
1

BR 1/99 1

Dice Game (Chapter 22)

• The dice game in Chapter 22 is a good example of
a Finite State Machine controlling a Datapath.
– The combined FSM/Datapath implement a Dice Game.

• Dice Game Rules:
– After 1st roll of dice, player wins if roll if 7 or 11. Player

loses if roll is 2, 3 or 12. Anything else is saved as the
players “POINT”.

– On subsequent rolls, player loses if roll is a 7. Player
wins if the dice roll is equal to their “POINT”. You
must keep rolling until you win or lose.

BR 1/99 2

What do we need: A Dice Roll

• Some way to simulate a dice roll. Dice have values of
1,2,3,4,5,6.

• We could generate a “random” number between 1-6.
– Could use a psuedo random sequence generator in the

form of a shift register for this.
– Can be difficult to test if using psuedo random sequences

• An easier way is to use a counter whose count
sequence is 1,2,3,4,5,6,1,2, etc.
– Even though count sequence is NON-RANDOM, a high

speed clock and a user pushing buttons to stop/start the
roll will make the dice roll look random!!!

BR 1/99 3

1-6 Counter
S0

S1

S2

S3

Q = 1

Q = 2

En=0
En=1

En=0
En=1

Q = 3
En=0

En=1

Q = 4
En=0

En=1

Q = 5
En=0

En=1

Q = 6
En=0

En=1

S4

S5

Need two counters,
one for each dice.

Need an ADDER to
sum the two 3-bit
dice outputs to
produce a four bit
sum that we can test!

2

BR 1/99 4

“dpatha” Details

Clk
C 3

 EN

 R

Cntr

Q

Roll
(from control)

Reset

C 3

 EN

 R

Q
Logic

Roll

Clk

Reset

Cntb

Cnta

A
d
d
e
r

4

dicesum

3

Ena

Ena = 1 when Cntb = 6 and Roll = 1

Counters count
1,2,3,4,5,6,1,2, etc

Cntr

BR 1/99 5

What else do we need???

• We need to save the “POINT” value from the first
roll somewhere.
– Use a Register!

• We need to compare our POINT value and the
current dice roll to several values
– Compare Current dice roll to POINT value: Use a

comparator

– Compare Current dice roll to values of 7, 11, 2, 3, 12:
Use comparator logic

• Need inputs to start the dice roll, stop the dice roll.

BR 1/99 6

“dpathb” Details

DIN
4

C

LD

Register

Point

4

R

Dicesum
(from
dpatha)

sp
(from
control)

Compare

Clk

Reset

Eq
(1 if point = sum)

Test
Logic

D7 (1 if sum=7)

D11 (1 if sum=11)

D2312
(1 if sum=2,3 or 12)

“sp” (save point) loads value
of dicesum into register.

3

BR 1/99 7

Dice Game
Chap 22

1-to-6
Cntr

1-to-6
Cntr

Adder

CntbCnta

Point
Register

Comparator

dicesum

Test
Logic

C
o
n
t
r
o
l

Roll

D7

D11
D2312

eq

Dpathb.vhd

Dpatha.vhd

control.vhd

Rb

Ra

sp

win

lose

BR 1/99 8

Dice Game
Flow Chart

Roll Dice

Sum=7
or 11?

Sum=2,3
or 12?

Store Sum in
Point Register

Roll Dice

Sum=
Point?

Reset?

Lose

Sum=
7?

Reset?

Win

Y N

Y

Y

YY

Y

N

N

N

N N

BR 1/99 9

Rb?

Ra?

D7 or D11?

Roll

D2312?

Sp

Rb?

Ra?

Eq? D7?

Roll

Lose

Win

0

1

0

1
1

0

0

0

0

0

0

1

1

1

11

S0

S1

S2

S4

S3
S5

Dice Game
ASM Chart

4

BR 1/99 10

Dice Game Implementation

• Dice game implemented in three 22V10 PLDs
– control.vhd (Finite State Machine)

– dpatha.vhd (two 1-6 counters, adder)

– dpathb.vhd (point register, comparator, test logic)

• The Control FSM is implemented using one-hot
encoding.
– Outputs q0, q1, q5 are states S0, S1, S5. Output “win” is

state S2, output “lose” is state S3. Outputs q0,q1,q5 are
available just for debugging purposes.

BR 1/99 11

Finite State Machine Changes

Asynchronous Reset now use to exit states S2, S3. Resets
back to State S0.

S2 Win

S3 Lose

BR 1/99 12

Finite State Machine Changes (cont).

Because we don’t have debounced switches, added extra “roll”
input called “Ra”. Changed States S1, S5 to use Ra, not Rb.

S1

Ra 0

1
Roll

S5

Ra 0

1
Roll

This means that to
roll the dice, you
use flip switch Rb
up, then down.
This starts the
dice rolling. To
stop the dice, Flip
Ra switch up then
down.

