
1

6/26/01 BR 1

USB/FireWire Simulation

• The goal of this simulation is to write a VHDL model for a
system that is somewhat similar in nature to the new serial
standards USB (Universal Serial Bus) and IEEE Firewire

• Simulation aspects
– Totally event driven – no global clock
– Communication is bidirectional, half-duplex over a single wire
– Data type is a resolved data type using a record structure
– Network structure is a tree structure that consists of a root node,

hubs, and endpoints

6/26/01 BR 2

Universal Serial Bus

• Universal Serial Bus is a new synchronous serial protocol
for low to medium speed data transmission

• Full speed signaling 12 Mbs
• Low Speed signaling 1.5 Mbs
• Intended devices are keyboards, mice, joysticks, speakers;

other low to medium speed IO devices

6/26/01 BR 3

2

6/26/01 BR 4

Physical Topology
is point-to-point
tree.

6/26/01 BR 5

Root: primary contoller

Hub: allows the connection of multiple USB devices

Endpoint: Source or sink of information within a USB device

A USB device that contains
an ENDPOINT (source/sink
of data) is called a ‘function’.

A USB device can be
just a function, just a
hub, or both a hub and a
function.

6/26/01 BR 6

Physical connection
is point to point.

3

6/26/01 BR 7

Physical Interface

Differential Signaling, Half duplex

Full Duplex: data transmission can occur in both
directions at the same time

Half Duplex: data transmission can go in only one
direction at a time

6/26/01 BR 8

6/26/01 BR 9

Vse = Voltage Single Ended threshold

4

6/26/01 BR 10

On disconnect, D+, D- become same voltage value
(Vss). Condition is known as a Single-Ended 0.

6/26/01 BR 11

On connection of a high-speed device, D+ > D-.
Idle state is D+ > D-, so idle state is a differential ‘1’.

6/26/01 BR 12

On connection of a low-speed device, D- > D+.
Idle state is D- > D+, so idle state is a differential ‘0’.

5

6/26/01 BR 13

Idle State: D+, D- outside of range of VSE, at either a differential
‘1’ (high speed) or ‘0’ (low speed).

Active State: D+, D- transition to signal a 1 or 0

Data transmission

6/26/01 BR 14

6/26/01 BR 15

Why differential signaling??
Differential signaling very good at rejecting common-mode
noise. If noise is coupled into a cable, then usually it is
coupled into all wires in the cable. This ‘common-mode’ noise
(Vcm) can be rejected by input amplifier.

+

-
~ D+

~
D-

Vo = (D+) - (D-)

+

-
~ D+

~
D-~Vcm

~ Vcm

Vo = (Vcm + D+) - (Vcm+ D-)
= (D+) - (D-)

6

6/26/01 BR 16

NRZ
NRZI

Non-return to zero (NRZ) -
normal data transitions.

NRZ – Inverted (not a good
description, is not inverse of
NRZ). A transition for
every zero bit.

Strings of zeros means lots of
transitions. Strings of ‘1’s
means steady line.

6/26/01 BR 17

Bit Stuffing – a ‘0’ is inserted after every six consecutive ‘1’s in
order to ensure a signal transition so that receiver clock can remain
synchronized to the bit stream.

Bit stuffing done automatically by sending logic. Sync
pattern starts data transmission and is seven ‘0’s
followed by a ‘1’.

6/26/01 BR 18

Receiver/Xmitter logic uses a 48
Mhz internal local clock.

48Mhz/ 12Mbs = 4 clocks per
bit time for high speed
signaling.

48Mhz/1.5 Mbs = 32 clocks per
bit time for low speed signaling.

A guaranteed transition every 7
bit times allows local clock
synchronization to the serial
data stream. Sync pattern
allows clock sync at beginning
of packet.

7

6/26/01 BR 19

Data Formatting
• Data sent in packets
• Packets will have:

– Start of Packet Sync Pattern (8 bits, 7 zeros + 1 one)
– Packet ID (PID) – identifies type of packet. 8 bits total, but only 4 unique

bits
– Address field - 11 bits. 7 bits for USB device (so 128 possible USB

devices on bus, host is always address 0), 4 bits for internal use by USB
device .

– Frame number field (11 bits) – incremented by host
– Data Payload (up to 1023 bytes for high-speed connection)
– CRC bits - 5 bits for address field, and 16 bits for data field
– EOP strobe – single ended 0 (160ns-175 ns for high speed, 1.25 us to 1.75

us for high speed)
• Not all packets sent over USB bus have all of these fields (always have

SOP, EOP and PID). Packet without data field is a token packet.

6/26/01 BR 20

Packet Types

6/26/01 BR 21

8

6/26/01 BR 22

VHDL Model

• Our VHDL Model will present a VERY abstract view of a
USB network

• Models
– root.vhd -- models the root node
– hub.vhd -- models a hub, has an upstream port and 2 downstream

ports
– endpoint.vhd – models an endpoint

• Data packet will contain a packet ID, an address
(destination), and a payload
– Payload is an 80 character string
– Packet types of POUT, PIN, PACK, ERR, NONE

6/26/01 BR 23

root.vhd

library ieee;
use ieee.std_logic_1164.all;
library work;
use work.usbpkg.all;

entity root is
generic (
ADDR : natural := 0

);

port (
signal dport : inout pkt

);

end root;

address of root is always ‘0’.

Only one port on root.

6/26/01 BR 24

hub.vhd

library ieee;
use ieee.std_logic_1164.all;

library work;
use work.usbpkg.all;

entity hub is
generic (
HUBDELAY : time := 5 ns

);

port (
signal downstrm_a,downstrm_b : inout pkt;
signal upstrm : inout pkt

);

end hub;

One upstream port,

two downstream ports

9

6/26/01 BR 25

endpoint.vhd

library ieee;

use ieee.std_logic_1164.all;

library work;
use work.usbpkg.all;

entity endpoint is
generic (

MANUF: string := "FooBar Enterprises";
ADDR : natural := 0

);

port (
signal dport : inout pkt

);

end endpoint;

Data stored at endpoint

Address of endpoint,
cannot be 0.

6/26/01 BR 26

usbpkg.vhd

Package that defines ‘pkt’ type
PACKAGE usbpkg IS

constant PTIME: time := 1 us; -- packet time
constant RTIME: time := 70 ns; -- turn around time
constant MAXENDPT: natural := 32; -- maximum # of endpoints

type ptype is (NONE, POUT, PIN, PACK,ERR);

type upkt is RECORD

id: ptype;
dest : integer ;
data: string(1 to 80);

END RECORD;

type upkt_vector is array (natural range <>) of upkt;
function resolve_upkt (s : upkt_vector) return upkt;
subtype pkt is resolve_upkt upkt;

END usbpkg;

Packet type

Packet destination

Packet payload

Resolved data type

6/26/01 BR 27

Protocol

• Root initiates all transactions
• Root will either send a PIN or POUT packet with an

destination (address) field set
– At endpoint, if destination field matches endpoint address, process

packet else ignore packet
– if POUT packet, endpoint responds with ACK packet and places

local data (initially set to MANUF string) in ACK packet
– if PIN packet, endpoint copies packet payload (‘data’ field) into

local data, and responds with ACK packet – the data field of this
ACK packet is a don’t care

10

6/26/01 BR 28

Releasing the Line

• To simulate ‘releasing’ the line, after either a POUT, PIN,
or PACK packet is sent, send a packet of type NONE

• A signal between a hub and an endpoint/root will only
have 2 drivers
– To resolve the two drivers, look at the packet type
– A packet type of NONE resolved with POUT/PIN/PACK will

return POUT/PIN/PACK
– A packet type of NONE resolved with NONE will return NONE
– A packet type of POUT/PIN/PACK resolved with

POUT/PIN/PACK will return a packet of type ERR (this should
not happen – if it does, then you have a packet collision which
should never happen).

• root_a.vhd illustrates how to send/receive packets

6/26/01 BR 29

HUB operation

• On downstream ports, any packets of type PACK or
NONE should be echoed to upstream port
– PACK packet can only come from an endpoint

• On upstream port, any packet that is not a PACK packet
should be echoed to both downstream ports

• Use HUBDELAY generic for delay time through hub

6/26/01 BR 30

What do you have do?

• Complete the resolution function for pkt data type
• Complete architectures for ENDPOINT and HUB
• Test your design with ‘tb_a.vhd’ and ‘tb_b’.vhd

– I may test your code with other configurations!!!!
• The root_a.vhd code does the following:

– Loops sending POUT packets to addresses 1 to 32. If a PACK is
received, know that there is an ENDPOINT at that address

– Prints out data from ACK packet to screen
– Sends a PIN packet to the endpoint with the data from the PACK

packet modified
– Send a POUT packet to the endpoint to verify that the endpoint

stored the new data - wait for the PACK response and print
returned data to console

11

6/26/01 BR 31

tb_a.vhd

root

hub: h0

endpoint: E1
addr = 3

MANUF= “Cypress Mouse”

endpoint: E2
addr = 10

MANUF= “MS Natural Keyboard”

6/26/01 BR 32

tb_b.vhd
root

hub: h0

endpoint: E1
addr = 3

MANUF= “Cypress Mouse”

hub: h1

endpoint: E2
addr = 10

MANUF= “MS Natural Keyboard”

hub: h2

endpoint: E3
addr = 5

MANUF= “Xtreme Speakers”

endpoint: E3
addr = 25

MANUF= “JoyPad”

6/26/01 BR 33

Sample Run with tb_b.vhd

> qhsim –lib usb tb_b –c –do “run 150 us;quit”

Found Endpoint 3, data is Cypress Mouse
Modifying Endpoint
Modified Endpoint data: Cypress MouseFOUND
Found Endpoint 5, data is Xtreme Speakers
Modifying Endpoint
Modified Endpoint data: Xtreme SpeakersFOUND
Found Endpoint 10, data is MS Natural Keyboard
Modifying Endpoint
Modified Endpoint data: MS Natural KeyboardFOUND
Found Endpoint 25, data is JoyPad
Modifying Endpoint
Modified Endpoint data: JoyPadFOUND
Finished Scan for Endpoints

