Verilog RTL Modeling
 This assignment introduces you to Verilog RTL modeling

* Similar in concept to VHDL RTL, just different syntax
» Will use serial data transfer as the problem to be solved

4/2/2003 BR 1

Serial Communication

 Serial communication is as widely (or even more widely
used) than parallel communication
— Especially true if communication occurs over long wires
* Many new high speed serial communication standards
have been developed
— USB, IEEE Firewire, HyperTransport, etc.
* This lab will introduce you to some basic serial
communication concepts, namely bit-stuffing and NRZI

encoding
— These techniques are used in the USB (Universal Serial Bus)
interface.
4/2/2003 BR 2

© 11 01 0 1000 100 110

NRZ — paa e Lf
NRZI — mni e

Figgure 7-11. NIZI Dats Encoding

Non-return to zero (NRZ) -
normal data transitions.

NRZ Inverted (NRZI, not a
good description, is not
inverse of NRZ). A
transition for every zero bit.

Strings of zeros means lots of
transitions. Strings of ‘1’s
means steady line.

Bit Stuffing — a 0’ is inserted after every six consecutive ‘1’s in
order to ensure a signal transition so that receiver clock can remain
synchronized to the bit stream.

Data Encoding Sequence;
Raw Data I LI 1
= Sync Pattern — Packet Data -
Stutfed Bt
Bit Stutfed Data [ S 1
[ Syne Pattern Lo Packet Duta -
|. Six Ones - .|
NRZI e | L LT 1 1 I
Encoded Data i‘ Sync Pattern e Packet Data ..l

Figure 7-13. Bit Stuffing

Bit stuffing done automatically by sending logic. Sync pattern
starts data transmission and is seven ‘0’s followed by a “1°.
4/2/2003 BR 4

Figure 7-12. Flow DHagram fer NREZD
4/2/2003 BR 5
A serial bit stream
NRZ NRZI
NRZ bitstuffed bitstuffed
serial Bit Stuff serial serial
stream (insert a ‘0’ stream stream
after every 6 NRZI
. consecutive Encoding
(sin) |5 s) (sout_nrz) (sout._nri)
NRZ NRZ
serial bitstuffed
stream Bit DeStuff serial

<=

(remove a ‘0’
after every 6
consecutive
‘1’s)

4/2/2003

BR

stream
NRZI

Bytes send LSB first!!!

Complete serializer/deserializer in thser.v

serializer module (ser.v)
din Shift
Reg bit stuff and sout
8 | nrzi encode
x X '
d rdy ! v
start FSM
reset
clk
serclk
deserializer module (deser.v)
dout bit destuff
Shift | |and nrzi
g Reg decode sin
’ FSM "

4/2/2003 BR 6




The Task

* You are to design the serializer module (in file ser.v) using
Verilog RTL
— May need several modules within file ser.v, top level module is
called serializer and has the interface shown
— Your ser.v code must be synthesizeable
» Thave designed deserializer module (in file deser.v) and
testbench (thser.v).
— Testbench connects the serializer/deserializer modules together
— Also sends 32 bytes to serializer/deserializer for testing purposes

4/2/2003 BR 7

Serializer Module

* Should wait until start is asserted
* Send value on din serially over sout

* Request new value on din by asserting d_rdy

— In testbench, there is a clock cycle latency between assertion of
d_rdy and a new din value being provided

» Continually send serial data until reset is asserted.

* Main clock is signal c/k. The serial clock is serclk which
has 1 clock pulse for every 4 pulses on clk.
— New serial data should be provided for every pulse on serclk.
— Both clk and serclk provided by testbench.

4/2/2003 BR 8

Zip Archive serial.zip

» Contains directory serial, which contains files thser.v,
ser.v, deser.v .

» Also contains a Modelsim golden waveform called
serial_vsim.wlf and command file serial wave.do To view
this waveform do:

— ghsim —view serial_vsim.wlf —do “do serial wave.do”
— Shows all signals in thser.v from golden simulation.
+ The file ghsim_gold_log.txt contains the golden output
— Testbench just sends 32 bytes to serializer/deserializer
— Each time a new byte comes out of the deserializer, it is printed to

DESerializer Operation

Understanding the DESerializer operation may help with
implementation of the serializer.

Bit DeStuff
) NRZI (remove a ‘0’
N.RZI Decode NRZ after eve;’y 6
bitstuffed bitstuffed | SOISEUVE NRZ
serial ial 1’s) .
stream . serial
stream
Dout[7..0] stream
Output Shift
;g Register 8 Register
Tload
3-bit Load asserted every 8 bits
shifted in so that shift
counter .
register value transferred to
4/2/2003 BR oOutput reg. 10

screen.
» Synopsys script file ser.script for testing if verilog code is
synthesizeable.
— Your synthesized gate level code must produce same result as RTL
code
4212003 BR 9
NRZI Decode If last b1t‘=’thls b}t,’then
output a ‘1’ else ‘0°.
equal . —
sin_nrzi DL b0 SIN_NIZ | pewbit is
D Q en asserted

en
I P when
newbit |sin_nrz has
D Q valid data.

S0 is reset state. Sin_nrzi = 0 is start

@ of transmission (idle state is ‘1°, a ‘0’

@ Y bit is always transmitted first).

@ S en is asserted every four clocks

—— (know that serial clock is ¥4 of clock
frequency).

4/2/2003 BR 11

Finite State Machine for desnrz

nodul e desnrz (sout, newbit,clk, reset,sin);

out put sout, newbit;

input clk,reset,sin; reg declaration required
anytime a signal is assigned a

value from an assignment

_sin, en, sout, newbit;
2:0] state,nstate;

“define SO ' b000 statement in a procedure

“define S 'b0O1 block.

“define S2 ' b010

_define S3 'b011 Does not imply that a
define s4 ' b100 . . . . .

“define S5 " b101 register’ will be synthesized

“define S6 'b110

“define S7 'bl11

State definitions

4/2/2003 BR 12




Procedural block for FSM state storage | Triggered on rising edge of
clock, so outputs will have

al ways @ posedge cl k) begin a rising—edge DFF

if (reset) begi n

state <= ' SO; synthesized.
| _sin <= 1;
<= N
eigm L ‘ Synchronous reset

el se state <= nstate;
newbi t <= 0;/ en 'asserted by FSM
if (en) begin logic every 4 clocks

if (I_sin !=sin) sout = 0; |since we know serial

el se soutn<= 1; -
st <:'\,l:\ clock is Y clock freq.

| _sin <= sin;

en dend [ sin is last serial input. If last serial input not equal
to current serial input, then was a ‘0’ value. If the last
serial bit is equal to current bit, then a ‘1. The newbit
asserted to indicate a valid serial output bit.

4/2/2003 BR 13

Combinational Block Triggered on any changes to

state or sin

al ways @state or sin) begin

nstate = state;
en = 0; .
case (State) (en negated, stay in same

*S0: // wait for start edge |State)

«—— | Default output assignments

if (!sin) nstate = "SI,
“S1: begin
en = 1;

end
'S2: nstate = "S3; Need begin/end if more
'S3: nstate = " S4; .
“S4- nstate = Sl than one statement in
N block.
default: nstate = "S0;
endcase
end
endnodul e
4/2/2003 BR 14

Bit De-stuffing

pause asserted when six ‘1’
bits detected. The pause signal
used to halt shift register so
that the ‘0’ bit which was
stuffed is not shifted into
register.

pause

4/2/2003 { > BR 15

8-bit Shift register in deser.v

nmodul e des_shift (dout, sin, clk, reset, newit, pause);
output [7:0] dout;
input clk, reset, newbit,pause, sin;

reg [7:0] dout; Shift occurs if newbit
al ways @ posedge cl k) begin available and not
destuffing (pause == 0).

if (reset) dout <= 'b00000000;

else if ((newbit) && (!pause)) “begin

out[6:0] <= dout[7:1]; //right shift by 1
ut[7] <= sin;

end
end

endnodul e

Data sent LSB first so shift data

fnto MSB.

4/2/2003 BR 16

3-bit Counter register in deser.v

nodul e descnt (dout, zero, clk, reset, newbit, pause);
output [2:0] dout;
out put zero; Assert zero when counter
input clk, reset, newbit, pause; value = 0. This output used
reg [2:0] dout; to control loading of output
reg zero; register.

assign zero = ~dout[2] & ~dout[1] & ~dout[O0]

al ways @ posedge cl k) begin
if (reset) dout <= 'b000;
else if ((newbit) &% (!pause)) dout <= dout + 1;

end
endnodul e \

Increment counter if newbit available
and not destuffing.

4/2/2003 BR 17

8-bit Register in deser.v

nodul e outreg (q,d, r,clk,1d);
output [7:0] q;
input [7:0] d;
input r,clk,ld;

reg [7:0] g,
al ways @ posedge cl k) begin Hex formattmg‘
if (1d) q <= d; /

if (r) g <="'hoo;
end \
endnodul e
Note that synchronous reset takes
precedence over synchronous load.

4/2/2003 BR 18




Deserializer module — connects other modules together

nodul e deserializer (dout, clk, reset, sin);
output [7:0] dout;
input clk, reset, sin;

Must explicitly declare the
wire [2:0] bitent; —— |widths of any wires whose
wire [7:0] sdout; width is not 1. (default
wire [7:0] dout; . .

width is 1).

dff u_dff (lat_sin,sin, reset,clk);

desnrz u_desnrz (sout_nrz,newbit, clk, reset,lat_sin);
destuff u_destuff (sout, pause, newbit,sout_nrz, reset,clk);
descnt u_descnt (bitcnt, zero, clk, reset, newbit, pause);
des_shift u_shift (sdout, sout, clk, reset, newbit, pause);
outreg u_outreg (dout,sdout, reset,clk, zero);

endnodul e

4/2/2003 BR 19

Asynchronous vs Synchronous Inputs

reg q; Synchronous reset,

al ways @ posedge cl k)M high true
if (r) q<=0;

else q <= d;

reg q; Asynchronous reset —,
al ways @ posedge cl k or posedge r) hlgh true.
begi n \
if (r) then q <= 0; Need ‘posedge’ on ‘r’
else q <= d; because Verilog syntax
end requires if any signals

are edge-triggered in
event list, all signals
must be edge-

4/2/2003 BR triggered. 2

Style suggested by C. Cummings, SNUG 2002

tbser module in thser.v

nodul e tbser;
reg clk,reset,start; Declaration of wires

wire [7:0] din; . .
wire [4:0] addr: «— | with non-default widths

wire [7:0] dout;
reg [7:0] |ast_dout;

Cniti ; Any block with ‘initial’
initial begin y
clk = 0; / keyword only executed

reset = 1;

once.
start = 0;
| ast _dout = ' h0O;
end
4212003 BR 21

tbser module in thser.v cont.

‘ Clock generation

al ways #(200/2) clk = ~clk;

sercl kgen u_serclk (serclk, clk, reset);

serializer u_ser (sout, d_rdy, din, clk,serclk,reset, start);
deserializer u_des (dout, clk, reset, sout);

cnt5 wu_cnt5 (addr, clk, reset, d_rdy);

romu_rom (din, addr);

‘serclkgen” module generates serial clock.

‘rom’, ‘cnt5” used to generate 8-bit input values to serializer
module (‘rom’ provides data values, ‘cnt5’ is 5-bit counter
that provides address to ‘rom’ module. ‘cnt5’ incremented
anytime that ‘d_rdy’ is asserted.

4/2/2003 BR 22

tbser module in thser.v cont.

trace block prints dout value anytime it changes and
serclk is asserted.

Can name blocks

al ways @posedge cl k) begin : trace (not required)
if (serclk == 1) begin
if (last_dout != dout) $display("Dout = % ", dout);
| ast _dout = dout;

end
end
Print in hex format.
4/2/2003 BR 23

tbser module in thser.v cont.

always begin : stim

@posedge cl k) stim block provide stimulus for

@posedge cl k) ; input signals.
reset = 0;
@posedge cl k); Note use of @(posedge clk) --

start = 1; / waits until rising edge before

osedge cl k) ; oo
ngt :go- ) continuing.

while (addr == 0) begin
@ posedge clk);
end
while (addr !'= 0) begin
@ posedge clk);
end
while (addr == 0) begin
@posedge clk);
end
$finish;
end
41212003 BR 24




