
1

2/5/2003 BR 1

CSMA/CD
Carrier Sense Multiple Access/Collision Detect

• CSMA/CD is the bus protocol used by Ethernet
• Requires no central arbitration
• Single wire transmission medium
• Basic Protocol

– CPU listens to the ‘wire’ and waits until it is quiet
– Begins transmitting packet, listening while transmitting
– If collision detected (garbage on wire), then stops transmitting
– Wait some random time between 0 and backoff interval
– Try again – if another collision, double size of backoff interval (up

to some maximum) and try again

2/5/2003 BR 2

Ethernet Topology

CPU CPU CPU CPU CPU

Thin or thick coax

HUB
CPU

CPU CPU CPU

CPU
Twisted pair

Regardless of the physical topology, the logical model of a
single wire holds.

2/5/2003 BR 3

Simulation Goal

• Our simulation goal will be to write a model that captures
the basics of CSMA/CD arbitration

• Interesting from a VHDL viewpoint because
– Need to use a resolved type to model the ‘wire’
– No global clock signal – CPU model will respond to asynchronous

events (generated both from within the model and externally)

• I will provide the framework of the simulation
• You will need to provide two things

– CPU Model
– Resolution function for the resolved type used to model the ‘wire’

• Our simulation will leave out some of the subtleties of the
complete CSMD/CD arbitration model as defined in the
ethernet standard, but will capture its essence

2/5/2003 BR 4

Modeling the ‘wire’

• Will model the single ‘wire’ as a resolved type called
epacket - will be a record type with two fields
– drive_value (std_logic) – resolved value of wire, used to check for

collision
– sender (integer) – CPU_ID of current driver of wire – only used

for debugging
• Could have created other fields for packet contents, length

etc. if trying do a more complete simulation
• When a CPU drives the wire, will set the drive_value field

to a ‘0’
– Resolution function should return a resolved epacket value that

has drive_value = ‘0’ only if there is one driver with drive_value =
‘0’

– Drive_value should be set to ‘X’ if more than one driver has
drive_value = ‘0’

• CPU should set drive_value = ‘Z’ upon wire release

2/5/2003 BR 5

Packet Time, Slot Time
• Will use two constants that define time periods

– SLOTtime – the length of time at the beginning of a transmission
used to check for collisions

– PKTtime – the time it takes to transmit a packet
• For 100 Mb ethernet, 1 SLOTtime = 512 bit times, will

approximate as 5 ms
– A SLOTtime is the minimum amount of time based on maximum

cable length, and round trip wire delay that a collision can be
reliably detected

• For 100 Mb ethernet, maximum packet size is 1500 bytes,
so 1 PKTtime = 120 ms

• Will use CPU generic named wait_interval to control bus
utilization
– Will wait a random time between 0 and wait_interval*PKTtime

seconds between packet sends

2/5/2003 BR 6

Transmitting a Packet

• Wait for a random amount of time between 0 and
wait_interval * PKTtime (LOCAL state)
– This represents the time that the CPU is not attempting a packet

transmission

• (TRANSMIT_CHECK state) Wait for the wire to become
free (drive.value = ‘Z’)

• Drive the wire (drive.value = ‘0’)
• Wait for SLOTtime, then check the wire for a collision

– If a collision (drive.value = ‘X’) then go to collision state
– If no collision (drive.value = ‘0’), then wait for PKTtime-

SLOTtime (remainder of packet time), release wire (drive.value =
‘Z’), reset the backoff to 1, and go back to LOCAL state

2

2/5/2003 BR 7

Collision State

• If a collision has been detected, wait for a random time
between 0 and backoff * SLOTtime
– Initial value of backoff is 1
– Note that wait time is based on SLOTtime, not PKTtime

• Double the backoff (backoff = backoff * 2)
– Do not increase the maximum size of backoff past 1024
– This is the maximum value in the ethernet standard.
– The standard also specifies that if 16 consecutive collisions occurs,

an error should be signaled from the ethernet interface and
retransmission attempts ended (our model will not do this)

• After waiting, try transmitting again (go back to
TRANSMIT_CHECK state)

2/5/2003 BR 8

cpu.vhd

• I have defined the entity for cpu, you will have write the
architecture

• CPU ports are
– active: in std_logic - should be a ‘0’ for entire period that CPU is

active. Set to ‘Z’ when CPU is finished sending all packets
– io : inout epacket - CPU’s connection to the wire

• CPU generics are
– wait_interval - function discussed in previous slides
– cpu_id - ID of this cpu, set by configuration
– packets_to_send - this is the number of packets the CPU should

send. After sending this number of packets, the CPU should set its
active output ‘Z’, and suspend

2/5/2003 BR 9

etherpkg_.vhd, etherpkg.vhd
• These files contain the header and body declarations of the

etherpkg.
– Defines the epacket type
– Defines various shared variables for statistics keeping
– Defines the do_report procedure for statistics printing

• You only have to modify the etherpkg.vhd file and fill in the
body of the epacket resolution function
– The drive_value of epacket is the primary concern of the resolution

function
– Default value of drive_value should be ‘Z’
– If more than one driver has a ‘0’ value, then drive_value should return

‘X’
– If only one driver has a ‘0’ value, then drive_value should return ‘0’
– Do what you want with the sender value of epacket - it is only useful

for debugging.

2/5/2003 BR 10

Statistics
• etherpkg has several shared variable arrays for statistics
• Your cpu architecture should update the following shared

variable arrays based on cpu_id :
– collisions (integer array) – number of collisions seen by a CPU
– finish_time (time array) – time when CPU suspends after last

packet send
– latency_time (time array) – total latency for a CPU. Latency is the

amount of time before a successful packet transmission (the
amount of time the CPU spends waiting because of collisions).

– packets_sent (integer array) – total packets sent by a CPU
– backoff (integer array) – maximum backoff reached by a CPU

• The do_report procedure is called by the monitor entity
when the active signal becomes a ‘H’ (all CPUs are idle)

• The monitor entity also tracks bus utilization

2/5/2003 BR 11

cpu Modeling Approach

• Should use a FSM to model the CPU behavior, but
transitions between states controlled by state changes and
io events.

• Can use a single process with or without a sensitivity list.

• If using a sensitivity list, trigger the process based on state
or io events.

• If not using a sensitivity list, control state transitions with
wait statements.

• No inherent advantage to either method – use whatever
method you understand the best.

2/5/2003 BR 12

State Transitions without sensitivity list

when S2 =>
state <= S3 after some_delay;
wait on state;

or

when S2 =>
state <= S3;
wait on state;

or
when S2 =>

state <= S3;
wait on io;

Specify a delay between
state changes

No delay between state
changes (a delta delay)

Change to another state
based on an event from
another signal

3

2/5/2003 BR 13

Typical Results
All times normalized to Packet Times!!
CPU #0 Finish Time: 1659, Packets: 100, Collisions: 28, Max Backoff Reached: 32,
Total Latency: 1, LatencyPerPacket: 1.000000e-02
CPU #1 Finish Time: 1745, Packets: 100, Collisions: 35, Max Backoff Reached: 32,
Total Latency: 1, LatencyPerPacket: 1.000000e-02
CPU #2 Finish Time: 1739, Packets: 100, Collisions: 36, Max Backoff Reached: 64,
Total Latency: 2, LatencyPerPacket: 2.000000e-02
CPU #3 Finish Time: 1739, Packets: 100, Collisions: 37, Max Backoff Reached: 32,
Total Latency: 2, LatencyPerPacket: 2.000000e-02
CPU #4 Finish Time: 1637, Packets: 100, Collisions: 40, Max Backoff Reached: 128,
Total Latency: 5, LatencyPerPacket: 5.000000e-02
CPU #5 Finish Time: 1672, Packets: 100, Collisions: 34, Max Backoff Reached: 32,
Total Latency: 1, LatencyPerPacket: 1.000000e-02
CPU #6 Finish Time: 1685, Packets: 100, Collisions: 23, Max Backoff Reached: 8,
Total Latency: 0, LatencyPerPacket: 0.000000e+00
CPU #7 Finish Time: 1715, Packets: 100, Collisions: 49, Max Backoff Reached: 128,
Total Latency: 3, LatencyPerPacket: 3.000000e-02
Wait Interval: 30, Bus Utilization: 44%, Total Packets: 800, Total Collisions: 282,
AvgLatencyPerPacket: 1.875000e-02

2/5/2003 BR 14

Sanity Checking Report Output

• The do_report procedure normalizes all times to PKTtime
• CSMA is inherently fair – CPU finish times should be

reasonably close to each other
– If not, may be problem with the way you are calling the random number

generator

• For high values of wait_interval, will not have many collisions
– Finish times will be approximately wait_interval/2 * # of packets

• Latency values are small because backoff time based on
SLOTtime, which is small compared to PKTtime

• Once backoff times saturate to 1024, bus utilization will
fluctuate, results very dependent on random number generation

2/5/2003 BR 15

Simulation Requirements

• I have provide configurations for 1, 2 and 8 CPUs
– Cfg_tb8.vhd, cfg_tb2.vhd, cfg_tb1.vhd
– Use 1 CPU and 2 CPU configurations for debugging
– The simulator resolution must be in ‘ms’ – edit the modelsim.ini file.

• The zip archive contains a file called reese.ether.rawsol_cpu8
which is the output of my 8 CPU simulation for different values
of wait_interval
– The perl script ether_sol.pl can be used to run your simulation for these

values.
– You do not have to match my numbers exactly, simply have reasonable

agreement
• I do not require any plots for this simulation or any answers

– Obviously could use this simulation to answer questions similar to that in
the 8 CPU + Arbiter simulation

– I will simply run your model using the ether_sol.pl and look at the output

2/5/2003 BR 16

ZIP archive

• The zip archive unpacks a directory named ‘ether.student’
• You should rename this directory to simply ‘ether’, and

create a VHDL library named ‘ether’
– This is similar to the previous simulation

• The file makefile.ether in the ether.student directory is the
makefile for the ether library
– No modifications to this file should be needed

