with the 2:1 multiplexer
designed in part A. A schematic of our 1-bit ALU is shown below:

H1
=1 [=1 COUT| [oouT
=0 [=0
e [5

LR]
Al [— A1 3 R [[Becee 3

ARITH H
81 [L1z H I

o'l | oo
H

g 1] n

=1

o M2

LG

Figure 14: Schematic Diagram of 1-bit ALU

In order to test that our 1-bit ALU we worked properly, we executed
Functional Simulation on the inputs and outputs of the above. The
generated waveforms are shown below at times when M=0 (Logic) and
M=1 (Arithmetic):

””EWJ%E.%!;MLLLL.L“.M

L
IHI“IH

2tz
IHIhIH

30t=
IHIhIH

40
IHIhIH

s
IHIhIH

s
IHIhIH

0tz
IHIhIH

Bz
IHIhIH

110
IHIhIH

L0ks
IHIhIH

L3lns
IHIhIH

L40ri=
IHI|H

0.0 IHIIhIH

el FUUnE
IHIhIH

1

BL.GL. (bin)# e [1(|HE i i} i}

lHlC IIIIIIII i B e e

i A A
A
oL COUT.

Enir Tumen & Sam Starr 10425702
Figure 15a: Functional Simulation of 1-bit ALU in Logic Mode (M=0)

15

270ns
|n|h|n

EB0ns
IHIhIH

iAlns
HIJIH

Z3lns
IHIhIH

5 0ns
IHIhIH

L6lns

24 0ns
|u|h|n

190ns
IHIhIH

Z00ns
|n|h|n

210nzs
IHIhIH

160ns Eilns

L7 ns
|u|h|u

150ns
|n|h|n

uw__J Inz/div l_ﬂ__J|

| 159115
] SN et XS e OO et 1 e Y e SR oo O e AN st I oSN st OO s 960 ot N

Enir Tunen & San Starr 10/25/02
Figure 15b: Functional Simulation of 1-bit ALU in Logic Mode (M=1)

Analysis of Figure 15a (M=0) between 0 and 20ns illustrates that our 1-bit ALU
logic block works properly. Between these times, SI=S0 = 0, which means that
the A and B are ANDed together to return the value of F. Due to the fact that F=1
if and only if A=B=1 during this time frame it is evident that our 1-bit ALU
works correctly in Logic Mode.

In arithmetic mode (Figure 15b), we know that when S1=S0=C=0 the value of A
is transferred to the value of F. If you look between 160ns and 180ns, it is clear
that this indeed the case. Hence, because both our Logic and Arithmetic Units and
the multiplexer that combines them both works properly, we have successfully
designed a 1-bit ALU.

Task 5 — Compiling the 4-bit ALU
In order to create a 4-bit ALU, we compiled four 1-bit ALUs and added an
overflow detector (V = C3 XOR C4) between the Carry-outs of the third and
fourth 1-bit ALUs. Our schematic is illustrated below:

16

BRUS[E:O EREED el F B LS [500]
HEIUS[S:E.—m e =
e - BT Hi our [—————
hd T ALL
= [o
=0 [= —=0 2 e
M [~)
c [i
b -
BEATE! - —
H2
* O MY1ALL
o l_rmm
o
iz e
e Hz
-1 aur
b 1AL
=1
o 1 18]
;) s
HOR2
s .
EEAEI . [T —
w1 AL
i
ke i R
M w

Figure 16: Schematic Diagram of 4-bit ALU with Overflow Detector

In order to test that our 4-bit ALU worked correctly we executed a Functional Simulation

on the inputs and outputs of our above schematic prior to making it into a macro.

| Sﬂﬂrasi'iiﬂi"'m
|

0.0 ||||||||||

Fne ‘l Otis ‘lSns |2l3ns ‘2 Eris ‘3 Otis ‘3511'3 |4Dns ‘4 Eris ‘5 Otis ‘5511'3 |6l3ns ‘6 Eris ‘

B|HS . ABUS3 . (biy
EfHS . BBUS3 . (biy
iHS.H - ...
ifH3.51 -

1|HS 50 -

HHY G = v
E[H5 . FEUSS . (biy
oHE. ¥ - L.

-1 |

B

0000 0001 {0010 yiloo j00po (010l yolig (1000 J0@o0 100l j1010 y0l0o yeopo (1igl)

Emir Tumen & Sam Starr 10-25-02

Figure 17a: Functional Simulation of 4-bit ALU with Overflow Detector in Logic Mode (M=0)

17

Z.5E85us |II|IIII|I

BHS
H5

H5

[DO = O T T T PO S P S Py |

HS
HS
HE .
HS .

H5

CABUST. (bigx [11|| 000

(BBUSZ. (bige |11||)D000 @001 fo010 (BOLL (0100 j0i0l 0110 (LI (1000 Ji0a1 1010 1001 jiiod i
| Bl | e e e e e e e
e I I - 5 P B e B e A T s
S0 = .. BOFAFEeeeene e et feee s ey sy | P e s feee Jiias r
B s EaF—] F------- e e e e S e e o e e e o e e o e T
FEUS3. (biy (11| J8000 (Gool JIiol (00l0 000 joiol Jiool yoll0 jpoog Jiool \olol jiolo joood |3
'Iil_ IIIII || P i e s e s 5

Emir Tumen & Sam Starr 10-25-02

Figure 17b: Functional Simulation of 4-bit ALU with Overflow Detector in Arithmetic Mode (M=1)

Analysis of the above waveforms, illustrates that just as with our 1-bit ALU, our
4-bit ALU was designed correctly and works properly. Looking at our ALU in
Logic Operation (figure 17a), when S1 = S0 =1 (15-20 ns) our output represents
that of the XNOR function which is what is supposed to occur. Hence, our logic
works properly.

For the Arithmetic operation of our ALU, when S1=0, SO=1, C=0, ABUS3 =
0000, and BBUS=0001, A and B are added together, and returns 0001. This is
proof that our ALU operates correctly in arithmetic operation. Successful
operation in both modes verifies that our 4-bit ALU works correctly. Our next

step was to design the implementation portion of our ALU so it can be tested on a
Digilab Board.

Task 6- Designing the Main Decoder

Implementation of our 4-bit ALU requires multiple smaller decoders. In this case
we created decoders for the LEDs, the 7-segment display and the sign of the
result.

a. Designing the LED Decoder (Logic)
Our LED decoder takes the input F and displays its value on an array of LEDs
if M=1 after it has been inverted, seen in the schematic of the main decoder
(Figure 21). The code and it’s simulated waveform shown below:

VHDL Code for LED Decoder

library IEEE;
use IEEE.std logic 1164.all;

entity leddecod is

Po

)7

rt (
FBUS: in STD LOGIC VECTOR (3 downto 0);
M: in STD LOGIC;

SIGN: out STD LOGIC;
LEDS: out STD LOGIC VECTOR (3 downto 0)

end leddecod;

architecture leddecod arch of leddecod is

18

signal INPUTS: std logic vector (4 downto 0);
begin
-- <<enter your statements here>>
INPUTS (4) <= M;

INPUTS (3) <= FBUS (3);
INPUTS (2) <= FBUS(2);
INPUTS (1) <= FBUS (1) ;
INPUTS (0) <= FBUS (0);

with INPUTS select

LEDS <= ("0000") when "10000",
("0001") when "10001",
("0010") when "10010",
("0011") when "10011",
("0100") when "10100",
("0101") when "10101",
("0110") when "10110",
("0111") when "10111",
("1000") when "11000",
("1001") when "11001",
("1010") when "11010",
("1011") when "11011",
("1100") when "11100",
("1101") when "11101",
("1110") when "11110",
("1111") when "11111",
()

"0000") when others;

end leddecod arch;

) sposjate|Ll]
| T bl
B4 FBUS3. (bin)ddfe (000([000 10 0y |
Bil4.LEDS3. . (bin)#d 0000 /1000|0100 J1100 |p0I0 1010 [pI10 J1110 |0001 1001 JpI0l JI101 |ooll |1
lU‘iH _____________ N |
San Starr & Emir Tumen 10425402

L0ns
IIII|IIII

L5ns
|mhm

L5ns
IIII|IIII

30ns
IIII|IIII

35ns
|mhm

40ns
HH“H

4 Ens
IIII|IIII

50ns
IIII|IIII

55ns
|mhm

Kt 2lns

flns ré

Figure 18: Functional Simulation of LED Decoder
In each case the LEDs light up accordingly to the output of the FBUS,
whenever M=1. Our next step was to design the 7-segment decoder.

b. Designing the 7-Segment Decoder (Arithmetic)
The 7-segment display takes the output value from the ALU Arithmetic
operation and displays it on the Digilab board as a digit. The coding for this
display and its generated waveform is shown below:

VHDL Code for 7-Segment Display
library IEEE;
use IEEE.std logic 1164.all;

entity sevensegdec is

19

port (
XBUS: in STD LOGIC VECTOR (3 downto 0);
Carry: in STD LOGIC;
Error: out STD LOGIC;
TENS: out STD LOGIC;
LEDONE: out STD_LOGIC VECTOR (6 downto 0)
);

end sevensegdec;

architecture sevensegdec arch of sevensegdec is
signal INPUTS: std logic vector (4 downto 0);
begin
-- <<enter your statements here>>
INPUTS (4) <= Carry;

INPUTS (3) <= XBUS (3) ;
INPUTS (2) <= XBUS(2) ;
INPUTS (1) <= XBUS (1) ;
INPUTS (0) <= XBUS (0) ;

with INPUTS select

LEDONE <= ("0000001") when "000OOO",
("1001111") when "00OOL1",
("0010010") when "00OO10",
("0000110") when "0OO11",
("1001100") when "00100",
("0100100") when "00101",
("0100000") when "00110",
("0001111") when "OO111",
("0000000") when "01000",
("0000100") when "O01001",
("0000001") when "01010",
("1001111") when "01011",
("0010010") when "01100",
("0000110"™) when "O1101",
("1001100") when "O1110",
("0100100") when "O1111",
("0100000") when "10000",
("0001111"™) when "10001",
("0000000") when "10010",
("1111111") when others;

TENS <= Carry or (XBUS(3) and XBUS(2)) or (XBUS(3) and XBUS(1l)):;
Error <= (Carry and XBUS(3)) or (Carry and XBUS(2)) or (Carry and
XBUS (1) and XBUS (0)) ;

end sevensegdec_arch;

i3
|||||1|u

Ldnz
||1||||||

Letis
|||||1|u

dris btz

10ms ‘lZn‘_:
IIII|IJII

181 |2 i

IIJI|IIII IIII|IIII. IIII|IJIIIIII|IIIl

_| ZUIJpsfdlv _J‘ i

EEtiE rZ‘lnr ’(
|III|JIIJ III|IJIIIIII|IIIL IIJI|IIII III|JIIl

EU3 FEUS3. . (bin)#d

E3

EU3 IEDONEB (bin)#| 0| 0000001 1001111 |010010 \nopoiio 1001100 (T

San Starr & Emir Tumen 10/25-0Z

Analysis of this waveform between 5 and 10 ns illustrates proper
operation of the seven segment display. When the ALU returns a value of 0001,
binary code for the decimal number “1”, the LEDs illuminate in a fashion which
displays “1” on the Digilab board. The code it returns “1001111” is the 7-bit code
sent to the cathodes of the 7-segment display (hence because it is active-low,
illuminating the 2™ and 3™ segments of the display).

c. Designing the Sign Decoder

The 7-segment display above, also returns a sign bit as its output. The below
code takes this bit, and determines whether to display the negative sign
(“1111110”) on the Digilab Board. The code and accompanying waveform are
shown below:

Ml SIGNDEC - HDL Editor
Flle EdiE Sedspch, Wisw Swnthesis Projeck Tools Hep

sEEIE T ENEER =l 3le

1. library IEEE;

2 use IEEE.std logic 1164.all1;

3.

4 entity SIGHDEC is

5 port {

O SIGH: in STD LOGIC;

T LEDTWO: out STD LOGIC VECTOR (46 downto B0)
8);

O end SIGHDEC;
18
11 architecture SIGHDEC_arch of SIGHDEC is
12

13 beqgin
14 -— <{enter your statements herel>
15 with SIGH select
16 LEDTWD <= ("1111118") when "1°,

17 1111111y when others;
18 end SIGHDEC_arch;
19

28

Figure 19: Screen Capture of VHDL Code for our Sign Decoder

21

wu] soops /die | L]

o_o |HIIhIH

Fns

|ans |15ns
IIH|IIH

Z0ns=

ZLns

Fﬂns
IIH|IIH

|35n5 |4[

1|05 5IGH

B|US . LEDTWOE . { 1

LLIJ.LLIJ.II

Bl S0 || OO SO R

1111111

11111110

o T

11111110

ks
3

Figure 20: Functional Simulation of our Sign Decoder

Emir Tumen & Sam Starr 11-1-02

Analysis of this waveform illustrates the sign decoder functions properly,
because when the Sign takes the value of logic ‘1’ between 10 and 20ns, the
negative sign is displayed on the Digilab board.

Compiling the Main Decoder

We then compiled each of these components in the below schematic, and

created a macro.

FeUSE B

119

] e

FRUSEM = |

u LEDO N ESL)

SEVEMNESEGDEC

(1] LEBELS:

LEDDEZ

L5
bl ook
SN LED T[S P LEOTVWO[E:D]
SIGHNDEC
P EDONE[RD]
P L EDS[2:0]

Figure 21: Schematic Diagram of Main Decoder composed of (a) a 7-segment decoder, (b) a LED

Decoder, and a (c) sign decoder to generate the

17313

by the 7-segment Decoder.

sign alongside the number generated

Z00pssdiw Zris = 1= S 10n= LZn= Ldris LEi=

i |:'le_ullllllllll|||
BHE . FBUS3 (bin)#d|= |0(|o080 _jooo1 ooio feaL1
ilge ¥ — ... o | e —
BHE LEDOHEG . . (hin)#7 i | PR

BH6 LEDTWO6 . (hin)#7 1|j11i1111

BlH& LEDS3 ... (bin)#4| |0|[G000 aooo 100 {1100

Sam Starr & Emir Tumen 11102

Figure 22a: Functional Simulation of the Main Decoder in Logic Mode

22

LLLu.LLIJl E200p= Adiv | I| d0ns dins s dEns 1Ens E0ns Sins S4ns

l 39115 !I|II|I|II|IIII|II|I|II|I||II|||II|||II||I|II|I|II|IIII|II|I|II|I |II|||II|||II||I|
ElHE FEUSZ. .. (bin)#d|x |0|[DE000 B ST BIGNE Jic
T [| | T EETEEEEEEEEEREEE
B|Ht . LEDONEG . . (bin)#7 foooogoo filliooo onoooin ot
I5]

E

1
HE LEDTWOE . . {bin)#7 1 II111110
HE IEDS3 . . . {binj#d 1]

ooon

Figure 22b: Functional Simulation of the Main Decoder in Arithmetic Mode

In Figure 22a, between 10 and 15ns, the input value from the ALU is 0010, and
the output LED form is 0100. It is apparent that if we change the direction of the
LED bus, each of the input and output LED values will match, and the LEDs will
illuminate according to the input.

In Figure 22b, between 40ns and 45ns, the ALU returns a value of 1000, which is
the decimal equivalent of ‘-8’. Hence, the sign bus (LEDTWO) displays the
negative sign, and the magnitude bus (LEDONE) displays the number 8 on the 7-
segment display. Analysis of the above waveform proves that this is the case and
our Decoder works properly.

Task 7- Designing the Display Switch Circuit
In order to display both the sign and magnitude values alongside each other, a
Display Switch Circuit is needed to flip back and forth between the outputs of
LEDONE and LEDTWO. To execute this, the Display Switch Circuit needs to
consist of a multiplexer driven by a clock. The value we chose to run the clock on
is 490Hz, which is fast enough so that both the sign and magnitude can be seen.
The coding for our multiplexer is shown below:

VHDL Code for Display Switch Circuit
library IEEE;
use IEEE.std logic 1164.all;

entity MUX is
port (
SIGN: in STD LOGIC VECTOR (6 downto 0);
DSP: in STD LOGIC VECTOR (6 downto O0);
D: out STD LOGIC VECTOR (6 downto 0);
S: in STD LOGIC
)
end MUX;

architecture MUX arch of MUX is
begin

PRO: process (SEQ, DSP, S)

begin
if (S = '1l") then
D <= SIGN;
else
D <= DSP;

23

end if;

end process PRO;
end MUX arch;

.umﬂ“L In=/fdin iLL“Ji| |ans |ZDns |SDns ‘4Dns ‘SDns FDns rﬂns Fﬂns |90ns |
i oo IIIII|IIIIIIII|IIIIIIII|IIIIIIII|IIIIIIII|IIIIIIII|IIIIIIII|IIIIIIII|IIIIIIII|IIIIIIII|IIII
jul.s. B2l-

E|U1l SIGHE. ..({bin)#7 |1 [1||ZILLI3T
BlUl.DSP6. . . . bin)#7 |0 |0||[DO00OGET

E

...... (hex)#7]| 1 mE Voo 7F oo Y
Emir Tumen & Sam Starr 11-1-02

Figure 23: Functional Simulation of our Display Switch Circuit Multiplexer

Analysis of this waveform illustrates that our Multiplexer functions correctly on
any input. When the value of S is ‘0’, between 10 and 20ns, the output D is that of
DSP (Display = LEDONE), and when S is ‘1°, between 20ns and 30ns, D is SIGN
(LEDTWO). Hence, our multiplexer alternates properly between the two Display
buses.

Task 8- Testing the Entire System

Once each of our components worked properly, we compiled and connected them
appropriately to IBUFs, OBUFs, IPADs and OPADs, as well as connected the
clock to our Switch Display Multiplexer. In order to ground the two left segments
of our 7-segment display on the Digilab board we grounded the OPADs
connected to pin locations 44 and 40. This is illustrated in the upper right hand
corner of the below schematic. We also put the pin locations of the two right-
segments of the 7-segment display on a clock, inverting one of the clock signals.
Hence, the values generated on the display will alternate between the farthest
right and second from right hand segments.

Our schematic diagram and its accompanying waveforms are illustrated below:

24

0501
OauF
S T
LOG=P5D il HEEEA
IFAD c D 'r‘:;_ Gc!ﬁ(
|BUF
LOC=P&7 _ —{>— el
ABUS[3:0] i ORUF i e HUF
Ny
Ertul il
QBUF
IPA0Y 1BUF4 in L
g L R He |_ kst
Q:z_ S e L | D)
I Al ABH { HB LED
i i1 An i i ML
LEDZE3 T
U]
DECOD
FOURALL LEDE[T)]
| PAD 3 Eur DBUFE GPADI
L0C=P59 —
BaLS[E0]
PAD] :} , LEISZ_ |
1BUF etz |
- " B LErZD_ |
IIIIIII'}_____ IBUF

LOC=P56

=

OFAD
LOC=P34

ORAD

LOC=P38

Sam Starr & Emir Tumen 11102

Figure 25a: Functional Simulation in Logic Mode

P 1] 0RO oo
Sam St & Enlr Tumen {1112
I
Figure 24: Schematic Diagram of Entire 4-bit ALU System
U:.U |IIII|IrII|III'I|'IIII|I'Irl|IIIllrIII|II'II|IIII|IrII|III'I|'IIII|I'Ill|IIIrlrlII|II'II|IIII|IrII|III'I|'IIII|I'IrllIIIr|rIII|II'II|IIII|I|

B o R
BiSlcoooon (hin)#3 |* [0||E
Bl (biny#d |x [0|[E
EEO. (hinjtd |* |0f[E
CTE. Ea=

E (hin)#? | [1

E (hinj#d | |of
B O OO DD DO OO DO GO0 =

25

] goops/div |W|l9enc Bons [B2ne Pens Pens Pons [ins Pins [34ns Péns Pins [100ns [l0Zns [U
7‘78}'{5: ||||l||’|||‘||1|||||| |I'I||||I1 1||||I1I’I’B|||I'|I'I||||I1|||||| |I'I||||I1 1||||I1I’I |||I'|l||| |I1|||||| |I'I||||I'I’-:||||I1I'I |||I'|I'I||‘|I

EMecomooonooemonon B e o e e e e e

S (bin}#3 |¢

S (binj#d |e

BEO. ... (bin)#d e 760

VI, ..o B e e e

MV s
Figure 25b: Functional Simulation in Arithmetic Mode, with Clock = 0
| Z0fps/dis LUl 30on= (a0Zn= |304n= [306ns [208n= [sl0n= [Fléns [3l4ns [Bléns |alens [@20n= [
| 2991}&:‘5 .Illlllllllllll |I|I||I|| |II||||I||I|I||I|II|I||I|IIII |I|I||I|| |II||||I||I|I||I|II]IIII|IIII II||||III |||||III||
e Bal|[~ e —
=il e {bini#3 |= (1]
BA0. (bini#d |= |0|]
BEO......... (bin)#4 |* |0
1 e
il
olk
|

Figure 25c¢: Functional Simulation in Arithmetic Mode, with Clock =1

Analysis of waveform 25a illustrates our 4-bit ALU in logic operation. When A is
0000, and B is 0001, and the command S1S0C, 000, ANDs A and B together
returning the result 0000.

In Figure 25b, between 80 and 90ns, S1=S0=C=0, hence, the value of A is
transferred and displayed on the 7-segment displays. With clock=0, the result is
the correct code to display 0 and 1, respectively. This is seen in that diagram.

In Figure 25c, between 300 and 305ns, the system operates in Arithmetic mode
adding A and B’. In this case, adding 1100 (-4) to 1110 (-2) gives the value of -6.
When the clock has the value of “1°, it displays the sign of this returned value,
which is -. As explained earlier, “1111110” is the equivalent of the ‘- sign.
Hence, our entire system works properly.
We then demonstrated our implemented 4-bit ALU to our TA, and tested each of
the situations in Table 1 on the Digilab Board.

Task 9- Timing & Speed of our 4-bit ALU System

Upon Implementation we looked up our Timing Report, and found our Maximum
Delay to be 35.467 ns.

Hence our Maximum Speed = 2.81 x 10" Hz.

26

Conclusion

In conclusion, our 4-bit ALU design and implementation worked correctly. The
methods we used to design each component in the system made for proper
execution of the ALU. While at first we had issues turning off the required 7-
segment displays, and switching between them. Once we figured this out, the
project worked correctly. This lab let us use the knowledge we have gained over
the past labs, to design a given project. We also kept in mind making our project
as time efficient as possible.

Signatures:

Your Name Partner's name

27

