Dice Game (Chapter 22)

e Thedicegamein Chapter 22 isa good example of
a Finite State Machine controlling a Datapath.
— The combined FSM/Datapath implement a Dice Game.
* Dice GameRules:

— After 1st roll of dice, player winsif roll if 7 or 11. Player
losesif roll is2, 3 or 12. Anything elseis saved asthe
players “POINT”.

— On subsequent rolls, player losesif roll isa 7. Player
wins if the dice roll is equal to their “POINT”. You
must keep rolling until you win or lose.

BR1/99 1

What do we need: A DiceRoll

« Someway to smulateadiceroll. Dice have values of
1,2,34,56.
* We could generate a “random” number between 1-6.

— Could use a psuedo random sequence generator in the
form of a shift register for this.

— Can bedifficult to test if using psuedo random sequences
« An easier way isto use a counter whose count

sequenceis 1,2,34,5,6,1,2, etc.

— Even though count sequence is NON-RANDOM, a high

speed clock and a user pushing buttonsto stop/start the
roll will makethe diceroll look random!!!

BR1/99 2

1-6 Counter

Need two counters,
one for each dice.

Need an ADDER to
sum the two 3-bit
dice outputsto
produce afour bit
sum that we can test!

BR1/99 3




“dpatha” Details Counters count
1,2,345,6,1,2, etc

Cntr
Rall —EN
(from control) Cntb
Clk Q
c 3
Reset R A
d |dicesum
Cntr d 74
Rall — Ena EN €
3 Q
Clk c .
Reset R
Ena=1when Cntb =6and Roll = 1
BR1/99 4

What else do we need???

¢ We need to save the “POINT” value from the first
roll somewhere.
— Use a Register!

* We need to compare our POINT value and the
current dice roll to several values

— Compare Current dice roll to POINT value: Use a
comparator

— Compare Current dice roll to values of 7, 11, 2, 3, 12:
Use comparator logic

< Need inputs to start the dice roll, stop the dice roll.

BR1/99 5

“dpathb” Details D7 (Lif um=7)

Tes | DI(Lif sum=11)

Dicesum Register Logic D2312
(from DIN (T um=2,3 0r 12)
dpatha) 4

s — LD

(from point | Compare Eq ‘

control) (1if point = sum)
ck — N\c 4

R .
Reset r “sp” (save point) loads value

of dicesum into register.

BR1/99 6




Dice Game control.vhd

Cnta Cntb Chap 22
EEREEEE Rb
: Roll D
' C
: o |Re
vhd n
E t
............ r
R S LU TP PP PR PP D o .
EDpathb.vhd ! | LTest bll | 74”’1
| odic 3312
E & lose
[ E ...................... gt i
BRY9 4 7

Roll Dice

m: N
or 11?
N m=2, Y

or 12?

Dice Game
Flow Chart
Y m= N
Point?

BR1/99 8

Dice Game
ASM Chart




Dice Game Implementation

¢ Dice game implemented in three 22VV10 PLDs
— control.vhd (Finite State Machine)
— dpatha.vhd (two 1-6 counters, adder)
— dpathb.vhd (point register, comparator, test logic)

¢ The Control FSM is implemented using one-hot
encoding.

— Outputs g0, g1, g5 are states SO, S1, S5. Output “win” is
state S2, output “lose” is state S3. Outputs q0,q1,g5 are
available just for debugging purposes.

BR1/99 10

Finite State Machine Changes

Asynchronous Reset now use to exit states S2, S3. Resets
back to State SO.

® e
@

BR1/99 11

Finite State Machine Changes (cont).

Because we don’t have debounced switches, added extra “roll”
input called “Ra”. Changed States S1, S5 to use Ra, not Rb.

This means that to

0 -mI- roll the dice, you
use flip switch Rb

il up, then down.
This starts the
@ L 1 dice rolling. To
stop the dice, Flip
@ 0 <__Roll__> Raswitchup then
11 down.

BR1/99 12




