USB/FireWire Simulation

* The goal of this simulation is to write a VHDL model for a
system that is somewhat similar in nature to the new serial
standards USB (Universal Serial Bus) and IEEE Firewire

» Simulation aspects

— Totally event driven — no global clock
— Communication is bidirectional, half-duplex over a single wire
— Data type is a resolved data type using a record structure

— Network structure is a tree structure that consists of a root node,
hubs, and endpoints

6/26/01 BR 1

Universal Serial Bus

Universal Serial Bus is a new synchronous serial protocol
for low to medium speed data transmission

Full speed signaling 12 Mbs
Low Speed signaling 1.5 Mbs

Intended devices are keyboards, mice, joysticks, speakers;
other low to medium speed 10 devices

6/26/01 BR
PERFORMANCE APPLICATIONS ATTRIBUTES
Keyboard, Mouse Lower cost
LOW SPEED Stylus Hot plug-unplug
<nteractive Devices Game peripherals Ease of use
#10-100 Kb/s Virtual Reality peripherals Multiple peripherals
Monitor Configuration
MEDIUM SPEED ISDN pow cost
Ease of use
':“°“°' A“d'i:"’_de :2)1(' s Guaranteed latency
ompressac Video N Guaranteed Bandwidth
500Kb/s - 10Mbp/s Dynamic Attach- Detach
Multiple devices
HIGH SPEED Video High Bandwidth
Wideo, Disk Disk Guaranteed latency
25500 Mbls Ease of use

Figure 3-1. Application Space Taxonomy

Physical Topology
is point-to-point
tree.

@ m‘
S R=
e

Figure 4-1. Bus Topology

Root: primary contoller
Hub: allows the connection of multiple USB devices

Endpoint: Source or sink of information within a USB device

A USB device that contains
an ENDPOINT (source/sink
of data) is called a ‘function’.

Upstream H U B P#‘;ft

Port

A USB device can be
just a function, just a
hub, or both a hub and a
Junction. Figure 4-3. A Typical Hub
6/26/01 BR 5

Figure 4-4 illustrates how hubs provide connectivity in a desktop computer environment.

Hub/Function Hub/Function Host/Hub

Physical connection
is point to point.

Keyboard ‘ Monitor
‘ Pen H Mouse ‘Speaker ‘ Mic H Phone ’ Hub
tooror ot T
Function Function Function Function Function Hub

Figure 4-4. Hubs in a Desktop Computer Environment

Physical Interface

Differential Signaling, Half duplex

5 mefers max

VBus VBus
D+ D+
D- ".- D-

Figure 4-2. USB Cable

Full Duplex: data transmission can occur in both
directions at the same time

Half Duplex: data transmission can go in only one

digeggion at a time BR
One Bit
— Time —NM
(12Mbls)
Driver
Signal Pins
vss L
One-Way
Trip Cable
Delay
Vs (max) / U U \ \ /
" Signal pins pass
Receiver input spec levels
Signal Pins after one cable
delay
AL | /\
vss
Figure 7-2. Full Speed Driver Signal Waveforms
Table 7-1. Signaling Levels
Bus State Signaling Levels
From Originating Driver | At Receiver
Differential “1” (D+) - (D-) > 200 mV and D+ or D- >V, (min.)
Differential “0” (D+) - (D-) <-200 mV and D+ or D- > V. (min.)
Input Levels:
Differential Input Sensitivity Vol |(D+)-(D-)|, and Figure 7-4 0.2
Differential Common Mode Range | VCM Includes VDI range 0.8 25
Single Ended Receiver Threshold | VSE 0.8 20
Output Levels:
Static Output Low VoL RLof 1.5kQto 3.6V 0.3
Static Output High VOH RL of 15 kQ to GND 28 36

Vse = Voltage Single Ended threshold

6/26/01

BR

On disconnect, D+, D- become same voltage value
(Vss). Condition is known as a Single-Ended 0.

B evse—
Vou (min) \
Vse (max)
Ve (min)
Vou (max)
Vss

6/26/01

Device
Disconnected

>2.5ps

Disconnect
Detected

Figure 7-7. Disconnect Detection

BR

On connection of a high-speed device, D+>D-.
Idle state is D+ > D-, so idle state is a differential ‘1°.

Vo (min)
D+
Vs (max)
Vse (min)
VoL (max) I/ b
Vss
T >2.5us
Device Connect
Connected Detected

6/26/01

Figure 7-8. Full Speed Device Connect Detection

BR

On connection of a low-speed device, D->D+.
Idle state is D- > D+, so idle state is a differential ‘0’.

6/26/01

Vou (min)
D-
Vse (max)
Vsg (min) /
VoL (max)
[D+
Vss
I >2.5us
Device Connect
Connected Detected

Figure 7-9. Low Speed Device Connect Detection

BR

Data transmission

Vou (min

Vsg (max)

Vse (min)

Vou (e M | W | W | Tt f

Vss Bus Idie | L
SOP First Bit

of Packet

Idle State: D+, D- outside of range of VSE, at either a differential
‘17 (high speed) or ‘0’ (low speed).

Active State: D+, D- transition to signal a 1 or 0

6/26/01 BR 13

Data J State:
Low Speed Differential “0”
Full Speed Differential “1”

Data K State:

Low Speed Differential “1”

Full Speed Differential “0”

Idle State:

Low Speed Differential “0” and D- > V. (max.) and D+ <V, (min.)
Full Speed Differential “1” and D+ > V,, (max.) and D- <V, (min.)

Resume State:

Low Speed Differential “1” and D+ > V,, (max.) and D- <V, (min.)

Full Speed Differential “0” and D- > V,, (max.) and D+ <V, (min.)

Start of Packet Data lines switch from Idle to K State

(SOP)

End of Packet D+ and D- <V (min) for 2 bit D+ and D- < V (min) for > 1 bit

(EOP) times' followed by an Idle for 1 bit | time” followed by a J State
time

Why differential signaling??

Differential signaling very good at rejecting common-mode
noise. If noise is coupled into a cable, then usually it is
coupled into all wires in the cable. This ‘common-mode’ noise
(Vem) can be rejected by input amplifier.
Vo= (Vem +D+) - (Vem+ D-)
Vo= (D+) - = (DH- (D)

i

6/26/01

NRZ —> paa e || S| 1 I 1

NRZI — wzi we L L] L

Figure 7-11. NRZI Data Encoding

Power Up

Non-return to zero (NRZ) -
" NoPacket
normal data transitions. Transmission|

in Packet Transmission

NRZ - Inverted (not a good
description, is not inverse of
NRZ). A transition for
every zero bit.

Strings of zeros means lots of
transitions. Strings of ‘1’s
means steady line.

s Packet
Transfor
Done?

Figure 7-12. Flow Diagram for NRZI

6/26/01 BR 16

Bit Stuffing —a ‘0’ is inserted after every six consecutive ‘1’s in
order to ensure a signal transition so that receiver clock can remain
synchronized to the bit stream.

Data Encoding Sequence:

Raw Data

'qi Sync Pattern 4*7 Packet Data 4>{

./ Stuffed Bit

Bit Stuffed Data

I‘i Sync Pattern Packet Data 44
Six Ones —%

NRzI Idle

Encoded Data Sync Pattern 4*7 Packet Data 4%

Figure 7-13. Bit Stuffing

Bit stuffing done automatically by sending logic. Sync
pattern starts data transmission and is seven ‘0’s
followed by a “1°. BR 17

Power Up

Receiver/Xmitter logic uses a 48
Mhz internal local clock.

48Mhz/ 12Mbs = 4 clocks per
bit time for high speed
signaling.

48Mhz/1.5 Mbs = 32 clocks per
bit time for low speed signaling.

Transmmission|

Bogin Packe Transmission

A guaranteed transition every 7
bit times allows local clock
synchronization to the serial
data stream. Sync pattern
allows clock sync at beginning
of packet.

s Packel
Transter
Done?

Figure 7-14. Flow Diagram for Bit Stuffing 3R 18

Data Formatting

« Data sent in packets
» Packets will have:
— Start of Packet Sync Pattern (8 bits, 7 zeros + 1 one)

Packet ID (PID) — identifies type of packet. 8 bits total, but only 4 unique
bits

Address field - 11 bits. 7 bits for USB device (so 128 possible USB
devices on bus, host is always address 0), 4 bits for internal use by USB
device .
Frame number field (11 bits) — incremented by host
Data Payload (up to 1023 bytes for high-speed connection)
— CRC bits - 5 bits for address field, and 16 bits for data field
EOP strobe — single ended 0 (160ns-175 ns for high speed, 1.25 us to 1.75
us for high speed)
» Not all packets sent over USB bus have all of these fields (always have
SOP, EOP and PID). Packet without data field is a token packet.

6/26/01 BR 19
Packet Types
Table 8-1. PID Types
PID Type | PID Name | PID[3:0] Description
Token out b0001 Address + endpoint number in host -> function
transaction
IN b1001 Address + endpoint number in function -> host
transaction
SOF b0101 Start of frame marker and frame number
SETUP b1101 Address + endpoint number in host -> function
transaction for setup to a control endpoint
Data DATAO b0011 Data packet PID even
DATA1 b1011 Data packet PID odd
Handshake | ACK b0010 Receiver accepts error free data packet
NAK b1010 Rx device cannot accept data or Tx device cannot send
data
STALL b1110 Endpoint is stalled
Special PRE b1100 Host-issued preamble. Enables downstream bus traffic

to low speed devices.

Token

Data

[] Host [] Function

Figure 8-9. Bulk Transaction Format
6/20/01 BR 21

VHDL Model

* Our VHDL Model will present a VERY abstract view of a
USB network
* Models
— root.vhd -- models the root node
— hub.vhd -- models a hub, has an upstream port and 2 downstream
ports
— endpoint.vhd — models an endpoint
» Data packet will contain a packet ID, an address
(destination), and a payload
— Payload is an 80 character string
— Packet types of POUT, PIN, PACK, ERR, NONE

6/26/01 BR 22

root.vhd

library ieee;

use ieee.std logic 1164.all;
library work;

use work.usbpkg.all;

address of root is always ‘0.
entity root is
generic (Only one port on root.
ADDR : natural := 0
)i

port (
signal dport : inout pkt
)

end root;
6/26/01 BR 23
hub.vhd
library ieee;

use ieee.std logic 1164.all;

library work;
use work.usbpkg.all;

One upstream port,

two downstream ports
entity hub is
generic (
HUBDELAY : time := 5 ns
)

port (
signal downstrm_a,downstrm_b : inout pkt;
signal upstrm : inout pkt

end hub;

6/26/01 BR 24

endpoint.vhd

library ieee;

use icee.std_logic_1164.all;

library work; Data stored at endpoint

use work.usbpkg.all;

entity endpoint is
generic (
MANUEF: string := "FooBar Enterprises";
ADDR : natural := 0

)
port (
signal dport : inout pkt

Address of endpoint,
% cannot be 0.
end endpoint;
6126001 BR 25
usbpkg.vhd

Package that defines ‘pkt’ type

PACKAGE usbpkg IS

constant PTIME: time := 1 us; -- packet time
constant RTIME: time := 70 ns; -- turn around time
constant MAXENDPT: natural := 32; -- maximum # of endpoints

type ptype is (NONE, POUT, PIN, PACK,ERRY);

type upkt is W Packet type
id: ptype; ..
dest: integer; «————— | Packet destination

data: string(1t080);
END RECORD; Packet payload

type upkt_vector is array (natural range <) of upkt;
function resolve_upkt (s : upkt vector) return upkt;
subtype pkt is resolve_upkt upkt;

END usbpke; ‘ Resolved data type

6/26/01 BR 26

Protocol

* Root initiates all transactions

* Root will either send a PIN or POUT packet with an
destination (address) field set

— At endpoint, if destination field matches endpoint address, process
packet else ignore packet

— if POUT packet, endpoint responds with ACK packet and places
local data (initially set to MANUF string) in ACK packet

— if PIN packet, endpoint copies packet payload (‘data’ field) into
local data, and responds with ACK packet — the data field of this
ACK packet is a don’t care

6/26/01 BR 27

Releasing the Line

« To simulate ‘releasing’ the line, after either a POUT, PIN,
or PACK packet is sent, send a packet of type NONE

¢ A signal between a hub and an endpoint/root will only
have 2 drivers
— To resolve the two drivers, look at the packet type
— A packet type of NONE resolved with POUT/PIN/PACK will
return POUT/PIN/PACK

— A packet type of NONE resolved with NONE will return NONE
A packet type of POUT/PIN/PACK resolved with
POUT/PIN/PACK will return a packet of type ERR (this should
not happen — if it does, then you have a packet collision which
should never happen).

¢ root_a.vhd illustrates how to send/receive packets

6/26/01 BR 28

HUB operation

* On downstream ports, any packets of type PACK or
NONE should be echoed to upstream port
— PACK packet can only come from an endpoint
* On upstream port, any packet that is not a PACK packet
should be echoed to both downstream ports
» Use HUBDELAY generic for delay time through hub

6/26/01 BR 29

What do you have do?

+ Complete the resolution function for pkt data type
» Complete architectures for ENDPOINT and HUB
 Test your design with ‘tb_a.vhd” and ‘tb_b’.vhd
— I'may test your code with other configurations!!!!
* The root_a.vhd code does the following:
— Loops sending POUT packets to addresses 1 to 32. Ifa PACK is
received, know that there is an ENDPOINT at that address
— Prints out data from ACK packet to screen
Sends a PIN packet to the endpoint with the data from the PACK
packet modified
— Send a POUT packet to the endpoint to verify that the endpoint
stored the new data - wait for the PACK response and print
returned data to console

6/26/01 BR 30

10

tb_a.vhd

root

hub: h0
endpoint: E1 endpoint: E2
addr=3 addr =10
MANUF= “Cypress Mouse” MANUF= “MS Natural Keyboard”
6/26/01 BR 31
tb_b.vhd

hub: hO

endpoint: E1
addr =
MANUF= “Cypress

Mouse™

endpoint: E2
addr = 10
MANUF= “MS Natural Keyboard™

— endpoint: E3
endpoint: E3 addr =25

addr=5

MANUF= “JoyPad”
MANUF= “Xtreme Speakers”

6/26/01 BR 32

Sample Run with tb_b.vhd

> ghsim —lib usb tb_b —c —do “run 150 us;quit”

Found Endpoint 3, data is Cypress Mouse

Modifying Endpoint

Modified Endpoint data: Cypress MouseFOUND
Found Endpoint 5, data is Xtreme Speakers

Modifying Endpoint

Modified Endpoint data: Xtreme SpeakersFOUND
Found Endpoint 10, data is MS Natural Keyboard
Modifying Endpoint

Modified Endpoint data: MS Natural KeyboardFOUND
Found Endpoint 25, data is JoyPad

Modifying Endpoint

Modified Endpoint data: JoyPadFOUND

Finished Scan for Endpoints

6/26/01 BR 33

11

