CSMA/CD
Carrier Sense Multiple Access/Collision Detect

* CSMA/CD is the bus protocol used by Ethernet
* Requires no central arbitration
* Single wire transmission medium
* Basic Protocol
— CPU listens to the ‘wire’ and waits until it is quiet
— Begins transmitting packet, listening while transmitting
— If collision detected (garbage on wire), then stops transmitting
— Wait some random time between 0 and backoff interval

— Try again — if another collision, double size of backoff interval (up
to some maximum) and try again

2/5/2003 BR

Ethernet Topology

Thin or thick coax

e
c 1 l i i i

[cru | [cru || cpu | [cru || cpu |

Twisted pair\

[cru | [cru | [cpu |

Regardless of the physical topology, the logical model of a
single wire holds.
2/5/2003 BR 2

Simulation Goal

* Our simulation goal will be to write a model that captures
the basics of CSMA/CD arbitration
* Interesting from a VHDL viewpoint because
— Need to use a resolved type to model the ‘wire’
— No global clock signal — CPU model will respond to asynchronous
events (generated both from within the model and externally)
» I will provide the framework of the simulation
* You will need to provide two things
— CPU Model
— Resolution function for the resolved type used to model the ‘wire’
* Our simulation will leave out some of the subtleties of the
complete CSMD/CD arbitration model as defined in the
ethernet standard, but will capture its essence

2/5/2003 BR 3

Modeling the ‘wire’

» Will model the single ‘wire’ as a resolved type called
epacket - will be a record type with two fields

— drive_value (std_logic) — resolved value of wire, used to check for
collision

— sender (integer) — CPU_ID of current driver of wire — only used
for debugging
* Could have created other fields for packet contents, length
etc. if trying do a more complete simulation
* When a CPU drives the wire, will set the drive value field
toa ‘0’
— Resolution function should return a resolved epacket value that
has drive_value = ‘0’ only if there is one driver with drive_value =
0
— Drive_value should be set to ‘X if more than one driver has
drive_value = ‘0’
* CPU should set drive_value = ‘Z’ upon wire release
2/5/2003 BR 4

Packet Time, Slot Time

« Will use two constants that define time periods
— SLOTtime — the length of time at the beginning of a transmission
used to check for collisions
— PKTtime — the time it takes to transmit a packet
* For 100 Mb ethernet, 1 SLOTtime = 512 bit times, will
approximate as 5 ms
— A SLOTtime is the minimum amount of time based on maximum
cable length, and round trip wire delay that a collision can be
reliably detected
¢ For 100 Mb ethernet, maximum packet size is 1500 bytes,
so 1 PKTtime = 120 ms
* Will use CPU generic named wait_interval to control bus
utilization
— Will wait a random time between 0 and wait_interval*PK Ttime
seconds between packet sends

2/5/2003 BR 5

Transmitting a Packet

* Wait for a random amount of time between 0 and
wait_interval * PKTtime (LOCAL state)
— This represents the time that the CPU is not attempting a packet
transmission
* (TRANSMIT CHECK state) Wait for the wire to become
free (drive.value = ‘Z°)
* Drive the wire (drive.value = ‘0°)
* Wait for SLOTtime, then check the wire for a collision
— Ifa collision (drive.value = ‘X”) then go to collision state

— Ifno collision (drive.value = ‘0”), then wait for PKTtime-
SLOTtime (remainder of packet time), release wire (drive.value =
‘Z’), reset the backoff to 1, and go back to LOCAL state

2/5/2003 BR 6

Collision State

e Ifa collision has been detected, wait for a random time
between 0 and backoff ¥ SLOTtime

— Initial value of backoffis 1

— Note that wait time is based on SLOTtime, not PKTtime

* Double the backoff (backoff = backoff * 2)

— Do not increase the maximum size of backoff past 1024

— This is the maximum value in the ethernet standard.

— The standard also specifies that if 16 consecutive collisions occurs,
an error should be signaled from the ethernet interface and
retransmission attempts ended (our model will not do this)

» After waiting, try transmitting again (go back to
TRANSMIT_CHECK state)

2/5/2003 BR 7

cpu.vhd

* T have defined the entity for cpu, you will have write the
architecture
» CPU ports are

— active: in std_logic - should be a ‘0’ for entire period that CPU is
active. Setto ‘Z’ when CPU is finished sending all packets

— o : inout epacket - CPU’s connection to the wire
» CPU generics are
— wait_interval - function discussed in previous slides
— cpu_id - 1D of this cpu, set by configuration
— packets_to_send - this is the number of packets the CPU should

send. After sending this number of packets, the CPU should set its
active output ‘Z’, and suspend

2/5/2003 BR 8

etherpkg_.vhd, etherpkg.vhd

« These files contain the header and body declarations of the
etherpkg.
— Defines the epacket type
— Defines various shared variables for statistics keeping
— Defines the do_report procedure for statistics printing
* You only have to modify the etherpkg.vhd file and fill in the
body of the epacket resolution function
— The drive_value of epacket is the primary concern of the resolution
function
Default value of drive_value should be ‘Z’
— If more than one driver has a ‘0’ value, then drive_value should return

— If only one driver has a ‘0 value, then drive_value should return 0’
Do what you want with the sender value of epacket - it is only useful
for debugging.

2/5/2003 BR 9

Statistics

» etherpkg has several shared variable arrays for statistics
* Your cpu architecture should update the following shared
variable arrays based on cpu_id :
— collisions (integer array) — number of collisions seen by a CPU
— finish_time (time array) — time when CPU suspends after last
packet send
— latency_time (time array) — total latency for a CPU. Latency is the
amount of time before a successful packet transmission (the
amount of time the CPU spends waiting because of collisions).

— packets_sent (integer array) — total packets sent by a CPU
— backoff (integer array) — maximum backoff reached by a CPU

* The do_report procedure is called by the monitor entity
when the active signal becomes a ‘H’ (all CPUs are idle)

» The monitor entity also tracks bus utilization

2/5/2003 BR 10

cpu Modeling Approach

Should use a FSM to model the CPU behavior, but
transitions between states controlled by state changes and
io events.

Can use a single process with or without a sensitivity list.

If using a sensitivity list, trigger the process based on state
or io events.

If not using a sensitivity list, control state transitions with
wait statements.

No inherent advantage to either method — use whatever
method you understand the best.

2/5/2003 BR 11

State Transitions without sensitivity list

when S2 =>
state <= S3 after sone_del ay;
wait on state;

¥~ | Specify a delay between

or state changes

when S2 =>
state <= S3; No delay between state
wait on state; changes (a delta delay)

or

when S2 => “ [Change to another state
state <= S3; based on an event from
wait on io; :

another signal
2/5/2003 BR 12

Typical Results

All times normalized to Packet Times!!

#CPU #0 Finish Time: 1659, Packets: 100, Collisions: 28, Max Backoff Reached: 32,
Total Latency: 1, LatencyPerPacket: 1.000000e-02

CPU #1 Finish Time: 1745, Packets: 100, Collisions: 35, Max Backoff Reached: 32,
Total Latency: 1, LatencyPerPacket: 1.000000e-02

CPU #2 Finish Time: 1739, Packets: 100, Collisions: 36, Max Backoff Reached: 64,
Total Latency: 2, LatencyPerPacket: 2.000000e-02

CPU #3 Finish Time: 1739, Packets: 100, Collisions: 37.
Total Latency: 2, LatencyPerPacket: 2.000000e-02

CPU #4 Finish Time: 1637, Packets: 100, Collisions: 40, Max Backoff Reached: 128,
Total Latency: 5, LatencyPerPacket: 5.000000e-02

CPU #5 Finish Time: 1672, Packets: 100, Collisions: 34.
Total Latency: 1, LatencyPerPacket: 1.000000e-02

CPU #6 Finish Time: 1685, Packets: 100, Collisions: 23, Max Backoff Reached: 8.
Total Latency: 0, LatencyPerPacket: 0.000000e+00

CPU #7 Finish Time: 1715, Packets: 100, Collisions: 49, Max Backoff Reached: 128,
Total Latency: 3, LatencyPerPacket: 3.000000e-02

Wait Interval: 30, Bus Utilization: 44%, Total Packets: 800, Total Collisions: 282,
AvgLatencyPerPacket: 1.875000e-02

Max Backoff Reached: 32

Max Backoff Reached: 32

2/5/2003 BR 13

Sanity Checking Report Output

The do_report procedure normalizes all times to PKTtime
CSMA is inherently fair — CPU finish times should be
reasonably close to each other

— If not, may be problem with the way you are calling the random number
generator

For high values of wait_interval, will not have many collisions

— Finish times will be approximately wait_interval/2 * # of packets
Latency values are small because backoff time based on
SLOTtime, which is small compared to PKTtime

Once backoff times saturate to 1024, bus utilization will
fluctuate, results very dependent on random number generation

2/5/2003 BR 14

Simulation Requirements

* T have provide configurations for 1, 2 and 8 CPUs
— Cfg_tb8.vhd, cfg_tb2.vhd, cfg_tbl.vhd
— Use 1 CPU and 2 CPU configurations for debugging
— The simulator resolution must be in ‘ms’ — edit the modelsim.ini file.
* The zip archive contains a file called reese.ether.rawsol cpu8
which is the output of my 8 CPU simulation for different values
of wait_interval

— The perl script ether_sol.pl can be used to run your simulation for these
values.

— You do not have to match my numbers exactly, simply have reasonable
agreement
* 1 do not require any plots for this simulation or any answers

— Obviously could use this simulation to answer questions similar to that in
the 8 CPU + Arbiter simulation

— T'will simply run your model using the ether_sol.pl and look at the output

2/5/2003 BR 15

ZIP archive

* The zip archive unpacks a directory named ‘ether.student’
* You should rename this directory to simply ‘ether’, and
create a VHDL library named ‘ether’
— This is similar to the previous simulation
* The file makefile.ether in the ether.student directory is the
makefile for the ether library
— No modifications to this file should be needed

2/5/2003 BR 16

