
1

Reconfigurable Network Interface (RNI) Guideline

Myrinet to PCI RNI

8/97

1.0 Introduction

1.1 Description

This document contains a description of a particular Reconfigurable Network Interface
(RNI) which was developed as part of the hardware verification study under the Model
Year Architecture task of the DARPA-sponsored Rapid Prototyping of Application
Specific Signal Processors (RASSP) program. The purpose of this document is to aid
designers in the understanding and use of the RNI and describe the considerations
which drive the design structure.

1.2 Objective

The objective of this verification task is to create and demonstrate a VHDL example of
a programmable Reconfigurable Network Interface (RNI) element using the Standard
Virtual Interface (SVI) technology that has been defined in RASSP Model Year
Architecture (MYA).  In this case, the RNI concept is demonstrated in an application
which links the Myrinet network [MYRI 1994] to the PCI interconnect fabric.  This
guideline presents the minimal functionality necessary to implement a programmable
bridge. It is not meant to constrain the user or predetermine how various functions
must be implemented, but rather gives one example of an implementation. This
document provides general guidelines for designers who wish to use this RNI to
bridge any two networks.

2.0 Related Documents

In order to understand this guideline it is important to have a working knowledge of
the RASSP MYA concepts and vocabulary. For background and introductory
information, the following documents are available on the Lockheed Martin ATL
external web site at
http://www.atl.external.lmco.com/projects/rassp/papers/MYA/mya_papers.html:

MYA Specification:

RASSP Model Year Architecture Specification Volume I:

Introduction Version 1.0 [LMATL 1996a]

RASSP Model Year Architecture Specification Volume II:

Hardware Architecture Element Specification Version 1.0  [LMATL 1996b]



2

In addition, there are several application notes describing other efforts of the MYA
task. Copies of these documents are available on the Lockheed Martin ATL external
web site at:

http://www.atl.external.lmco.com/projects/rassp/legacy/appnotes/MYA/index.html

3.0 RNI Overview

The RNI, shown in Figure 1, is divided into three logical elements: 1) fabric interface
(internal), 2) RNI Bridge Element, and 3) fabric interface (external). The fabric
interfaces are the specific interfaces between both the internal interconnect fabric and
the Standard Virtual Interface (SVI) [LMATL 1996b], and the external interconnect fabric
and the SVI. The actual bridging function is performed by the RNI bridge element,
which consists of a buffer memory to facilitate asynchronous coupling between the
two interfaces, and a controller which coordinates data transfers and provides flow
control. The bridge element can be implemented via custom logic (e.g. FPGA, ASIC)
or a programmable processor. An element whose interface has been translated to
the SVI is said to be encapsulated.  These encapsulations are written in
synthesizable VHDL.

Figure 1 Model Year Architecture Reconfigurable Network Interface



3

As in the case of Internal Module interfaces [LMATL 1996a],  which connect processor
elements to fabric interfaces, a layered communication approach is employed. Here,
since the RNI provides a bridge between two interfaces, two separate layered
structures exist. Shown in Figure 1, the two layered structures form a pyramid, with the
lowest layers of the two interfaces implemented in the fabric interface components.
The higher levels of each structure are implemented within the RNI bridge element
and converge where the data interchange is stripped of all its interface specific identity
by the lower layers, effectively performing a protocol conversion.  The ISO/OSI model
is being used as a reference and does not imply that the layering ultimately employed
in defining the internal node architecture will strictly follow this model or implement all
seven layers.

Two categories of the RNI can be defined based upon the bridge element
implementation: the custom RNI - employing a custom hardware bridge element
implementation -and the programmable RNI - employing a microprocessor - based
bridge element. In general, either implementation may be chosen for a given
application. The custom RNI will tend toward higher design complexity with lower
latency, while the programmable RNI will tend toward lower design complexity and
higher latency, but will also offer greater opportunity for reuse due to programmability.
The RASSP system designer must make the necessary performance/complexity
tradeoffs for each particular application.

The greater the difference in the protocols of the interconnect fabrics which are being
bridged, the greater the complexity of a custom hardware bridge element design.
When bridging between very different protocols, the bridging function may be more
easily implemented with a programmable processor rather than with a complicated
custom hardware design. However, in cases where low latency is critical, the DARPA-
sponsored Virtual Microarchitecture Interface (VMI)  [LMATL 1997a] or a custom
hardware approach will be more attractive. The VMI provides a technology
independent, functional standard interface between two networks.  Its advantage over
the programmable RNI is that it provides up to 100x lower latency due to its hardware
intensive implementation. Its advantage over a custom hardware RNI design is that,
by extending the functional interface of the SVI up to OSI layer 3, it provides a higher-
level of interoperability than the RNI which is based solely on the layer 1-2 SVI.

Considering the RASSP paradigm of reuse, the programmable RNI or VMI is
preferred over a custom approach.  If one wanted to reuse or upgrade the internal or
the external SVI encapsulated fabric interface of an RNI or VMI, one can simply remove
the original SVI encapsulated interface and replace it with a new  encapsulated
interface. The RNI would require reprogramming of the bridge element processor and
the VMI would require new state machines to perform the new protocol conversions.



4

The purpose of the RNI is to provide a bridge between two networks each with their
own network protocol. The RNI has several tasks which it may need to perform.   This
includes being able to interpret the header of a message from one network, extract
the addressing information, create a header for the message for the second network,
and transform the address information to routing expressed in the protocol of the
second network.   In addition, it must recognize the end of a message so that it can
properly recognize and manipulate the header of the next message. It must insert
whatever pad bytes are needed to align the data and modify or calculate any tailers
needed to satisfy the network protocol on the receiving side.

The RNI also has to transmit the data from one network to the other.  This
transmission may involve several other functions including:

• Data format and endianness translation

• Transaction type recognition and encoding

• Error detection and error code generation

• Segmentation related services

• Priority/Pre-emption

• Blocking timeouts

Although it is anticipated that some data conversion will generally be necessary, this
instantiation of the RNI does not address data conversion. This will necessarily make
the throughput estimates optimistic.  However, the header translation function has
been coded and timed using a MC68040 processor. The times are incorporated into
the simulation of the bridge.

In this RNI example, there are 3 functional blocks. Each block is interconnected via an
SVI interface as shown in Figure 2.  Fabric A is a PCI-like interface fabric called BIN-
PCI. Fabric B is the Myrinet [MYRI 1994]. The blocks are:

BIN-PCI
Network BIN-PCI

SVI
wrapper

BIN-PCI
Network
Interface

B-M
Bridge
RNI

Fabric Interface A

SVI SVI

Myrinet

Network

Myrinet
SVI

wrapper

Fabric Interface B

Myrinet

Interface

RNI Bridge Element

A B C

Figure 2 BIN-PCI to Myrinet RNI



5

A. Fabric Interface A - consisting of an SVI encapsulated BIN-PCI interface.   This
connection forms a half duplex network that transmits and receives 64-bit
words.  Since the RNI bridge element transfers 32-bit words, data flowing in the
PCI to RNI direction is formatted using an SVI 2-to-1 converter (convert from 2
words wide to 1 word wide) in the SVI slave of the Bridge Element and data
flowing in the RNI to PCI direction is formatted using an SVI 1-to-2 converter
(convert from 1 word wide to 2 words wide)in the PCI fabric interface slave.

B. The RNI Bridge Element - consisting of 7 functional blocks as shown in Figure
3:

1) SVI wrappers, including four 32-bit wide FIFO blocks for buffering data
flowing from one Fabric Interface to the other

2) Network Engine (NE) which effects the transfer of data from one side of
the bridge to the other by servicing interrupts, and reading data in from
the _IN FIFOs, performing header and possibly data translation, and
writing data out to the _OUT FIFOs.

3) Interrupt PAL which detects all of the possible interrupts and generates
the interrupt vectors

4) Address Decode PAL, which generates chip selects, and read and write
enables for the FIFO, controls the direction of Data Buffer and tracks the
state as the last word passes through the bridge

SVI
Master

B_IN
FIFO

B_OUT
FIFO

A_IN
FIFO

A_OUT
FIFO

SVI
Slave

Network
Engine (2)

Address
Decode
PAL (4)

address for chip selects

To PCI

From
PCI

From Myrinet

To Myrinet

Control
lines

FIFO FLAGS

data

EPROM
(7)

SRAM
(6)

SVI WRAPPER (1 ) SVI WRAPPER (1 )
(1 )

I nterrupt
PAL (3)

Fabric Interface A Fabric Interface B

MYRINET
NETWORK

I/F

SVI
Master

SVI
Master

SVI
Master

SVI
Slave

SVI
Slave

PCI
NETWORK

I/F

RNI BRI DGE ELEMENT (C)
ELEMENT

Data Buffer
(5 )

SVI
Slave

Figure 3 Implementation of BIN-PCI to Myrinet RNI Bridge Element



6

5) Data Buffer, which buffers the bi-directional data between the FIFOs and the
NE

6) SRAM, which stores the header addresses route translations and
application code

7) the EPROM, for program memory and initialization data.

C. Fabric Interface B - consisting of an SVI encapsulated Myrinet Network.  The
connection is a full duplex network that transmits and receives 8-bit words.
Since the Myrinet Interface and the RNI bridge node are both 32 bit word
interfaces, no conversion has to be made in order to transmit to and from these
two interfaces.

The blocks are implemented in a virtual prototype as follows:
    Block Implemented                        Code Used

Myrinet Interface VHDL code

PCI Interface VHDL code

Network Engine: MC68040 Synopsys Hardware Verification SmartModel of the
MC68040

Network Engine “Code" Synopsys Processor Control Language (PCL)

All SVI Masters and Slaves VHDL code

FIFO's Synopsys SmartModel FIFO's

SRAM Synopsys SmartModel SRAM

Data Buffer Synopsys SmartModel Data Buffer's

Interrupt PAL and Address
Decode PAL

VHDL Code

4.0 Concept of Operation

Starting at the PCI (A) side, we will describe the operation of the bridge element when
transferring data from the A-side to the Myrinet (B) side.  The transfer of data in the
opposite direction proceeds very similarly. Data starting in the PCI network, travels
through the PCI Network Interface which satisfies the network protocol requirements
of the PCI, then through the PCI Fabric Interface SVI Master and enters the RNI A-side
slave across the SVI interface.  The SVI slave places the data in the A_IN FIFO.  When
the FIFO receives the first word of the message, an interrupt is generated to the NE.
The NE determines the source of the interrupt and services it by entering a data
transfer loop.  The NE reads the 2 64-bit PCI header words (32-bits at a time) from the



7

A_IN FIFO in order to extract the addressing information.  Using routing tables stored
in the  SRAM, it translates the addressing information in the PCI header into route and
address information for the Myrinet side. The NE writes the new header into the
B_OUT FIFO.  At that point, the NE is free to read the next piece of data from the A_IN
FIFO, perform whatever data format translations are necessary and place the data in
the B_OUT FIFO.  The NE will stop transferring words when one of the following two
situations occur:

1) The A_IN FIFO becomes empty, meaning that the NE does not have any data to
read.  The  A_IN FIFO becomes empty when the end of the message passes through
the FIFO or when the transmission of data being sent from the A-side network is
temporarily halted.

2) The B_OUT FIFO becomes full, meaning that the NE cannot write another word to
the output FIFO until the Myrinet master reads a word out of it.

The RNI detects the last word of a message by monitoring the Last_word_passing
signal. This signal is asserted when the SVI_slave on the input side sends the last
word of a message into the input FIFO. The logic used to generate this signal
depends on what mechanism is available to determine the end of a message. This
can range from reading the word count from the message header to timing out
waiting for more data to be placed in the input FIFO. When Last_word_passing  is
asserted, the A-side SVI slave will not accept any further words (a new message) until
the last word of the current message has been read out of the B_OUT FIFO by the
Myrinet Network Interface. Once the last word has cleared the B_OUT FIFO, the RNI
will recognize the next data entering the bridge as a new message header.

5.0 Approach

There are many ways to implement this functionality. The solution chosen is
dependent upon many design trade-offs including the desired throughput, latency,
size and power of the resulting bridge element.  The solution presented below was
arrived at by the following criteria:

• it demonstrates the required functionality of the bridge element

• it uses a programmable processor to perform the network level protocol and the
data format translations

no development system or hardware is required to perform design trade-offs



8

5.1 Building Blocks

Network Engine

The processing of the RNI bridge node is performed by the network engine (NE).  The
NE used was the Motorola MC68040 microprocessor.  The MC68040 runs on a 33
MHz clock, has 32-bit buses for address and data and handles up to 7 levels of
interrupts. This particular processor was chosen because it is fairly commonly used,
it provided sufficient functionality, and there is a Synopsys SmartModel Hardware
Verification simulation model available for it.  This choice was not necessarily the
optimal processor for this specific task.  There are many tradeoffs involved in
choosing an appropriate NE: speed, throughput, word size, number of interrupt levels,
etc.  In the simulations, the Synopsys Processor Control Language (PCL) was used
to program the hardware verification version of the MC68040 with timing annotated
from compiled code running on an actual MC68040.

The functionality described below is the minimum functionality required of an NE.
Normally there would be data conversions and bit manipulations to be performed on
the data in order to convert the data from one network representation to the other. This
type of manipulation is not implemented on this bridge since it is very specific to the
particular network pair being bridged. The performance of this implementation is
similar to what could be achieved using a message-level standard interface such as
PacketWay [Cohen, et. al. 1997] for which very little header/data manipulation is
required in the bridge. There may also be a requirement to implement certain
communication structures such as mailboxes and semaphores on the bridge. These
requirements are described in more detail in [LMATL 1997b].

 All of the data transmitted across the bridge must pass through the NE.  Data is read
by the NE from the input FIFO and then the data is written by the NE to the output FIFO.
If both networks are simultaneously transmitting data, then the NE services the input
FIFO's in a round-robin fashion.  First the NE reads a word from the A_IN FIFO and
then writes that word into the B_OUT FIFO.  After that word is written, the NE reads the
next word from the B_IN FIFO and writes that word into the A_OUT FIFO.  The NE then,
once again, reads the next word from the A_IN FIFO and so on.  This process will
continue until one side runs out of data at which time the NE will service the
remaining active side, exclusively. This method allows both sides to transmit data
independently of each other. The throughput of just one side transmitting is twice the
throughput of both sides transmitting.   This is because all of the data must go
through the one path in the processor. A faster implementation would be to use the
processor for header translation, but not for data transfer. Data can be transferred
much more efficiently by simply piping the data from the input FIFO to the output FIFO.



9

If data conversions are required they can be performed more efficiently in hardware
such as in an FPGA placed between the input and the output FIFOs. Control of the
flow of data from the input FIFO through the data conversion hardware (if necessary)
to the output FIFO can also be done in hardware. Removing the processor from the
data path would significantly decrease latency through the bridge.

Header Manipulation

The program in the NE is coded to recognize the difference between header words
and data words. A PCI header consists of 2 words of route and 2 words of address.
When going from the PCI to the Myrinet, the NE strips off the first 4 32-bit  words. The
NE then reads a pre-defined Myrinet header from the SRAM and prepends it to the
message.

A Myrinet header consists of one or more route bytes with the MSB = ONE for each
byte. The bytes are organized into 32-bit words. The last header word contains from
zero to three pad bytes to pad the last route byte(s) to 32-bits. The MSB of each pad
byte is ZERO. The last word of the Myrinet header is the Packet Type word, consisting
of 4 bytes, each with an MSB of ZERO. The Packet Type word is the first header word
in which the MSB is ZERO. When going from the Myrinet to the PCI, the NE will discard
every Myrinet header word up to and including the Packet Type word and prepend a
predetermined PCI header which it reads from SRAM. The words after the Packet
Type are data.

The NE Interrupt Handlers

The NE also handles the interrupts that are asserted by the Interrupt PAL.  In the case
of the MC68040, these are vectored interrupts. Upon recognizing an interrupt, the
processor reads a specific address in the Interrupt PAL which contains the vector
number of the interrupt as shown in Table 1. It then performs the appropriate interrupt
service routine based on that vector. After the NE acknowledges an interrupt, the
Interrupt PAL resets the interrupt indicator so it can detect the next interrupt.

Interrupt Pal

The Interrupt PAL generates the interrupts that take place as data flows through the
RNI bridge node.  Inputs to this PAL are the Empty Flags (EF) of the input FIFOs and
the Programmable Almost Full Flags (PAF) of the Output FIFOs.  Table 1 shows the
source of each interrupt, the corresponding interrupt vector and a short description of
the interrupt service routine.



10

Interrupt
Vector

Source FIFO Description of Service Routine

40 A_IN Empty Inhibit processor read from A_IN FIFO

41 B_IN Empty Inhibit processor read from B_IN FIFO

42 A_OUT Not  Almost Full Enable processor write to A_OUT FIFO

43 B_OUT Not  Almost Full Enable processor write to B_OUT FIFO

44 A_OUT Almost Full Disable processor write to A_OUT FIFO

45 B_OUT Almost Full Disable processor write to B_OUT FIFO

46 A_IN Not Empty (initial
or after last word)

Enable processor read header information from
A_IN FIFO

47 B_IN Not Empty (initial
or after last word)

Enable processor read header information from
B_IN FIFO

48 A_IN Not Empty Enable processor read data from A_IN FIFO

49 B_IN Not Empty Enable processor read data from B_IN FIFO

Table 1- Interrupt Vector Table

There are 5 possible interrupts corresponding to data flow in each direction. If two
interrupts occur during the same cycle, the interrupt with the higher priority is
processed first.  If both directions experience simultaneous and equivalent interrupts,
then the A-to-B direction is given priority. This is easily changed by rearranging the
order in which the interrupts are processed in the interrupt code.  Only one interrupt
will be generated by the Interrupt PAL per clock cycle. Another interrupt from a different
source will not be generated until the existing pending interrupt is acknowledged. This
logic allows for them to be Daisy-chained, with the recognition of room to write into the
output FIFO being the most important, and the recognition of data on the input FIFO
being the least important. This is explained in more detail in Table 2.

SRAM

The header information for the Myrinet is held in the SRAM.  When the processor
comes to the header conversion code, it waits a length of time that can be determined
by running the header conversion code on an actual MC68040. The header
conversion code  interprets the header of the incoming packet and replaces it with the
header that would be needed in order for the message to reach its destination in the
other network.  In this case, the SRAM was used to  store predetermined header



11

EF_in  6 Indicates “THE INPUT FIFO IS EMPTY AND THE WORD JUST READ IS

JUNK”. This synchronous interrupt must be recognized
immediately.  If the EF is set by a READ command, the processor
must be told immediately that the data it just read is invalid. This
requirement stems from how the IDT synchronous FIFOs operate.
If this interrupt were not immediately processed, and the FIFO
became non-empty in the meantime (removing the interrupt), the
processor would hold onto this  "vapor data" thinking it were real.

NOT_PAF_
out

5 Indicates “NE CAN WRITE INTO THE OUTPUT FIFO”. Throughput is
improved if the NE knows when it is able to write to the output
FIFO. Thus, this interrupt has higher priority than the NOT_EF_in
interrupt. Software flags prevent the processor from reading a
piece of data for which there is no room in the output FIFO.

PAF_out 4 This indicates "STOP WRITING TO THE OUTPUT FIFO". It has a higher
priority than the  "NE CAN READ FROM THE INPUT FIFO NOW" interrupt
in order to prevent deadlock occuring from reading a piece of data
for which there is no rooom in the output FIFO.

NOT_EF_in 3 This indicates "NE CAN READ FROM THE INPUT FIFO NOW". All other
interrupts must be serviced before this one.

Table 2 Interrupt Priority Description

information that the destination network would understand. The new header
information is represented very simply as a continuous list of 32-bit Myrinet header
words located in the SRAM.  Upon receipt of the first message's header words from
the PCI, the NE discards them and reads the new header from the SRAM.  The NE
maintains a pointer to the next header information to be read.  When the next
message arrives, the NE reads the new header and discards it. Then it loads the
pointer, reads out the next header, writes it to the output FIFO and updates the pointer.
After the header words have been written to the output FIFO, the NE begins to read the
data words in from the input FIFO and write these same data words out to the output
FIFO. For a virtual prototype using this RNI model data manipulation is required, the
timing for the conversion can be accounted for by causing the PCL code to wait for the
amount of time determined by running the data conversion code on an actual
MC68040 before writing the data to the output FIFO.The data, however, would remain
unchanged. If the correct data is needed at the output, then a method of providing that
data would be required.



12

Address Decoder Pal

The Address Decoder PAL component takes on four simultaneous, but independent
tasks.  It controls the direction of data flowing between the FIFOs to the NE through the
data buffer based on the NE READ/WRITE signal and the desired address.  It also
controls the Read Enable and the Output Enable signals on the Input FIFOs and the
Write Enable signals on the Output FIFOs.  Both of these tasks control the flow of data
between the NE and the FIFOs. This PAL also creates some of the interrupt signals
that are processed further in the Interrupt PAL. Finally, the Last_word_passing state
machine resides in the Address Decoder PAL.

Last_word_passing State Machine

The beginning of a message contains header information which must be treated
differently from data. It is necessary to know where one message ends and the next
begins. The Address Decoder PAL tracks the last word of a message through the
bridge using the Last_word_passing state machine. It will not allow a new message
into the bridge until the old message has been transferred to the SVI on the output
side of the bridge. When an interrupt indicates that an input FIFO has gone from
empty to not empty, the Address Decoder PAL determines, via the state of the
Last_word_passing state machine according to Table 1, whether this interrupt is
because a new packet has arrived (interrupt vector 46) or because an already existing
packet has resumed transmission (interrupt vector 48). Depending on the value of the
interrupt vector returned by the Interrupt PAL, the NE will interpret the data as either
regular data or as header information.

Table 3 shows the states and transitions for the Last_word_passing state machine.
When the SVI_slave on the input side sends its last word into the input FIFO, the slave
asserts the Last_word_passing signal, indicating that the last word is in the RNI
bridge element.

This assertion of the Last_word_passing  signal transitions the state machine from
State 1 to State 2. In this state, the input-side slave refuses data by deasserting the
SVI Data_Ready signal. When the input FIFO's empty flag is asserted as a result of
the NE reading the last word from the input FIFO, the state machine transitions to
State 3.  The transition to State 4 occurs on the next write to the output FIFO which
means that the NE has written the last word to the output FIFO. Note that once the
header has been stripped off, the NE reads a word from the input FIFO, puts it in the
format of the receiving network and writes it to the output FIFO before it reads another
word. If this sequence is changed, then the state machine would need to be changed
since its operation relies on the fact that once the input FIFO goes empty after reading



13

State Input to cause
transition to next state

Transition
to State

Action

idle Last_word_passing
deasserted

1 wait for Last_word_passing to be
asserted

1 Last_word_passing
asserted

2 sending slave withdraws Data Ready,
preventing next message from
entering the bridge

2 EF_in asserted 3 Last word has been read by the NE

3 decode output FIFO
address and write
signal

4 Last word has been written to the
output FIFO

4 output FIFO transitions
from being NOT empty
to empty

idle Deassert Last_word_passing

Next input FIFO empty to not empty
transition indicates a new message

TABLE 3 Last_word_passing State Machine

the last word, the next write to the output FIFO will be to write the last word. After the
last word has been written to the output FIFO, the state machine waits until the output
FIFO goes from being NOT empty to being empty which causes it to transition to the
idle state. Then Last_word_passing is deasserted, meaning the last word has
passed through the bridge, and the sending side can send its next packet if it is ready
to do so.

Data Buffer

The data buffer is a bi-directional buffer which directs the flow of data from the Input
Fifo to the NE or from the NE to the Output FIFO.  The Address Decoder PAL controls
the direction of the buffers based on the NE READ/WRITE signal and the desired
address.

FIFOs

The FIFOs are used to buffer and control the data as it transits the bridge element.
Since the NE can only read or write one data word at a time and takes at least 6 clock
cycles to perform a read and write of one data word, the FIFO is needed to temporarily
store the data.  In this analysis, the minimum depth needed for the maximum
throughput is 2 words.  At a FIFO depth of less than two words, the FIFO constantly
alternates between being empty and not empty and the NE spends most of its time
processing empty and not empty interrupts.  The deeper the FIFOs, the less impact



14

the bridge will have on the sending network since it will be able to dispatch large
blocks of data into the FIFO and then go on with other tasks. However, the FIFOs
occupy significant amounts of real estate and, depending on the speed, can dissipate
a significant amount of power. The depth of the FIFO needs to be studied as one
variable of the implementation trade-offs.

6.0 Special Considerations

Pad Bytes

The Myrinet protocol includes 2 tailer words at the end of the packet. The first of these
words is the CRC, while the second word is the pad word which indicates how many
pad bytes were in the previous word.  Since these  two words cannot be interpreted on
the PCI interface, they must be removed from the sending packet  before the packet
reaches the PCI interface.  In this example case, two pipeline registers were inserted
in the svi_slave_ctl_32.vhd code on the Myrinet side.  When a word enters this SVI
slave, the word must transmit through both of these registers before entering the Input
FIFO.  When the last word (pad word) enters the SVI_slave, the svi_last_word_out and
Last_word_passing become asserted, and no further words are put into the input
FIFO.  At this point, the CRC is in the pipeline register just before the FIFO and the pad
word is in the register behind it. There is a Boolean flag associated with each register
which prevents the two words from entering the FIFO at the beginning of the next
message. Each of these Boolean flags is initialized to FALSE. When the first data
word enters the first register, the flag for that register becomes TRUE. When it enters
the second register, the flag for that register becomes TRUE. This flag controls the
FIFO_WRITE_ENABLE signal. When it is TRUE, the data from the register gets written
into the FIFO. When the svi_last_word_out is asserted and the slave goes back to
idle, the register flags are deasserted, which in turn deasserts the
FIFO_WRITE_ENABLE signal. The FIFO_WRITE_ENABLE signal will not become true
again until two new words from the next message are in the pipeline registers and
ready to be input into the FIFO [LMATL 1996b].

Similarly, when a word is sent to the Myrinet Network, the Myrinet protocol expects a
CRC and a pad word to be at the end of the packet.  The Myrinet SVI master must
append a CRC and the pad word. How the CRC is calculated is left to the
implementer. In this example, it has been pre-calculated and stored in RAM.  Since
the PCI sends 64 bit data words, there are no actual pad bytes that are going across
the RNI bridge node.  For this reason the pad word will always consist of 32 bits of all
zeros.



15

Data Width Conversions

The RNI bridge node has a 32-bit interface, and the PCI Interface is 64-bit words.  The
SVI specification requires that width conversions be handled by the slave. A width
converter was inserted at the PCI interface in the SVI Slave portion of the SVI Interface.
When data flows from the RNI to the PCI, the data must go into a 1-to-2 converter .
When the data flows from the PCI to the RNI, the data must pass through a 2-to-1
converter.

Since the Myrinet Interface and the RNI bridge node are both 32 bit word interfaces, no
conversion has to be made in order to transmit to and from these two interfaces

7.0 Results
7.1 Performance Analysis- The performance  results are presented as an example of
the type of analysis which might be performed in order to determine the performance
impact of the RNI bridge.  Since the Motorola MC68040 was chosen more for its ease
of programmability and the availability of a model, the actual numbers which come
from the analysis are probably not as interesting as the method by which they were
calculated. As seen from the graph in Figure 4, the message length has a
considerable impact on the RNI throughput for small messages. The time it takes to
send a packet from one network to the other network is a function of the number of
words that are sent across the interface. For this RNI,  the majority of the transmission
time is the time it takes the MC68040 microprocessor to read the data from the input
FIFO and write the data to the output FIFO.  A data word becomes queued up in the
Input FIFO, gets processed through the NE and enters an empty output FIFO.  The
output FIFO is empty since the PCI network can process a data word faster than the
68040 microprocessor can read and write a word.

Note that the peak rate of slightly more than 21 Mbytes per second corresponds very
closely to the theoretical peak for a processor that can read and write one word every
6 cycles and 33 Mwords/sec (= 132 Mbytes/sec). That is, the peak rate is 132/6 =
22Mbytes/sec. So, with no attempt at optimization, we are achieving 90% of the peak
bandwidth. This observation must be tempered by the fact that there is very little
manipulation of the headers and no manipulation of the data occuring. From our
experience with the SVI, we anticipate that even with extra processing requirements,
the optimizations, especially doing any data conversions in hardware and getting the
processor out of the data path, we will still be able to achieve 90% of peak throughput
for moderately-sized data sets.



16

 

Bit Rate vs. Message Length

0

5

10

15

20

25

0 50 100 150 200 250 300 350

No. 32-bit words

B
it

 R
a
te

 (
M

b
y
te

s/
se

c
)

Figure 4- The BIT RATE varies with the message length, especially for small
messages.

The transmission equation is shown below. The terms are defined in Table 4.

Transmission Equation

tpacket = tM_to_IF + tinitiate_interrupt + tack + tidle_interrupt + nhmtread +
nhp(tread_SRAM + twrite) + nd(tread + twrite + tidle) + tin_OF + tOF_to_P

Assumptions:

1) Data is transiting the RNI in one direction.  If the RNI is processing 2 packets going
in opposite directions, there will be a longer idle time between the NE's reads and
writes.

2) The Myrinet Network will send data continuously, and the PCI Network will be able
to keep up with the data coming across the bridge.



17

tM_to_IF data input to the Myrinet Network to Input FIFO write complete

tinitiate_interr
upt

first word write into Input FIFO to Input FIFO NOT Empty interrupt
asserted

tack Input FIFO NOT Empty interrupt to interrupt acknowledge complete

tidle_interrupt  interrupt acknowledge complete to NE read from Input FIFO.

tread NE read from FIFO

tread_SRAM NE read from SRAM

twrite NE write to output FIFO

tidle idle time between read/write cycles

tin_OF time last word is in output FIFO

tOF_to_P Data read from output FIFO to data at PCI Network

nhm number of header words from Myrinet Network

nhp number of header words going to PCI Network

nd number of data words being sent from Myrinet Network to PCI
Network

Table 4- Definition of terms

7.2 Implementation Summary

The VHDL code was broken up into 3 parts: the SVI_Myrinet, the SVI_PCI, and the
Address Decoder PAL combined with the Interrupt PAL, synthesized and targeted to
FPGAs in order to obtain an estimate of how large these elements will be.  The
results are shown in Table 5.  Note that these figures are first run estimates; the

Chip Created ORCA Device
Used

IO's PFUs

SVI_Myrinet 2C15 155 of 320 257 of 400

SVI_PCI 2C15 294 of 320 387 of 400

Address Decoder
and Interrupt PALs

2C06 68 of 192 75 of 144

Table 5- Implementation Size Estimates



18

results have not been optimized in order to create the smallest and fastest possible
chips and no timing verification was performed. Thus, the rather high utilization on the
SVI_PCI FPGA could probably be lowered by optimization, thus allowing it to fit into the
400PFU ORCA device.

8.0 Enhancements

At this time, no enhancements are planned for the RNI. However, one enhancement
strongly suggests itself, and that would be to let the data transit from the input FIFO to
the output FIFO without intervention from the processor.

9.0 Summary

The RNI is used as a bridge between heterogeneous networks. RNS bridges can be
implemented as custom hardware or with programmable processors. The custom
hardware RNI tends toward lower latency while the programmable RNI provides
greater opportunity for reuse. This guideline presents an example of a programmable
RNI. Over 90% efficiency can be achieved using this RNI. This RNI can be reused to
bridge different networks simply by reprogramming the processor. If both low-latency
and high reuse are required, the VMI is an alternative.

10.0 References
Buchanan 1995a

 Buchanan, G. 1995. “Hardware Synthesis Study of WSSPT SVI Interface
Encapsulations,”
http://www.atl.external.lmco.com/projects/rassp/legacy/appnotes/MYA/index.html,
July 1995.

Buchanan 1995b
Buchanan, G., 1995. “Simple Reconfigurable Network Interface (RNI)
Encapsulation Study Using the Cypress HOTLink High-Speed Serial Link and the
PCI Fabric Interface to Implement a Sensor-to-PCI RNI,”
http://www.atl.external.lmco.com/projects/rassp/legacy/appnotes/MYA/index.html,
September 1995.

Buchanan 1996
Buchanan, G., 1996. “Myrinet to SVI External Network Interface,”
http://www.atl.external.lmco.com/projects/rassp/legacy/appnotes/MYA/index.html,
July, 1996.

Chhabra 1996



19

Chhabra, A., 1996. “SVI Verifcation Study: Encapsulations of the Benchmark II-
Data I/O Board and the Mercury RINO/RIC Chipset,”
http://www.atl.external.lmco.com/projects/rassp/legacy/appnotes/MYA/index.html,
May, 1996.

Cohen et. al. 1997
 Cohen, D., Craig Lund, Tony Skjellum, Thom McMahon, Robert George, 1997.
“Proposed Specification for the PacketWay Protocol,”
ftp://ftp.ietf.org/internet-drafts-ietf-pktway-protocol-spec-03.txt, February 1997.

LMATL 1995
Lockheed Martin Advanced Technology Laboratories, 1995. “RASSP Methodology
Version 2.0 Volume I,”
http://www.atl.external.lmco.com/projects/rassp/legacy/appnotes/MYA/index.html,
October 1995.

LMATL 1996a
Lockheed Martin Advanced Technology Laboratories, 1996. “RASSP Model Year
Architecture Specification Volume I: Introduction Version 1.0,”
http://www.atl.external.lmco.com/projects/rassp/legacy/appnotes/MYA/index.html,
September 1996.

LMATL 1996b
Lockheed Martin Advanced Technology Laboratories, 1996. “RASSP Model Year
Architecture Specification Volume II:  Hardware Architecture Element Specification
Version 1.0,”
http://www.atl.external.lmco.com/projects/rassp/legacy/appnotes/MYA/index.html,
September 1996.

LMATL 1997a
Lockheed Martin Advanced Technology Laboratories, 1997. “Virtual
Microarchitecture Interface,” http://www.atl.external.lmco.com/projects/VMI/VMI.html,
August 1997.

LMATL 1997b
Lockheed Martin Advanced Technology Laboratories, 1997. “Virtual
Microarchitecture Interface (VMI) Specification (Draft) Volume II: Communication
Services- Pre Release Version,” July, 1997.



20

MYRI 1994
Myrinet Links and Routing Specification, Myricom, Inc., Arcadia, CA, May, 1994.

Wedgwood 1997
Wedgwood, J., 1997. “Reconfigurable Network Interface (RNI) Study: Myrinet to
PCI,”
http://www.atl.external.lmco.com/projects/rassp/legacy/appnotes/MYA/index.html,
August 1997. (This document)


