
1

BR 6/00 1

VHDL Simulation Environment

We will use the modelsim environment for both VHDL and
Verilog simulation in this class.

I will provide a directory structure + Makefiles that will work
with the modelsim software on the UNIX machines.

A free version of the modelsim software for Window-based
PCs is available, you can copy the file:

http://www.ece.msstate.edu/~reese/tmp/webpack_mxe_simulator.exe

There are some code-size limitations with the free version,
but all of the early labs seem to work ok with it.

BR 6/00 2

Directory Structure

Grab the zip archive at:
http://www.ece.msstate.edu/~reese/EE8993/vhdl_course.zip

Unpack this with: ‘unzip vhdl_course.zip’.

This will setup a directory structure that looks like:
vhdl_course/src/

/Makefiles -- Makefiles for VHDL libraries
/exam1 -- source directory for VHDL example #1

/utilities -- various files that define useful
-- VHDL packages which we will use in
-- this course

vhdl_course/obj/qhdl/
/exam1 -- compiled VHDL object code for example #1
/utilities -- compiled VHDL object code for utilities

BR 6/00 3

Makefiles

Except for the 'Makefiles' directory, each directory under the 'src'
directory represents a VHDL 'library'.

The VHDL files within the library contain VHDL entities,
packages, and configurations that reside within the library.

Under the 'Makefiles' directory, there is a 'Makefile' for each
VHDL library, i.e:

src/Makefiles/Makefile.exam1 - makefile for library 'exam1'
src/Makefiles/Makefile.utilities - makefile for library 'utilities'

BR 6/00 4

Compiling Using a Makefile

To compile the contents of a library using one of the
Makefiles, change directories to the 'src' directory and do:

swsetup modelsim
gmake -f Makefiles/Makefile.exam1 TOOLSET=qhdl

This will compile the contents of the 'exam1' library.
The Makefile has been written to be compatible with several
VHDL simulators, hence the use of the 'TOOLSET' variable.

The 'swsetup' command only has to be issued once in order to put
the Mentor QHDL tools on your path; you may want to add this to
your .cshrc file.

BR 6/00 5

Adding new VHDL entities/packages/configurations
to a Makefile

If you want to add new VHDL entities/packages/configurations to an
existing library then:

•Create the files in the target library directory (i.e.,
src/exam1/myfile.vhd).

•Create the update rules for the file in the Makefile (i.e.,
src/Makefiles/Makefile.exam1).

When editing the Makefile, look at how the update rules for the
other VHDL files are done and simply follow the same pattern.

BR 6/00 6

Adding a new library
If you want to add your own VHDL library, then follow these
steps, all of which must be executed from within the 'src/'
directory:

• Create the new library directory
mkdir mylib

•Create the QHDL library object directory via:
qhlib ../obj/qhdl/mylib
mkdir ../obj/qhdl/mylib/ts

The result of this command will be a new directory
'../obj/qhdl/mylib' which will have some QHDL setup files in it.
The 'ts' directory holds timestamp information required by our
Makefile setup.

2

BR 6/00 7

Adding a new library (cont)

•Create a logical to physical name mapping for the new library via:
qhmap mylib ../obj/qhdl/mylib

This command edits the 'src/modelsim.ini' file and adds a logical to
physical name mapping entry. You could also simply edit the
src/modelsim.ini file manually.

•Create a 'Makefiles/Makefile.mylib' makefile that will handle the
compilation of any VHDL files in 'mylib'. You can copy one of the
other library Makefiles and edit it

BR 6/00 8

src/exam1 Files
The 'src/exam1' directory contains the following files:

•dlatch.vhd - VHDL entity and architecture of simple D latch

•tb.vhd - VHDL entity and architecture of a test bench which instantiates two
latches, a stim component, and a trace component.

•stim.vhd - VHDL entity of a stimulus module for the testbench
•stim_nofile.vhd - architecture for 'stim' which hardcodes testvectors
•stim_readfile.vhd - architecture for 'stim' which reads testvectors from file

•trace.vhd - VHDL entity of a trace module for the testbench
•cfg_tb.vhd - VHDL configuration for the testbench which specifies uses the
'nofile' architecture for 'stim'.
•cfg_tb2.vhd - VHDL configuration for the testbench which specifies uses the
'readfile' architecture for 'stim', plus a different set of generics for the latch delays.

BR 6/00 9

Some VHDL Vocabulary

• entity - specifies the interface (inputs/outputs/generics) to a
module

• architecture – code that specifies the behavior of a module
– There can be more than architecture for an entity
– Each architecture would specify some different implementation (I.e.,

behavioral, RTL, gate level, etc).

• configuration - specifies the entities,generics, architectures to
use for components within a particular model

• package – a collection of VHDL type definitions, procedures,
functions, and component declarations.

• library – a collection of entities, architectures, configurations,
packages

BR 6/00 10

‘exam1’

dl1:dlatch

dl2:dlatch

stim1:stim
d

d

d

d
g
r

g
rg

r

q

trace1:
trace

q
q1

d
g
r

trace2:
trace

q

d
g
r

q
q2

g
r

tb.vhd

Component
name

Entity name
Signals used to connect components

BR 6/00 11

dlatch.vhd – contains both entity and architecture for a
simple dlatch model

-- simple dlatch
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

entity dlatch is
generic (
r_delay : time := 0 ns;
d_delay : time := 0 ns;
g_delay : time := 0 ns

);

port (
d : in std_logic;
g : in std_logic;
r : in std_logic;
q : out std_logic);

end dlatch;

a generic block is method
of passing parameters to a
vhdl model. Values for
generics shown are default
values.

Port declaration for dlatch
entity

For digital simulation will
use IEEE 1164 types.

BR 6/00 12

architecture behv of dlatch is
begin
process (d,g,r)
begin
if (r = '0') then
-- reset went low
q <= transport '0' after r_delay;
elsif (g = '1') then
-- changes can only occur on output when g is '1‘
-- see if event occurred on either g or d
-- ignore otherwise
if (g'event) then
-- just went to a one, schedule the event
q <= transport d after g_delay;

end if;
if (d'event) then
-- change on d, schedule change
q <= transport d after d_delay;

end if;
end if;

end process;
end behv;

Sensitivity list – process
triggered on any event on
these signals

Delay specification
in VHDL

3

BR 6/00 13

tb.vhd – testbench that connects stimulus, dlatches, trace
models

-- simple dlatch
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

LIBRARY exam1;
USE exam1.exam1_components.all;

-- test bench for dlatch
ENTITY tb IS

end tb;

VHDL package
(exam1_components.vhd)
that contains component
declarations for all models
used by this model (stim,
trace, dlatch)

Entity declaration is empty
because there are not external
ports, everything is generated
internally.

BR 6/00 14

architecture A of tb is
signal d,g,r: std_logic;
signal q1,q2: std_logic;

begin

stim1:stim
port map (d => d, g => g, r => r);

dl1 : dlatch
port map (d => d, g => g, r => r, q => q1);

trace1: trace
port map (d => d, g => g, r => r, q => q1);

dl2 : dlatch
port map (d => d, g => g, r => r, q => q2);

trace2: trace
port map (d => d, g => g, r => r, q => q2);

end;

Signals used to connect ports
of components

Component instantiation
component name first, then entity name

Port map shows how ports connect to signals
port_name => signal_name

If two ports connect to same signal, ports are connected.

BR 6/00 15

Component Declarations
A component declaration for an entity must be included inside
of a VHDL architecture before that architecture can instantiate
an instance of that component.

A component declaration is simply a copy of the entity
declaration with a couple of minor syntax changes:
component dlatch

generic (
r_delay : time := 0 ns;
d_delay : time := 0 ns;
g_delay : time := 0 ns);

port (

d,g,r : in std_logic;
q : out std_logic);

end component;

‘entity’ replaced by
‘component’

‘end dlatch’ replaced
by ‘end component’

BR 6/00 16

Packages

Component declarations can be placed directly within the
architecture that uses the corresponding entity.

However, this clutters the architecture code unnecessarily, and
often a particular entity is used by more than one architecture.

A better method is to collect commonly used component
declarations into a VHDL package.

A package is a separately compiled VHDL object and is used
to group related component declarations, functions,
subroutines, type definitions. We will study packages in more
detail later in the semester.

BR 6/00 17

exam1_components.vhd
library ieee;use ieee.std_logic_1164.all;

package exam1_components is
component stim
generic (fname : string := "in.dat" -- trace file);
port(signal d,g,r: out std_logic);
end component;

component dlatch
generic (

r_delay : time := 0 ns;
d_delay : time := 0 ns;
g_delay : time := 0 ns);

port (d,g,r : in std_logic;
q : out std_logic);

end component;

……………… (…etc..all code not shown)

package body exam1_components is

end exam1_components;

This package used to group
component declarations for
exam1. The package
header contains externally
accessible objects.

Package header

Package body is empty
because in this package
only contains component
declarations which are all
externally accessible.

BR 6/00 18

stim.vhd – entity for stimulus which provides inputs for
dlatches.

LIBRARY ieee;USE ieee.std_logic_1164.ALL;

-- stim for dlatch
ENTITY stim IS
generic (

fname : string := "in.dat" -- trace file
);

port(

signal d,g,r: out std_logic);

end stim;

stim_nofile.vhd contains architecture that has input values
hardcoded in vhdl file.

stim_readfile.vhd contains architecture that reads input
value from external file.

Filename used by readfile architecture

4

BR 6/00 19

stim_nofile.vhd
LIBRARY ieee;USE ieee.std_logic_1164.ALL;

architecture nofile of stim is
begin
main: process
begin

-- apply stimulus every 10 ns
---- FF reset ---- D G R

d <= '0'; g <= '0'; r <= '0'; ---- 0 ns ==> 0 0 0
wait for 10 ns;

---- negate reset
d <= '0'; g <= '0'; r <= '1'; ---- 10 ns ==> 0 0 1
wait for 10 ns;

---- D had no effect, clock low
d <= '1'; g <= '0'; r <= '1'; ---- 20 ns ==> 1 0 1
wait for 10 ns;

……………
wait;

end process main;
end nofile;

Entire file not shown

Suspends process forever

No sensitivity list, process
started at time 0.

Process suspended for 10 ns

BR 6/00 20

Other Entities/Architectures

• stim_readfile.vhd - VHDL architecture that reads test
vectors from a file – we will cover file I/O in a later lecture

• trace.vhd - VHDL entity/architecture that tracks changes
on dlatch component inputs/outputs and write these to a
file
– Typically want to write vector outputs to a file so that you can

compare against a ‘golden’ file to see if the results match expected
results.

BR 6/00 21

VHDL Configurations
A VHDL configuration can be used to select
entities/architectures/generics for components within an
architecture.

In this case, want to choose delay values for dlatch components and
architecture for the stim entity (either architecture nofile or
architecture readfile .

Configuration cfg_tb.vhd uses the nofile architecture for the stim
entity and a particular set of delay values for the dlatch components.

Configuration cfg_tb2.vhd uses the readfiles architecture for the
stim entity and the same delay values as used in cfg_tb.vhd .

Can have more than one configuration for an architecture. A
configuration is not required for an architecture.

BR 6/00 22

LIBRARY ieee;USE ieee.std_logic_1164.ALL;

LIBRARY exam1; USE exam1.exam1_components.all;

CONFIGURATION cfg_tb OF tb IS
FOR A
FOR stim1: stim
use entity work.stim(nofile);
end for;
FOR dl1 : dlatch

use entity work.dlatch(behv)
generic map(r_delay => 3 ns,d_delay => 4 ns,g_delay => 2 ns);

end for;
FOR trace1 : trace

use entity work.trace(files)
generic map(TraceFileName => "dl1.out");

end for;
FOR dl2 : dlatch

use entity work.dlatch(behv)
generic map(r_delay => 3 ns,d_delay => 2 ns,g_delay => 2 ns);

end for;
FOR trace2 : trace

use entity work.trace(files)
generic map(TraceFileName => "dl2.out");

end for;
END FOR;
END cfg_tb;

cfg_tb.vhd

Matches arch name of entity tb

Use nofile arch of entity stim

Delay values for component dl1

Output file name for trace1

Different delay values for dl2

Output file name for trace2

BR 6/00 23

LIBRARY ieee;USE ieee.std_logic_1164.ALL;

LIBRARY exam1; USE exam1.exam1_components.all;

CONFIGURATION cfg_tb2 OF tb IS
FOR A
FOR stim1: stim
use entity work.stim(readfile);
end for;
FOR dl1 : dlatch

use entity work.dlatch(behv)
generic map(r_delay => 3 ns,d_delay => 4 ns,g_delay => 2 ns);

end for;
FOR trace1 : trace

use entity work.trace(files)
generic map(TraceFileName => "dl1.out");

end for;
FOR dl2 : dlatch

use entity work.dlatch(behv)
generic map(r_delay => 3 ns,d_delay => 2 ns,g_delay => 2 ns);

end for;
FOR trace2 : trace

use entity work.trace(files)
generic map(TraceFileName => "dl2.out");

end for;
END FOR;
END cfg_tb2;

cfg_tb2.vhd

Matches arch name of entity tb

Use readfile arch of entity stim

Delay values for component dl1

Output file name for trace1

Different delay values for dl2

Output file name for trace2

BR 6/00 24

Files versus
Entities/Architecture/Packages/Configurations

Modelsim does not link file names to VHDL objects
(entities/architecture/packages/configurations).

Could have everything in one file, or a separate file for each
VHDL object.

The advantage of multiple files is that when an edit is made, can
use Makefile dependencies to only recompile changed VHDL
object and any VHDL objects that depend on that object.

Placing everything in one file makes recompilation rules simple –
if you edit the file, you have to recompile the file. However, the
file can get large and unwieldy.

5

BR 6/00 25

Recompilation Rules for Modelsim
If an architecture is changed, must recompile that architecture.

If architecture and entity are in separate files, then only have to
recompile the architecture file, not the entity file.

If architecture and entity are in the same file, then recompiling the
architecture, also recompiles the entity. This means that Modelsim
now thinks the entity has changed, so any architectures that use that
entity (or packages with component declarations for that entity) must
also be recompiled.

To have minimum recompilation and clear dependency rules should
put each VHDL object in a separate file
(entities/architectures/configurations in separate files, package
headers/bodies in separate files).

How you arrange VHDL objects and files is up to you!

BR 6/00 26

Makefiles
• Makefiles use to control recompilation of VHDL objects

– Dependencies can be used in Makefiles to trigger recompilation of
an object if another object changes

– Our approach is to use a separate Makefile for each VHDL library
– This does not handle dependencies between libraries, but should

not encounter this problem very much
• Our makefile template assumes source files reside in

‘src/libname’, and object files in ‘obj/toolset/libname
– The libname is used to select a particular VHDL compiler - for

Modelsim use TOOLSET=qhdl
• When a VHDL object is recompiled, the makefile should

update a timestamp for that object under
‘obj/toolset/libname/ts/filename’ where filename is the file
that contained the VHDL object.
– This timestamp can be used to trigger recompilation of a dependent

object.

BR 6/00 27

##
ifeq (${TOOLSET}, qhdl)
COMPILER = qvhcom ${DEBUG} ${LIBS} -93 -source $<
DEBUG =
LIBS = -work ${LIB_OBJ}

endif

This is the dummy directory for the timestamps
TS = ts
TOUCH = touch $@
LIB_SRC = ./exam1
LIB_OBJ = ../obj/${TOOLSET}/exam1

all: dlatch stim stim_nofile stim_readfile trace tb cfg_tb
cfg_tb2 exam1_components

dlatch: ${LIB_OBJ}/${TS}/dlatch.vhd
stim: ${LIB_OBJ}/${TS}/stim.vhd

ENTITY dlatch
${LIB_OBJ}/${TS}/dlatch.vhd: ${LIB_SRC}/dlatch.vhd

${COMPILER}
${TOUCH}

Makefile.exam1

Compiler command for modelsim

Use VHDL 93 syntax

Update timestamp command

Library name

‘all’ is default target – will
execute rules for all targets

Dependency – if dlatch.vhd changes, then
do recompile, and update timestampe.

BR 6/00 28

Makefile.exam1 (cont.)
Package exam1_components

NOTE dependency on 'stim', 'trace', and 'dlatch' entities

${LIB_OBJ}/${TS}/exam1_components.vhd:
${LIB_SRC}/exam1_components.vhd ${LIB_OBJ}/ts/stim.vhd
${LIB_OBJ}/ts/trace.vhd ${LIB_OBJ}/ts/dlatch.vhd

${COMPILER}
${TOUCH}

Note that the list of dependencies for the
exam1_components.vhd timestamp says to recompile
exam1_components if the source file (exam1_components.vhd)
changes or if any of the timestamps for stim, trace, and dlatch
are updated.

The latter is needed because the exam1_components package
contains the component declarations for stim, trace, and dlatch
and this must be recompiled if these entities are recompiled.

BR 6/00 29

Last Word on Makefiles

• You can look at Makefile.exam1 and see how the other
dependencies were done

• How you group VHDL objects (entities, architectures,
package headers, package bodies, configurations) into files
will determine how you set your dependency rules.

• These makefiles are only compatible with Gnu make
program (‘gmake’). They are not compatible with the
normal Unix make (‘make’).

BR 6/00 30

Running Modelsim

After compiling your code, you can run modelsim via:
qhsim –lib libname (I.e. qhsim –lib exam1)

This will not load any VHDL executable objects
(configurations or enties). Use Design→ Load Design to load
a configuration or entity.

6

BR 6/00 31

Can also specify the configuration or entity to load on the
command line:

qhsim –lib exam1 cfg_tb

This design will be loaded when the modelsim command
window opens.

cfg_tb and all
dependent
objects loaded

Simulator started, time = 0 ns.

BR 6/00 32

Modelsim Debugging Windows

• You can open different debugging windows via the ‘View’
menu

• The most useful ones are:
– Structure – displays object structure of design. Selecting an object will

change contents of source, signals windows
– Source - displays source code of currently selected object
– Signals – displays signals of currently selected object
– Wave – display waveforms of selected signals
– Variables – display variable values of currently executing process

• When debugging, should always at least have structure, source,
signals and wave windows open

BR 6/00 33

Ran 200 ns

Current values
of signals in
component ‘tb’

BR 6/00 34

Can add signals to waveform
window clicking on a signal in
the signals window, then use:

View →Wave → Selected Signal

Click on objects in the structure
window to change the currently
displayed signals in the signals
window.

After adding a signal to the wave window, you will not see a
waveform until you either run the simulation for more time, or
restart the simulation and run it again:

VSIM > restart –f
VSIM > run 200 ns

-f option keeps currently
displayed signals

BR 6/00 35

Once you have a desired set
of signals displayed, use the
File → Save Format

to an external command file
(such as ‘exam1.do’)

If you have your wave format saved to an external file (such
as exam1.do) , you can easily display these signals again
when you execute the simulator via:

VSIM> do exam1.do

This will execute the commands in the file ‘exam1.do’.

BR 6/00 36

To set a
breakpoint, just
click on the source
line in the source
window (a red dot
will appear)

To clear a breakpoint, just click on the line again. Use the structure
window to select a component in order to view its source code.

7

BR 6/00 37

Modelsim Misc. Comments

• You can single step code via the Run → Step menu
• These debugging facilities are very powerful – you should

be able to determine exactly what your code is doing.
• If you want picosecond resolution instead of nanosecond

resolution, you have to edit the modelsim.ini and change
‘Resolution = ns’ to ‘Resolution = ps’.

• If you want to run a simulation in a batch mode, do:
qhsim –c –lib exam1 cfg_tb –do “run 200 ns;quit”

Inhibts GUI window from appearing
(command line interface only)

