
1

3/25/2003 BR 1

Differences between Verilog/VHDL Timing Model

• Verilog and VHDL have very different timing models
• You need to understand the differences, pitfalls of the

Verilog timing model.
• These notes are based on the SNUG 2000 paper by

Clifford Cummings, ‘Nonblocking Assignments inVerilog
Synthesis, Coding Styles that Kill!”.

3/25/2003 BR 2

Timetest (VHDL)

signal a,y1,y2: std_logic;

process (clk)

begin
if (clk'event and clk='1') then

y1 <= a;
y2 <= y1;

end if;
end process;

Rising clock edge

Signal assignment does not occur
until process suspends, so y2 gets
old value of y1, which simulates
chain of DFFs.

D Q

C

D Q

C

a y1 y2
Synthesis correctly
produces chain of
DFFs

3/25/2003 BR 3

VHDL Simulation of RTL

Y1, Y2 behave as expected.

3/25/2003 BR 4

Verilog TimeTest

module timetest (y1,y2,a,clk);
output y1,y2;
input a,clk;

reg y1,y2;

always @(posedge clk) begin
y1 = a;
y2 = y1;

end

endmodule

Synthesis (Synopsys) results in:

D Q

C

D Q

C

a y1

y2A blocking assignment

3/25/2003 BR 5

Verilog Simulation of RTL (Modelsim)

Note that Y1, Y2 change at
the same time.

Y1, Y2 act like variables in VHDL, not as signals

3/25/2003 BR 6

Timetest, 2nd try
module timetest (y1,y2,a,clk);
output y1,y2;
input a,clk;

reg y1,y2;

always @(posedge clk) begin
y1 = a;

end

always @(posedge clk) begin
y2 = y1;

end

endmodule

Try Separate
processes

D Q

C

D Q

C

a y1 y2

Synthesis results in DFF
chain

2

3/25/2003 BR 7

Verilog Simulation of RTL

Note that Y1, Y2 still change at the same
time.

This is scary – RTL simulation results do not match what is
synthesized. Verilog zero-delay RTL using blocking
assignments is dangerous to use.

3/25/2003 BR 8

Timetest, 3rd try

module timetest (y1,y2,a,clk);
output y1,y2;
input a,clk;

reg y1,y2;

always @(posedge clk) begin
y1 = #1 a;

end

always @(posedge clk) begin
y2 = #1 y1;

end

endmodule

Delays are added. Note that
the delays are added on the
right hand side, in front of
the ‘a’ signal. This means
that the ‘a’ value is
sampled on the rising edge,
but the assignment is
delayed by 1 time unit, and
so simulates a clock-to-q
delay.

Synthesis results in DFF chain.

3/25/2003 BR 9

Verilog RTL Simulation

Note that now Y1, Y2 now simulate chained
DFFs as expected.

While this works, this considered poor
coding style to use delays on right hand side
of operator in blocking assignment.

3/25/2003 BR 10

Timetest, another example

module timetest (y1,y2,a,clk);
output y1,y2;
input a,clk;

reg y1,y2;

always @(posedge clk) begin
y2 = y1;

end

always @(posedge clk) begin
y1 = a;

end

endmodule

Removed delays,
reversed ordering of
always blocks.

3/25/2003 BR 11

Verilog RTL Simulation

Simulation now has Y2 changing after Y1.

With zero delay code, ordering of always blocks affects
RTL simulation results when blocking assignments are
used.

3/25/2003 BR 12

Nonblocking Assignments

module timetest (y1,y2,a,clk);
output y1,y2;
input a,clk;

reg y1,y2;

always @(posedge clk) begin
y1 <= a;
y2 <= y1;

end

endmodule

Nonblocking assignment D Q

C

D Q

C

a y1 y2

Synthesis results in DFF
chain

3

3/25/2003 BR 13

nonblocking vs blocking assignments

• A nonblocking assignment (<=) samples right hand side
(RHS) at beginning of timestep; with the actual assignment
(the LHS) taking place at the end of the timestep
– Works like a signal assignment in VHDL

• A blocking assignment (=) will evaluate the RHS and
perform the LHS assignment without interruption from
another Verilog statement
– Works like a variable assignment (:=) in VHDL

• Should use nonblocking assignments in always blocks
used to synthesize/simulate sequential logic.

3/25/2003 BR 14

More on nonblocking assignments
module timetest (y1,y2,a,clk);
output y1,y2;
input a,clk;

reg y1,y2;

always @(posedge clk) begin
y1 <= a;

end

always @(posedge clk) begin
y2 <= y1;

end

endmodule

With nonblocking
assignments, ordering of
these always blocks
does not affect RTL
simulation or
synthesized gates.

3/25/2003 BR 15

When to use blocking assignments
Use blocking assignments for always blocks that are purely
combinational
reg y, t1, t2;

always @(a or b or c or d) begin
t1 = a & b;
t2 = c & d;
y = t1 | t2;

end

RTL simulation and
synthesis results match

3/25/2003 BR 16

Nonblocking and combinational processes

always @(a or b or c or d) begin
t1 <= a & b;
t2 <= c & d;
y <= t1 | t2;

end

The problem with this is that
during RTL simulation, ‘y’ will
get the old value of t1, t2; not the
current value (this also happens
in VHDL if these are signals).

always @(a or b or c or d or t1 or t2) begin
t1 <= a & b;
t2 <= c & d;
y <= t1 | t2;

end

Adding t1, t2 to the sensitivity list fixes
this problem (as it would in VHDL), but
results in inefficient simulation since
always block triggered twice to get
correct value.

3/25/2003 BR 17

Some Rules

• The paper by Cummings lists several rules for writing
Verilog in which RTL simulation will match synthesized
gate level simulation. The most important of these rules
are:
– Use blocking assignments in always blocks that are purely

combinational
– Use only nonblocking assignments in always blocks that are either

purely sequential or have a mixture of combinational and
sequential assignments.

• If you understand the differences between blocking and
nonblocking assignments in terms of simulation, then these
rules are self-evident.

3/25/2003 BR 18

A Subtle Error if using blocking assignments for
sequential logic

module dff (q,a,clk);
output q;
input a,clk;

reg q;

always @(posedge clk) begin
q = #1 a;

end
endmodule

module dff (q,a,clk);
output q;
input a,clk;

reg q;

always @(posedge clk) begin
#1 q = a;

end
endmodule

Correct DFF simulation, ‘a’
sampled on rising edge,
assigned 1 time unit after
rising edge.

Delays 1 time unit after
rising edge, then samples ‘a’
value, and assigns this to ‘q’.
This is modeling negative
setup time!!!!

