

Architecture architecture behv of summer is begin	
main:process variable va,vb,vc,vd: signed(7 downto 0); variable vx,vy,vz: signed(7 downto 0); variable vtotalsum,vsum: signed(7 downto 0); begin	Outer loop is reset loop. All initialization code goes here.
reset_loop: loop	
 - initialize variables vtotalsum := "000i output_rdy <= '0'; input_rdy <= '0'; wait until ck'event and clk = '1'; if (reset = '1') then exit reset_loop; end if; input_rdy <= '1'; wait until clk'event and clk='1'; if (reset = '1') then exit reset_loop; end if; I1: loop 	00000";
2/26/2002 see next page BR	9

Architecture (cont)			
va := unsigned vc := unsigned wait until clk'ex if (reset = '1') ti input_rdy <= '1 vx := va + vb; vsum <= std_lor totalsum <= st wait until clk'ek if (reset = '1') ti end loop; - L1 end loop; - reset_lo end process;	y; otalsum + vsum; gic_vector(vsum); d_logic_vector(vtotalsum); vent and clk='1'; hen exit reset_loop; end if;	Inner loop is computation loop	
2/26/2002	BR	10	

Constraints

- Constraints for BC are clock period, latency, initiation rate
- Clock period will control what types of compute elements are used (i.e., fast adder structures vs slow adders)
 - Requires a library that is characterized for timing, we will always just use a slow clock period
- Latency how many clocks from an input value to the corresponding output value
- the number of clocks that the compute loop will take
- Initiation Rate number of clocks between new input values
 - If initiation rate = latency, no pipelining is being done.
 - Will discuss this in more detail later.

2/26/2002

BR

15

summer pipe2.vhd	
Two super states in loop. Behavioral simulation will not match	
gate level, just need to be aware of this.	
reset_loop: loop	
initialize variables	
vtotalsum := "00000000";	
output_rdy <= '0'; input_rdy <= '0';	
wait until clk'event and clk = '1';	
if (reset = '1') then exit reset_loop; end if;	
input_rdy <= '1';	
wait until clk'event and clk = '1';	
if (reset = '1') then exit reset_loop; end if; I1: loop	
va := unsigned(a); vb := unsigned(b);	
vc := unsigned(c); vd := unsigned(d);	
wait until clk'event and clk='1';	
if (reset = '1') then exit reset_loop; end if;	
vx := va + vb; $vy := vc + vd;$	
vsum := vx + vy;	
vtotalsum := vtotalsum + vsum;	
sum <= std_logic_vector(vsum); totalsum <= std_logic_vector(vtotalsum);	
output_rdy <= '1';	
wait until clk'event and clk='1';	
2/26/2016 (reset = '1') then exit reset_loop; end if; 33	
end loop; L1	

Design	#Adders	#8-bit Registers	Latency	IRate
10_p0	1	5	5	5
l4_p4	2	5	4	4
14_p2	3	7	4	2
l4_p1_v1	4	9	4	1
l4_p1_v2	4	9	4	1

VHDL Files in Archive			
 All VHDL files under src/bc Configurations for each case cfg summer behv (behavioral, non-pipelined), 			
cfg_summer_10_p0, cfg_summer_14_p2, etc • Two different test benches			
- tb_summer.vhd for all cases except init rate = - tb_summer_pipe.vhd for initiation rate = 1	1		
2/26/2002 BR 3	36		