
1

BR 8/99 1

Sequential Systems Review

• Combinational Network
– Output value only depends on input value

• Sequential Network
– Output Value depends on input value and present state

value
– Sequential network must have some way of retaining

state via memory devices.
– Use a clock signal in a synchronous sequential system

to control changes between states

BR 8/99 2

Sequential System Diagram

Combinational
Logic
Circuit

Memory Elements
- flip-flop
- latch
- register
- PROM

n m

k k

k-bit
Present State

Value

k-bit
Next State

Value

• m outputs only depend on k PS bits - Moore Machine
– REMEMBER: Moore is Less !!

• m outputs depend on k PS bits AND n inputs - Mealy Machine
Slide by Prof Mitch Thorton

BR 8/99 3

Clock Signal Review

time

voltage

f = 1/τ

Pw rising edge falling edge

τ - period (in seconds) Pw - pulse width (in seconds)

f - frequency pulse width (in Hertz)

duty cycle - ratio of pulse width to period (in %) duty cycle = Pw /τ

millisecond (ms)
10-3

Kilohertz (KHz)
103

microsecond (µs)
10-6

Megahertz (MHz)
106

nanosecond (ns)
10-9

Gigahertz (GHz)
109

Slide by Prof Mitch Thorton
BR 8/99 4

Memory Elements

Memory elements used in sequential systems are flip-flops
and latches.

D
Q

C

D Q(t+1)
0 0
1 1

Q(t+1) is Q next
state

D flip flop (DFF)

D
Q

G D latch (DL)

Flip-flops are edge triggered
(either rising or falling edge).

Latches are level sensitive. Q
follows D when G=1, latches
when G goes from 1 to 0.

BR 8/99 5

D FF, D Latch operation

C for FF, G for latch

D input

Q (FF)

Q (DL)
BR 8/99 6

Other State Elements
J

Q

C

K

J K Q(t+1)
0 0 Q(t)
0 1 0
1 0 1
1 1 Q’(t)

JK useful for single bit
flags with separate
set(J), reset(K) control.

T
Q

C

T Q(t+1)
0 Q(t)
1 Q’(t)

Useful for counter
design.

2

BR 8/99 7

DFFs are most common

• Most FPGA families only have DFFs
• DFF is fastest, simplest (fewest transistors) of

FFs
• Other FF types (T, JK) can be built from DFFs
• We will use DFFs almost exclusively in this

class
– Will always used edge-triggered state elements (FFs), not

level sensitive elements (latches).

BR 8/99 8

Synchronous vs Asynchronous Inputs

Synchronous input: Output will change after active clock edge
Asychronous input: Output changes independent of clock

D
Q

C

S

R

State elements often have async set, reset control.

D input is synchronous with respect to Clk

S, R are asynchronous. Q output affected by S, R
independent of C. Async inputs are dominant over
Clk.

BR 8/99 9

D FF with async control

C

D input

Q (FF)

R

S
BR 8/99 10

FF Timing

• Propagation Delay
– C2Q: Q will change some propagation delay after

change in C. Value of Q is based on D input for DFF.
– S2Q, R2Q: Q will change some propagation delay after

change on S input, R input
– Note that there is NO propagation delay D2Q for DFF!
– D is a Synchronous INPUT, no prop delay value for

synchronous inputs

BR 8/99 11

Setup, Hold Times

• Synchronous inputs (e.g. D) have Setup, Hold
time specification with respect to the CLOCK
input

• Setup Time: the amount of time the synchronous
input (D) must be stable before the active edge of
clock

• Hold Time: the amount of time the synchronous
input (D) must be stable after the active edge of
clock.

BR 8/99 12

Setup, Hold Time

tsu thd

C

D changing

Stable

If changes on D input violate either setup or hold
time, then correct FF operation is not guaranteed.

Setup/Hold measured around active clock edge.

D changing

3

BR 8/99 13

Registers
The most common sequential building block is the register. A
register is N bits wide, and has a load line for loading in a new
value into the register.

DIN

N
CLK

LD

R
E
G

DOUT

N

Register contents do not change
unless LD = 1 on active edge of
clock.

A DFF is NOT a register! DFF
contents change every clock
edge.

ACLR used to asynchronously
clear the register

ACLR

BR 8/99 14

1 Bit Register using DFF, Mux

D
Q

C

0

1

S

Y

2/1 Mux DFF

DOUTDIN

LD

CLK

Note that DFF simply loads old value when LD = 0. DFF
is loaded every clock cycle.

R

ACLR

BR 8/99 15

1 Bit Register using Gated Clock
DOUT

Saves power over previous design since DFF is not clocked every clock
cycle. Many FPGAs offer an ‘enabled’ DFF as an integrated unit. Gating
can be optimized at transistor level in ‘enabled’ DFF.

D
Q

C

DFF

EN

D Q
C

DFFDIN

LD
CLK

R
ACLR

Ld* Ldclk

Clk

LD

Ld*

Ldclk

BR 8/99 16

Counter
Very useful sequential building block. Used to generate memory
addresses, or keep track of the number of times a datapath
operation is performed.

DIN

N
CLK

LD

C
N
T
R

N

CNT_EN

ACLR

LD asserted loads
counter with DIN value.

CNT_EN asserted will
increment counter on
next active clock edge.

ACLR will
asynchronously clear
the counter.

BR 8/99 17

One way to build a Counter

DIN
N

N
R

DFF0

1

S

Y

EN

CNT_EN

DIN

LD
CLK

ACLR

N

N

DIN
Y

Incrementer

BR 8/99 18

Incrementer: Combinational Building
Block

EN

DIN
Y When EN=1, Y = DIN + 1

When EN=0, Y = DIN

EN

N

DIN0

Y0

DIN1

Y1

DIN2

Y2

Etc...

N

4

BR 8/99 19

Counter Operation

Counter A

Q
Q+1
Din

0

Q+

IncrementQLH↑L
Q

X
X

Q

HoldLLXL

LoadHX↑L
Async ClrXXXH

OpLDEnClkAclr

BR 8/99 20

Counter Timing (8 Bit register)

CLK

Din $ 85 $ A0

LD

EN

$ 00 $ A0Dout

$ EF $ 83

Cntr Load

$ A2

Inc

$ A1

Hold

BR 8/99 21

Another Counter (Cntr ‘B’)

D
N

N
R

DFF

1

0

S

Y

EN

DIN

LD

CLK

ACLR

N
EN

DIN
Y

Incrementer

Q

N

BR 8/99 22

Counter Operation
Counter B

HoldQQLLXL
Din+1

Q+1
Din

0

Q+

IncrementQLH↑L

Q

X
X

Q

Load IncHH↑L

LoadHL↑L
Async ClrXXXH

OpLDEnClkAclr

EN=H, LD=H will load an incremented version of Din

BR 8/99 23

Synchronous vs Asynchronous Clear
• The ACLR line is tied to the asynchronous reset of

the DFF
– Asynchronous clear is independent of clock, will occur

anytime clear is asserted
– Usually tied to Power-On-Reset (POR) circuit
– Not very useful for normal operation since any glitch

on ACLR will clear the counter

• Would like a Synchronous Clear input (SCLR) in
which the clear operation takes place on the next
active clock edge.

BR 8/99 24

Cntr ‘A’ with SCLR Input

DN

N

R

DFF0

1

S

Y

EN

EN

DIN

LD

CLK

ACLR

N

N

DIN
Y

Incrementer

Q
N

SCLR

5

BR 8/99 25

Counter Operation

Sync Clr0XXX↑HL

Counter A with SCLR

L
L
L

X

Sclr

HoldQQLLXL
Q+1
Din

0

Q+

IncrementQLH↑L
X

X

Q

LoadHX↑L

Async ClrXXXH

OpLDEnClkAclr

BR 8/99 26

Parallel Data Transfer
To transfer data between two computers, we can do it in
parallel:

C
P
U
#1

C
P
U
#2

Clk

8

DX[7:0]

CLK

$ 85 $ A0 $ EF $ 83DX $ 75

Parallel Data transfer requires a lot of lines to be run between
computers; cabling be expensive, and bulky. Not practical for
long distances.

$ 13

BR 8/99 27

Serial Data Transfer
We can transfer data in serial fashion, e.g., one bit at a time.

C
P
U
#1

C
P
U
#2

Clk

DX

$ 85 = 10000101, data transmitted LSB to MSB

CLK

DX

1
bit0

0
bit1

1
bit2

0
bit3

0
bit4

0
bit5

0
bit6

1
bit7

BR 8/99 28

More on Serial Data Transfer?
• Serial data transfer is more common than data

parallel communication because less wires than
parallel data transfer, can be run longer distances

• Data can be transferred either LSB (least
significant bit) to MSB (most significant bit) or
vice-versa
– Most common is LSB to MSB

• To implement serial data transfer we need a
sequential building block that is called a SHIFT
register.

BR 8/99 29

Shift Register
Very useful sequential building block. Used to perform either
parallel to serial data conversion or serial to parallel data
conversion.

DIN

N
CLK

LD

S
H
I
F
T
E
R

EN

ACLR

LD asserted loads register with
DIN value.

EN asserted will shift data on
next active clock edge.

ACLR is async clear.

SI is serial data in.

Look at LSB of DOUT for serial
data out.

SI

N

DOUT

BR 8/99 30

Shift Register Timing (SI = 0)
CLK

DOUT

Din $ 85

LD

EN

$ 00 $ 85

DOUT0
(LSB)

$ 42 $ 21 $ 10 $ 08 $ 04 $ 02

6

BR 8/99 31

Understanding the shift operation

$85 = 1 0 0 0 0 1 0 1

$42 = 0 1 0 0 0 0 1 0

SI = 0

MSB LSB

$21 = 0 0 1 0 0 0 0 1

SI = 0
1st right shift

2nd right shift

$10 = 0 0 0 1 0 0 0 0

SI = 0

3rd right shift

Etc….
BR 8/99 32

Right Shift vs Left Shift
A right shift is MSB to LSB

In: D7 D6 D5 D4 D3 D2 D1 D0
SIN

Out: SIN D7 D6 D5 D4 D3 D2 D1

A left shift is LSB to MSB

In: D7 D6 D5 D4 D3 D2 D1 D0

SI

Out: D6 D5 D4 D3 D2 D1 D0 SI

BR 8/99 33

Combinational Right Shifter

We need a combinational block that can either shift right or
pass data unchanged

EN

D Y

SRIGHT

N
N

When EN = 1, Y = D
shifted right by 1 position.

When EN=0, Y = DSI

BR 8/99 34

I0
I1

Y

S

I0
I1

Y

S

I0
I1

Y

S

I0
I1

Y

S

D0
D1

D1
D2

D2
D3

D3
SI

Y0

Y1

Y2

Y3

EN

4-bit Combinational
RIGHT Shifter
Implementation

When EN = 0, then:

Y = D3 D2 D1 D0

When EN = 1, then:

Y = SI D3 D2 D1

(right shifted by one
position)

BR 8/99 35

I0
I1

Y

S

I0
I1

Y

S

I0
I1

Y

S

I0
I1

Y

S

D0
SI

D1
D0

D2
D1

D3
D2

Y0

Y1

Y2

Y3

EN

4-bit Combinational
LEFT Shifter
Implementation

When EN = 0, then:

Y = D3 D2 D1 D0

When EN = 1, then:

Y = D2 D1 D0 SI

(left shifted by one
position)

BR 8/99 36

Shift Register (Right shift) Implementation

D
N

N
R

DFF0

1

S

Y

SI

SI

DIN

LD
CLK

ACLR

N

N

D
Y

Right Shifter

Q

EN
EN

7

BR 8/99 37

Serial Communication

DA[7..0]

8
CLK

LDA

S
H
I
F
T
E
R

EN

ACLR

SI_A

8

QA[7..0]

DB[7..0]

8
CLK

LDB

S
H
I
F
T
E
R

SI_B

8

QB[7..0]

QA0

CPU A

EN

ACLR

CPU B

BR 8/99 38

Shift Register Timing (SI_A = 0)
CLK

QA

DA

LDA

QA0

$ 85

EN

$ 00 $ 85 $ 42 $ 21 $ 10 $ 08 $ 04 $ 02 $ 01

$ 00 $ 80 $ 40 $ A0 $ 50 $ 28 $ 14 $0A $ 85
QB

$ 00

1 2 3 4 5 6 7 8

BR 8/99 39

Comments on Shift operation
• Took 8 clock cycles to serially send the 8 bits in CPU A to

CPU B.
• Shift Register at CPU A ended up at $00; Shift Register at

CPU B ended up with CPU A value ($85)
• Initial contents of CPU B shift register does not matter
• Data shifted out LSB to MSB from CPUA to CPUB. Note

that data enters the MSB at CPUB and progresses toward
the LSB.

BR 8/99 40

Sequential System Description
• The Q outputs of the flip-flops form a state vector
• A particular set of outputs is the Present State (PS)
• The state vector that occurs at the next discrete

time (clock edge for synchronous designs) is the
Next State (NS)

• A sequential circuit described in terms of state is a
Finite State Machine (FSM)
– Not all sequential circuits are described this way; i.e.,

registers are not described as FSMs yet a register is a
sequential circuit.

BR 8/99 41

Describing FSMs

• State Tables
• State Equations
• State Diagrams
• Algorithmic State Machine (ASM) Charts

– Preferred method in this class

• HDL descriptions

BR 8/99 42

Example State Machine

S0

0

S10
S2

01

1

1

State Diagram
(Bubble Diagram)

S0

CNT 0

1
S1

CNT 0

1
S2

CNT 0

1
ASM Chart

8

BR 8/99 43

State Assignment
State assignment is the binary coding used to represent the states

Given N states, need at least log2(N) FFs to encode the states

(i.e. 3 states, need at least 2 FFs for state information).

S0 = 00, S1 = 01, S2 = 10 (FSM is now a modulo 3 counter)

Do not always have to use the fewest possible number of FFs.
A common encoding is One-Hot encoding - use one FF per state.

S0 = 001, S1 = 010, S2 = 100

State assignment affects speed, gate count of FSM

BR 8/99 44

FSM Implementation
Use DFFs, State assignment: S0 = 00, S1 = 01, S2 = 10

PS NS
Inc Q1 Q0 Q1+ Q0 D1 D0
0 0 0 0 0 0 0
0 0 1 0 1 0 1
0 1 0 1 0 1 0
0 1 1 x x x x
1 0 0 0 1 0 1
1 0 1 1 0 1 0
1 1 0 0 0 0 0
1 1 1 x x x x

State Table

D1 = Inc’Q1Q0’ + IncQ1’Q0

D0 = Inc’Q1’Q0 + IncQ1’Q0’

Equations

BR 8/99 45

Minimize Equations (if desired)

00 01 11 10

0
Inc

1

0 0 1x

0 1 x 0

Q1Q0
D1

D1 = Inc’ Q1 + Inc Q0

00 01 11 10

0
Inc

1

0 1 0x

1 0 x 0

Q1Q0
D0

D1 = Inc’ Q0 + Inc Q1’Q0’

BR 8/99 46

FSM Usage
• Custom counters
• Datapath control

R
E
G

R
E
G

+
R
E
G

XDIN DOUT

FSM Control (reg load lines, mux selects)

BR 8/99 47

Summary
• We will be describing sequential systems via

VHDL and ASM charts
– Use ASM chart for human reader, VHDL to allow

synthesis of the design
– Synthesis will perform combinational minimization,

but not state reduction.

• Will use common sequential building blocks
extensively
– Registers, Counters, Shift registers, Memories

• Basic storage element will be DFF
• Synchronous (edge-triggered) design methodology

