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Dice Game (Chapter 22)

• The dice game in Chapter 22 is a good example of
a Finite State Machine controlling a Datapath.
– The combined FSM/Datapath implement a Dice Game.

• Dice Game Rules:
– After 1st roll of dice, player wins if roll if 7 or 11.  Player

loses if roll is 2, 3 or 12.  Anything else is saved as the
players “POINT”.

– On subsequent rolls, player loses if roll is a 7.  Player
wins if the dice roll is equal to their “POINT”.  You
must keep rolling until you win or lose.
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What do we need:  A Dice Roll

• Some way to simulate a dice roll.  Dice have values of
1,2,3,4,5,6.

• We could generate a “random” number between 1-6.
– Could use a psuedo random sequence generator in the

form of a shift register for this.
– Can be difficult to test if using psuedo random sequences

• An easier way is to use a counter whose count
sequence is  1,2,3,4,5,6,1,2, etc.
– Even though count sequence is NON-RANDOM, a high

speed clock and a user pushing buttons to stop/start the
roll will make the dice roll look random!!!
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one for each dice.
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dice outputs to
produce a four bit
sum that we can test!
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“dpatha” Details
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What else do we need???

• We need to save the “POINT” value from the first
roll somewhere.
– Use a Register!

• We need to compare our POINT value  and the
current dice roll to several values
– Compare Current dice roll to POINT value:  Use a

comparator

– Compare Current dice roll to values of 7, 11, 2, 3, 12:
Use comparator logic

• Need inputs to start the dice roll, stop the dice roll.
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“dpathb” Details
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Dice Game
Chap 22
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Dice Game
Flow Chart
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Dice Game Implementation

• Dice game implemented in three 22V10 PLDs
– control.vhd (Finite State Machine)

– dpatha.vhd (two 1-6 counters, adder)

– dpathb.vhd (point register, comparator, test logic)

• The Control FSM is implemented using one-hot
encoding.
– Outputs q0, q1, q5 are states S0, S1, S5.  Output “win” is

state S2, output “lose” is state S3. Outputs q0,q1,q5 are
available just for debugging purposes.
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Finite State Machine Changes

Asynchronous Reset now use to exit states S2, S3. Resets
back to State S0.

S2 Win

S3 Lose
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Finite State Machine Changes (cont).

Because we don’t have debounced switches, added extra “roll”
input called “Ra”.  Changed States S1, S5 to use Ra, not Rb.

S1

Ra 0

1
Roll
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Ra 0

1
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This means that to
roll the dice, you
use flip switch Rb
up, then down.
This starts the
dice rolling. To
stop the dice, Flip
Ra switch up then
down.


