
All problems refer to the following flowgraph (Y = x* a0 + x@1 * b1)

1. Show a schedule for a minimum resource implementation
Some entries may not be filled out!!! Values ‘b1’, ‘a0’ are already present in registers.

 Mult A Add A Register transfer ops

Clk 1 N2
R1 ←X@1 (R2)*b1

 N1
R2 ←X

Clk 2 N3
R3← X (R2)*a0

Clk 3 N4
Y = R1 +R3

Clk 4

Clk 5

Clk 6

How many multipliers ? ___________________
How many adders? ____________________
How many registers?
Notes:
Assume R2 initially has X@1 value.

X

*

N1

N3
*N2

a0 X@1 b1

+
N4

Y

Figure 1

X

**

N1

N3
**N2

a0 X@1 b1

+
N4

Y

Figure 1

2. Draw a Datapath with registers for minimum resource
implementation.

Reg R1

*

Reg R2

Reg R3

+

Reg a0 Reg b1

Y

X

Reg R1

*

Reg R2

Reg R3

+

Reg a0 Reg b1

Y

X

Has old X which is X@1 in
first clock cycle, overwritten
by new X because no longer
need X@1 after first clock.

3. ASM Chart Specification

Draw an ASM Chart for your datapath. Your initial state should be a loop which waits
for a START signal. After start is received, perform computations until a start signal is
received. The number of clocks to perform a computation should match your minimum
resource schedule. Assume that the external system provides new input on the first clock
cycle of your computation loop without the need for external handshaking.

Assert a ORDY line for one clock each time a result is ready from your datapath.

Start?

S0

S1

0

1

ASM

Ld_r2
Mux_sel=b1

Ld_r1

S2
Ld_r3

Mux_sel=a0

S3
ORDY

Stop?
1

0

Start?

S0

S1

0

1

ASM

Ld_r2
Mux_sel=b1

Ld_r1

S2
Ld_r3

Mux_sel=a0

S3
ORDY

Stop?
1

0

4. VHDL Entity for ASM Chart

Write the VHDL entity for the FSM required for your design (do not write the
architecture, I assume that you can do this).

entity myfsm is
 port (
 clk, aclr: in std_logic;
 start, stop: in std_logic;
 ld_r1, ld_r2, ld_3: out std_logic;
 mux_sel: out std_logic;
 ordy : out std_logic
);
end myfsm;

