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Abstract 
The Rapid Prototyping of Application-Specific Signal Processors (RASSP) program is changing the way engineers design
embedded signal processors. The objective of the program was to reduce time-to-market and cost by at least a factor of
four, and improve design quality by at least a factor of four. These improvements were achieved by developing
complementary methodology, model-year architecture and enterprise system infrastructure elements which, when
combined, significantly reduce the cost and time required to field embedded signal processors. The model-year architecture
defines how elements must be designed to achieve low-cost upgrades through the use of open interface standards. LM/ATL
has defined and demonstrated a Standard Virtual Interface (SVI) and a Reconfigurable Network Interface (RNI) that when
used properly can greatly reduce your product upgrade cycle time and cost 

Purpose 
The ATL RASSP team developed the model-year architecture to promote design upgrades and reuse via standardized, open
interfaces while leveraging state-of-the-art commercial technology developments. What drives the RASSP signal processor
architecture are the requirements imposed on signal processors to meet changing mission-critical processing needs, and the
military's requirements for long-term life cycle support. 
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1.0 Executive Summary
 

The ATL RASSP team developed the model-year architecture to promote design upgrades and reuse via standardized, open
interfaces while leveraging state-of-the-art commercial technology developments. What drives the RASSP signal processor
architecture are the requirements imposed on signal processors to meet changing mission-critical processing needs, and the
military's requirements for long-term life cycle support. RASSP must also address the full spectrum of signal processing
applications, both commercial and military: 

Low-cost commercial applications, such as cellular communications and HDTV, which use anywhere from 1 - 10
processors 
Very large military sensor systems, such as shipboard radar systems, which use anywhere from 100 - 1000
processors. 

This range of requirements imposes a formidable challenge: defining an architectural approach that addresses low-cost
technology insertion, upgradability, and extensibility. 

Model-year architectures must support scalability, heterogeneity, open interfaces, modular software, life cycle support,
testability, and system retrofit. The notion of model-year upgrades is embodied in reuse libraries and the methodology for
their use. The hardware and software elements within the libraries are "encapsulated" by functional wrappers. Adding this
level of abstraction hides implementation details. It also makes practical technology insertion, reuse, trade-offs, and
optimizations for specific applications. 

Recently, the applicability of this technology was extended into the System-on-a-Chip arena. This technology is the basis
for the Virtual Socket Interface Alliance [VSIA] bus wrapper technology, enabling system designers to quickly interconnect
Intellectual Property (IP cores) from different vendors on a single chip.
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2.0 Introduction 
This application note is written for designers and program managers interested in defining an open architecture that
supports low cost upgrades through technology independent functional  interfaces. After reading this application note,
designers will know how to: 

decide where and what type of MYA interface to insert in a design by analyzing candidate architectures to define
proper subsystem-level interfaces that benefit from regular upgrades 
access the specifications which define the functional interfaces 
access the templates and guidelines that aid in implementing physical instantiations of the hardware and software
using the MYA concepts and corresponding RASSP tools 
determine a software programming approach and evaluate the MYA software architecture for applicability 
apply appropriate interfaces to instantiated architectures, and identify RASSP tools to support hardware and
software developments 

Program managers will see how this approach will reduce the cost of technology upgrades by decreasing design and
verification time through the use of standard, verified, interfaces. They will also understand the required investment in
upfront planning and tools in order to apply this methodology effectively. 

The model-year concept is analogous to the practices of the auto industry, where products are upgraded and improved on a
model-year basis; complete products are redesigned less frequently. The key to reducing time-to-market and cost is to
leverage commercial technology that provides significant processing improvements every 2 - 3 years. Embedded signal
processors must support introducing these emerging processor components, products, and standards throughout the
product life cycle, with minimal impact on the surrounding system hardware and software. These improvements are
enabled by capturing and validating the processor's functional and performance characteristics at the system/subsystem
level, independent of the specific hardware and software implementation. The goal of the model year architecture task is to
provide a framework for developing application - specific signal processor architecture designs that encourages and
facilitates hardware and software reuse, upgradability and technology insertion. This approach to plug-and-play technology
is being adapted for use by the Virtual Socket Interface Alliance [VSIA] for interconnecting Virtual Components from
different IP vendors in System-on-a-Chip applications. 

The model-year architecture enables engineers to design architectures through a structured framework that ensures that
designs incorporate all the required model - year features. The basic elements that comprise the model-year architecture are
the functional architecture (hardware and software), encapsulated library components, and design guidelines and
constraints, as shown in Figure 2 - 1. Synergism between the model-year architecture framework and the RASSP
methodology is required because all areas of the methodology, including architecture development, hardware/software
codesign, reuse library management, hardware synthesis, target software generation, and design for test, are impacted by
the model-year architecture framework. 



Figure 2 - 1: Model-year functional architecture elements 

Section 3.0 of this document, the Model Year Architecture Technology Overview, introduces the concept of the functional
architecture and the terminology of the Model Year Architecture (MYA). It discusses both the hardware and software
aspects of the MYA. 

Section 4.0 discusses the Implementation of the Functional Architecture. The Standard Virtual Interface (SVI) and
Reconfigurable Network Interface (RNI) are introduced. These are the primary structures for supporting the model year
hardware architecture for nodes and interconnect fabrics. References to the guidelines developed for example
encapsulations are given. 

An Overview of Emerging Interface Standards is presented in Section 5.0. The relationship of existing standards to the
Model Year Architecture framework is discussed. Examples of the various types of interfaces are provided. 

Section 6.0 presents, the Model Year Software Architecture. An approach to software layering which is used to achieve
software application portability is described. Application programming interfaces are introduced which enable portability of
applications both to new operating systems as well as new processors with new primitive libraries. 

Finally, in Section 7.0, Implementation of Model Year in a Reuse System, the capabilities of a Reuse system that supports
verification of a model-year architecture signal processor are briefly described. These are directly related to the most
important aspects of creating, maintaining and using a reuse library, i.e., the existence of reuse elements at various levels
of the modeling abstraction and the ability to recall reuse elements. The reuse library must support models at various levels
of abstraction and elements in the library must be amply described in order to facilitate reuse.
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3.0 Model Year Functional Architecture Technology 
The technology overview provides a brief description of the MYA and its components. The MYA terminology and
components are introduced. 

3.1 Model - Year Architecture Functional Architecture 

The functional architecture defines the necessary components and their interfaces to ensure that users can easily and
affordably upgrade designs and insert new technology. The functional architecture is a starting point for users to develop
solutions for an application-specific set of problems, not a detailed instantiation of an architecture. The functional
architecture specifies: 

A high-level starting point to select application-specific architectures 
A standard approach to selecting and implementing standard, open interfaces 
Guidelines for efficient verification and test 

The functional architecture does not specify the topology or configuration of the architecture, specific processor types, or
system-level interface standards (external to the signal processor). 

The functional architecture concept is based on the use of abstract architectural objects and standard functional interfaces at
key points within a layered architecture, as shown in Figure 3 - 1. The key aspect of the functional architecture is ATL's
approach to implementing the interfaces, particularly the various signal processor components (general-purpose
processors, DSPs, special-purpose processors, and hardware accelerators), shared memories, sensors, and subsystem
components (ancillary equipment, mass storage devices, etc.). The approach combines two concepts: 

1. architectural layering 
2. the use of standard, technology-independent functional interfaces 

The primary reason for using a layered approach is that it provides logical decomposition into smaller, more manageable,
understandable, reusable, and maintainable parts. The layered approach minimizes and confines changes that are introduced
as a result of modifications (e.g., upgrades). A technology-independent functional interface is one that remains at the
logical level, specifying no physical or electrical characteristics. 



Figure 3 - 1: Model-year functional hardware architecture 

At the hardware level, this is achieved by defining a VHDL encapsulation wrapper for each architectural reuse library
element that implements a standard functional interface. An encapsulation wrapper is additional structure added to
otherwise raw library elements to support the functional architecture and to ensure library element interoperability and
technology independence to the maximum extent possible. The wrapper implements the hardware portion of the functional
interface, called the Standard Virtual Interface (SVI), which is detailed in Section 4. It encapsulates the library element to
hide implementation details, providing only an interface definition (the functional interface) to users. 

3.2 Model - Year Architecture Software Architecture

The functional architecture includes both a software and hardware portion. The model-year software architecture simplifies
developing high-performance, real-time DSP applications, allowing developers to easily describe, implement, and control
signal processing applications for multi-processor implementations. As shown in Figure 3 - 2, it includes standard
application programming interfaces (APIs) to the operating system and operating system services, and standard domain
primitives for autocode software generation. 



Figure 3 - 2: Top-level software architecture 

The signal processing algorithms are represented as Data Flow Graphs (DFGs) that drive the autocode generation to
produce the executable code for each processor in the system This process is supported by a reusable primitive library. The
command program is the control flow program that provides the overall control, as dictated by the received messages. 

The reusable run-time system and its support for the API, represented by the Control and Data flow Interfaces is Figure 3 -
2, is the essential component of software encapsulation/interoperability for a processor object. It provides the reusable data
flow control and graph management for the signal processor. It is built upon a set of operating system services provided by
a real-time microkernel using a standard interface. This system is a set of run-time application programs that constitute a
‘virtual’ machine which performs all graph execution functions and all system interface, control, and monitoring functions.
It is usable with any operating system microkernel that provides the necessary set of services. 

The application layer of the software architecture consists of an interface to the world outside the signal processor in
addition to a command program and data flow graphs. The outside "user" could either be an actual user, or more likely, it
could be a higher-level system as part of an overall platform. The division of the application into two parts is similar in
concept to the Processing Graph Method (PGM) developed by the Naval Research Laboratory. The first part of the
application layer is the command program, which provides response to external control inputs, starts and stops data flow
graphs, manages I/O devices, monitors flow graph execution and performance, starts other command programs, and sets
flow graph parameters. The control interface provides services that implement these operations. The second part of the
application layer is the DFGs, implemented using a tool such as Management Communication and Control, Inc. (MCCI's)
autocode or the LM/ATL's Graphical Entry Distributed Application Environment (GEDAE ™). The DFGs represent the
signal processing algorithms that must be applied for each operating mode of the signal processor. Services provided by
the data flow graph interface, which are largely invisible to the developer, include managing graph queues, interprocessor
communication, and scheduling. 

The constructed flow graph is converted via autocode generation into a higher order language (HOL), such as C or ADA
containing calls to a standard set of domain primitives. The domain primitives are then mapped to optimized primitives in
the target processor’s library. Implementing the standard operating system APIs and standard domain primitive mapping
via a Target Processor Map (TPM) forms the software encapsulation, which hides implementation details of the operating
system, its services, and application libraries. 

An important aspect of the functional architecture is that application-specific realizations of a signal processor are embodied
in the proper definition and use of encapsulated library elements. Designers can use application notes in the reuse libraries
to properly apply and aggregate individual hardware and software components into a final processor product.
Implementing the object-oriented reuse libraries is described in Section 7. 

The model-year architecture also provides a set of design guidelines and constraints to develop general architectures, such
as how to properly use the functional architecture framework, general use of encapsulated libraries, and most importantly,
procedures and templates to encapsulate new library components. The Model-Year Architecture Specification Volume II -
Hardware Architecture Element Specification  describes all elements of the functional architecture including the constraints.

While the hardware design tools to support the hardware functional architecture are already commercially available (i.e.
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4.0 Implementation of the Functional Architecture Standard Virtual Interface
(SVI) and Reconfigurable Network Interface (RNI)

4.1 Model-Year Hardware Interoperability

This section describes the levels of interoperability offered within the Model Year Architecture framework, and introduces the concept of
encapsulation. Figure 4 - 1 shows the two specific levels of interoperable interfaces that are supported by the model year hardware
functional architecture: 

internal node-to-internal interconnect fabric or node-level 
internal interconnect fabric -to-external interconnect fabric or interconnect-level. This interconnect-level may be simple, such as a
connection between a slave peripheral and a system. It may also be quite complex, requiring protocol translation and data
formatting services, such as a connection between heterogeneous networks. 

Figure 4 - 1: Two specific interoperable interfaces that are key to the model-year hardware functional architecture 

Users implement node-level interfaces by encapsulating elements using the SVI. The SVI encapsulation is a VHDL wrapper that ports
processor or processor bus interfaces to a common functional interface. The SVI specification was developed as part of the RASSP
model-year effort, and interoperability experiments were run by porting several processors to various buses. Discussions of these
experiments are included in Section 4.4 with additional details linked in the references. 

Interconnect-level interoperability is provided using a bridge node between internal and external interconnect fabrics called the
Reconfigurable Network Interface node (RNI). An RNI node is constructed from two SVI encapsulations interconnected by a logical layer
that ties the two interfaces together. These nodes are usually implemented using a dual-port memory or FIFO and programmable processor
or embedded controller. The SVI and RNI are described in more detail in the following two subsections. 

4.2 Standard Virtual Interface (SVI)

The SVI defines a construct which makes it easier for users to implement node-level interoperability and to upgrade various
architectural-level reuse elements, such as processor nodes and interface elements, by defining a standard interface encapsulation
procedure. The SVI is a critical element of the RASSP model-year architecture. It guides users in developing architecture elements that can



be easily reused and upgraded. In the past, integrating an internal node, which may contain several processing elements on a processor bus,
to a specific interconnect was performed as a specialized implementation; this point-to-point integration approach can lead to a total of N2

possible integrations for N nodes and interconnects. The intent of the SVI is to provide a common functional interface for all of these
integrations, greatly reducing the number of integrations required. Once a node has been integrated to the SVI standard, users can integrate
it to any interconnect integrated to this standard. This approach provides a level of plug and play interoperability that has never before been
realized. The SVI is a functional, not physical, interface specification that supports technology independence - the 'virtual' in SVI. 

Figure 4 - 2 illustrates how the SVI is used to encapsulate elements of the functional architecture. An internal node can be a single
processing element or cluster of elements connected as a single node to a processor bus. Examples of internal nodes include signal
processors, vector processors, or shared memory. An interconnect fabric can be any type of interconnect. Examples of interconnect fabrics
include XBAR-based, point-to-point interconnect networks, rings, and multidrop buses. Examples of networks include Ethernet, FDDI,
Fiber Channel, 1553B, etc. 

Figure 4 - 2: Standard virtual interface approach using internal node to fabric interface example. 

Each library element (node or fabric interface) includes a VHDL wrapper that implements the SVI encapsulation logic. During the hardware
implementation, the logic described within the encapsulations from both sides of the SVI is combined and optimized using synthesis tools
to the greatest extent possible, This process may cause some of the signals defined for the SVI to become implicit in the remaining logic.
What remains of the SVI is embedded within an ASIC, gate array, or FPGA, and would not appear as explicit pins on a chip or interface
connector. 

The SVI definition is designed to be general enough to handle different interprocessor communication paradigms. Some interconnect
networks support a message passing paradigm to interprocessor communication, while others support a global shared memory paradigm.
In some cases there is synchronous operation between the internal node and the interconnect fabric, while in other cases the internal node
and the interconnect fabric operate asynchronously. The SVI is by definition synchronous; that is, each word of SVI data is transferred
synchronously with the SVI clock. Support for asynchronous operation between an internal node and the fabric interface must be handled
by the SVI encapsulation logic. 

As shown in Figure 4 - 3, the data interface is partitioned into two unidirectional data interfaces: the Data Input Interface which receives
incoming SVI messages, and the Data Output Interface which transmits outgoing SVI messages. The data interfaces are implemented with a
master/slave pair: the SVI master is a data source to the SVI Data Output Interface, while the SVI slave is a data sink to the Data Input
Interface. The encapsulation of a typical architectural element therefore contains an SVI master/slave pair. The advantage of partitioning the
data path in this way is that it supports interface architectures with independent, concurrent data passing in both directions across the SVI.
A bi-directional data interface can be obtained by using both unidirectional data interfaces controlled by the SVI master and the SVI slave.



Figure 4 - 3: The Standard Virtual Interface 

A set of SVI commands have been defined to implement the protocol. The SVI command is the first data word transferred across the SVI
interface for each message. SVI data paths are implemented in byte increments. This allows encapsulations with different data-path widths.
SVI commands occupy the least significant byte of the data bus, and transfer information across the SVI that will be needed by the
receiving encapsulation. The address and data, along with any other necessary information, are in the data stream following the SVI
command. The SVI master encodes the data in the SVI message and the slave decodes the message properly. The SVI message source must
know how its encapsulation will build the message and also know how the receiving SVI encapsulation will interpret the data words in the
message. 

Typically, users encode the data in the message in software on the originating processing element. However, for low-latency operation, the
message building can be done in hardware. The existing commands include those functions needed to implement SVI encapsulations
envisioned to date; more commands may be necessary in the future to support new interconnects with unusual multi-processor or cache
support requirements. Users can easily add commands, providing previous encapsulations with access to the new SVI commands. 



To supplement the signal/timing/protocol definition and support end users" modeling efforts, the appendix to this application note contains
VHDL code templates for SVI encapsulations. These templates include the entities and architectures a designer would typically need to code
an encapsulation. In section 4.4, links to the VHDL code for several of the encapsulations performed as part of the verification study are
provided. The code provided for the HOTLink encapsulation and the encapsulated RNI bridge are executable provided the reader has access
to the Synopsys Logic Modeling's Smart Model library. To date, LM/ATL has implemented several SVI encapsulations. An interoperability
demonstration has been developed in which two processing elements, a custom vector processor and several interconnect fabrics (PCI,
RACEway, Myrinet and one sensor interface (HOTLink)) were encapsulated. Several combinations of the processing elements and
interconnects were then mixed and matched to demonstrate interoperability. The results, as shown in Figure 4 - 4 for an SVI encapsulated
PCI bus versus a custom interface, demonstrate the ability to provide plug and play interconnect between different elements with minimal
performance impact. In this configuration, for data transfers of more than 256 elements, the performance impact is less than 5% of peak
bandwidth. 

Figure 4 - 4: Performance Impact of SVI-encapsulated PCI vs. Custom Interface 

In summary, the SVI is a critical element of the RASSP model-year architecture; it guides users in developing architecture elements that can
be easily reused and upgraded. It must be used prudently, balancing the immediate performance impact against the future ability to upgrade
to a new processing node, internal or external interconnect fabric.

4.3 Reconfigurable Network Interface 

The RNI architecture shown in Figure 4 - 5 is the model-year architecture construct defined to support interconnect-level interoperability.
The concept of formal separation of an internal or controlling node and the network or fabric interface, as defined by the SVI, is also
applicable to the RNI. However, unlike the node-level interface, which connects nodes to buses or relatively simple interfaces, the RNI is a
bridging element between heterogeneous interconnects. Another way of stating this is that the SVI supports interoperability for the lower
ISO/OSI layers (layers 1 - 2 physical/datalink), while the RNI supports interoperability for the higher layers (layers 3 upward
Transport+up). A specific example of this might be a bridge between the Scaleable Coherent Interface (SCI) and a MIL - STD - 1553B
network that interfaces to a navigation subsystem. 



Figure 4 - 5: Reconfigurable Network Interface Architecture 

The RNI consists of 2 encapsulated fabric interfaces on either side of an encapsulated bridge element. The fabric interfaces implement the
two specific interfaces to the interconnect fabrics. The bridge may be between an internal and an external interconnect fabric or a it may be
between two external interconnect fabrics. The actual bridging function is performed by the RNI bridge element, which consists of a buffer
memory to facilitate asynchronous coupling between the two interfaces, and a controller which coordinates data transfers and provides flow
control. The bridge element can be implemented via custom logic (e.g. FPGA, ASIC) or a programmable processor. 

As in the case of Internal Module interface, a layered communication approach is employed. Since the RNI provides a bridge between two
interfaces, two separate OSI-layered structures exist at each interface. The lowest layers of the two protocols are translated in the Fabric
Interface components. The higher levels of each protocol are translated within the RNI bridge element and converge when the data
interchange is stripped of all its interface specific identity, and exists as a pure SVI message on the SVI protocol. Again, the ISO/OSI model
is being used as a reference and does not imply that the layering ultimately employed in defining the internal node architecture will strictly
follow this model or implement all seven layers. An example of an encapsulated RNI bridge is described in [ Myri_PCI]. This model is
executable if the user has access to the Synopsys Logic Modeling's SmartModel Library. 

The exact implementation of the RNI itself depends on the type of interfaces being served. The RNI to implement interfaces for loosely
coupled processing subsystems, operator consoles, and certain types of ancillary equipment will have one implementation, while the RNI
to support a remote sensor application will have another. As mentioned above, the complexity of the data transfer protocol may also have a
wide variance. A sensor or multidrop bus would generally require a fairly simple protocol supported by a relatively simple hardware
controller within the RNI bridge element. This type of RNI is referred to as a simple RNI. On the other hand, a local area network
application most likely would require a programmable processor to implement a more complex software-based protocol. This type of RNI
is referred to as a complex RNI. More than one class of RNI will be required to support all aspects of signal processor interfacing. As
described in Section 7, the RNI will be supported through various object subclasses or derived classes for Fabric Interfaces, both internal
and external, and RNI Bridge Elements, within the reuse library. 

4.4 MYA Application Example 

4.4.1 Introduction

Several encapsulations were done for the Model Year Architecture Hardware Verification effort. These include encapsulations of internal
nodes, multidrop buses, sensors and networks. First, how to determine which architectural interfaces to encapsulate will be discussed.
Following that there is a short description of the encapsulations which have been performed at LM/ATL. At the end of each description is a
link to the complete application note for each encapsulation. 

4.4.2 Approach

To apply the Model Year Architecture, the designer performs the following steps: 

Select the high payoff interfaces for encapsulation 
Research existing encapsulations to find examples that are similar to new design 
If a similar design is found, modify it to meet new requirements. If not, start with templates. 
Develop and validate a virtual prototype 



4.4.2.1 Select the high payoff interfaces for encapsulation

The first key step in applying the Model Year architecture is to take the candidate implementation and evaluate the different types of
communications interfaces of the Functional Architecture to determine: what interfaces are at the periphery of modules that will require
regular upgrading? 

There are basically three places to look for upgradeable interfaces as shown in Figure 4 - 6.

an internal node or its associated internal interconnect fabric 
an external interconnect fabric 
an external device (peripheral) 

Figure 4 - 6: Functional Architecture 

4.4.2.2 Research existing encapsulations to find examples that are similar to new design

For the Model Year Architecture implementation, the first step would be to search the Reuse Library for available encapsulations. Through
the course of the verification studies, it has been found that the process of designing a new encapsulation is simplified by modifying or at
least referring to a similar existing one. There are architectures and portions of architectures, such as case structures in existing
encapsulations, that are often able to be used again with only slight modifications. The following sections describe the different types of
encapsulations and links to available code. Not all of the encapsulations can be executed by the reader due to the proprietary nature of some
of the underlying models. Nevertheless, portions of the model may be reusable.

4.4.2.2.1 Internal Node and its associated processor bus 

An internal node is any architectural-level element which becomes connected (through a fabric interface) to the internal interconnect fabric.
Examples are signal processors, vector processors or shared memory. In Figure 4 - 7, the internal node consists of 4 Wafer Scale Signal
Processors (WSSP) interconnected on a proprietary bus called the IOBUS. Encapsulating the IOBUS is equivalent to encapsulating the
Internal Node. This encapsulation is not available due to the proprietary nature of the IOBUS. 



Figure 4 - 7: Encapsulated Internal Node 

4.4.2.2.2 Fabric Interface

The fabric interface is an element which controls the transfer of data between attached nodes and internal or external interconnect fabrics.

A bus controller for a PCI-like bus called the Board Interconnect Network (BIN)-PCI bus on the WSSP program was encapsulated
as shown in . This encapsulation is described in [PCI_SVI] (Note: BIN-PCI is a special PCI bus implementation done by the Air
Force Rome Laboratory)). 

Figure 4 - 8: Encapsulated Fabric Interface 

The VHDL for the encapsulation is not available due to its proprietary nature. A discussion of the hardware synthesis of the
IOBUS to BIN-PCI SVI interface encapsulations is available in [PCI_SVI]. 

The Mercury RACEway network was encapsulated so that the RACEway link to other processor subsystems and interfaces would
be upgradeable. Similarly, the Myrinet fabric was encapsulated. These two networks were then interconnected via a programmable
bridge to form a complex RNI. The two encapsulations of the RACEway and Myrinet networks are described in [ RACE_SVI] and
[Myri_SVI]. 

A complex RNI bridge was developed to interconnect the Myrinet to the PCI. This example is a good template for the bridge
element for complex RNI encapsulations since the bridge programming is fairly generic. This is described in detail in [Myri_PCI].
This bridge is the same bridge architecture that is used to interconnect the RACEway and the Myrinet. 

4.4.2.2.3 Sensor Interface

The sensor interface is a key element that should be encapsulated. This is an entity that is likely to be upgraded and/or reused. 

 

The HOTlink high speed serial port is an example of a sensor interface encapsulation. The HOTlink encapsulation interconnected
through a simple RNI bridge to the encapsulated PCI bus is described in [Hotlink_PCI]. 
The Data I/O bus from Benchmark 2 SAR processor was encapsulated and interconnected to an encapsulation of Mercury"s RINO
chip set. This would support an upgrade of either the Hotrod interface on the Data I/O board or the RACEway network to which
the RINO interfaces. This is described in [Data_IO_RINO]. 

4.4.2.3 Use of templates

If a similar design is found, modify it to meet new requirements. If not, start with templates. The templates contain entities and architectures
for the SVI. They lend structure to the encapsulations, so that even though different people may design the encapsulations, they will all
look somewhat the same, making them more easily reusable. They are available at [SVI-Template] 

4.4.2.4 Develop and validate the Virtual Prototype Implementation



The tools used to support this detailed design and synthesis by the RASSP team include the following. Other similar vendor tools may be
substituted and should achieve the same results. 

Visual HDL - to capture the VHDL 
QuickVHDL - to simulate and validate the design 
Synopsys - to synthesize the design implementation 
Various other hardware tools to support FPGA or ASIC - based implementation (Refer to the CAD System Description document
for the complete list of tools used in the RASSP program) 

4.5 Validation Techniques

It is often difficult, on the one hand, to generate data in the format required by some protocols and, on the other hand, to interpret data
generated by some protocols. To alleviate this problem, LM/ATL has used the encapsulations to input and output the data. That is, once an
encapsulation is completed, the slave encapsulation can be used to supply data to the model and the master to extract data from the model.
Normally, the slave translates the SVI protocol into the interface protocol. Referring to Figure 4 - 9, it is clear how the slave can be used to
supply data to the network and the master, to extract it. The user can supply an SVI data set which is very easy to develop, to any
encapsulation, and also have the output supplied in the easily readable SVI format 

Figure 4 - 9: The encapsulated element can be used to generate and receive test data and results 

4.6 Development Time 

The difference in developing the hardware for a MYA compliant interface compared to developing the hardware for a custom interface has
two aspects. The first is the actual time it takes to develop the interface. In the case of the MYA, the first time an interface is designed, it is
necessary to encapsulate either an internal node or fabric interface and whatever that node or fabric interface is connected to. This will
generally take longer than a custom interface, since two interfaces are being designed. 

The savings comes when the internal node or the fabric interface is upgraded, which is the second aspect of the development time. For
example, assume there exists an encapsulated internal node and an encapsulated fabric interface, and that the designer is upgrading the
internal node. The encapsulated fabric interface remains essentially the same, and the new node is encapsulated. It is anticipated that this
will take less time than doing another custom interface because it is not necessary to write new drivers for the fabric interface. It is also not
necessary to learn the protocol of the fabric interface. Furthermore, once the new internal node is encapsulated, it can be interfaced to any
other encapsulated fabric interface. If there are 10 encapsulated interfaces, one needs only to encapsulate the internal module once to
interface it to all of the fabric interfaces. If all of the interfaces were custom interfaces, one would need to design 10 different custom
interfaces to achieve the same result. Clearly, this reduction in the number of integrations required from the order of N2 to N equates to a
significant savings in development time. 
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5.0 Emerging Interface Standards Overview 

5.1 Interface Standards

Open interface standards should be used within systems wherever possible to further ensure interoperability between
components. Using commercially accepted and non-proprietary standards may preclude the necessity of functional interface
encapsulations in some cases. This is bedause COTS fabric interface components may allow direct communication between
architectural elements and the selected standard interface. Confining designs to open interface standards will: 

ensure multiple sources and reasonable costs for compatible components 
eliminate dependence on sole source proprietary components 
ensure a well-understood and problem-free interconnect technology due to its acceptance and proliferation
elsewhere in the military and/or industry. 

It was the intention at the time of the writing of the RASSP MYA Working Document that the scope of the Model Year
Architecture would include the maintenance of a set of approved RASSP accepted and recommended open interface
standards. Upon further consideration it was determined to be impractical and inappropriate for RASSP to attempt to
qualify interface standards, but to instead provide a recommended methodology for selecting appropriate interface
standards. There are several factors mitigating against RASSP-accepted interface standards. The primary issue is that there
can be several applicable standards for a particular signal processing system application, one of which may be more
appropriate for a particular application than another. It is not in the best interest - or the intention - of RASSP to dictate
which standard is most appropriate. In addition, organizations such as the Navy's Next Generation Computer Resources
(NGCR) and the Air Force Joint Integrated Avionics Working Group (JIAWG) have expended a great deal of time and
effort in evaluating and selecting standards applicable to their respective application domains. There is little value added for
RASSP to reinvent the results of these organizations. Finally, not all interfaces are under complete control of the signal
processor design. For example, subsystem interfaces used to interface RASSP signal processors to a large amount of
ancillary equipment and subsystems previously designed may be outside the control of the designer. 

The RASSP Model Year Architecture Specification - v1.0 , Section 7, describes a process which may be used to
systematically select the optimum interconnect approach for a particular design from among open interface standards. In
addition, the VSIA is developing a standard way of documenting performance and physical information about standard
buses. Used in conjunction with the RASSP process, this will provide a very useful tool for comparing interconnect
standards. 

Of all the standard interfaces, the test interface required extra consideration. During RASSP a Design-for-Test (DFT)
Methodology was developed. This methodology requires the use of standard test interfaces. However, there are only a
handful of standard test interfaces available, as described in the RASSP Model Year Architecture Specification - v1.0 ,
Section 7, and they are widely accepted and non-overlapping. Therefore, it did not make sense to specify a particular
hardware functional test interface. 

Another aspect of the test interface which was considered was the test Application Program Interface (API). That is, the
programming interface to the test structures. In contrast to the functional hardware test interface, there is currently no
standard test API. The reason is, the APIs that many vendors are supplying with their boards are very hardware specific. It
is unclear whether a standard test API could be developed that would be efficient enough to be useful. The benefit of such
an API is clear. As portions of the system are upgraded, the top level test software would not have to be completely
rewritten, although it might be expanded or reduced depending on the capability of the upgrade. In order to fully support
the RASSP architectural process, the API would have to be implementation independent. The new hardware or software
would have to supply appropriate results to the API calls. 
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6.0 Model Year Software Architecture

6.1 Model-Year Software Architecture

The model-year software architecture and interoperability relies heavily on a standard API and services supplied by the
run-time system, which encapsulates the operating system and the primitive libraries. The model-year software architecture
is shown in Figure 6 - 1, along with the associated elements users need to automatically generate software. The intent on
RASSP is to drive toward graph-based autocode generation using data flow graphs (DFGs) to represent application
(algorithm) code and state machine diagram graphs to represent command/control code to the maximum extent. In the event
of a processor upgrade, the graph-based representation provides the common definition of operation and service
requirements even though the underlying processor hardware, operating system, and libraries have changed. The same
holds true if a primitive library or operating system for a given processor type is upgraded. 

Figure 6 - 1: Model Year Software Development Environment 

The model-year software application layer is divided into two parts: the command program and the application's data flow
graphs. The command program does the following: 

responds to external control inputs 
starts and stops data flow graphs 
manages I/O devices 
monitors flow graph execution and performance 



starts other command programs 
sets flow graph parameters 

The control interface provides the services that implement these operations as described in the Autocoding for DSP Control
Application Note. Command software state machine descriptions that can be autocoded using such tools as Verilog’s
ObjectGeode were developed on the program. The command program can directly use the high-level interface to operating
system services provided by the Real-Time POSIX compliant system. Building the command program based on a standard
control interface and on POSIX isolates it from the microkernel and allows it to be easily ported to each new model-year
architecture. 

6.2 Application Software

An application's data flow graphs are developed using a data flow paradigm such as PGM's Signal Processing Graph
Notation (SPGN) or GEDAE™. The DFG interface services are largely invisible to the developer, they include: 

managing graph queues 
interprocessor communication 
and scheduling node firing 

In addition to the DFG interface, the DFG paradigm needs a set of primitive nodes that can be used to build the graph. A
SPGN graph is converted into an Higher Order Language (HOL) , such as C or ADA, via autocode generation. The
resulting code contains calls to a standard set of domain primitives. Typically, these primitives implement such operations
as FFTs, filters, waveform generators, and matrix manipulations, among others. To ease portability to various processors
and to take advantage of vendor and third-party-optimized target-processor libraries, Target Primitive Maps (TPMs)
translate the standard domain-primitive calls to those specific to the desired support libraries. The TPM translates calling
conventions of the domain primitives into those compatible with the target-processor libraries. This may also include
translating a single call of a domain primitive into different target-processor library element calls, depending on a particular
domain-primitive parameter or parameters. A simple example of this may be an FFT/IFFT domain primitive that might be
mapped to separate FFT and IFFT target-processor library elements, depending on a forward/inverse switch in the
domain-primitive parameters. Refer to the Hardware/Software Codesign and the Data Flow Graph Design Application
Notes for a more detailed explanation of DFG and these interface services. 

6.3 Operating System Service Requirements

Support for the Application Program Interface (API) is through a run-time system, which provides the services required to
control and execute multiple graphs on a multi-processor system. The run-time system relies on support from the
underlying operating system (microkernel and support services). The data flow graph approach proposed as a signal
processing API does not imply that the associated scheduling and execution paradigms implemented by previous PGM
run-time systems must also be used for the RASSP implementation. 



Figure 6 - 2: Top-level software architecture 

The operating system services must support the run-time system. Both GEDAE™ and MCCI provide run-time systems that
satisfy the RASSP requirements. As shown in Figure 6 - 2, the run-time system interfaces directly with the operating
system for some required services. The interface is isolated to a low level to simplify portability; users can customize it for
a particular operating system. The term operating system includes the microkernel itself, plus any external services not
implemented directly within the microkernel that are needed to support the run-time system. 

The operating system services must also provide guaranteed performance limits on the microkernel services. Five
categories of service requirements must be provided: 

Task control using processes and threads 
Interrupt handling 
Memory management 
Interprocessor communication 
I/O services. 

Table 6 - 1 details these service requirements and the primary performance and interface issues associated with each. These
required services must be used to evaluate and select suitable microkernels for RASSP signal processors. 

Table 6 - 1: Service requirements for microkernel 

Requirements Category Services Provided 

1. Tasks control using processes and
threads 

- context witch time (process and thread)
- take/give semaphore time (intra- and inter- process)
- thread control: spawn, suspend, reume, terminate, priority 
- multiprocessor thread support 

2. Interrupt Handling

- Interrupt response time affected by: 

- Kernel overhead in handling interrupt 
- Kernel disabling of interrupts for time T off

3. Memory Management - Performance of alloc and free 
- Class of memory - onchip, SRAM, cache, etc. 

4. Interprocessor Communication

- Shared Memory 

- Transparent, i.e. shared globals
- Explicit: interface for copying to/from shared memory 

- Point-to-point Communication 

- Buffer sizes/types
- Amount of data copying required 

- Heterogeneous Processort (data translation standards) - XDR, Format
description , etc. 
- Scalability 

5. I/O - Ability to add new device drivers
- Ability to suport BIT and performance monitoring 

The capabilities provided by these services must support typical embedded multiprocessor applications. These applications
will be comprised of host and target processes, all running as peers, grouped on multiple processors. Multiple processes
grouped on any single processor must be able to run in parallel. Since a group of processors may physically reside on the
same or different boards, a common method of memory addressing is needed to eliminate memory overlaps and address
ambiguity between processors. The operating system must have the characteristics of a distributed, preemptive,
multi-processor, multi-tasking operating system, while also supporting the high-performance throughput capabilities of
tightly coupled processes. The operating system will provide a kernel-level interface to the multi-tasking preemptive kernel.
This interface will include allocation and control functions for local memory, functions to connect and control interrupt
handlers, and functions to manipulate programmable hardware that may be on various processor systems, such as DMA



controllers and timers. 

The RASSP approach can accommodate signal processor designs that include COTS products with a proprietary operating
system as long as the operating system meets the service requirements defined for RASSP, and as long as it provides an
open interface on which the run-time system and API(s) can be ported. The important issue, as with all RASSP designs, is
to ensure that implementing the underlying operating system, its services, and API is transparent to the application software
to make it easier to insert model year upgrades of hardware and system-level software. 
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7.0 Implementation of a Model Year in a Reuse System 

7.1 Library Reuse Elements 

LM/ATL's RASSP team has developed a formal definition of reuse library development by extending the concept of
object-oriented design (which has been successfully applied to software development) to signal processor architecture
design, encompassing both hardware and software. Architectural library elements, such as a processor element, can be
described as: 

an abstract entity defined by an object class which possesses a standard interface definition, with 
a defined functional capability or set of methods implemented via a combination of hardware and software. 

Architectural reuse elements are written at a level of abstraction to hide hardware and software implementation details from
users and limit the impact of design changes. 

Implementing the object's functionality requires a co-dependency of its hardware and software aspects, necessitating
hardware-software codesign. For example, operating systems must be configured to take advantage of whatever
hardware resources are available to support its functionality. Likewise, application libraries may need to be configured or
optimized to take advantage of specific hardware implementations. 

7.2 Model Hierarchy

Users iteratively verify a model-year architecture signal processor throughout the codesign process; they require the reuse
libraries to support models at various levels of hierarchy. The ATL team has worked with models at four levels of the
VHDL modeling hierarchy 

Performance Models (synonym: Uninterpreted Model) provide timing-only and control functionality for processor
nodes buses/interconnects, etc. to support high-level architectural trade-offs (number and types of processors, type
and topology of network) 
Abstract Behavioral Models provide behavior at the data output level with (potentially) some level of timing. This
level includes both algorithm-level and Instruction Set Architecture (ISA)-level models. 
Interface Models (synonym: Bus-functional) describe the operation of a component with respect to its surrounding
environment. 
Detailed Behavioral Models, previously known as Full-functional models, describe functionality at the signal level
and timing fidelity at the clock level. This includes Register Transfer Level (RTL) and logic models. 

These models are more fully defined in the RASSP Terminology and Taxonomy document and the Token-Based
Performance Modeling application note. Through these models, the functional architecture constructs are supported. The
use of these models has been tested in a series of benchmark programs to define reuse library elements for RASSP. More
details can be found in the case studies that document these efforts. See the SAR, ETC4ALFS on COTS Processor, and
SAIP case studies. 

7.3 Additional Requirements

Aside from the VHDL or software code and test benches that define the functionality and performance of each element,
non-functional requirements, such as size, weight, power, cost, or reliability numbers are incorporated into the structure of
the reuse objects. This provides users with important data about the reuse elements that they require to judiciously select
appropriate pieces for reuse. The long-term goal is to provide, in a standardized format, data that can be used by high-level
(architecture trade-off and synthesis) tools to support design trade-offs and optimization. By incorporating this full set of
functionality and features as part of the object-oriented reuse hierarchy, RASSP promises to realize reuse to a greater extent
and with greater efficiency than ever before. 



    
Next: 8 Specifications Up: Appnotes Index Previous:6 Model Year Software Architecture 

Approved for Public Release; Distribution Unlimited Dennis Basara  



    
Next: 9 References Up: Appnotes Index Previous:7 Implementation of a Model Year in a Reuse System 

RASSP Model Year Architecture (MYA) Appnote
8.0 Specifications
Under RASSP, the Model Year Architecture has been documented in the following specifications. For more detail beyond
this application note, please refer to this specification: 

Model Year Architecture Specification, Version 1.0:

Vol. I -Introduction to Model Year Architecture, Sept. 5, 1996. 
Vol. II - Hardware Architecture Element Specification, Sept. 20, 1996. 
Vol. III - Standard Virtual Interface Specification, Sept. 23, 1996. 
Vol. IV - Standard Virtual Interface Specification Appendices, Nov. 25, 1996.

Vol. V - Software Architecture Element Specification (Not Available) 
Vol. VI - Model Year Architecture Re-Use Library Element Specification (Not Available) 
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9.1 Documents

RASSP Methodology Document, Version 2.0, Volume I, Lockheed Martin Advanced Technology Laboratories, October,
1995. [METHODOLOGY_95] 

[PGM] Processing Graph Method Specification: Version 1.0, Navy Standard Signal Processing Program. (PMS-500),
December 1987 [To obtain these documents and other information regarding PGM refer to the PGMT home page presented
by the Processing System Section, Advanced Information Technology Branch at the Naval Research Laboratory,
Washington, D.C. www.ait.nrl.navy.mil/pgmt/pgm2.html or contact Mr. David Laplan at phone number (202) 404-7338
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9.2 Papers 

Wedgwood, J., and G. Buchanan, "A Model-Year Architecture Approach to Hardware Reuse in Digital Signal Processor
System Design," Proceedings High-Level Electronic System Design Conference, San Jose, CA, October, 1997, pp 493 -
504. [Wedgwood_97] 

9.3 Application Notes 

Methodology 
Hardware/Software Codesign 
Design for Test 
Data Flow Graph Design 
Terminology and Taxonomy 
Token-Based Performance Modeling
Autocoding for DSP Control 



9.4 Case Studies 

Synhetic Aperture Radar [SAR-CS] 
ETC4ALFS on COTS Processor [UYS-CS] 
Semi-Automated Image intelligence Processor [SAIP-CS] 
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