
RASSP Virtual Prototyping Appnote
Abstract
Efficient design of complex systems requires modeling at multiple abstraction levels. This RASSP application
note describes virtual-prototyping and how to use it within a rapid-prototyping environment. An example
abstract-level virtual-prototype is examined. The prototype is produced as a natural extension of the
token-based performance model. It represents the next logical step in the top-down design process and
exemplifies techniques for seamless transition of design information in the flow-down process. The described
rapid-prototyping methods were developed to permit earlier validation and more rapid product evolution. The
virtual-prototyping techniques were developed on the RASSP project and have demonstrated simulation speed
improvements orders of magnitude over earlier methods.

Purpose
This application note should be read by system architects, software designers who are responsible for
validating software partitions among multiple computer nodes, and hardware designers who are responsible
for designing system network configurations and components. The basic concepts can be applied to other
systems and other levels of abstraction.

RASSP application notes augment course modules and case studies about digital system design. The material
is applicable to the design of complex systems such as digital signal processing (DSP) systems and other
multiprocessor systems. The application notes serve to document the design methods that were developed on
the RASSP program. This application note describes the purposes and methods for virtual-prototyping .

Roadmap
1.0 Executive Summary

2.0 Introduction to Virtual Prototyping

3.0 Example - SAR System Virtual Prototype

Approved for Public Release; Distribution Unlimited Dennis Basara

Next: 2 Introduction to Virtual Prototyping Up: Appnotes Index Previous:Appnote Virtual Prototyping
Index

RASSP Virtual Prototyping Application
Note
1.0 Executive Summary
Efficient design of complex systems requires modeling at multiple abstraction levels. This RASSP application
note describes virtual-prototyping and how to use it within a rapid-prototyping environment. An example
abstract-level virtual-prototype is examined. The prototype is produced as a natural extension of the
token-based performance model. It represents the next logical step in the top-down design process and
exemplifies techniques for seamless transition of design information in the flow-down process. The described
rapid-prototyping methods were developed to permit earlier validation and more rapid product evolution. The
virtual-prototyping techniques were developed on the RASSP project and have demonstrated simulation speed
improvements orders of magnitude over earlier methods.

This application note should be read by system architects, software designers who are responsible for
validating software partitions among multiple computer nodes, and hardware designers who are responsible
for designing system network configurations and components. The basic concepts can be applied to other
systems and other levels of abstraction.

RASSP application notes augment course modules and case studies about digital system design. The material
is applicable to the design of complex systems such as digital signal processing (DSP) systems and other
multiprocessor systems. The application notes serve to document the design methods that were developed on
the RASSP program. This application note describes the purposes and methods for virtual-prototyping

Next: 2 Introduction to Virtual Prototyping Up: Appnotes Index Previous: Appnote Virtual
Prototyping Index

Approved for Public Release; Distribution Unlimited Dennis Basara

Next: 3 Example - SAR System Virtual Prototype Up: Appnotes Index Previous:1 Executive Summary

RASSP Virtual Prototyping Application
Note
2.0 Introduction to Virtual Prototyping
A prototype is any preliminary working example or model of a product, component, or system. It is often
abstract or lacking in some details from the final version. Two main classes of prototypes are used in design
processes: physical prototypes and virtual prototypes .

A physical prototype is a physical model of a product, component, or system. Traditionally, prototypes were
physical models, as opposed to virtual-prototypes.

Examples of physical prototypes are: bread-boards, mock-ups, and brass-boards. Physical prototypes are
characterized by fabrication times that typically require weeks-to-months and that typically require
days-or-weeks to modify. Construction usually involves detailed design, lay out, board or integrated-circuit
fabrication, ordering, and mounting via solder or wire-wrap. Additionally, programmable systems or parts
require detailed target-software design of drivers and operating system, or programming PLAs, FPGAs,
PROMS.

A virtual prototype is defined in the RASSP Taxonomy as a computer simulation model of a final product,
component, or system. Unlike the other model type-names that distinguish models based on their
characteristics, the term virtual-prototype does not refer to any particular model characteristic but rather it
refers to the role of the model within a design process; specifically for:

exploring design alternatives,
demonstrating design concepts
testing for requirements satisfaction/correctness

To be useful in a larger system design, a virtual-prototype model should define the interfaces of the
component or system under design. As with any model, a test-bench should exist for regressive verification.

In contrast to a physical prototype, which requires detailed hardware and software design, a virtual prototype
can be configured more quickly and cost-effectively, can be more abstract, and can be invoked earlier in the
design process. Another distinction is that a virtual prototype, being a computer simulation, provides greater
non-invasive observability of internal states than is normally practical from physical prototypes.
Comparatively, virtual prototypes introduce some risk due to the possibility of modeling inaccuracy or
incorrectness.

Virtual prototyping is the activity of configuring (constructing) and using (simulating) a computer
software-based model of a product, system, or component to explore, test, demonstrate, and/or validate the
design, its concept, and/or design features, alternatives, or choices. Specifically, the act of using the
virtual-prototype model as if it where an example of the final (physical) product.

Virtual-prototyping is synergistic with rapid-prototyping because it shortens product evolution cycles from
days or weeks down to minutes. The designer can determine the effect of design changes on the behavior of
the final system as quickly as it takes to edit a file.

Next: 3 Example - SAR System Virtual Prototype Up: Appnotes Index Previous:1 Executive Summary

Approved for Public Release; Distribution Unlimited Dennis Basara

Next: Up: Appnotes Index Previous:2 Introduction to Virtual Prototyping

RASSP Virtual Prototyping Application
Note
3.0 Example - SAR System Virtual Prototype
The Digital Signal Processing (DSP) subsystem of a Synthetic Aperture Radar (SAR) system was
virtual-prototyped under the RASSP Benchmark-2 project. Details of the SAR project can be found in the
SAR Case Study.The virtual-prototyping was conducted by Lockheed Martin's Advanced Technology
Laboratories (ATL) in VHDL for relatively seamless transition to the down-stream detailed design processes.

The design risk assessment indicated the most significant challenges involved integrating and coordinating the
various hardware and software elements into a system of multiple cooperating PE's. Because the hardware
and firmware elements were selected from COTS products, they effectively became validated by default.
Therefore, the design team considered the prototyping of the complete hardware-software multi-processor
system to be more important than modeling the operation of an individual sub-section of the architecture.

Preliminary design and modeling produced a performance model of the integrated system. The performance
model assisted in:

partitioning the application software tasks,
mapping the software tasks to processor elements,
scheduling the tasks, and
selecting the network architecture.

The performance model indicated that the selected partitioning/mapping/scheduling solution could satisfy the
processing throughput requirements. This assumed that the selected solution would produce the correct
numerical results. However, because the performance model does not actually perform the numerical
computations, it could not verify the numerical correctness of the solution, nor could it show the data values
processed at any point. Therefore the performance model could not serve as a total concept validation.

To further validate and develop the design solution, a more thorough prototype of the system was needed.
Specifically, an abstract-behavioral model was needed to describe not only the timing and structure, but the
functionality as well.

Because the performance model was carefully constructed in VHDL for extensibility, a new modeling effort
was *not* needed to construct the prototype from scratch. Instead, the whole performance model was
re-used by simply adding the missing functionality to it, as shown in figure 1. In this way, the performance
model was extended to an abstract-behavioral model. It is abstract because it does not resolve the actual
bit-representations of the values or structures. It is a behavioral model because it describes both functionality
and timing aspects. See the VHDL Taxonomy document for more details on these concepts.

Figure 3 - 1: Extending performance model to abstract-behavior virtual-prototype

The new model served as a true prototype for the system. It responded in value and time as the designed target
system would. It is a virtual -prototype, because it is not a physical construction, but exists as a
software-based simulation.

Specifically, the compute subroutine, which consisted merely of a time-delay statement in the performance
model, was augmented to include calls to the actual numerical subroutines, such as FFT and vector multiply.
The token-definition was extended by adding one field to hold the data being transferred between processors.

An error in the assumed sequence of data arrival at a compute-node was discovered by the virtual prototype.
This allowed the error to be isolated and quickly fixed prior to delivery of the hardware.

The abstract-behavioral model was later extended by incorporating a detailed register-transfer-level (RTL)
model of the system I/O-board. This demonstrates the extensibility of this method, as well as the need to
carefully consider the appropriate way to structure each abstraction level ahead of time.

When the physical hardware became available the software, which had been developed and tested abstractly
on the virtual-prototype, was quickly ported and began running on the physical system. Because the
application software had been pre-validated, some minor debugging issues were quickly isolated to a sporadic
I/O device. The system was running correctly and meeting performance requirements within only about two
weeks after porting began.

The Need for Abstraction

The VHDL virtual-prototype consumed 14 CPU-hours to execute 5-seconds of simulated runtime of a
6-processor version of the system. The simulated processor elements were Intel i860s which execute
40-million instructions per second. Because the virtual-prototype used abstract behavioral models of the
processors, it does not explicitly model the individual instruction cycles. Considering the number of
processors simulated, their instruction rate, and the duration of the simulation, the effective execution rate of
the aggregate model was 23,810 instructions per second.

In contrast, a less abstract model of the processor, known as an instruction-set-architecture (ISA) model
exhibited about 5.5 to 7.5 instructions-per-second on a Sparc-10 CPU. It is very clear that prototyping
significant segments of the multi-processor system could not be practical with such a model. ISA models are
more useful for understanding the behavior of software segments that dwell within a given PE. Table 3 - 1
compares the relative execution rates of the various model types.

In summary, rapid virtual prototyping of complex systems is made practical through appropriate use of

abstraction. The virtual prototype was found to accurately model the numerical results and time-related
performance within a few percent of the eventual physically constructed system.

Table 3 - 1: Comparison of simulation efficiencies for types of models in the design process

Next: Up: Appnotes Index Previous:2 Introduction to Virtual Prototyping

Approved for Public Release; Distribution Unlimited Dennis Basara

