
��)�$������� $%"%�*����%&�(%&!�'

������&�"��(&��(�������	�

�
����

���	��

��#��$����������	

� ����
��
	� ���� 	"������
��
�� �"�% ��� ����
������
� �������!��� ��!� � �%����! !� ��

$!����� ��!#���
�!�����

�������� �	��� �� ���
���� ��	���������
�������
��
���

Introduction

The Myrinet to SVI External Network Interface (ENI) is designed to serve as the network interface
component for a RASSP MYA Reconfigurable Network Interface (RNI). The ENI acts as a fully
compliant full–duplex, 1–meter Myrinet port on one side, and a fully compliant SVI port on the op-
posing side. The ENI fully translates and converts messages bidirectionally from one port to the
other. When connected to an RNI bridge element, incoming messages from the Myrinet port will
be translated and formatted as required for the opposing or “bridged” ENI; the bridge element will
likewise translate messages from the bridged ENI, which are destined to become outgoing messages
on the Myrinet.

For a detailed description of the Myrinet protocol, see “Myrinet Link Specification” by Myricom,
Inc.

Due to the proprietary nature of the Myrinet model, this model is not available to the general public.

Supported Functions

As all data transfers on the Myrinet are WRITEs, any incoming message on the Myrinet In port will
be converted to an “External Write Request” on the SVI Out port. Likewise, an “External Write
Request” is the only SVI command that will be accepted on the SVI IN port. Should the network
on the opposing side of the RNI have capabilities beyond a WRITE, the RNI bridge will have the
task of transforming these other “commands” into a sequence of WRITEs. For example, a READ
command coming from the opposing ENI, would have to be transformed into a WRITE of a message
requesting data from the target node; this node would in turn write the the requested “read” data back
to the requestor.

SVI Data Width

Since the Myrinet word length is 32–bits, the SVI data_in and data_out signals are also 32–bits wide.
If the SVI data_in port is required to interface with an SVI port of differing data width, a width con-
verter block can be added to the front–end of the SVI slave block (there is currently a 1–to–1 width
converter in the SVI slave model as a place–holder).

Code Synthesizability

In general, the VHDL code for elements of an RNI –– including the ENI –– are intended to be written
in a fully synthesizable RTL style. Portions of the Myrinet ENI however, are non–synthesizable.
This is due primarily to the fact that Myrinet signals have a 1.2 volt transitions, rendering the input

2

circuitry unsynthesizable (currently available target technology is only 5V or 3.3V). In addition,
the asynchronous nature of the Non-Return-to-Zero (NRZ) data makes it difficult to produce
synthesizable VHDL code for the input logic. Therefore, the code for the Myrinet input logic is writ-
ten in a behavioral, non–synthesizable style.

Operation

A Myrinet packet consists of a sequence of nine–bit “flits” (flow control units) consisting of: a head-
er of zero or more route flits; four packet type flits; the payload containing zero or more data flits;
one data flit containing the CRC–8 byte of the previously transmitted flits; and a tail flit containing
a GAP control character. Each flit contains one byte of data along with a ninth “data” bit, which
when deasserted identifies the contents as a control character; only the GAP control character is rec-
ognized by the Myrinet ENI. The MSB of the first byte (8th bit) of a packet, when asserted, identifies
the header route flits. The first byte with an MSB of zero following the route bytes marks the begin-
ning of the four packet type flits, which are followed by the data payload, CRC flit, and GAP symbol.

The Myrinet ENI performs word packing and alignment of incoming Myrinet data flits, on a
4–byte/32–bit word basis. Packing is the process of grouping four contiguous bytes of Myrinet data
into a single SVI data word. Aligning is the process of ensuring that the most significant byte of
a Myrinet word appears in the most significant byte of the SVI data word. Since the number of head-
er flits may be of an arbitrary quantity, the first packet type flit may not arrive aligned on a 4–byte
interval. In order to perform proper word alignment, the Myrinet ENI pads the last header route
word with sufficient pad bytes so as to align the first packet type byte on a word boundary. Since
route bytes all have their MSB’s set, any non–word–aligned bytes following a route byte and having
ZERO–valued MSB’s are identified as pad bytes. The first word with an MSB (bit 31) of ZERO
is identified as the packet type word; all following flits are interpreted as data until a GAP character
is received, which terminates the packet. The GAP symbol also indicates that the preceding data
flit was the CRC flit. On the SVI side, the byte following the last byte of payload data is the EXOR
of the received CRC–8 byte with the calculated CRC–8 of the received data; any value other than
ZERO indicates the occurrence of a transmission error. The last SVI word (occurring coincident
with the svi_last_word_out signal) contains the number of pad bytes in the preceding word, not in-
cluding the EXOR’ed CRC byte.

A packet which begins with a packet type flit received by a Myrinet switch, is assumed by the switch
to be a packed not intended for the switch, and is dropped by the switch. Likewise, a packet that
begins with a route flit received by a Myrinet node (such as a LANai), is assumed by the interface
to be intended for a switch, and is dropped by the interface. Since the opposing ENI on the RNI may
be connected either to a switch or a destination node, a given Myrinet ENI must know whether to
drop packets which begin with either packet type or route flits. This is accomplished by passing a
VHDL generic to the ENI model; set ’bridge_to_switches’ to TRUE if the Myrinet ENI will be
bridging to a switch, set ’bridge_to_switches’ to FALSE if the Myrinet ENI will be bridging directly
to a sourc/destination node.

The Myrinet ENI also supports long–period timeouts in order to detect and respond to source or re-
ceiver–blocked packet situations. If the timeout limit is reached by either a Myrinet source or receiv-
er with no sent or received data flits once a message has been initiated, the source/receiver returns
to an idle state, resets any internal flags, and in a source–blocked scenario, the Myrinet source trans-
mits a GAP symbol. The user determines the timeout period by equating the generic ’timeout_limit’
to: ’sixteenth_sec’, ’quarter_sec’, ’one_sec’, or ’four_sec’.

3

The Myrinet ENI requires incoming SVI messages to arrive in the same format as that in which it
sends outgoing SVI messages, except no EXORed CRC byte is received. The last data word contains
the number of pad bytes, while the preceding word contains one to four valid data bytes and from
zero to three pad bytes.

Message Transactions

To Initiate a Myrinet Write:

– RNI Bridge element sends an SVI packet to Myrinet ENI containing:
1. SVI command ”External Write” (cmd_value = 0)
2a. If bridge_to_switches = TRUE:
– Header route word(s): one byte for each switch hop, with MSB = ONE for each route; last

route word contains from zero to three pad bytes, with MSB = ZERO for each pad byte.
– OR –
2b. If bridge_to_switches = FALSE:
– NO header route words
3. Packet type word: four bytes, MSB = ZERO for each byte
4. Data word(s); zero or more; word aligned, with last word containing from one to four valid

data bytes and from zero to three pad bytes as LSB bytes.
5. Last word: the LSB byte containing the number of pad bytes in the last data word.

– Myrinet ENI responds by sending a Myrinet packet containing:
1. Header route flit(s): one flit for each route byte received, if any.
2. Four packet type flits.
3. Data flit(s): one for each valid data byte received.
4. CRC flit: containing the CRC–8 value of all preceding bytes of current message.
5. GAP symbol flit.

To Receive a Myrinet Write:

– Myrinet ENI receives a Myrinet packet containing:
1. Header route flit(s): one flit for each switch hop on the opposing network side, if any.
2. Four packet type flits.
3. Data flit(s): one for each valid data byte.
4. CRC flit: containing the CRC–8 value of all preceding bytes of current message.
5. GAP symbol flit.

– Myrinet ENI responds by sending an SVI packet to RNI Bridge element:
1. SVI command ”External Write” (cmd_value = 0)
2. Header route word(s), if any: one byte for each switch hop, with MSB = ONE for each route;
 last route word contains from zero to three pad bytes, with MSB = ZERO for each pad byte.
3. Packet type word: four bytes, MSB = ZERO for each byte
4. Data word(s); zero or more; word aligned, with last word containing from one to four valid

data bytes and from zero to three pad bytes as LSB bytes.
5. Last word: the LSB byte containing the number of pad bytes in the last data word.

Signals

The following signals comprise the Myrinet interface of the ENI:

4

 SIGNAL DESCRIPTION
send_clk synchronizes data out
myrinet_out(7:0) Myrinet output data
myrinet_d_out Myrinet data ID: 1 = data; 0 = control character
myrinet_block_o flow control for data out,; 1= block
myrinet_in(7:0) Myrinet input data
myrinet_d_in Myrinet data ID: 1 = data; 0 = control character
myrinet_block_i flow control for data in; 1= block

The following signals comprise the SVI interface of the ENI:

 SIGNAL DESCRIPTION
svi_data_out(31:0) SVI outgoing data
svi_last_word_out asserted coincident with last word of outgoing SVI message
svi_clock_out outgoing SVI synchronization clock
svi_xfer_request_out asserted during entire outgoing SVI message
svi_ready_in destination asserts to allow transmission of SVI data
svi_data_valid_out asserted coincident with each outgoing SVI word

svi_data_in(31:0) SVI incoming data
svi_last_word_in asserted coincident with last word of incoming SVI message
svi_clock_in incoming SVI synchronization clock
svi_xfer_request_in asserted during entire incoming SVI message
svi_ready_out asserted to allow transmission of SVI data
svi_data_valid_in asserted coincident with each incoming SVI word
svi_sreset_in system reset; resets SVI master and slave

File Descriptions

All referenced files are currently located in /proj/rassp/gbuchana/rni/myrinet_svi.

The following files comprise the VHDL models for the Myrinet ENI and ENI testbench; they are
listed in order of descending hierarchy:

File Entity name Description
myri_svi_tb.vhd myri_svi_tb Testbench; Myrinet ENI

myrinet_svi_ent/arch.vhd myrinet_svi Myrinet ENI
myrinet_iface_ent/arch.vhd myrinet_iface Myrinet interface

myrinet_master_ent/arch.vhd myrinet_master Myrinet interface master
myrinet_slave_ent/arch.vhd myrinet_slave Myrinet interface slave
slack_buffer_ent/arch.vhd slack_buffer Myrinet slack buffer
unpack_fifo_ent/arch.vhd unpack_fifo Myrinet unpack FIFO

svi_myrinet_ent/arch.vhd svi_myrinet SVI interface
svi_master_myrinet_ent/arch.vhd svi_master_myrinet SVI master
svi_slave_myrinet_ent/arch.vhd svi_slave_myrinet SVI slave

5

svi_types_pkg.vhd Standard SVI package
svi_myrinet_types_pkg.vhd SVI interface package
myrinet_iface_types_pkg.vhd Myrinet interface package
my_hread.vhd custom hex_read (text_io) pkg

Myrinet ENI VHDL Model – Theory of Operation

myrinet_svi

svi_myrinetmyrinet_iface

svi_slave_myrinet

svi_master_myrinet

unpack
_fifo

Myrinet
in

SVI
out

SVI
in

Fig. 1 – Block diagram – VHDL model of Myrinet ENI

Myrinet
out

myrinet
_master

myrinet
_slave

slack
_buffer

For an in–depth understanding of the Myrinet ENI, refer to the VHDL code. The code is fully com-
mented, and all internal signals, flags, and ports are described. A less detailed overview of the theory
of operation of the constituent blocks of the ENI follows.

myrinet_iface:
The myrinet_iface block is responsible for providing a direct interface to the Myrinet; it receives
data from the SVI half of the ENI, formats it for transmission on the Myrinet, provides handshaking
with the connecting Myrinet port, and receives data on the Myrinet and prepares it for the SVI inter-
face. The myrinet_iface contains a myrinet slack buffer for incoming data from the Myrinet, and
an unpacking FIFO which is used to unpack the single data byte for each Myrinet flit from the 32–bit
SVI word. The myrinet_iface incorporates four blocks: a Myrinet master, a Myrinet slave, a
Myrinet slack buffer, and an unpack FIFO.

myrinet_slave:
The myrinet_slave provides the direct interface to the Myrinet input port. The myrinet data input
signals are encoded into an NRZ format, and arrive at the input ports asynchronously due to varia-
tions in output circuitry and transmission media. In order to capture the incoming asynchronous
data, a sampling “window” is created upon the detection of a data transition on any data input. This
window “closes” and data is sampled 2.25 ns after the first detected data transition; 2.25 ns is as-
sumed to be the worst–case data skew in a 1–m Myrinet environment. Data is decoded from NRZ
and written to the slack buffer, while the CRC–8 value of the incoming message is calculated. When
a GAP symbol is detected on the input, the calculated CRC–8 is EXORed with the received CRC,
and written to the slack buffer with the tail bit set.

The myrinet_slave block is sequenced through Myrinet slave transaction operations by a state ma-
chine with the following states and functions:

State Functions
idle Waiting to sink a Myrinet message

6

rcv_route Receive Myrinet route flits
rcv_pkt_type Receive Myrinet packet type flits
rcv_data Receive Myrinet data flits

slack_buffer:
The slack buffer operates consistently with a general Myrinet slack buffer, as described in The
Myrinet Link Specification. The slack buffer is a dual–port FIFO which is written synchronously
to the sampling strobe generated by incoming data in myrinet_slave, and read synchronously to the
SVI master transmit rate (which is send_clk). The data path into the slack buffer is nine bits wide
(one byte plus a tail bit), and the data path out of the buffer is 32-bits – the width of a full Myrinet
word. In addition to full and empty flags, the slack buffer outputs: tail_int – a flag indicating a word
containing a tail is being read, and orun2_int & orun1_int – flags which indicate how many bytes
past the tail byte (the byte containing the EXORed CRC) have been read out. (These flags are consis-
tent with those provided by the LANai chip.) The slack buffer also has a word_align input, which
when asserted forces the slack buffer to word align the next incoming byte, thereby word–aligning
the first byte of every new message.

The depth of the slack buffer, as well as the location of the high–water and low–water marks is set
via the constants ’slack_buffer_depth’, ’stop_slack’, and ’go_slack’ respectively in
myrinet_iface_types_pkg.vhd. These constants are currently set to 64, 4, and 4 respectively.

unpack_fifo:
The unpack FIFO is a dual–port FIFO which is written synchronously to the SVI slave clock, and
read synchronously to the Myrinet Master send_clk. The data path into the FIFO is 32–bits, and the
data path out is 8–bits, thus allowing full Myrinet words to be “unpacked” into one–byte flits for
transmission on the Myrinet. The depth of the unpack FIFO is set via the constant ’un-
pack_fifo_byte_depth’ in myrinet_iface_types_pkg.vhd; this value is currently set to 12 (12 bytes
or three myrinet words).

myrinet_master:
The myrinet_master provides the direct interface to the Myrinet output port. The Myrinet master
encodes the Myrinet output data signals into an NRZ format after retrieving data from the unpack
FIFO and discarding any pad bytes, calculates the CRC–8 value for the message, appends it to the
end of the data stream, and terminates the message with a GAP character.

The myrinet_master block is sequenced through Myrinet master transaction operations by a state
machine with the following states and functions:

State Functions
idle Waiting to source a Myrinet message
xmit_route Transmit Myrinet route flits
xmit_pkt_type Transmit Myrinet packet type flits
xmit_data Transmit Myrinet data flits
xmit_tail Transmit Myrinet CRC & GAP flits

svi_myrinet:
The svi_myrinet block is responsible for providing a direct interface to the SVI; it receives data from

7

the Myrinet half of the ENI, formats it for transmission on the SVI, provides handshaking with the
connecting SVI port, and receives data on the SVI and prepares it for the Myrinet interface. The
svi_myrinet incorporates two blocks: an SVI master and an SVI slave.

svi_master_myrinet:
The svi_master_myrinet provides the direct interface to the SVI output port. The SVI master reads
data from the slack buffer, packs it into 32–bit SVI words, and pads route and last data words as nec-
essary to provide proper word alignment. Since the slack buffer is filled one byte at a time as Myrinet
flits are received, and there may be any number of route flits, data words in the slack buffer are gener-
ally not word aligned. The Myrinet SVI master contains a packing buffer which is a two–word deep
register from which any contiguous four–bytes can be read. Routing words are read directly out of
the packing register (after being obtained from the slack buffer) until a packet type word is encoun-
tered, at which time the alignment of packing buffer reads is shifted to coincide with the alignment
of the packet type word (and subsequent data words). A separate shadow packing register keeps
track of the tail byte (EXORed CRC) position in the packing register; when the SVI master detects
that it is transmitting the tail byte in the SVI word, it appends any pad bytes necarry to fill the word,
and transmits the pad count as the last SVI word.

The svi_master_myrinet block is sequenced through SVI master transaction operations by a state
machine with the following states and functions:

State Functions
idle Waiting to source an SVI message
transfer_cmd Transmit SVI command word
transfer_route Transmit Myrinet route word on SVI
transfer_pkt Transmit Myrinet data on SVI

svi_slave_myrinet:
The svi_slave_myrinet provides the direct interface to the SVI input port. The SVI slave receives
data from the SVI input port, and writes it into the unpack FIFO in the Myrinet master block. The
operation of the Myrinet SVI slave is quite simple, as it has no packing or alignment functions to
contend with.

The svi_slave_myrinet block is sequenced through SVI slave transaction operations by a state ma-
chine with the following states and functions:

State Functions
idle Waiting to sink an SVI message
rcv_cmd Receive SVI command word
rcv_pkt Receive SVI data word

Myrinet ENI Testbench

All referenced files are currently located in /proj/rassp/gbuchana/rni/myrinet_svi.

The following files comprise the Myrinet ENI testbench files:

Run script Stimulus/Compare Files Description
run_myri_tb_noswitch myri_svi_*_noswitch.txt write operation to a destination node

8

run_myri_tb_switch myri_svi_*_switch.txt write operation to a switch
run_all all above all tests, run on command line

* -- stim/comp

myri_svi_tb

FIG. 2 – Block diagram – VHDL Testbench for Myrinet ENI

myrinet_svi

SVI
out

SVI
in

Myrinet
out

Myrinet
in

The Myrinet ENI testbench, Figure 2, is composed of a single Myrinet ENI with its Myrinet IN and
OUT ports connected. Tests are run by stimulating the SVI IN port and observing the SVI OUT port.
If the ENI is modeled properly, write data presented to the SVI input will appear on the SVI output.
There are two testbench tests: run_myri_tb_noswitch tests the ENI under the condition in which
the ENI Myrinet port is connected directly to a destination node (no intervening crossbar switch)
and run_myri_tb_switch tests the ENI under the condition in which the ENI Myrinet port is con-
nected to a switch. Both tests include multiple individual message transactions under a variety of
SVI input and output conditions, and each test includes a message with (. . .no_switch) or without
(. . .switch) a header route byte, in order to test the ENI’s ability to drop a message for which it is
not intended. As soon as all the expected results are received from the SVI output port, a message
to the console indicates that the end of the compare file has been reached with no errors. Alternative-
ly, any miscompares are also identified with error messages to the console.

