Synopsys Behavioral Compiler

» Synopsys Behavioral Compiler

— Synthesis tool to quickly explore area/time tradeoffs in
datapath designs.

» Example: How many ways can you build a datapath that adds
4 numbers?

— Use 1 adder, takes 4 clocks (1 clk for input, 3 for sums)

— Use 2 adders, takes 3 clocks

— Using pipelining and 3 adders, can get a throughput of 1
new result every clock

BR 1

)
IS
=
I~
]
S
S

High Level Synthesis

| VHDL Model (behavioral) |

(' High level Synthesis Tool

/

[tmpl#l | [impl#2 | [1mpl #3 |

RTL VHDL Models

2/26/2002 BR 2

Behavorial Code

* The VHDL code written for behavioral model is
very restricted in both the types of statements used
and the style that is used

The examples shown here are for Synopsys
Behavioral Compiler

Coding style shown must be followed in order for
synthesis tool to operate correctly

2/26/2002 BR 3

Definitions

* Latency — the number of clocks from an input
value to the corresponding output value

* [nitiation Rate — the rate at which new input
values are accepted (measured in clock cycles).

Data Output

samples Values
COMPUTATION

2/26/2002 BR 4

summer.vhd

A B c D
L | l
\ SUMMER \
TotalSum SUM

Each computation will input four values (A,B,C,D) and
output SUM = A+B+C+D. TOTALSUM will be a
running sum of all values entered.

2/26/2002 BR 5

Synopsys Behavioral Compiler

» The zip archive attached to this lecture has the ‘summer’
example

— Each sample time, add 4 numbers together
— Also keep a running sum
* Implementations
—10_p0 -- minimum area, no constraints
— 14_p4 -- 4 clocks per sample period, no pipelining
— 14 p2 -- 4 clock latency, 2 clock initiation rate
— 14_p1_v1 —4 clock latency, 1 clock initiation rate (1 super

state)

— 14_p1_v2 —4 clock latency, 1 clock initiation rate (2 super
states)

2/26/2002 BR 6

ZIP Archive Directory Structure

J/vhdl/src/bc -- vhdl code for simulation
./synopsys/bc -- main directory for Synopsys execution

./synopsys/be/behv -- contains behavorial code Synopsys
BC

./synopsys/bc/gate — resulting gate level implementations
placed here

/synopsys/bc/*.script -- script files for running synopsys be
(summer 10 p0.script, summer 14 p2.script, etc)

/synopsys/bc/*.rpt -- report files

synopsys/bc/behv/summer.vhd

use ieee.std_logic_1164.all; Entity

use ieee.std_logic_arith.all; Four 8-bit input ports.

Two 8-bit output ports

entity summer is

port (a,b,c,d: in std_logic_vector(7 downto 0);
clk: in std_logic;
reset: in std_logic;
input_rdy : out std_logic;
output_rdy : out std_logic;
totalsum : out std_logic_vector(7 downto 0);
sum: out std_logic_vector(7 downto 0)

)

end summer;
2/26/2002 BR 8

2/26/2002 BR 7
Architecture
architecture behv of summer is
begin
main:process Outer loop is reset
variable va,vb,vc,vd: signed(7 downto 0); loop. All

variable vx,vy,vz: signed(7 downto 0);

variable vtotalsum,vsum: signed(7 downto 0); initialization code

goes here.

begin
reset_loop: loop

-- initialize variables vtotalsum := "00000000";
output_rdy <="'0"; input_rdy <="'0";

wait until clk'event and clk = '1";

if (reset ='1") then exit reset_loop; end if;
input_rdy <="1";

wait until clk'event and clk="1";

if (reset ='1') then exit reset_loop; end if;

11: loop

.... - see next page
2/26/2002 pag BR 9

Architecture (cont)

11: loop It 1 :
input_rdy <="'0"; output_rdy <="'0"; Czliru?;?olj 100
va := unsigned(a); vb := unsigned(b); D! p-

vc = unsigned(c); vd := unsigned(d);
wait until clk'event and clk="1";
if (reset ='1') then exit reset_loop; end if;
input_rdy <="'1"; output_rdy <="1";
VX :=va+vb; vy :=vc +vd;
VSUm := VX + vy;
vtotalsum := vtotalsum + vsum;
sum <= std_logic_vector(vsum);
totalsum <= std_logic_vector(vtotalsum);
wait until clk'event and clk="1";
if (reset ='1') then exit reset_loop; end if;
end loop; -- L1
end loop; -- reset_loop
end process;
end behy;
2/26/2002 BR 10

Super States

» Each ‘wait’ statement in the outer/inner loop is
called a super state

* When BC is generating an implementation, it may
use 1 or more clock cycles for a super state based
on the constraints

+ The minimum amount of latency for a loop will be
equal to the number of wait states in the loop

— Other constraints may cause this minimum
latency to increase

2/26/2002 BR 11

summer.vhd simulation (before synthesis)

0ns
142+3+4 =10 | | Two clocks, one
for each super
2/26/2002 BR state 12

Normal logic synthesis using the summer.vhd code produces
the following architecture:

A S N

+
\

RegTotalSum

2/26/2002 BR

RegA ‘ ‘ RegB ‘ RegC ‘ ‘ RegD ‘
]

+
)
|
+

Running Synopsys BC

To run Synopsys BC for a test case, do:
% swsetup synopsys

% cd synopsys/bc

% dc_shell —f summer_10_p0.script

Gate level implementation placed in gate/summer_10_p0.vhd

Report file in summer_10_p0.rpt

2/26/2002 BR 14

Constraints

Constraints for BC are clock period, latency, initiation rate

Clock period will control what types of compute elements are
used (i.e., fast adder structures vs slow adders)

— Requires a library that is characterized for timing, we will
always just use a slow clock period

Latency — how many clocks from an input value to the
corresponding output value

— the number of clocks that the compute loop will take
Initiation Rate — number of clocks between new input values

— If initiation rate = latency, no pipelining is being done.

— Will discuss this in more detail later.

2/26/2002 BR

summer_10_p0.script
target_library = class.db
link_library = class.db read file
bc_enable_analysis_info = true /
analyze -f vhdl behv/summer.vhd .
elaborate -schedule summ% 10ng clk perlOd
create_clock clk -p 1000
bc_check_design -io superstate_fixed
bc_time_design —force
dont_chain_operations -from -into main/reset_loop/I1/add* adder separated
set_common_resource main/reset_loop/l1/add* by register
I* constraints go here */

schedule -extend_latency -io superstate_fixed

report_schedule -summwmions -variables >
summer_|0_p0.rpt

target_library = gtech.db minimum area, no constraint
compile
vhdlout_equations = true on compute latency
vhdlout_dont_write_types = true

vhdlout_use_packages = {ieee.std_logic_1164, ieee.std_logic_arith}
vhdlout_architecture_name = syn_I0_p0

write -hierarchy -f vhdl -output gate/summer_l0_p0.vhd
sh filter_entity.pl summer gate/summer_l0_p0.vhd

quit 2/26/2002 BR 16

no chaining, each

write result

summer_10_p0.rpt

* Report file gives a list of hardware resources use
* Schedule for hardware resources
* Type of hardware resources

Timing Summary

Clock period 1000.00
Loop timing information:
main 7 cycles (cycles 0 - 7)
reset_loop. ...7 cycles (cycles 0 - 7)
.5 cycles (cycles 2 - 7)

inner loop 5 clocks

2/26/2002 BR

summer_10_p0.rpt (cont)

R t . .
esource ypes Three 8-bit registers

Register Types for internal values
8-bit register................... 3 — One 8-bit adder
Operator Types . .

Two 8-bit registered
(8_8->8)-bit DWO1_add.............. 1 t
110 Ports output ports

1-bit registered output port.
8-bit input port..............
8-bit registered output port.......2
« The datapaths that BC generates places registers on all of
the outputs
— Input values are assumed stable throughout the superstate in which

they are used. Input values are NOT registered.

2/26/2002 BR 18

Schedule
H
' CIkl: ta = c+d
L L P P L P P P
¢ oo aononoee clk2: tb=atb
ettt Lt clk3: te = tattb (sum)
cycle [leop | a | B | € | @ | ¥9 | po | p1 | sun | p2

clk4: tb = sum+tc

: clk5: sum = tc

3 tsum = tb

N

L3
registers are ta,
tb, tc.

Compute loop of 5 clocks. Output regs are
sum, tsum

2/26/2002 BR 19

Datapath for summer 10 p0O

B D A C
— L1l
Finite
+ State
Machine
| l
‘ temp }< ‘Reg Tsum }*‘ RegSum l
O
2/26/2002 BR 20

summer 10 p0.vhd RTL (min area)

e e

Reset outer loop | |
1+2+3+4 =10,

| 5 Clock inner loop — 2
clocks for input super
Output_rdy state, 3 clocks for
2/26/2002 asserted BR compute super state

summer 14 p4.script

Require compute loop to complete in 4 clocks. Only
difference in script is constraints:

/* constraints go here */
1* Use this constraint if No pipelining, but limiting loop time */

set_cycles 4 -from_beginning main/reset_loop/I1 -to_end main/reset_loop/I1

schedule -io §uperstate_fixed

Set compute loop time to 4 clocks, dropped ‘-extend-latency’
from schedule command.

2/26/2002 BR 22

summer 14 p4 resources

Timing Summary

Clock period 1000.00

Loop timing informatio 4 cycles for loop,
i B cycles (cycles0-6) but need an extra

6 cycles (cycles 0 - 6)

.4 cycles (cycles 2 — 6) adder.

Register Types

8-bit register...........c.........3

Operator Types

(8_8->8)-bit DWO1_add.............2

1/0 Ports

1-bit registered output port.......
8-bit input port..................4
8-bit registered output port.

2/26/2002 BR 23

summer 14 p4 Schedule

ansl sace
anel sace

~maw
e

eyele [losp | a | b | € | d [w18 | £3 |p0 | p1 | e | p2
LI .

4 clocks for main loop. In first clock, both adders busy with

adding a+b and c+d
2/26/2002 BR 24

summer_l4_p4.vhd RTL (latency=init rate = 4 clocks)

4 Clock inner loop — 1
clock for input super state,
3 clocks for compute

2/26/2002 gr super state 25

Pipelining

latency = 4, init rate =2

l 2 clks

4 clks l 2 clks

The last two clocks of Sample computation #1 overlap
with the first two clocks of Sample computation #2.

New data input every 2 clocks
2/26/2002 BR

27

summer_l4 p2 -- Pipelining

Pipelining implies overlapped computation of sample periods.

To generate pipelining, must specify an initiation rate that is less
than than the latency.

Also, the initiation rate must be evenly divisible into the latency
because this defines how many sample computations will be
overlapped:

latency =4, initrate=2, 4/2=2 overlapped loop bodies
latency =4, initrate=1, 4/1 =4 overlapped loop bodies

2/26/2002 BR

Pipelining (cont)

latency =4, initrate =1
1 clkl

4clks |

New data input every clock, four computations overlap.

2/26/2002 BR 28

summer 14 p2.script

Require compute loop to complete in 4 clocks but also
specify an initiation rate = 2.

/* constraints go here */

/* use this constraint if want to do pipelining */
pipeline_loop main/reset_loop/I1 -latency 4 -initiation_interval 2

schedule -io superstate_fixed

N

Use pipeline_loop command.
Set compute loop time to 4 clocks
Initiation rate to 2.

2/26/2002 BR 29

summer_14_p2.vhd RTL (latency=4, init rate = 2 clocks)

Cursor Zoom Fomat Window

| =
. | New inputs every
First t takes 4 clock
1rst output takes 4 clocks | 2 clocks after

Totalsum is wrong! A synthesis bug. startup, output

Recursive calculations are tough to map. latency = 4 clks
2/26/2002 BR 30

Handshaking

» Used input_rdy and output_rdy signals in design so that
one testbench could be used for all designs (10_p0, 14 _p4,
14 p2)
— Input Rdy toggles high and low for each sample
* However, for initiation rate = 1, need input rdy to stay
high once compute loop is entered because we get a new
value each clock

— Had to write a new testbench (tb_summer_pipe) and new
behavioral models (summer_pipel.vhd, summer_pipe2.vhd)

— Two different versions of fully pipelined (1 clock per input
sample) case are provided

2/26/2002 BR 31

summer pipel.vhd

This file used for latency = 4, init rate = 1 case. Input Rdy
does not toggle, only 1 super state in loop.

reset_loop: loop
- initialize variables only one superstate,

viotalsum := "00000000%; behavioral simulation

output_rdy <="0"; input_rd:
wait until clk'event and clk = matches gate level
simulation

input_rdy <="'1";
wait until clk’event and clk ='1";

if (reset = '1') then exit reset_loop; end if;
11: loop

va:= i vb :=
vc := unsigned (¢); vd := unsigned(d);
vx :=va+vb; vy:=vc+vd; vsum := VX +vy;
vtotalsum := vtotalsum + vsum;
sum <= std_logic_vector(vsum);
<= std_logic_vector(
output_rdy <="'1";
wait until clk’event and clk="1";
if (reset = '1') then exit reset_loop; end if;
(ﬁnd loop; - L1

2/26/20 BR 32

summer_pipe2.vhd

Two super states in loop. Behavioral simulation will not match

gate level, just need to be aware of this.
reset_loop: loop
-- initialize variables
vtotalsum := "00000000";
output_rdy <="0"; input_rdy <="0";
wait until clk'event and clk ='1";
if (reset = '1") then exit reset_loop; end if;
input_rdy <="1%
wait until clk'event and clk ='1";
if (reset = '1") then exit reset_loop; end if;
11: loop
va d(a)
ve = d(c); vd := i d(d
wait until clk’event and clk="1";
if (reset = '1') then exit reset_loop; end if;
VX :=va + vb; vy :=vc +vd;
vsum := vx + vy;
vtotalsum := vtotalsum + vsum;
sum <= std_logic_vector(vsum); totalsum <= std_logic_vector(vtotalsum);
output_rdy <="1";
wait until clk’event and clk="1";
216206 reset = '1") then exit reset_loopsend if; 33
end loop; -- L1

summer_I4_pl_v2.vhd RTL (latency=4, init rate = 1 clocks)

Input, Output ready signals do
not toggle.
2/26/2002 BR

New input/output
values every clock.,,

Resource Summary

Design #Adders | #8-bit Latency |IRate
Registers
10_p0 1 5 5 5
14_p4 2 5 4 4
14_p2 3 7 4 2
14 pl_vl (4 9 4 1
14 pl_v2 |4 9 4 1
2/26/2002 BR 35

VHDL Files in Archive

» All VHDL files under src/be
» Configurations for each case

— cfg_summer_behv (behavioral, non-pipelined),
cfg _summer 10 p0, cfg summer 14 p2, etc...

» Two different test benches
— tb_summer.vhd for all cases except init rate = 1
— tb_summer pipe.vhd for initiation rate = 1

2/26/2002 BR 36

