Sequential Systems Review

- Combinational Network
 - Output value only depends on input value
- · Sequential Network
 - Output Value depends on input value and present state value
 - Sequential network must have some way of retaining state via memory devices.
 - Use a clock signal in a synchronous sequential system to control changes between states

BR 8/99

DFFs are most common

- · Most FPGA families only have DFFs
- DFF is fastest, simplest (fewest transistors) of FFs
- Other FF types (T, JK) can be built from DFFs
- We will use DFFs almost exclusively in this class
 - Will always used edge-triggered state elements (FFs), not level sensitive elements (latches).

BR 8/99

7

Setup, Hold Times

- Synchronous inputs (e.g. D) have Setup, Hold time specification with respect to the CLOCK input
- Setup Time: the amount of time the synchronous input (D) must be *stable before* the active edge of clock
- Hold Time: the amount of time the synchronous input (D) must be *stable after* the active edge of clock.

BR 8/99

11

			Соι	inter Op		tio	n	
Counter A								
Aclr	Clk		En	LD	Q		Q+	Op
Н		Х	Х	X		Х	0	Async Clr
L		\uparrow	Х	Н		Х	Din	Load
L		\uparrow	Н	L		Q	Q+1	Increment
L		Х	L	L		Q	Q	Hold
				BR 8/99				19

			(Counte	r B		
Aclr	Clk	En	LD	Q	Q+	Op	
Н	X	Х	Х	X	0	Async Clr	
L	1	L	Н	X	Din	Load	
L	\uparrow	Н	L	Q	Q+1	Increment	
L	X	L	L	Q	Q	Hold	
L	\uparrow	H	Н	Q	_Din+1	Load Inc	
			\checkmark				
N=H	, LD=	Hwi	11 loa	d an in	cremente	d version of Di	n

BR 8/99

23

Counter Operation

LD Q Q+ Op	Q	LD	En	Clk	Sclr	Aclr
X X 0 Async C	Х	Х	Х	Х	Х	Н
X X 0 Sync C	Х	Х	Х	←	Н	L
H X Din Lo	Х	Η	Х	Ŷ	L	L
L Q Q+1 Increme	Q	L	Н	←	L	L
L Q Q Ho	Q	L	L	Х	L	L

Comments on Shift operation

- Took 8 clock cycles to serially send the 8 bits in CPU A to CPU B.
- Shift Register at CPU A ended up at \$00; Shift Register at CPU B ended up with CPU A value (\$85)
- Initial contents of CPU B shift register does not matter
- Data shifted out LSB to MSB from CPUA to CPUB. Note that data enters the MSB at CPUB and progresses toward the LSB.

BR 8/99

39

Sequential System Description
The Q outputs of the flip-flops form a state vector
A particular set of outputs is the Present State (PS)
The state vector that occurs at the next discrete time (clock edge for synchronous designs) is the Next State (NS)
A sequential circuit described in terms of state is a Finite State Machine (FSM)
Not all sequential circuits are described this way; i.e., registers are not described as FSMs yet a register is a sequential circuit.

