Dice Game (Chapter 22)

e Thedicegamein Chapter 22 isa good example of
a Finite State Machine controlling a Datapath.
— The combined FSM/Datapath implement a Dice Game.
* Dice GameRules:

— After 1st roll of dice, player winsif roll if 7 or 11. Player
losesif roll is2, 3 or 12. Anything elseis saved asthe
players “POINT”.

— On subsequent rolls, player losesif roll isa 7. Player
wins if the dice roll is equal to their “POINT”. You
must keep rolling until you win or lose.
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What do we need: A DiceRoll

« Someway to smulateadiceroll. Dice have values of
1,2,34,56.
* We could generate a “random” number between 1-6.

— Could use a psuedo random sequence generator in the
form of a shift register for this.

— Can bedifficult to test if using psuedo random sequences
« An easier way isto use a counter whose count

sequenceis 1,2,34,5,6,1,2, etc.

— Even though count sequence is NON-RANDOM, a high

speed clock and a user pushing buttonsto stop/start the
roll will makethe diceroll look random!!!
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1-6 Counter

Need two counters,
one for each dice.

Need an ADDER to
sum the two 3-bit
dice outputsto
produce afour bit
sum that we can test!
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What else do we need???

¢ We need to save the “POINT” value from the first
roll somewhere.
— Use a Register!

* We need to compare our POINT value and the
current dice roll to several values

— Compare Current dice roll to POINT value: Use a
comparator

— Compare Current dice roll to values of 7, 11, 2, 3, 12:
Use comparator logic

< Need inputs to start the dice roll, stop the dice roll.
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Dice Game control.vhd
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Dice Game
ASM Chart




Dice Game Implementation

¢ Dice game implemented in three 22VV10 PLDs
— control.vhd (Finite State Machine)
— dpatha.vhd (two 1-6 counters, adder)
— dpathb.vhd (point register, comparator, test logic)

¢ The Control FSM is implemented using one-hot
encoding.

— Outputs g0, g1, g5 are states SO, S1, S5. Output “win” is
state S2, output “lose” is state S3. Outputs q0,q1,g5 are
available just for debugging purposes.
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Finite State Machine Changes

Asynchronous Reset now use to exit states S2, S3. Resets
back to State SO.
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Finite State Machine Changes (cont).

Because we don’t have debounced switches, added extra “roll”
input called “Ra”. Changed States S1, S5 to use Ra, not Rb.

This means that to

0 -mI- roll the dice, you
use flip switch Rb

il up, then down.
This starts the
@ L 1 dice rolling. To
stop the dice, Flip
@ 0 <__Roll__> Raswitchup then
11 down.
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