Finite State Machines

» The job of a finite state machine is to sequence
operations on a datapath

Qm®m

Y

|

Ll I »omR

4*\&"1 =

DOUT

L,
DL[.
.
|

FSM Control (reg load lines, mux selects)

BR 1/99

Algorithmic State Chart (ASM)

* An ASM chart can be used to describe FSM
behavior

Only three action signals can appear within an ASM chart:

|:| State box. Each box represents a state.

Outputs within a state box is an
UNCONDITIONAL output (always asserted
in this state).

Decision box. A condition in this box

will decide next state condition.

O Conditional output box. If present, will
always follow a decision box; output
within it is conditional.
BR 1/99 2

Example ASM Chart

Clr_ Busy =1
y

Y@ﬁ No |
et Busy = 1>

|

cnt_en =1

Ye ‘@ No

BR 1/99

| Id_cent=1 | @
Addr_sel =1, zero_we =1, @

‘ Datapath + Control
Ld_high Compare | AEQB

TG Reg)

Ld_low

—o—>| LOW Reg |—> Counter | 2/1 Mux
/

Addr[5..0] N
»| addr Dout[7..0]
S dout [—»
. 0 —»
Din[7..0] data
——
Busy
«—Q I
K ‘T we
IClr_Busy Set_Bus; Addr_sel Zero_we
Zero| v SeLe - - Cnt_eq
—» Zero Cnt_en, 1d_cnt FSM
BR 1/99 4

Comments about ASM Example

* How many states?
— Three states, count the boxes
* How many inputs?

— Two inputs (Zero, Cnt_eq). Count signals within
decision boxes. Inputs ALWAYS appear within
decision boxes.

* How many outputs?

— 4 unconditional outputs (count signals within state
boxes)

— 2 conditional output (count signals within conditional
output boxes

— Outputs ALWAYS appear in either state boxes or

conditional output boxes.
BR 1/99

FSM Implementation

Will always use VHDL to implement FSMs in this class.

Most common method is to use ONE process for implementing
state registers, ONE process for implementing logic.

n m
——>| Combinational K
Logic
Circuit
k-bit k-bit
Present State Next State
Value D FFs Value
k
k de—— CLK

BR 1/99 6

State Encoding

* How we encode the states is an implementation
decision
» For K states, need a minimum of log,(K) Dffs.
* Minimal encoding for example is two FFs
— S0=00, S1=01, S2=10 (counting order)
— S0=00, SI =01, S2 =11, (Gray code for S0->S1->S2)
Gray code usually faster, less logic than counting order
* One Hot encoding, one FF per state
— S0=001, S1 =010, S2 =100

— For large FSMs (> 16 states), one hot can be faster than
minimal encoding

BR 1/99 7

FSM Entity Declaration, Part of Architecture

library icee;
use ieee.std_logic_1164.all;

-- FSM entity for RAM Zero example
entity ramfsm is
port (clk, reset: in std_logic;
zero, cnt_eq: in std_logic; -- control inputs
set_busy, clr_busy: out std_logic; -- control outputs
addr_sel, cnt_en, 1d_cnt, zero_we: out std_logic;
state: out std_logic_vector(1 downto 0) -- state out for debugging

)i
end ramfsm;

architecture a of ramfsm is
signal pstate: std_logic_vector(1 downto 0);
CONSTANT SO0 : std_logic_vector(1 downto 0) :="00"; --- state encoding
CONSTANT S1 : std_logic_vector(1 downto 0) :="01";
CONSTANT S2 : std_logic_vector(1 downto 0) :="10";
BR 1/99 8

FSM Architecture, One process (cont)

begin
state <= pstate; -- look at present state for debugging purposes
stateff:process(clk) -- process has state transitions ONLY

begin

if (reset ='1") then pstate <= SO;
elsif (clk'event and clk='1") then -- rising edge of clock
CASE pstate IS
WHEN S0 => if (zero ="'1") then pstate <= S1; end if}
WHEN S1 => pstate <= S2;
WHEN S2 => if (cnt_eq ="1") then pstate <= SO ; end if;
‘WHEN others => pstate <= S0;
end case;
end if;
end process stateff;

set_busy <="'l" when (pstate = SO and zero = ‘1”) else '0";

1d_cnt <="1' when (pstate = S1) else '0";

addr_sel <="'1" when (pstate = S2) else '0";

zero_we <="'l"' when (pstate = S2) else '0';

cnt_en <="1" when (pstate = S2) else '0";

clr_busy <="1' when (pstate = S2 and cnt_eq ="1") else '0';
end a: BR 1/99

Comments on One Process Implementation

* Stateff process defines state FFs and transistions
between states

Outputs of FSM are separate concurrent statements

outside of process

+ Can be confusing since you separate out the FSM
outputs from their state definitions within the
CASE statement

+ If output code is placed within CASE statement

then they would be protected by the clock check

and thus would have DFFs placed on their outputs

— 1 clock cycle of latency to output assertion

BR 1/99 10

FSM Architecture, Two processes

architecture a of ramfsm is
signal pstate, nstate: std_logic_vector(1 downto 0);

CONSTANT S0 : std_logic_vector(1 downto 0) :="00"; --- state encoding
CONSTANT S1 : std_logic_vector(1 downto 0) :="01";
CONSTANT S2 : std_logic_vector(1 downto 0) :="10";

begin
state <= pstate; -- look at present state for debugging purposes

stateff:process(clk) ~ -- process has DFFs only

begin

if (reset ='1") then pstate <= SO,

elsif (clk'event and clk="1") then

pstate <= nstate; -- updated present state with next state
endif;
end process stateff;
BR 1/99 1

FSM Architecture, Two processes (cont)
comblogic: process (zero, cnt_eq, pstate)
begin
-- default assignments
nstate <= pstate;
set_busy <="0; clr_busy <='0";
Id_cnt <='0";
addr_sel <='0";
zero_we <='0";
cnt_en <='0";
CASE pstate IS
‘WHEN S0 => if (zero ="'1") then

set_busy <= ‘1; nstate <= S1;
end if;
WHEN S1 =>1d_cnt <= "1'; nstate <= S2;
WHEN S2 => zero_we <="'l"; cnt_en <="1'; addr_sel <="'1";
if (cnt_eq ="'1") then
clr_busy <='1"; nstate <= SO ;
end if;
WHEN others => nstate <= S0;
end case;
end if;
end process comblogic; BR 1/99 12

end a;

Comments on Two Process Implementation

Stateff process defines only FFs

Comblogic process defines
— State transitions

— Output assertions

— Has natural mapping from ASM chart to CASE
statement

* Default assignments to outputs in Comblogic
process very important

— A combinational process; do not want latches
synthesized on outputs

— The assignment “pstate <= nstate” says to not change
state unless directed to from within CASE statement.

BR 1/99 13

FSM Timing: Start Zero Operation
ac T T L4 | J\ LT |
i /
Pstate SO /\ s / XSZ

1L

Nstate SO fx si N\X $2
Zero (ext. Input) f\ l \
Set_busy

T

Zero_we, cnt_en, addr_sel

Busy (external output)

BR l/‘)‘) 14

Comments

Note that Pstate changes on active clock edge

Conditional outputs will change based on present

state AND external inputs

+ Unconditional outputs change on clock edge and
remain true as long as in the current state

* In order for BUSY to go high in State S1,

‘set_busy’ must be asserted in SO since BUSY

comes from JK FF.

BR 1/99 15

FSM Timing: Finish Zero Operation

ac T 7 L4 LT L1 |

1
Pstate S2 / \X SO
Nstate ~ S2 4 SO ‘\H

Cnt_Eq (from Comparator)

Clr_busy

Zero_we, cnt_en, addr_sel / \ \

Busy (external output) / »\
High-2): High-1 X High X High+1
Counter BR 1/99 16

Comments

Note that for BUSY to go low in S0, then
“clr_busy” had to be asserted in State S2.
Note that the ‘cnt_en’ signal stays true for one
clock edge after ‘cnt_eq’ goes true

— This means that the COUNTER will increment to
HIGH+1, sometimes this makes a difference, need to be
aware of it

BR 1/99 17

