
MARTIN MARIETTA LABORATORIES • MOORESTOWN

Martin Marietta RASSP Team
Martin Marietta Laboratories • Moorestown
Bldg. 145
Moorestown Corporate Center
Moorestown, New Jersey 08057

Date:

September 9, 1994

Rapid Prototyping of Application-Specific Signal

Processors (RASSP)

The Authorization Model for the RASSP
System

Version 2

1

The Authorization Model for the RASSP System

1 Introduction

The Rapid Prototyping of Application-Specific Signal Processors (RASSP) is an

Advanced Research Projects Agency (ARPA)/Tri-Service program aimed at dramatically

improving the process of design, manufacture, test and procurement of digital signal

processors. The RASSP program will deliver an integrated system called the RASSP

system, which integrates the CAD tools used in the RASSP design process under a

framework referred to as the enterprise framework. An enterprise framework provides the

facilities and services necessary to integrate the automated processes of an enterprise. In

the RASSP system the enterprise framework provides support for workflow management,

design data management, library management, computer-supported collaborative work and

remote tool access. The workflow management subsystem of the RASSP enterprise

system enables a RASSP system administrator to model and enforce a particular design

methodology for a project. The data management subsystem of the enterprise framework

provides facilities for configuration managing, and controlling access to design data files

that may reside at various sites in a computer network. The library management subsystem

provides facilities for cataloging, classifying and storing reusable design components; as

well as mechanisms for searching for reusable components.

The various enterprise-level tools and CAD tools use diverse and incompatible models

and mechanisms for authorization. Thus currently the authorization information cannot be

shared among the various tools used in the RASSP enterprise framework. Authorizations

have to be specified separately in the various tools and the management of the consistency

of the authorization information among the tools in an enterprise is a management

nightmare and a significant cost overhead. In this report we propose a common generic

model of authorization that may be adopted by the RASSP enterprise framework tools and

the CAD tools. We have specified a common minimal set of authorization management

2

mechanisms that need to be provided by the tools to support the proposed model. To

facilitate the exchange of authorization data between tools the authorization data generated

by each tool will be modeled using the Configuration Management conformance class1 of

the STEP2 (Standard for the Exchange of Product Model Data) standard AP203 [ISO,

1993]. Our model of authorization is based on the authorization model proposed for object

data management systems by [Rabitti, 1991]. An important criterion we have followed in

the development of the model and the mechanisms is that they should be generic enough to

allow an organization to adopt any authorization policy it chooses to. Example

authorization policies are described in section 2.

In the next section we propose an authorization model for the RASSP system. We

propose a set of mechanisms to support the RASSP authorization model in section 3. In

section 4 we outline an implementation strategy and present a schedule for the

implementation of the authorization model.

2 The RASSP Authorization Model

An authorization is a triplet {oi,, rj, tk} where oi is an authorization object in an

authorization object hierarchy, rj is a authorization role in an authorization role hierarchy,

and tk is an authorization type in an authorization type hierarchy. An authorization object

is a data object on which an authorization may be specified. Authorization objects in a

database are organized as a directed acyclic graph as shown in figure 1. An authorization

role is a collection of users that have the same set of authorizations on the same set of

objects. The authorization roles in an organization are also organized as a directed acyclic

graph as shown in figure 2. An authorization type is a type of operation that may be

performed on a data object. The authorization types for a database are also organized as

directed acyclic graphs as shown in figures 3 and 4. In figure 3 the "Grant" authorizations

1A conformance class of a STEP Application Protocol (AP) is a subset of the AP an application may
support, but still be in compliance with the AP.
2STEP is the Standard for Exchange of Product Model Data. In RASSP, STEP standards are used primarily
for exchanging product data among tools.

3

are authorizations to grant an authorization to another role in the role hierarchy. The

authorization type hierarchy for projects also contains the "Grant" authorizations, but are

not shown in figure 4 to avoid cluttering the figure. The directed links between two nodes

in a hierarchy represent an implication relationship between the nodes. For example, an

authorization for the engineering manager to update design data, implies the authorization to

update system definition data, architecture data, etc., as they follow design data in the

authorization object hierarchy. The authorization implies the same authorization for the

project manager also, as the engineering manager follows project manager in the

authorization role hierarchy. Also, since the operation read follows the operation update in

the authorization type hierarchy for data objects, the authorization to update design data

implies an authorization to read design data as well.

4

Signal Processor

Requirements
 Data

Simulation
 Data

Configuration
 Data

Manufacturing
Requirements
 Planning
 Data

Functional

Performance

Cost
Data

Behavioral

Network

Problem
 Report

 Change
Proposal

Change
Notice

Waiver

Figure 1. An example authorization object hierarchy

Test
Data

Reqs Test
Plans

Test
Sets

Results

Design
 Data

 System
Definition

Architecture

Hardware

Software

Mechanical Packaging

5

Systems
Engineer

Project Manager

Engineering
 Manager

Manufacturing
 Manager

Producibility
 Manager

Sourcing
Manager

Integrated
Logistics
Support
Manager

Architecture
 Engineer

 Digital
Engineer

Software
Engineer

Mechanical
 Engineer

Figure 2. An example authorization role hierarchy

 Test
Manager

6

Destroy

Checkin_Version

Checkout_Version

Update

Read

Grant_Destroy

Grant_Checkin_Version

Grant_Checkout_Version

Grant_Update

Grant_Read

Figure 3. The authorization type hierarchy for design data objects

Instantiate Project

Create_Workflow

Modify_Workflow

Create_Prod_Data_Tree

Modify_Prod_Data_tree

Read_Prod_Data_Tree

Access_Control_WorkflowRead_Workflow

Figure 4. The authorization type hierarchy for projects

An authorization may be positive, granting an authorization, or negative, revoking an

authorization. An explicit or an implicit positive authorization {oi, rj, tk} has to exist for an

operation of type tk to be performed by a user belonging to role rj on a data object

belonging to the authorization object oi. A positive (or negative) authorization specified on

7

a node ni in an authorization hierarchy may be overridden by a negative (or positive)

authorization on a node nj that follows ni in the authorization hierarchy. For example, a

positive authorization for a particular role to update design data (in the example

authorization object hierarchy in figure 1) may be overridden by a negative authorization for

the same role to update mechanical design data. Similarly, a positive authorization for the

engineering manager (in the example authorization role hierarchy in figure 2) to update

configuration data (in the example authorization object hierarchy in figure 1) may be

overridden by a negative authorization to update waiver data.

The authorization object hierarchy and the authorization role hierarchy for a project may

be customized by a RASSP user/systems administrator. The authorization type hierarchies,

however, are not customizable by a RASSP user/system administrator. Each authorization

type has an associated operation such as checkin, checkout, update etc. Thus, defining a

new authorization type will typically involve adding a new functionality to the system.

3 Mechanisms to support the RASSP Authorization Model

We describe in this section four sets of mechanisms the data management subsystem of

RASSP needs to provide in order to support the RASSP authorization model. In the

following sections we use C-like functions to describe the mechanisms. For example,

Bar my_func (Foo a_foo);

describes a function "my_func" that takes as a parameter an object of type "Foo" and

returns an object of type "Bar". We use names starting with capital letters, such as

"Authorization_Object" to denote the type of object, and names starting with small letters,

such as "create_authorization_object" and "parent" to denote a function name or a parameter

name.

Bar another_func (foo *a_foo=0);

describes a function "another_func" that takes as a parameter a pointer (denoted by the *) to

an object of type "foo". The "= 0" is a default value for the parameter if one is not

8

provided. Thus the parameter "a_foo" is an optional parameter for the function

"another_func", while it is a required parameter for the function "my_func".

The C-like style we are using to describe the mechanisms is for the brevity of the

descriptions, and does not have any implications as to the implementations of these

mechanisms, nor the user interface provided by the systems to these mechanisms.

3.1 Mechanisms to manipulate the authorization object

hierarchy

3.1.1 Creating an authorization object

Authorization_Object *create_authorization_object

(Authorization_Object *parent=0, char *name);

Creates a new authorization object, as a child of the specified parent authorization object

and assigns it the specified name. If no parent authorization object is specified then the root

node of a new authorization object hierarchy is created.

3.1.2 Deleting an authorization object

void delete_authorization_object

(Authorization_Object *an_authorization_object);

Deletes the subset of the authorization object hierarchy rooted at the specified authorization

object, from the authorization object hierarchy.

3.1.3 Adding a child to an authorization object

void add_child (Authorization_Object *parent,

 Authorization_Object *child);

Adds the sub authorization object hierarchy rooted at the authorization object pointed to by

9

"child" as a child of the specified parent authorization object. A particular sub authorization

object hierarchy may be repeated at a number of nodes in an authorization object hierarchy.

3.1.4 Associating data files with authorization objects

void associate_data_file

(Authorization_Object *an_authorization_object,

 char *file_path_name);

Associates an existing data file with a node in the authorization object hierarchy. A number

of files may be associated with an authorization object. An authorization specified on an

authorization object will apply to all the files associated with the authorization object.

void associate_tool

(Authorization_Object *an_authorization_object,

 char *tool_name);

Associates the data files created by the specified tool with the specified authorization object.

3.1.5 Retrieving an authorization object

Authorization_Object *find_authorization_object

(Authorization_Object *root=0, char *name);

Returns a pointer to an authorization object with the specified name, in the authorization

type hierarchy pointed to by "root". If no root is specified, a pointer to a root of an

authorization object hierarchy with the specified name is returned.

3.1.6 Retrieving the children of an authorization object

Authorization_Object_List get_children

(Authorization_Object *an_authorization_object);

Returns a list of pointers to authorization objects that are children of the specified

authorization object.

10

3.2 Mechanisms to manipulate the authorization role hierarchy

3.2.1 Creating an authorization role

Authorization_Role *create_authorization_role

(Authorization_Role *parent=0, char *name);

Creates a new authorization role, as a child of the specified parent authorization role. If no

parent authorization role is specified then the root node of a new authorization role

hierarchy is created.

3.2.2 Deleting an authorization role

void delete_authorization_role

(Authorization_Role *an_authorization_role);

Deletes the subset of the authorization role hierarchy rooted at the specified authorization

role from the authorization role hierarchy.

3.2.3 Adding a child to an authorization role

void add_child (Authorization_Role *parent,

 Authorization_Role *child);

Adds the sub authorization role hierarchy rooted at the authorization role pointed to by

"child" as a child of the specified parent authorization role. A particular sub authorization

role hierarchy may be repeated at a number of nodes in the authorization role hierarchy.

3.2.4 Associating users with authorization roles

void associate_user

(Authorization_Role *an_authorization_role,

 char *user_name);

Associates a user with an authorization role. A number of users may be associated with an

11

authorization role. An authorization specified on an authorization role will apply to all the

users associated with the authorization role.

3.2.5 Retrieving an authorization role

Authorization_Role *find_authorization_role

(Authorization_Role *root=0, char *name);

Returns a pointer to an authorization role with the specified name, in the authorization type

hierarchy pointed to by "root". If no root is specified, a pointer to a root of an

authorization role hierarchy with the specified name is returned.

3.2.6 Retrieving the children of an authorization role

Authorization_Role_List get_children

(Authorization_Role *an_authorization_role);

Returns a list of pointers to authorization roles that are children of the specified

authorization role.

3.3 Mechanisms to manipulate the authorization type hierarchy

3.3.1 Retrieving an authorization type

Authorization_Type *find_authorization_type

(Authorization_Type *root=0, char *name);

Returns a pointer to an authorization type with the specified name, in the authorization type

hierarchy pointed to by "root". If no root is specified, a pointer to a root of an

authorization type hierarchy with the specified name is returned.

12

3.3.2 Retrieving the children of a node in the authorization

type hierarchy

Authorization_Type_List get_children

(Authorization_Type *an_authorization_type);

Returns a list of pointers to authorization types that are children of the specified

authorization type.

3.4 Mechanisms to grant and revoke authorizations

3.4.1 Granting authorizations

int grant_authorization

(Authorization_Object *an_authorization_object,

 Authorization_Role *an_authorization_role,

 Authorization_Type *an_authorization_type);

Grants an authorization of type "an_authorization_type" on the object pointed to by

"an_authorization_object" to the authorization role pointed to by "an_authorization_role".

3.4.2 Revoking authorizations

int revoke_authorization

(Authorization_Object *an_authorization_object,

 Authorization_Role *an_authorization_role,

 Authorization_Type *an_authorization_type);

Revokes an authorization of type "an_authorization_type" on the object pointed to by

"an_authorization_object" from the authorization role pointed to by

"an_authorization_role".

13

4 Implementation Strategy

The implementation of the authorization mechanisms will be done by the individual tool

vendors, both in the case of the enterprise framework tools and the CAD tools. In the case

of CAD tools, the authorization model will be implemented in one representative tool in

each functional area of the RASSP design process, to demonstrate the value of the common

authorization model. The authorization information captured in these systems will be

modeled using the STEP AP203 [ISO, 1993] configuration management (CM)

conformance class. This would allow the authorization and CM information associated

with a product to be exchanged seamlessly between the various tools used during the life

cycle of the product. Rockwell Inc. will evaluate the STEP AP203-- CM conformance

class for its adequacy in modeling the authorization information captured by the enterprise

framework tools. They will also propose extensions to the AP203--CM conformance class

where needed, and work with PDES Inc.3 to incorporate the extensions into the standard.

4.1 Schedule

 Build 1

Detailed implementation plan for enterprise framework tools

(Enterprise framework tool vendors) : Dec. 31, 1994

Detailed implementation plan for CAD tools (CAD tool vendors) : Dec. 31, 1994

 Build 2

Implementation of the Authorization Model

(Enterprise framework tool vendors, CAD tool vendors) : Dec. 31, 1995

 Build 3

Test and validate the Authorization Model implementation

(Martin Marietta) : June 30, 1996

3PDES is the Product Data Exchange Using STEP, an industrial consortium that develops the STEP
standards.

14

 Build 4

Implement improvements to the Authorization Model

(Enterprise framework tool vendors, CAD tool vendors) : Dec. 31, 1996

References

[Intergraph, 1993] Intergraph, Intergraph/Network File Manager -- Administrator's

Reference Manual, Huntsville, Alabama, 1993.

[ISO, 1993] International Standards Organization, Configuration Controlled 3D Designs

of Mechanical Parts and Assemblies, ISO 10303-203, Fairfax, Virginia: U.S.

Product Data Association, 1993.

[Martin Marietta, 1994] Martin Marietta Laboratories, "The Configuration Management

Model for the RASSP System," Moorestown, New Jersey, September, 1994.

[Rabitti, 1991] Rabitti, F., Bertino, E., Kim, W., and Woelk, D., "A Model of

Authorization for Next-Generation Database Systems," ACM Transactions on

Database Systems 16(1): 88-131, March, 1991.

