Gate Delay

- Transistors within a gate take a finite amount of time to switch. This means that a change on the input of a gate takes a finite amount of time to cause a change on the output.
- · This time is known as Propagation Delay
- Smaller transistors means faster switching times. Semiconductor companies are continually finding new ways to make transistors smaller, which means transistors are faster, and more can fit on a die in the same area.

BR 1/99

- Tplh -- time between a change in an input and a low to high change on the output. Measured from 50% point on input signal to 50% point on the output signal. The 'lh' part (low to high) refers to OUTPUT change, NOT input change
- Tphl -- time between a change in an input and a high to low change on the output. Measured from 50% point on input signal to 50% point on the output signal. The 'hl' part (high to low) refers to OUTPUT change, NOT input change

BR 1/99

4

Setup, Hold Times

- Synchronous inputs (e.g. D) have Setup, Hold time specification with respect to the CLOCK input
- Setup Time: the amount of time the synchronous input (D) must be *stable before* the active edge of clock
- Hold Time: the amount of time the synchronous input (D) must be *stable after* the active edge of clock.

BR 1/99

7

Timings	
Max Register to Register Delay U2 Tc2q + U3 Tpd + U1 Tsu = 5 + 8 + 3 = 16 ns.	
A setup time = Tsu + A2D Tpd max - Clk Tpd min = Tsu + (Tpd U3 + Tpd U7) - Tpd U8 = $3 + (8 + 1) - 2 = 10$ ns	
A hold time = Thd + Clk Tpd max - A2D Tpd min = Thd + Tpd U8 - (Tpd U4 + Tpd U7) = $4 + 2 - (7 + 1) = -2$ ns	
BR 1/99	18

`clk	Clock Period	22	Max	Unit ns
clk	Clock Frequency		45.5	Mhz
tsu	A setup time	10		ns
thd	A hold time	-2		ns
2Y	A to Y Tpd		16	ns
k2Y	Clock to Y tpd		22	ns
athd A2Y Ck2Y	A hold time A to Y Tpd	-2	22	

Parameter	Description	Min	Max	Units
Tclk	Clock Period	17		ns
Fclk	Clock Frequency		58.8	Mhz
Atsu	A setup time	2		ns
Athd	A hold time	5		ns
Ck2Y	Clock to Y tpd		13	ns

Parameter	Description	Min	Max	Unit
Tclk	Clock Period	17		ns
Fclk	Clock Frequency		58.8	Mhz
Atsu	A setup time	4		ns
Athd	A hold time	3		ns
Ck2Y	Clock to Y tpd		11	ns

Max Register to Register Delay 2 ASIC System

Assume no pin to pin combinational delays and that inputs/outputs of both ASICs are registered.

For any outputs from ASIC #1 which are Inputs to ASIC #2 find maximum of ASIC #1 Clk to out + ASIC#2 Setup time.

For any outputs from ASIC #2 which are Inputs to ASIC #1 find maximum of ASIC #2 Clk to out + ASIC#1 Setup time.

The maximum of these two times will be the minimum clock period.

BR 1/99

31

33

Other Factors that effect Timing

- Voltage: the higher the voltage, the faster that gates switch
- Temperature: the lower the temperature, the faster that gates switch
- Process Technology (transistor gate width). The shorter the transistor gate length, the faster the transistor will switch (I.e, 0.5u process versus 0.35u process).
- In a given process run, may get fast N transistors, fast P transistors, slow N transistors, slow P transitors

BR 1/99

32

Device Characterization

- Do timing analysis on ASICs at four extreme corners to make sure they meet timing specs under all conditions
- Fastest Case: Fast N transistors, Fast P transistors, High Vdd, Low temperature
- Slowest Case: Slow N transistors, slow P transistors, low Vdd, high temperature
- Other two corners can vary but two possible corners are:
 - Fast N, Slow P, Typical Temperature
 - Slow N, Fast P, Typical Temperature

BR 1/99

Speed Grades • Databooks often list different speed grades for a part at the same temperature • Simply test parts that come off the fabrication line and see how fast they are - Divide the parts into different speed bins - For three speed grades, a design goal might be to have 15% of your parts fall in the upper bin, 50% in the middle bin, and 25% in the lower bin. - As the process matures, more and more fabricated parts will move into the upper speed bin, at which point you make a new upper speed bin. - Obviously, faster parts cost more (and are more profitable) BR 1/99 34

Static Path Analysis

- After your gate netlist has been mapped to the FPGA, a timing analysis tool will analyze the paths in the design and compute the timings we have discussed
- The timing analyzer takes into account the routing delays in the physical routing and the speed grade of the part you have mapped to.
 - Because routing can sometimes change somewhat drastically for even small changes, often try run multiple device mappings to try to get a 'good route'.

BR 1/99

35

Static Timing Analysis Reports

- The static timing analyzer will report the following times
 - Register to Register delays
 - Setup times of all external synchronous inputs
 - Clock to Output delays
 - Pin to Pin combinational delays
- The clock to output delay is usually just reported as simply another pin-to-pin combinational delay
- Timing analysis reports are often pessimistic since they use worst case conditions

Timing Simulation

- The timings extracted by the Timing analysis tool (routing delays, gate delays for a particular speed grade, etc) are used in the simulation
- It may be tempting to simply ignore the delays reported by the timing analyzer, and simply simulate the design 'at speed' to see if it works.
 - If the design simulates correctly, only means that it works for the particular test vectors that you used!
 - Different test vectors exercise different delay paths you must use test vectors that exercise the LONGEST paths

BR 1/99

37