Bob Reese 6/27/01

Verilog

See EE 8999 page for Verilog links.

+ Verilog compile command under Model tech is
‘vlog’ on NT, on Unix it is “qvicom”

See ~reese/verilog_train for many Verilog

examples

Book “Verilog QuickStart” from Kluwer Academic
publishers is a good book, but expensive.

VHDL vs Verilog:

Process Block
VHDL:

process (siga, sigb)
begin

end;
Verilog:
always @ (siga or sigb)
begin

end

Concurrent signal assignment:
c<=aand b (VHDL)
assignc=a&b;

VHDL vs Verilog (cont):

Signal Delays

a <= transport b after 1 ns; (VHDL)

#1 assign a =b; (Verilog)

‘a’ output is delayed by 1 time unit

The ‘# ‘ operator is the delay operator. #N will delay for

N simulation units. Delays can assigned to both inputs

and outputs.

#1 assign a=#1b;

‘b’ is delayed by I unit, then assigned to ‘a’, which is then
delayed by 1 time unit.

Memory Issues in Graphics Hardware 1

Bob Reese 6/27/01

Infinite Loop

always
begin
c=a&b;

end;

Same as infinite process loop in VHDL.

Clock Generator

VHDL!

" signal clk : std_logic :=‘0’;
process
begin
clk <= not (clk) after clkperiod/2;
wait on clk;
end;
Verilog:
initial clk = 0;
always #(clkperiod/2) clk = ~ clk;

Verilog Data Types
bit , can take on values of ‘1°, ‘0°, X, ‘z’

integer : 32 bits

integer a,b;

reg (register, holds unsigned integers N bits wide)

reg x, y[7:0], z[0:7] ;

x is a | bit register, y,z are 8 bit registers. Most
significant bit is always left most bit.

real X,y;

time tl, 12;

Time value are 64 bits, units can be set on a per module
basis.

Memory Issues in Graphics Hardware 2

Bob Reese 6/27/01

Verilog Data Types (cont)

module string1;
reg[8*13: 1] s;
initial begin
s = "Hello Verilog";
Sdisplay("The string %s is stored as %h", s, s);

end
endmodule

Strings are stored in registers that hold 8 * the number of characters in the
string.

Register with Sync Clear

module reglét(q, d, clk, clr n);
input [15:0] d4;

input clk, clr n;

output [15:0] g;

reg [15:0] qg;

always @ (posedge clk)
if (clr_n)
g = #1 d;
else
#1 g = 0;
endmodule

Verilog Primitives

Gates

¢ and, nand, or, nor, xor, xnor

Buffers

« buf, not, pulldown, pullup, bufif0, notif0, bufif1, notif1

Transistors

+ nmos,pmos,cmos, (unidirectional switches)

+ rnmos,rpmos, rcmos (strength reduction of
unidirectional switches)

o tran,rtran, tranif0,rtranif0, tranif1, rtranif1 (bi-
directional switches with their strength reduction
equivalents)

Memory Issues in Graphics Hardware 3

Bob Reese 6/27/01

Structural Model

module mux (OUT, A, B, SEL);
output OUT; —
input A,B,SEL; lprlmmve name ‘

not I5, (sel n, SEL); linstance name ‘

and I6 (sel a‘,yEL_)/ m
and I7 (sel_b, sel n, B)

or I4 (OUT, sel _a, sel b);

endmodule

MUX

AND, OR, XOR, etc primitives can have any
number of inputs.

Two Muxes

module mux2 (OUT, A, B, SEL);
output [1:0] OUT;

input [1:0] A,B;

input SEL;

mux hi (ouT([1], A[1], BI[1], SEL);
mux lo (OUT[0], A[0], B[0O], SEL);

endmodule

Memory Issues in Graphics Hardware 4

Bob Reese

Wires

Wire declarations are used in structural models to connect
instance pins that are not connected to ports
* wire sum; /I one bit wire
+ wire [7:0] d, e, f; // three 8-bit vectors
A vector is a wire wider than 1 bit
Different wire types available
+ supply1, supply0 - always ‘1’, always ‘0’ with a strength of
‘supply’.
¢ wand - wired and
¢ wor - wired or
« tri1 - wire with built in pullup
« tri0 - wire with built in pulldown
+ trireg - storage node for switch-level modeling

Drive Strengths

8 different drive strengths
¢ 0to7, 0is weakest, 7 is highest

Drive table

+ 0 (highz0, highz) high impedance
e 1(-,-) small capacitor
*2(-,-) medium capacitor
+ 3 (weak0, weak1) weak drive

*® 4(-,-) large capacitor
+ 5 (pull0, pull1) pull drive

+ 6 (strong0, strong1) strong drive

*

7 (supply1, supply0) supply drive
Default drive is ‘strong’.

Using Drive Strengths,
Delays in Primitives

Nand gate with open drain output
+ nand (strong0, highz1) GO (y, a, b)
Wimpy buffer
+ buff (weak1, weak0) #6 G1 (out, in)
+ Note that this buffer output has a delay of 6 units

Delays on primitive outputs can specified as (rise, fall, turnoff).
Only use turnoff if output can go to ‘z’ value

+ and #(3,2) a(c, w, z); rise/fall delay
Delays can also have (min:typ:max) values
+ bufif0 #(2:3:4, 1:2:3, 3:4:5) b2 (f, e, d)
+ Note that each rising, falling, turnoff delay has min, typical,
maximum values.

Memory Issues in Graphics Hardware

6/27/01

Bob Reese 6/27/01

Time Units specified in Module

“timescale 1ns / 100ps
module modl;

// #1.1 in this module = 1.1 ns
endmodule

“timescale 100ps / 1lps
module mod2;

// #2 in this module = 200 ps
endmodule;

User Defined Primitives (UDP)

Use truthtables to describe module behavior. Below is a

MUX description:

primitive pmux(y, sel, a, b);

output y;

input sel, a, b;

table

// s ab:vy;
0072 : 0;
01?2 :1;
1?0 : 0;
121 1;

endtable

endprimitive

UDP table symbols: ‘17, ‘0’, ‘x” (unknown), ‘?” (matches 0, 1, x)
If a set of inputs is not covered by a line in the table, output is unknown.

UDP for D Flip-Flop

primitive dff (q,clk,d);
output gq;
reg q;
input clk, d;
table
// < d
r 0 :
1
?

:og+

g
? : 05
?
?
?

r
£

: 15

: -; // no change on falling clock
? Kk : -; // no change on steady clock

endtable

endprimitive

Sequential UDP table symbols: ‘r’ (rising), ‘f* (falling),
“** (any change), ‘-’ (output remains unchanged).

Memory Issues in Graphics Hardware 6

Bob Reese

UDP misc

Cannot use ‘Z' in input table

goes to ‘X’

must be fully specified

Only 1 output allowed, max of 10 inputs

UDP instances just like module instance declarations
+ output must come first followed by input names

In a sequential UDP, all transitions that do not
affect the output must be specified, or output

+ Input transitions and their effect on the output

Parameterized MUX

module nmux4 (a,b,c,d,sel,y);
// Parameterized n bit wide 4 to 1 mux.

input [size-1 : 0] a,b,c,d;
input [1:0] sel;

output [size-1 :0] y;

reg [size-1 :0] y;

always @(a or b or c or d or sel)
case (sel)

0 : vy = a;
1:y =Db;
2 :y =c¢c;
3 y = d;

default : y = 'bx;
// will automatically size to
endcase

endmodule

parameter size = 32; // default to 32 bits

TestBench

module test_adder;
reg [7:0] a,b;
reg carry_in ;
wire [7:0] sum;
wire carry out;

adders dut (carry_out, sum, a,b, carry_in);

initial begin
a 0; b = 0; carry_in = 0;
100 if (sum !== 0) begin
$display ("sum is wrong");

end

a=1; b =0; carry_in = 0;

100 if (sum !== 1) begin
$display ("sum is wrong");
$finish;

end
$finish
end
endmodule

// initial block always executed at time 0, only once

$finish; // ‘finish’ causes simulator exit

Memory Issues in Graphics Hardware

6/27/01

Bob Reese

Verilog Strengths

Built in primitives for gate level, switch level
modeling
+ UDPs nice, compact method for specifying
custom gate behavior
+ Built-in strength system, multi-valued logic system
+ Delay system with rising/falling/turnoff with
max/min/typical values
Also has a defined interface for calling modules
written in other programming languages such as ‘C’
+ helps offset weakness in high level modeling

Verilog Weaknesses

Not well suited for complex, high level modeling

+ No user defined type definition

+ No concept of libraries, packages, configurations

+ No ‘generate’ statement - can’t build parameterized
structural models

+ No complex types above a two-dimensional array

6/27/01

Bottom Line
Usually a company is either all Verilog or all
VHDL
+ Most VLSI companies (US) use Verilog
Texas Instruments, Intel use VHDL - most
European companies use VHDL
Model Tech supports mixed Verilog/VHDL
models
+ Would be nice to have low level blocks
specified in Verilog, high level blocks in VHDL
Extensions to both Verilog and VHDL for
analog simulation (mixed signal) are in the
works.

Memory Issues in Graphics Hardware

