Bilinear Filtering Recall that the blend equation was:

Cnew = Ca * f + Cb * (1-f)

Where Ca, Cb were two 8-bit colors, and Cnew was a blend of these two colors using the blend factor 'f' (a 9-bit value).

A similar operation is performed when a texture is mapped onto an object in 3D graphics, except that 2 blend factors and four colors are used:

 $T_{new} = (1-v)^*(1-u)^*T_{00} + (1-v)^*u^*T_{01} + v^*(1-u)^*T_{10} + u^*v^*T_{11}$

 $T_{00},T_{01},\,T_{01},\,T_{11}$ are 8-bit color values as before, with two 9-bit factors v, u used to determine T_{new} .

BR

1

3

9/30/2002

```
Bilinear Filtering (cont)Bilinear Filtering (cont)We will use 9-bits to represent 1.0 accurately.some colspan="2">some colspan="2"some colspan="2">some colspan="2"some colspan="2">some colspan="2"some colspan="2">some colspan="2"some colspan="2"<td co
```

The Problem Implement a datapath + FSM that computes 8 T_{new} values from 32 T_{xx} values stored in a RAM for fixed values of u, v. Will use a minimum resource approach – only 1 multiplier, 1 adder. Note that 8 multiplies and 3 adds are required to implement the bilinear filter equation You will be provided with a datapath You must schedule the operations on the datapath

- Write an ASM chart that implements the schedule
- Implement the FSM for the datapath and test your design

9/30/2002

BR

How to Compute T_{new} ?

- The Sync RAM holds the values for T_{xx}
 - Each calculation of Tnew requires 4 values from the Sync Ram
 - Each 4-tuple stored in order of T00, T01, T10, T11
 - Sync Ram has 32 locations, so 8 T_{new} calculations
- Each calculation of Txx *u|1-u *v|1-v requires:
 - 1st multiply: Txx (from Sync Ram) * v|1-v (use 4/1 mux to select appropriate v or 1-v). Store result in *mult reg*.
 - -2^{nd} multiply: compute mult reg * u|1-u . Use the mult feedback path and mult muxes to select proper operands
- The saturating adder + accumulator register is used to accumulate the result.

BR

9/30/2002

Datapath - bifilt.gdf

- The ZIP archive contains a datapath (*bifilt.gdf*) that you can use.
 - Cannot change the interface signals (inputs/outputs) or their functionality
 - Cannot change number of multipliers (1) or satadds (1), or size of sync SRAM (32 locations)
 - Make any other changes that you want
- Your datapath + FSM has to compute 8 values of T_{new} in 100 clock cycles (this constraint is easy to meet)
- If your number of clock cycles matches or is less than the number of clock cycles in the golden waveform, then you will get 10 points added to any test grade.
- You will have to add a FSM to bifilt.gdf to complete the functionality
- The exact number of states and the sequencing of datapath operations is up to you.

11

You cannot use more than 16 states in your FSM.

Datapath - bifilt.gdf Interface

Inputs

- Clk, reset : clock and asynchronous reset
- addr[5..0] : drives address bus to SRAM when datapath is not in operation
- din[8..0]: 9-bit input bus used to initialized u_reg, v_reg, SRAM contents
- ld_uv : when asserted, then writing to v_reg (addr0 = '0') or u_reg (addr0 = '1')
- we: when asserted, writing to SRAM using addr, din. Assume only asserted if datapath if not in operation
- start: when asserted, start bifilt operation starting at SRAM location 0 and processing all 32 values in SRAM.

BR

SRAM, u_reg, v_reg are initialized externally to FSM control.

9/30/2002

Datapath - *bifilt.gdf* Interface (cont)

- · Outputs
 - busy : asserted for duration of bifiltering operation
 - o rdy: asserted when dout bus contains Tnew value
 - *dout*[7..0] : 8-bit output bus for *Tnew* value
- It is very important that *o_rdy* only be asserted when *dout* bus contains a valid value for *Tnew*.
- When o_rdy is negated, the value dout is undefined
 Will depend on your particular implementation
- 9/30/2002

BR

13

15

Testing Your Design

- Cannot do a waveform compare against the golden waveform because you may have a different number of clock cycles
- The *tb_bifilt.gdf* schematic and *tb_bifilt.scf* is a testbench that can be used for checking.
- Includes a counter that will record the number of clock cycles that busy remains high during *bifilter* operation
- Includes an XOR-checksum that will checksum all values on *dout* when o_rdy is asserted
 - you can use this as a quick check if your checksum matches the golden checksum then your design is functional

9/30/2002

BR

The Next Assignment
This lab is worth 200 pts and is the first part of a 2-part series
In the next part, you will be able to add more multipliers/satadders to reduce the number of clocks
Single SRAM is still a constraint
Interface does not change
You will have to change the datapath and your FSM
2nd part is also worth 200 pts

Due Dates

· Schedule:

- Week 0 (Sept 30): Demo Lab #5, begin working on Lab #6, Part #1
- Week 1 (Oct 7): Must have ASM chart ready for checkoff and FSM VHDL code written/compiled and debug in datapath in progess. Part #2 will be assigned at this time.
- Week 2 (Oct 14): Complete checkoff for Part #1 at beginning of lab.
- Week 3 (Oct 21): Must demo Part #2 at the beginning of the lab period. Begin work on Lab #7.
- You must attend lab session for entire time each week until Lab #6 (both parts) is completed.

BR

- If you have a laptop, bring it to the lab. If you work on a desktop at home, then ftp the files to ECE machines. If you do not show up for lab, or do not remain for the entire time you will lose 30% credit of the 400 total points.
- No late labs accepted for either parts #1 or #2.

9/30/2002

17

A Guaranteed Way to get a 0 for both labs and perhaps wreck your lab grade

- · Don't do anything the first week.
- Show up for lab in week #1 not even having though about the first part.
- Now you have only 2 weeks to complete two tough labs
- In week #2, won't have first part working and understanding the first part is the key to performing the second part
 - You madly try to finish the 2nd part in week #3 but are clueless, so at the end of the 3 weeks you have 0/400 pts.
 - Total lab points for first 5 labs = 600 pts, so lab average is 600/1000 = 60% (assuming perfect scores on first 5 labs).
 - Remember that you must have at least a 60% on all out of class material to pass the course.

BR

9/30/2002