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Abstract

The goal of the DARPA/Tri-Service-sponsored Rapid Prototyping of Application-Specific Signal
Processors (RASSP) program is to reduce the cost and time to develop and manufacture sig-
nal processors by at least a factor of four. Lockheed Martin Advanced Technology
Laboratories’ (ATL) approach to reaching this goal is based on three thrusts: methodology,
model-year architecture, and infrastructure (enterprise). The Advanced Technology
Laboratories’ RASSP team — composed of an alliance of companies — implemented the first
baseline RASSP system, which advances today’s state-of-the-art by a factor of >2X. The
Advanced Technology Laboratories’ RASSP used the methodology and tools to demonstrate
cost and design-cycle improvements on the benchmark virtual prototype, and developed a
hardware/ software system that demonstrated first-pass success. Additional developments
underway will provide further benefits and will demonstrate 4X improvements in cost and
time to market. This paper updates the team’s progress halfway through the program, and
highlights the impact of using the RASSP concepts on the design of a SAR processor, a Navy
standard processor upgrade, and a CNI application.
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1.  Introduction

The Rapid Prototyping of Application-Specific Signal Processors (RASSP) program is a
DARPA/Tri-Service initiative that is dramatically improving how signal processors are designed,
manufactured, upgraded, and supported. A major program goal is to reduce by at least a factor
of four the time to take a design from concept to fielded prototype. The Lockheed Martin
Advanced Technology Laboratories (ATL) RASSP program approach to reaching the program
goal is based on implementing three technology thrusts: methodology, model-year architec-
ture, and infrastructure (enterprise).

The methodology is based on a concurrent/collaborative hardware/software codesign approach
that embraces the full design hierarchy, from requirements to manufacturing product data
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descriptions [1]. The model-year architecture focuses on leveraging COTS technology, coupled
with designing flexible, functional interfaces to enable regular, low-cost technology upgrades.
The infrastructure enables the methodology and model-year architecture to work across multi-
discipline, concurrent-engineering teams by providing integrated workflows, data, and network
services. The resulting functionality is a much greater capability than the sum of its parts, and
it enables the concurrent/collaborative virtual corporation of the future.

This paper highlights the design systems the ATL team implemented and describes how
these systems support the goal of improving the process by a factor of 4. Sections 2 through
4 describe the three elements of the RASSP technology triad: methodology, model-year archi-
tecture, and Infrastructure, respectively. The infrastructure discussion in Section 4 details both
the integrated RASSP design environment, which provides the tools needed to support rapid
prototyping, and the enterprise system, which enables collaborative design through its inte-
grated process, tool, and information management capabilities. Section 5 describes how far
along the ATL RASSP team is on the road to 4X. It also provides several examples of improve-
ments demonstrated to date.

2.  Methodology

This first element of the RASSP technology triad defines how to develop designs to reduce
time-to-market and life-cycle cost by a factor of four. As shown in Figure 1, the methodology
process is partitioned as a function of the level of abstraction of the evolving design, not as a
function of discipline [2]. The methodology is composed of three major functional processes:
the system, architecture, and detailed design processes. Each functional process has associat-
ed with it a design-for-test strategy.The result merges hardware and software into a true code-

sign process; any distinctions
between hardware and soft-
ware are made within the spe-
cific process. Users imple-
ment hardware/ software
codesign the initial partitioning
of functions to hardware and
software elements, all the way
to manufacturing release. At
each step in the hierarchy,
users simulate hardware and
software models at equivalent
levels of abstraction to verify
both functionality and perfor-
mance, as shown in another
view of the process in Figure
2. Each process area is closely
tied to the RASSP vision of an
iterative (spiral-like) develop-
ment that results in a series of
virtual prototypes. 
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Design-for-test is an integral
part of the design process
and is a component of the
virtual prototypes. Test
development here is applied
during the manufacturing
and field support phases of
a project.

System Process — The sys-
tem process captures cus-
tomer requirements and
converts these into process-
ing requirements, both func-
tional and performance.
Users perform functional
and performance analyses
to properly decompose the

system-level description. The system process has no notion of either hardware versus soft-
ware functionality or processor implementation.

The first major iterative design cycle results in a requirements specification that has been cap-
tured in an appropriate tool for use in the systems requirements review. Users then translate
this information into simulatable functions, in what is called an executable specification. The
paper by Shaw, et al, in this issue describes executable specifications in more detail. An exe-
cutable specification is the first level at which requirements are specified so that users can readi-
ly match them to simulators to automatically verify performance and functionality. In this
process, users allocate processing time to functions, and define functional behavior in the form
of algorithms that can be executed. All functions are implementation independent. High-risk
items can spawn prototype analysis and development efforts in a mini-spiral, which is a process
that allows engineers to take the design to a lower level to help verify the design decision.

Architecture Process — The architecture process transforms processing requirements into a
candidate architecture of hardware and software elements. This process, which is the second
major cycle of the spiral process, begins the trade-offs between the different processor archi-
tecture alternatives. During this process, users allocate the system-level processing require-
ments to hardware and/or software functions. Users then verify these functions with each
other via “co-verification” at all steps. The architecture process results in a detailed behavioral
description of the processor hardware and definition of the software required for each proces-
sor in the system. The intent is to verify all code to ensure hardware/software interoperability
early in the design process.

The process supports trade-offs by processor behavioral and performance simulations, as well
as mixed levels of simulation (algorithm, abstract behavioral, performance, ISA, RTL, etc.) to
verify interaction of the hardware and software (see Figure 2). These models are largely com-
posed of hierarchical VHDL models of the architecture [3]. Users choose models, to the maxi-
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mum extent possible, from the model-year architecture elements in the RASSP reuse  library.
Users develop new required library elements and insert them into the reuse  library to support
this design phase. The executable specification evolves into a more detailed set of architecture-
specific, functional and performance models. Software algorithm implementations are also spe-
cific to the candidate architecture(s). Users conduct an architecture design review when they
complete architectural trade-offs and verify the design to a high degree of confidence.

The software portion of the architecture process deviates significantly from traditional (func-
tional decomposition) approaches. The partitioned software functionality is broken into three
major areas:
1) Algorithm, as specified in a flow graph
2) Scheduling, communications, and execution, as specified by mapping the graph to a specif-

ic architecture
3) General command/control software.
The intent on RASSP is to automate these to the maximum extent possible. The ATL team is
accomplishing this using a graph-based programming approach(es) that supports correct-by-
construction software development based on algorithm- and architecture-specific support
library elements [4].

General command/control coding traditionally uses emerging CASE-based code development,
documentation, and verification tools. This includes creating new library elements, which are
first entered into the system as prototype elements, and then are promoted to verified ele-
ments after prototype verification. In the last two years of the RASSP program, the ATL team
is focusing on automatically creating signal processing command/control software to the maxi-
mum extent possible.

Detailed Design — The third major spiral cycle iteration is the detailed design of software and
hardware elements. As with the other processes, users design and verify both hardware and
software using a set of detailed functional and performance simulations. At the end of this
process, users establish the design, which is a fully verified virtual prototype of the system. 

During the hardware portion of the detailed design process, users transform behavioral specifi-
cations of the processor into detailed designs (RTL and/or logic-level) by combining hardware
partitioning, parts selection, and synthesis. Users functionally verify detailed designs using
integrated simulators, and they verify performance/timing to ensure proper performance. The
results are detailed hardware layouts and artwork, netlists, and test vectors that can then be
seamlessly transitioned to manufacturing and test via format conversion of the data. The
entire design package required for release to manufacturing is reviewed at the detailed design
review, which is similar to today’s critical design reviews.

Since users verify most of the software developments during the architecture process, soft-
ware developments at this point are limited to creating those elements that are target-specific:
configuration files, bootstrap and download code, target-specific test code, etc. Users compile
and verify all the software (to the extent possible) on the final virtual prototype before the
detailed design review. Design release to manufacturing marks the end of the RASSP design
process.
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Design-for-test (DFT) — Design-for-test is an integral part of the RASSP methodology [5, 6].
Figure 3 shows the DFT contributions to the project phases defined by the baseline RASSP
methodology. The contributions span the project life cycle  from design through field deploy-
ment. Design-for-test first contributes through a set of consolidated requirements for test that
are created by project team members from design, manufacturing, and field support. These
representatives create requirements that are quantitative and unambiguous, and they use
them to examine and rate candidate architectures. During the architecture selection process,
they add DFT hardware and software elements to create a test strategy. Design-for-test also
applies functional dependency modeling to indicate early in the process how candidate archi-
tectures compare with respect to testability. The representatives then evaluate the emerging
test strategy during VHDL verification exercises, implement it during detailed design, and use
it during manufacturing and field support.

Requirements consolidation and its subsequent processing result in a singular test philosophy
which, as uniformly as possible across all project life-cycle phases, defines an ordered set of
test means that measure conformance of the product to the established consolidated require-
ments. The result of the singular test philosophy is maximum reuse of test means across all
life-cycle phases.

Users select test means by simultaneous creating a test architecture and formal specification
of a test strategy in the form of a hierarchy of test strategy diagrams (TSDs). The test architec-
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ture defines means that are suitable and available to perform necessary tests for a specific
project. A wide range of CAD/CAE tools compatible with the RASSP basic design tools sup-
port the selection of test means. Test strategy diagrams assign fault coverage, test time, and
test cost to the various test means and specify the order of application of test means. Test
strategy diagrams track adherence to a standard approach to test: a procedure that detects,
isolates, and then corrects faults. Through prediction, verification through simulation, and per-
formance measurement, users measure conformance to requirements.

A significant result of TSD and test architecture analysis of RASSP Benchmark projects is the
pre-eminent role of built-in-self-test (BIST) in signal processing system designs. At component,
MCM, and board levels, users can install BIST during product design and testability of a sys-
tem, and it can be defined and evaluated before fabrication and final software design. The
same BIST selected during the design phase can be used to execute manufacturing tests and
can be an effective test means during system field deployment. Efficient BIST can reduce or
eliminate the need for expensive Automatic Test Equipment (ATE) during manufacturing by
providing built-in-test capability that absorbs a large percentage of the testing and can provide
basic testability features in the field where test equipment availability is restricted.

The economic impact of BIST can be very significant for a typical project where design con-
sumes only 10% of life-cycle cost. Adding a BIST approach that increases design effort by 20%,
adds 2% to the life-cycle cost of a project. The same addition can reduce manufacturing test
cost, reduce the number of spares required, reduce the Test Program Set (TPS) re-engineering
effort, and potentially reduce life cycle cost by several percent. The RASSP Benchmark 3 project
indicates that BIST could potentially reduce life-cycle cost by up to 20%, depending upon the
assumption set chosen as the basis for economic analysis. Thus a small expenditure during the
design phase can result in a large payback throughout the product life cycle.

Design-for-test improves product performance and reduces cost and time-to-market, primarily
from procedural and data reuse across all life-cycle phases. Library grade strategies, proce-
dures, BIST software modules, and established component specifications all contribute to a
complete approach to testability. In addition, reuse across packaging levels, model-year
upgrades and between components/boards at the same packaging level result in further per-
formance gains and lower life-cycle costs.

3.  Model-Year Architecture

The second element of the RASSP technology triad is the model-year architecture, which
defines what users must develop to achieve timely, cost-effective processor prototypes. The
ATL RASSP team is developing the model-year architecture, which is more fully described in
the paper by Pridmore, et al, in this issue, to promote design upgrades and reuse through
standardized, open interfaces, while leveraging state-of-the-art commercial technology devel-
opments. RASSP model-year architectures must be supported by library models to facilitate
trade-offs and optimizations for specific applications. The hardware and software elements
within the library are “encapsulated” by functional wrappers, which add a level of abstraction
to hide implementation details and facilitate efficient technology insertion. The notion of
model-year upgrades is embodied in reuse libraries and the methodology for their use.
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The RASSP program supports the design of architectures through a framework that provides a
structured approach to ensure that designs incorporate the following required model-year fea-
tures: scalability, heterogeneity, open interfaces, modular software, life-cycle support, testability,
and system retrofit [7]. The basic elements that comprise the model-year architecture are the
functional architecture, encapsulated library components, and design guidelines and constraints,
as shown in Figure 4. Synergism between the model-year architecture framework and the
RASSP method-
ology is required,
as all areas of the
methodology,
including archi-
tecture develop-
ment, hardware/
software code-
sign, reuse library
management,
hardware synthe-
sis, target soft-
ware generation,
and design-for-
test  are impact-
ed by the model-
year architecture
framework.

4.  Infrastructure

The third element of the RASSP technology triad is the Infrastructure, which provides the
enabling technology to implement the RASSP process and model-year architecture. The infra-
structure is divided into two major elements: the design environment and the enterprise sys-
tem. The design environment is a subset of the overall enterprise. It provides the hierarchical,
integrated set of tools (described in section 4.1) to support hardware/software codesign and
virtual prototyping. The enterprise system, described in Section 4.2, provides the underlying
process and data management that enables distributed, collaborative design to occur within an
Integrated Product Development Team.

4.1  Design Environment

The ATL RASSP Team is developing an integrated, hierarchical set of design automation tools
and incorporating it into the overall RASSP enterprise system. These tool developments sup-
port the full hierarchical design approach and are keys to achieving the RASSP 4X goals. The
tool developments are summarized in Table 1. The following paragraphs describe these
RASSP design environment enhancements that go beyond today’s state of the art for the
Systems, Architecture, and Software design areas.

System Design Tools — The system definition process is a front-end engineering task that is
developing signal processing concepts and performing top-level trade-offs to determine the
signal processing subsystem requirements. The ATL team is integrating multi-discipline capa-
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Table 1. RASSP tool developments.

Design Area Company Participation Tools 2nd Year Enhancements

System Ascent Logic System requirements RDD-100 Integrating  RDD-100 outputs with JRS NetSyn,  
Definition Corporation definition and functional MSI Reliability/Maintainability, and PRICE 

decomposition estimating tools allows concurrent, high-level 
system trade-offs.

System PRICE Systems Parametric cost estimation PRICE UNIX-based parametric cost estimating tools for
Definition S, H, HL, M hardware, hardware life cycle, and software.

System and Management Reliability, availability, and RAM/ILS Developing and integrating suite of tools for reli-
Distributed Sciences, Inc. maintainability analysis ability/ maintainability predictions, FMECA, and
Design (MSI) production assessment.

Architecture JRS Research Integrated architecture NetSyn Demonstrating the viability of Network Synthesis
Selection Laboratories, trade-off and synthesis System (NetSyn) for rapid architecture trade-offs.

Inc. (JRS) Developing Architectural Selection Toolset: 
NetSyn, RDD-100, MSI Reliability/Maintainability 
and PRICE cost analysis. 

Architecture Alta Group of Signal processing BONeS, Integrated SPW and BONeS using BDT HSIM. 
Definition Cadence algorithm behavioral SPW SPW/MATLAB interface allows MATLAB “M” 

simulations, architectural files to be included in SPW as library block. SPW
simulation, and perform- JRS NetSyn integration support multiprocessors 
ance verification designs.

Architecture Berkeley Design Environment for sim- HSIM Productized Ptolemy kernel into HSIM to enable
Verification Technology, Inc. ulation and prototyping (Ptolemy) co-simulation of heterogeneous, high-level 

(BDT) of heterogeneous systems decision tools. Integrating HSIM to Precedence 
backplane.

Arch/Design Precedence, Inc. Simulation backplane  SimMatrix Extending SimMatrix capability to permit co-simu-
Verifications allows multiple simula- lation of all levels of signal processor design.

tions to run concurrently

Architecture/ Management Development of multiproc- GrTT, Developing and integrating suite of tools to 
Software Communications essor DSP autocode tools uPIDgen support the automatic code generation for COTS

& Control, Inc. and distributed run-time processors from signal flow graphs (PGM)
(MCCI) scheduling and control

Modeling Honeywell VHDL Performance Developing a generic parametric library of VHDL
Technology Modeling performance models and interoperability 
Center (HTC) guidelines.

Architecture AT&T Multiprocessor/parallel SPEAR Distributed debugger for COTS-based processors.
Verification processor software 

debugger

Detailed Mentor Graphics Integration services and Falcon, Supporting integration of enterprise system and
Design Corporation hardware design of Quick design tools to build COTS-based multiproces-

(MGC) component-based VHDL, etc. sors.
automation tools

Software University of Software analysis and TIBBIT, PIE Developing Performance Instrumentation 
Debugging Oregon binary-to-binary translation Environment (PIE) for performance debugging. 

Arch/Design Quickturn Integration of emulation ASIC Integrating emulation capability to design 
Verification Systems and design tools. Emulator environment.



bilities into a concurrent engineering environment that consists of three major tools:
•  Ascent Logic’s RDD-100
•  Management Sciences’ RAM/ILS toolset
•  Lockheed Martin PRICE Systems’ parametric cost estimating tools.

The ATL team uses these tools with other, traditional tools to define the functionality (at the
algorithm level) and the performance (at the timeline level) of the signal processing subsys-
tem.

The ATL team uses the three major tools tools to: capture and track system engineering
requirements; describe the functional behavior of the signal processor; allocate the require-
ments to signal processing subsystems; perform high-level reliability and maintainability trade-
off analyses; and perform parametric-based cost estimations for the signal processor’s life
cycle. Integrating these tools will let system engineers perform high-level trade-off analyses.
The ATL RASSP team has developed extensions of Ascent Logic’s requirement capture tool
so that is can supply requirements to the Lockheed Martin PRICE and the MSI RAM/ILS tools.
The team implemented the PRICE tool to run in a UNIX environment where it can be used to
do cost trade-offs. Previously, the PRICE tool had only been available on a PC and was primari-
ly a cost analyst tool, as opposed to an engineering design tool.

On the RASSP benchmarks, the team used the combination of requirements capture, para-
metric cost estimation, and reliability tools to analyze life-cycle costs. Over the past two years,
many users were interested in this capability to do requirements analysis, as well as early sys-
tem concept trade-offs. The team is supporting two beta sites using the tools to develop life-
cycle cost trade-offs for new products.
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Table 1. RASSP tool developments(cont.).

Design Area Company Participation Tools 2nd Year Enhancements

Detailed Synopsys, Inc. VHDL source compilation VHDL Supporting use of synthesis tools for designing
Design and logic synthesis Design processors.

Compiler, 
Design Ware

Detailed LogicVision Electronics systems ICBIST Developing a hierarchical, integrated BIST
Design Software, Inc. test automation tools methodology and tools for PCB, MCM, and 

(LV SW) for insertion, synthesis, system-level test. Development is being
and fault grading of integrated with ATL design approach.
BIST structures

Enterprise Intergraph Enterprise framework - DMM, Developed enterprise-level object-oriented data 
System Corporation product data and DM2.0 management to support RASSP design reuse

workflow management concepts.

Enterprise Aspect Design reuse library CIS Developed the RASSP Reuse Data Manager
System Development management and system (RRDM) and integrated it into the enterprise 

Inc. component information system.

Explore Enterprise Networking services Developing secure networking capability to 
Enterprise Integration support virtual corporations, exploit electronic 
System Technologies commerce.



Architecture Design Tools — Meeting RASSP’s time-to-market and reuse goals requires a set
of tools to help users partition and map a functional application onto a potentially large number
of computing nodes. JRS’ NetSyn tool is the first available tool to help users perform multi-
processor hardware/software codesign for architectural trade-offs. The ATL RASSP team is
integrating NetSyn with tools from other disciplines to enable designers to perform concurrent
engineering trade-offs. The result will enable users to efficiently evaluate varying architecture
approaches for a particular application and to generate top-level size, weight, cost, reliability,
and performance estimates.

NetSyn will import a set of requirements (for example, size, weight, power, etc.) from RDD-
100 that reflect the constraints on the architecture. During architecture selection, users can
compare estimates of these parameters with the requirements for various candidate architec-
tures. NetSyn can either generate a data flow graph description in the Processing Graph
Method (PGM) format of the required signal processing or it can import a PGM graph from
other tools (such as Alta’s SPW). Users can develop candidate architectures within NetSyn
and map the data flow graph description of the processing to the architecture using automat-
ed or manual techniques. Top-level performance simulations support trade-off evaluations
among candidate architectures.

Once users select an architecture, more detailed verification of the implementation is required.
This will likely be composed of existing hardware and software elements, existing models, and
new components. What is required at this level of the design hierarchy is a robust simulation
capability that allows designers to iteratively verify the design hierarchically, as shown in Figure
5. The ATL RASSP team is making multi-domain simulation capabilities available through the
productization of the Ptolemy-based Hetero-geneous Simulation Interoperability Mechanism
(HSIM) developed by
Berkeley Design Technol-
ogies (BDT). Berkeley
Design Technologies and
Alta estimate that using
HSIM reduced integration
costs by a factor of 8
over traditional integration
approaches. The team
has performed additional
cross-domain integra-
tions: integration of HSIM
to the Precedence simu-
lation backplane, and inte-
gration of VHDL and
emulation (Quickturn)
environments into the
backplane.

Once users select a candidate architecture, they verify it using the architecture verification
tools. This tool suite consists of performance and functional simulators at various levels of
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design abstraction (abstract behavior, ISA-level, RTL, etc.) and models of computation (data
flow, control flow, event driven, etc.) that users iteratively invoke to hierarchically verify the
processor design before detailed implementation. The ATL team will integrate emulation and
hardware testbed capabilities into the tools by combining simulation backplane and mixed-
level domain (Ptolemy kernel) technologies. The team demonstrated early results of these
capabilities by importing MATLAB macros into SPW and coupling the SPW design to the
BONeS network simulation.

The ATL team developed a design approach that uses VHDL to convey design information from
the initial multiprocessor system concept through synthesizable chip descriptions. The team’s
efforts are focused on developing a VHDL performance model interoperability standard to sup-
port high-level modeling [8]. The team defined a performance model interoperability standard
and developed an example (SAR benchmark) model using this approach. The team distributed
models to TRW, JRS, and MIT and demonstrated more than a 100X improvement in simulation
time over traditional, ISA-level approaches. Honeywell and ATL are developing readily reconfig-
urable generic libraries to support rapid trade-offs. Honeywell, ATL, and Omniview are integrat-
ing performance model libraries into a tool — the Performance Model Workbench (PMW) —
that will support various design approaches which can be simulated to verify the design.

The Advanced Technology Laboratories’ Graphical Entry Distributed Application Environment
(GEDAE) tool supports the development of distributed applications. It provides a workstation
environment for application development, tools to support multiprocessor scheduling and
mapping, and a run-time environment for efficient execution on hardware testbeds. The
Advanced Technology Laboratories is developing a PGM import capability to support the exe-
cution and visualization of PGM graphs, and it extended GEDAE’s user interface to help users
graphically define candidate architectures. Since hierarchy is inherent in the graphical editor,
large, scalable architectures are readily represented as systems made up of interconnected
chassis, which are made up of interconnected boards; these boards are made up of intercon-
nected processors, memories, and communications elements. 

The Advanced Technology Laboratories extended GEDAE’s timeline display to provide an inte-
grated hardware/software view during execution, and as a post-execution analysis capability
suitable for analysis of performance simulation results. Additional extensions support anima-
tion of the playback to present a dynamic correlated view of the application and the architec-
ture activity. This GEDAE extension is called the Architecture Definition/Visualization Tool
shown in Figure 6. There is sufficient information in the analysis and animation for users to
observe all software activity, processor utilization, and data transfers. The Advanced
Technology Laboratories is integrating the Architecture Definition/Visualization Tool with
NetSyn to support the trade-off decision process. The Advanced Technology Laboratories
plans to use this same interface for visualizing all levels of the virtual prototyping process, and
for target hardware execution timelines.

Software — One of the key ATL RASSP developments is the implementation of a library-
based, data-flow-graph-driven autocode process, which abstracts signal processing software
generation and maintenance to the graph level. Data flow graphs represent the required signal
processing using PGM. This representation is architecture-independent. As users upgrade
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hardware, the application description at the graph level remains constant. This approach will
support reuse of graph data with model-year upgrades.

The ATL team is implementing a set of autocode generation tools that will enable users to
take PGM graphs and automatically generate downloadable code for embedded multiproces-
sor environments, as shown in Figure 7. These tools implement the model-year architecture
by using the reusable software libraries and targeting the code generation to support the
model-year architecture application programming interface (API) and run-time system.
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Connected groups of primitives assigned to the same processor represent graph partitions,
which are automatically translated (using the MCCI-developed autocode tools) to source code
for the processor type to which the partition has been mapped [4]. This translation uses the
optimized math and signal processing libraries for the specified target processor. This enables
users to implement fully operational virtual prototypes before final manufacturing release.

Along with the autocode tools, ATL and MCCI completed the design of the RASSP run-time
system, which will support management and execution of the autocoded graphs on target
hardware. The run-time system is being built with an open interface to operating system
microkernels to facilitate porting to commercial products. The first integrated version of the
autocode tools and the run-time system have been tested and they will support the Mercury
MCOS operating system and Signal processing Application Library (SAL). The autocode tools
and run-time system are providing the AN/UYS-2A upgrade program with the ability to easily
retarget PGM software to the new hardware, and the ability to upgrade the hardware without
modifying the software at the graph level. This effort represents the first real application of
automated code generation and run-time support targeted to commercial processors [4]. To
date, the initial use of these tools has significantly reduced development time and cost, as
described in more detail in Section 5.

4.2  Enterprise System Overview

The RASSP enterprise system architecture is hierarchical. It integrates individual design tools
and collections of tools, which are then integrated into specialized frameworks. This architec-
ture includes provisions for other (non-design) environments, such as purchasing systems and
product data management systems. The architecture also provides a distributed reuse system
with an object-oriented repository at the enterprise level and coordinated local framework/tool
libraries [9].

The concept of opera-
tion for the enterprise
framework includes
the ability to execute
project plans, express-
ed as workflows, by
teams of engineers.
Execution of a work-
flow by a member of a
design team, as shown
in Figure 8, initiates
control commands to a
CAD/CAE tool as rele-
vant for the particular
workflow step. This
execution also initiates
data transactions with
the enterprise product
data management sys-
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tem; local data management systems; and library systems, as relevant for the particular work-
flow step. In addition, the system couples project management tools with the design environ-
ment, which receives regular status updates as workflow steps are executed. This process
facilitates effective, non-interfering project management.

Users execute the workflows using enterprise methodology management tools, which link to
tools, data access mechanisms, and other services. This process allows designers to operate
at a higher level of abstraction, allowing them to focus on the real design tasks instead of tool
and data management, which significantly improves their productivity.

The enterprise framework provides multiple workspace views for the design environment to
support workflow usage. These views include:
•  Tool and application workspace
•  A data workspace for product and reuse information 
•  Project/workflow workspaces.

The resources, data objects, and applications available to particular engineers are defined by
their identity and role in an authorization hierarchy implemented in the enterprise system.

Workflow Management — Workflow management in the RASSP system is comprised of
methods and tools to provide the project team with an environment that facilitates day-to-day
work. The ATL RASSP team has a process-model-driven philosophy for workflow manage-
ment. The detailed representation of the RASSP methodology is modeled using Integration
Definition 3 (IDEF3) [10], which is a method to capture and structure process flows [11].
These models are instantiated as workflows in the workflow management tool. The workflow
captures:
• Process steps and their precedence relationships
• The personnel roles authorized/required to perform work
• The information objects involved (created, used, modified, destroyed, etc.) in the process

step
• The tools to be launched or controlled at each step.

The ATL team is demonstrating the Intergraph Design Methodology Manager (DMM), which
graphically represents the workflows of a project (as shown in Figure 9), enforces workflow
use, and tracks status of the workflows. Each activity in a workflow may be associated with
multiple tools. Users initiate an activity by clicking on the box representing the activity in a
workflow; when they exit the activity informs DMM about the status of the activity. The Design
Methodology Manager decides whether an activity may be launched or not, based on the sta-
tus of the activities that precede it in the workflow. The Design Methodology Manager provides
for pre-condition and post-condition scripts of the activities in a workflow. Examples of these
activities include functions such as checking for the existence of data objects, or translating
data objects to the appropriate formats. This removes these functions as required responsibili-
ties for the engineers, thereby enabling significant productivity improvement through increased
focus on design tasks. Project engineers or supervisors would normally be responsible for
design and implementation of project plans based on workflows using the system.
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The workflows are hierarchical and they represent the various disciplines associated with elec-
tronic design. The workflows consist of reusable workflow segments, which can be combined
in various configurations to address specific project needs. Figure 10 shows the workflow for
the Benchmark 3 project, which is made up of several reusable workflow segments, such as
Architecture Selection and Preliminary Design. These segments consist of multiple process
steps, each of which is also reusable. Options available to a user organization are either to
make use of the RASSP workflows in current form or to develop process plans based on a
combination of reuse of RASSP workflow segments, individual process steps, and possible
custom user steps.

The ATL RASSP team developed multiple extensions to the DMM tool: access controls, hierar-
chical workflow modeling capability, capability to track status and history of a project, inter-
faces to project management tools, and integration with the Enterprise Product Data Manager.
The workflow manager also helps capture useful metrics for projects. The metrics being col-
lected on the RASSP program include:
•  Time spent in a step
•  Number of iterations through a path / step 
•  Tool usage 
•  Person(s) performing the step 
•  Notes per process step.
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Manufacturing Interface — The goal of an agile manufacturing environment is to enable the for-
mation of virtual organizations and to provide the robust design-for-manufacturing mechanisms
that virtual organizations need to develop successful products. To support the ATL RASSP
team’s manufacturing interface, the team identified obstacles to first-pass manufacturing suc-
cess. Next, the team developed a methodology and an architecture that eliminated these obsta-
cles. Because of the critical need for reliable product data exchange, the team incorporated
standards such as ISO 10303 and EDIF 400 into the agile manufacturing interface architecture.

The team integrated the manufacturing interface into the RASSP enterprise system, and is
being used by the Lockheed Martin Center of Excellence PCA manufacturing facility in Ocala,
Florida. The manufacturing interface has processed several PCA designs at this facility, and
the data generated was used to produce several missile program PCBs. The results to date
reduced manufacturing rework from <15 percent to <5 percent, and reduced design-to-manu-
facturing information exchange cycle time from days to hours. 

Until recently, transitioning PCA product designs from Lockheed Martin’s design facilities to
the manufacturing facility required significant manual data conversion, data reentry, and quality
assurance procedures. These manual processes require significant amounts of time to per-
form, and they introduced errors and inaccuracies into data generated for production. These
data conversion and quality assurance steps took place after a PCA design was considered
“complete” and after it was transferred to the manufacturing facility. The current approach
passes PCA CAD data directly to the manufacturing facility, thereby eliminating these errors.
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Because the manufacturing facility has traditionally not been part of the product design
process, manufacturability issues, such as component placement impact on automation inser-
tion equipment, are often present in the data received from design teams. These issues must
be resolved. Resolution might require a re-design effort by the team originating the design.
Because the cost of design modification is high, if the manufacturability issues are not insur-
mountable they may be allowed to remain, even though they increase the recurring engineer-
ing cost of product manufacture. These problems have not only contributed to difficulty in
achieving first-pass manufacturing success, but unnecessarily increased production difficulties
for every production run of each PCA produced. 

The ATL manufacturing interface corrects this by enabling virtual partnering between design
and manufacturing teams, which makes it easier to collaborate and negotiate between design
and manufacturing engineers throughout the product design process.

Several PCA designs have been processed by the manufacturing interface team of SCRA and
Lockheed Martin using the RASSP manufacturing interface. The first automated manufactur-
ing run of one of these designs yielded 70% functional PCAs, while the other three produced
100% functional PCAs. The first PCA design processed met the objective of first-pass manu-
facturing success. The second design processed by the RASSP manufacturing interface had a
70% success rate. The remaining 30% required repair of approximately 2% of their compo-
nents. Examination showed that a minor software issue with the RASSP-MI was the cause of
the poor yield, and was corrected. On small runs of PCAs, the initial rework can vary from a
few percent to 10s of percent depending upon the complexity of the design.

After correcting the RASSP manufacturing interface software issue, two more PCA designs
were processed by the SCRA/Lockheed Martin Ocala team using the RASSP manufacturing
interface. The manufacturing data produced was used for the first manufacturing run of a
batch of PCAs for each design. For these designs, the goal of first-pass manufacturing suc-
cess was achieved; none of the PCAs produced required repair. Table 2 summarizes these
results.

Table 2. Production results using the RASSP manufacturing interface.

PCA Design PCAs Produced Using PCAs Requiring Repair Success

the RASSP-MI Rate

Design 1 17 0 100%
Design 2 17 5 70.6%
Design 3 17 0 100%
Design 4 17 0 100%

The results obtained using the RASSP manufacturing interface in this industrial setting have
confirmed the validity of this approach. By reducing cost and time-to-market, the RASSP man-
ufacturing interface is contributing significantly toward meeting the RASSP program’s goals of
improved cycle time, quality, and cost. The ATL team is developing an extended version of the
RASSP manufacturing interface to support the design and manufacture of complex electro-
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mechanical products, further validating the general applicability of the methodology and archi-
tecture developed. The team is extending the manufacturing interface capability and will pro-
duce EDIF-400 output data that can be directly used with the manufacturing tools.

Information Management — Enterprise information is a key corporate asset that requires a
well planned management strategy. The ATL RASSP team developed an enterprise data
model that specifies the metadata design engineers and project/system administrators need
to track the product and reuse information in the system. To develop the RASSP Enterprise
Data Model, the team analyzed several standard models that were multiple sources of product
data requirements relative to RASSP-specific requirements. Models analyzed include the
Product Data Control Model (developed on the USAF Integrated Data Strategy program) [10],
the STEP [12] parts and protocols AP203 [13], and Part 44 [14], which is the standard for prod-
uct structure configuration.

The team is implementing the enterprise data management system using the Intergraph
DM2.0 (Metaphase-based PDM) distributed product data management product [15]. The team
is mapping the RASSP enterprise data model to the core model of the DM2.0 product and
implementing extensions that make practical and commercial sense, including classes such as
security classification, anomaly, product concept, and software configuration item.

The DM2.0 product manages the enterprise documents and their metadata; product structure
and configurations; user roles and authorizations; storage locations and vaults; and related data
in a distributed environment. It also interfaces with the reuse libraries to enable reuse of the
enterprise information. DM2.0 provides these services either directly or under the control of a
workflow manager, based on the needs of particular projects. This enables the workflow man-
ager to access and store information (such as design documents, bills of material, and test
procedures) by process step, as needed.

For configuration management [16] and authorization, RASSP-developed models define specif-
ic requirements for these capabilities. Support for implementation of these models is provided
using the rules subsystem of DM2.0. A combination of DM2.0 and secure internet services
will provide distributed product data management capability for a multi-organization, multi-site
environment.

Reuse Management — Library management in the RASSP system supports releasing, cata-
loging, and searching of reusable design objects. The RASSP Reuse Data Manager (RRDM)
supports this library management. Sources for reusable design objects in the RASSP system
include:
•  CAD tool libraries
•  CAD tool-independent libraries
•  Component vendor data books
•  Design objects created within a design organization

In today’s design environments, the ability of design engineers to maximize reuse is impaired
because there is no efficient way for them to search for reusable design objects across multi-
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ple sources, and the various sources of reusable data are not coupled with the design environ-
ment. In addition, there are no mechanisms and processes to organize reusable design
objects created within a design organization. Also lacking is an effective way to share reusable
design objects within the organization or with other cooperating organizations. The ATL
RASSP team studied the reuse area and defined requirements to guide a new development
that will address the problem discussed above.

The RASSP enterprise system includes tools and methods to integrate the various sources of
reusable design objects and provide a single source for searching for reusable design data.
The enterprise system will enable enterprise-wide sharing of reuse data. The team’s approach
to reuse management consists of:
1) Developing a design object class hierarchy, which classifies the various types of design

objects in the RASSP domain and models the descriptive data associated with the design
objects

2) Developing a commercial library management system, which will implement the design
object class hierarchy and provide ways for users to search for design objects across mul-
tiple libraries and across a virtual enterprise.

The RASSP reuse management system will support loosely-coupled and tightly-coupled federa-
tions of cooperating organizations in sharing library data. The team is implementing the core
library management search and browse function, which supports the RASSP design object class
hierarchy, on top of relational/object database capabilities to provide advanced browsing capabili-
ties. An initial version of the reuse class hierarchy is shown in Figure 11. The ATL RASSP team is
developing RRDM extensions that support capabilities to manage default and template objects,
manage parametric searches, modify existing objects, modify class hierarchy, etc.

5.  The Road to 4X 

The ATL RASSP team’s general approach to achieving the 4X improvements is to focus on
two major areas: improved product quality/productivity, and improved reuse. Improved product
quality is provided through the top-down, virtual prototyping process that we have described,
and through hardware/software codesign. The combination of these elements leads to a very
high percentage of first pass design success. The SAR processor design was completed the
first time with only two interconnect corrections required on the PCB, which meant fewer
redesign iterations. The integration and test time was reduced from several weeks to a single
week. Reuse on the RASSP program is enhanced by the model-year architecture concept and
the Reuse Data Management System because the development of the algorithms in a PGM
approach supports mapping to another processor approach with minimum additional effort.

Predicting the Improvements — When the elements outlined above are mapped to the tech-
nology being developed on RASSP, a roadmap to 4X like that shown in Figure 12 results. The
figure maps the process steps to the technology developments that will lead to improved
quality and reuse. 

To validate the impact of these technology efforts on time-to-market and cost, the ATL RASSP
team is developing a three-tiered approach to predicting improvements. At the top level, the
spreadsheet-based predictor enables users to map specific programs to the roadmap, and
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Fig. 11.  The RASSP reuse design object classification hierarchy in the Explore-CIS class
browser window.

Fig. 12.  General 4X roadmap.
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develop a coarse level of expectation for improvements. The spreadsheet model provides an
overall cost/time-to-market prediction that is loosely coupled to more detailed parametric simu-
lations.

The team uses parametric simulations to predict the process (schedule) and life cycle costs.
Users can simulate the RASSP process, which is captured in IDEF, with several commercial
process simulators; AT&T’s WITNESS is the tool used on RASSP, and cost is estimated using
the PRICE cost estimation tool. Models that reflect the RASSP process will be available by the
end of the program. 

The RASSP enterprise system provides real-time schedule and cost information. The system
implements the process in the enterprise workflow manager, and provides real-time workflow
data linked to project management tools, such as Microsoft Project. Tracking schedule and
cost is through automated metric collection in the enterprise system. 

Demonstrations to Date — Halfway through the program, the ATL RASSP team has demon-
strated a >2X reduction in schedule and development costs on two separate programs. Figure
13 shows a roadmap of these demonstrations mapped to a pre-RASSP program. It shows four
demonstration programs, two of which are completed, and one of which is ongoing in two
phases (Model Years 1 and 2). The roadmap shows the progression of demonstrations and
which elements of RASSP technology the demonstrations are using to attain 4X improve-
ments.

The first program was the RASSP Synthetic Aperture Radar (SAR) implementation (BM-1/2)
[17, 18]. The team demonstrated a 1.6X overall reduction in time-to-market and development
cost when compared to traditional developments. The team achieved first-pass design suc-
cess, and the met or exceeded all performance requirements.

The SAR signal processor was composed of a 68040-based host running VxWorks, three
Mercury processor boards containing ten i860s, and a high-speed fiber-optic interface board.
Originally, the team’s virtual prototype was based on a COTS processor board using the
ADSP21060 (SHARC) processor. Performance simulation results from the virtual prototype
indicated that six SHARC processors were needed to implement the SAR algorithm. Delay in
delivery of the full-function/performance part forced a mid-stream change in the SHARC-based
approach, and the team selected a COTS i860-based processor board. In a matter of hours,
the team modified the virtual prototype to support the i860 and showed that ten i860 proces-
sors were needed. Because the software was captured graphically, it took minutes to reparti-
tion and regenerate the code to operate on the i860 processors. System booting and all inter-
processor communications was included in the generated code. The initial graph development
took about one month. Integration and test of the software on the target signal processor took
an additional two weeks. Compared with similar efforts using conventional development tech-
niques, this demonstration showed that users can reduce software development time by a
minimum of 10X, and reduce integration and test time by 5X using RASSP technology.

The second major demonstration was provided by TRW’s Avionics Systems Division, which is
part of the Space & Electronics Group in San Diego, CA. They used the ATL RASSP process to
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develop a Spread Spectrum Pre-Processor (SSPP) for the Integrated Sensor Subsystem (ISS)
[19]. The SSPP performs Joint Tactical Information Distribution System (JTIDS) pseudo-noise
demodulation, MSK demodulation, CCSK demodulation, de-interleave, and Reed-Solomon
decoding. The RASSP program directly supported the ISS goals, which were to cut flyaway
cost in half, reduce weight and size by two-thirds, and improve reliability by a factor of 3.
TRW’s effort on the SSPP began in April 1995 and ended with a transition of models to the
ISS program in December 1995. TRW used the RASSP baseline process about one-third of
the way through their program. They used MATLAB, SPW, RDD-100, PGSE, NetSyn, and
VHDL tools. Preliminary design review material was available for the SSPP in about half the
time allocated to the main ISS program; full virtual prototypes were ready by the ISS prelimi-
nary design review. To date, TRW has reduced cycle time by approximately a factor of 2, and
it appears that it will hold through the end of I&T.

The third major program underway is the UYS-2A upgrade jointly sponsored by the Navy,
RASSP, and the DARPA High Performance Scalable Computing (HPSC) program to upgrade
the AN/UYS-2A, which is the Navy’s standard signal processor. The program will demonstrate
a 15X processing performance improvement over existing implementations at one-third the
schedule and cost of the original developments for the first model-year demonstration. Major
features include implementation of a 2-GFlop Floating Point Commercial Arithmetic Processor
(FPCAP) SEM-E module set in the AN/UYS-2A, and use of the RASSP autocode capability to
enable cost-effective retargeting across a wide range of Navy programs. A second model-year
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upgrade, which will update the processor with newer COTS processing capability, will be used
to demonstrate 4X improvements relative to model-year 1. A flight demonstration of the
Active Low Frequency Sonar detection is planned aboard the SH60 helicopter.

Future Directions — The  ATL RASSP team is working with internal and external user groups
in cooperation with the RASSP Educator/Facilitator to ensure that the RASSP developments
are available to users. The RASSP concepts are being applied to other DARPA-Tri-Service pro-
grams, the first of which is the Affordable Multi-Missile Manufacturing (AM3) program. The
ATL RASSP team is working with Honeywell and Sandia to transfer the system design tools
as the first phase of transferring various RASSP concepts. The team is also transferring the
RASSP design environment and the enterprise concepts to the Army NVESD group to use on
imaging processor systems. The RASSP enterprise concept and implementation will also be
effective for many other design and manufacturing requirements, and the team is working
with industry tool suppliers to make the concepts available.

Summary

The ATL RASSP design concepts have proved that significant improvements in productivity
can be achieved. These developments are being used to demonstrate the benefits in sched-
ule, cost, and quality that can be achieved in signal processor design. The SAR Benchmark
efforts have clearly demonstrated the adaptability and flexibility that can be achieved by using
the RASSP methodology and design environment.

The demonstrated capability to develop the first model-year release of the system with a
small variation in time and cost has convinced the ATL RASSP team that the virtual prototyp-
ing paradigm being pursued has fully proven its benefits. The team demonstrated approxi-
mately a 2X reduction in the schedule and cost, while maintaining the quality of the design.

The AN/UYS-2A program upgrades will further demonstrate the benefits of the RASSP
methodology and design tools. The virtual prototyping tools and automatic code generation
tools, coupled with new COTS technology concepts, such as the DARPA Myrinet develop-
ment, will demonstrate how easy it is to use the RASSP concepts to build COTS-based
processors for multiple service applications — at significantly reduced cost and schedule.

In addition to demonstrating the use of RASSP concepts, the ATL team will commercially
deploy at least a dozen tools through EDA suppliers. This is an exciting part of the program
because it will help fund continued improvements to the tools and will allow the community to
develop models and examples that can be used by the user community.
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