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Abstract 

We describe the methodology, the design, and the VHDL 

implementation of three main blocks of a 4×4 input buffered crossbar 

switch: the input port modules, the crossbar scheduler module, and the 

crossbar fabric module. The components employ existing schemes and 

architectures. However, the design and VHDL implementation of each of 

the components, and the composition of the overall switch is a novelty. 

All the blocks are implemented in VHDL employing an ALTERA 

FLEX10KE device and using MAX+PLUS II software. The switch is 

capable of handling asynchronous transfer mode (ATM) packets. 

 

ATM packets enter the input data lines of the switch in the form of 

bytes. Every input port module of the switch has a corresponding input 

buffer. The data bytes entering the switch are first stored in this buffer. 

There are four “dynamic virtual input queues” within each of the input 

buffers. Based on the output port that the packet is destined for, every 

packet in the input buffer is assigned to one of these four virtual queues. 

The destination output port of every packet is determined based on the 

Virtual Circuit Identifier (VCI) information from the header of the packet. 

This VCI value is looked up in a routing table to determine the 

destination output port and the updated VCI for the packet.  A request 

for the destination output port is then sent to the scheduler module of 

the switch. The crossbar scheduler employs a round robin priority 

rotation scheme that is fair to all the input ports. The scheduler 

configures the fabric, and grants the requests of some or all the input 

ports based on their position in the priority round robin. Any input port 
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that receives a grant de-queues the packet from its input buffer and 

sends it to the crossbar fabric module, which provides the physical 

connection between the input and the output ports. 
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Chapter 1 

Introduction 

Communication networks connect different geographically distributed 

points, so that these points can communicate with each other. Since a 

completely connected graph of such a network with N points would 

require N(N-1)/2 links -practical for only small N- a partially connected 

network is typically used.  

 

Switching refers to the means by which the transmission facilities 

(bandwidth, buffer capacity, etc.) are allocated to users to provide them 

with a certain degree of connectivity. Switching systems reduce the 

overall network costs by reducing the number of transmission links 

required to enable a given population of users to communicate. They 

also enable heterogeneity among terminals and transmission links, by 

providing  a variety of interface types. According to the type of 

information being carried, there are various switching techniques, 

chosen on the basis of optimizing the usage of bandwidth in the 

network. The two main switching techniques are: circuit switching and 

packet switching.   

 

In circuit switching, a path is set up from the source to the destination 

at the connection set-up time. Once this path is set up, it remains fully 

connected for the duration of the connection. It is obvious that circuit 

switching is only cost effective at times when there is a continuous flow 

of data once the circuit is set up. This is certainly the characteristic of 
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voice communication and that is why circuit switching is mostly used in 

telephone networks. 

  

Communication among computers however, happens in bursts. Data 

travels through these networks in the form of messages. Each message is 

a block of data with a header that contains some control information 

such as source and destination addresses, priority, message type, etc. In 

data networks, there are certain gaps between the messages. The user 

devices do not need the transmission link all the time, but when they 

do, they require relatively high bandwidths. Assigning a continuous 

connection with high bandwidth for such connections is obviously a 

waste of resources and results in low utilizations. If the circuit of high 

bandwidth was set up and released for each message transmission, then 

the set up time incurred for each message transmission would be high 

compared to the transmission time of the message. Thus, switches in 

data networks incorporate the store and forward technique for 

transmitting the messages.  

 

In store and forward, a message is first sent from the source to the 

switch to which it is attached. The switch scans the header of the 

message and decides to which output to forward the message. The same 

scheme is repeated from switch to switch until the message reaches its 

destination. The advantage of such a switching scheme is that the 

transmission links are occupied only for the duration of the 

transmission of a message. After that the links are released in order to 

transmit other messages. In other words, the bandwidth allocation in the 
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store and forward scheme is determined dynamically on the basis of a 

particular message and a particular link in the network.  

 

Packet switching is an extension of message switching. In packet 

switching, messages are broken into certain blocks called packets, and 

packets are transmitted independently using the store and forward 

scheme. Some of the advantages of packet switching over message 

switching according to [24] are as follows. 

1) Messages are fragmented into packets that cannot exceed a 

maximum size. This leads to fairness in the network utilization, 

even when messages are long.  

2) Successive packets in a message can be transmitted 

simultaneously on different links, reducing the end-to-end 

transmission delay. (This effect is called pipelining.) 

3) Due to the smaller size of packets compared to messages, packets 

are less likely to be rejected at the intermediate nodes due to 

storage capacity limitation at the switches.  

4) Both the probability of error and the error recovery time will be 

lower for packets since they are smaller. Once an error occurs, 

only the packet with the error needs to be retransmitted rather 

than the whole message. This leads to a more efficient use of the 

transmission bandwidth. 

 

A packet switch is a box with N inputs and N outputs that routes the 

packets arriving on its inputs to their requested outputs. One can say 

that the main functions of packet switches are buffering and routing. 
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Besides these basic operations a switch can have other capabilities, such 

as handling multicast traffic and priority functions.    

 

Small N×N packet switches are the key components of the 

interconnection networks used in multiprocessors and integrated 

communication networking for data, voice, and video. A popular choice 

in the hardware implementation of packet switches is crossbar 

architecture [5, 13, 18, 22, 26]. Crossbar is a non-blocking architecture. 

This means that any input-output pair can communicate with each other 

as long as they do not interfere with the other input-output pairs. In 

other words, any permutation of inputs and outputs is possible as long 

as each input sends data to a different output, and each output receives 

data from at most one input.  

 

This document describes the design and implementation of an 

asynchronous transfer mode (ATM) crossbar switch [14]. ATM is a means 

of digital communication with the potential for replacing the conflicting 

communication infrastructures (telephone networks, cable TV networks, 

and computer networks) that nowadays need to be integrated into one. 

These three information infrastructures have some overlaps among 

themselves and are all moving from analog technology to digital 

technology for transmission, switching, and multiplexing. New 

technologies are being developed that are stepping along the way of 

merging these three communication infrastructures. ATM technology is 

intended to be used in networks that transport a variety of different 

types of information including voice traffic that was traditionally carried 

over telephone networks, data traffic typically carried on computer 
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networks, and multimedia traffic consisting of a mixture of image, audio 

and video information. Each of these various types of traffic can have a 

different requirement and places different demands on switching and 

transmission facilities. Although ATM has not replaced datagram 

networks altogether and hasn’t been the one and only dominant 

technology (as it was promising 10 years ago), but still it has been 

deployed in many networks. Vendors are continuing to study and 

improve ATM technology to achieve the implementation of more and 

more Quality of Service (QoS). In ATM networks data is transferred over 

Virtual Circuits (VC’s) in 53-byte packets called cells.  

 

Our implementation is done in VHSIC Hardware Description Language 

(VHDL), using MAX+PLUS II software. The ATM crossbar switch that we 

have implemented is a modular design (can be scaled) and consists of 

three main components: input port modules, crossbar scheduler, and 

crossbar fabric. The functionality of the switch can be described as 

follows. The packets first enter the input ports of the switch where they 

are queued based on their order of arrival. Each input port has a port 

controller that determines the destination of a packet, based on the 

packet header using a programmable mapper (routing table). The port 

controller then sends a request to the scheduler for the destination 

output port. The scheduler grants a request based on a priority 

algorithm that ensures fair service to all the input ports. Once a grant is 

issued, the crossbar fabric is configured to map the granted input ports 

to their destination output ports. 
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Chapter 2 provides background information on queuing schemes, fabric 

architectures and designs, and scheduling algorithms in packet 

switches. We also introduce several examples of existing ATM switches. 

In Chapter 3 an overall view of our switch is presented. Chapter 4 

contains a detailed description of the switch input port modules. The 

crossbar scheduler and crossbar fabric modules are introduced in 

Chapters 5 and 6, respectively. Finally, Chapter 7 discusses the 

implementation details and the simulation results of our design.  

 

There are four Appendices in this document. Appendix A contains a 

detailed schematic of our 4×4 packet switch and its internal 

connections. Appendix B has the description of a sample output port 

module that can be connected to the output ports of the switch. 

Appendices C and D contain the source code for all the components and 

the simulation results from the design, respectively.  
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Chapter 2 

Background information 

There are three main components in packet switches: 1) the block that 

provides the physical connection between the input and output ports 

(internal interconnect of the switch), 2) the internal storage (memory, in 

general) where the packets that enter the switch are stored, and 3) the 

scheduling module that determines the departure of packets from the 

switch. 

 

This Chapter provides background information on different designs, 

architectures, and algorithms for these main components of packet 

switches. In each case, the pros and cons of the architectures or 

algorithms are discussed.  

2.1. Internal interconnect of the switch 

There have been discussions about what the internal interconnect of the 

switch should be [3, 25].  The internal interconnect of the switch can be 

in the form of a single stage network (shared bus, ring, crossbar) or a 

multi-stage network of smaller switches arranged in a banyan [9]. What 

follows are some pros and cons of each of these schemes. 

2.1.1. Bus architecture 

Bus architecture is probably the simplest way of transferring data to the 

output ports (Figure 2.1). The inputs and outputs of the switch are 

connected to a single bus or a number of parallel buses. The inputs have 

to contend for the control of the bus. A bus arbitration technique has to 
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be implemented in the bus processor to arbitrate the control of the bus 

among the input ports. In bus architecture switches, queuing is mostly 

done at the output ports of the switch.  

 

 

 

 

 

 

 

 

 

Figure 2.1: Schematic of a bus architecture switch with input port 

processor (IPP), output port processor (OPP), and control processor [25]. 

 

In Figure 2.1, the input port processor (IPP) module processes the 

incoming packets. Its functionalities include synchronizing the incoming 

packets, looking up the packet header in routing tables, and updating 

the header. The output port processors (OPP) module typically performs 

some form of queuing and some congestion control. The control 

processor configures the routing tables based on the user requests.  

 

In a bus architecture switch, if the input/output line rate is R and there 

are n ports, then the bus should have a minimum speed of Rn. This 

means that, for a bus clock of r Hz, the bus has to be w = Rn/r bits wide. 

This relation shows that the bus speed has to grow with the number of 

links and that is a disadvantage for the bus architecture. Also, the 

Control
Processor

IPP OPP



9 
 

problem of capacitive loading on the signal lines rises as the number of 

ports connected to the bus increases. This reduces the maximum clock 

frequency of the bus. 

2.1.2. Ring architecture 

In this architecture, ports are connected in a ring. Cells are put into 

empty time slots and taken from filled and matching time slots. Figure 

2.2 shows the ring architecture. RI is the ring component of the switch. 

Queuing in these switches is done mostly at output ports [25]. 

 

Figure 2.2: Schematic of a ring architecture switch. All the input and 

output ports are connected in a ring [25].  

 

The ring architecture has some additional latency compared to buses 

but this is small enough for switching applications. The advantage of a 

ring design over a bus architecture is that a ring does not suffer from 

capacitive loading as the number of ports increases, since the 

connections are point to point. Therefore, a ring architecture can have a 

RI

RI

RI

RI

RI

RI
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larger number of ports. However, similar to bus architecture, the speed 

of the ring has to increase as the number of ports grows. For a ring 

supporting n input/output ports (each operating at a data rate of R bits 

per second), the ring speed should be a minimum of Rn. As n increases 

the speed of the ring has to increase too. This is similar to the limitation  

that exists on bus architecture. 

2.1.3. Crossbar architecture 

A crossbar consists of N horizontal buses (rows) and N vertical buses 

(columns). Each horizontal bus is connected to an input port and each 

vertical bus is connected to an output port. Crossbar switches are fully 

connected switches. Therefore, in a crossbar switch, there is a direct 

path from every input to every output. Figure 2.3 shows a crossbar 

architecture with input queues. 

 

  

 

 

 

 

 

 

Figure 2.3: An input queued switch with crossbar architecture. 

Crossbars provide a direct connection between each input and output 

port.  
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The speed of the crossbar depends on whether input queues or output 

queues are used. In case of input queues, the input and output port 

controllers have the advantage of working with merely the speed of the 

links. If output queues are utilized, the switch fabric has to be fast 

enough not to cause contention at the output ports. Section 2.2 

discusses input queuing vs. output queuing. 

 

Crossbar-based systems can be significantly less expensive than bus or 

ring systems with equivalent performance because the crossbar allows 

multiple data transfers to take place simultaneously. Furthermore, 

crossbars are non-blocking, which means any input-output pair can talk 

to each other as long as they do not interfere with other input-output 

pairs. However, in the absence of a fast scheduling algorithm the 

crossbar becomes a performance bottleneck for big switches. Crossbars 

are generally expensive, but compared to the total cost of a switch, the 

crossbar component contributes only a small fraction (around 5% 

according to [3]). 

2.1.4. Multistage architecture 

For systems implemented using CMOS integrated circuits, buffered 

multistage switches are among the attractive choices. In a multistage 

architecture, the packets pass through multiple stages of the fabric, 

made from smaller switch elements, rather than a single stage. In this 

manner the switch can profit from a certain degree of parallelism. Figure 

2.4 shows an example of a multistage switch composed of three stages. 

This architecture is called an Omega architecture. 
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Figure 2.4: An 8×8 Omega architecture is an example of a multistage 

switch.  

 

Multistage switches can be either blocking or non-blocking [7]. Switches 

with a Clos architecture shown in Figure 2.5 [7] are non-blocking. 

Banyan architectures [9, 25, 27], on the other hand, suffer from internal 

blocking. In other words, a cell destined for a certain output can be 

delayed in the fabric by the contention caused by cells that are destined 

for other outputs. This problem can be solved by sorting the cells 

according to the output they are destined for, before sending them into 

the banyan. Such an architecture, called Batcher-banyan architecture, 

has been used in the Sunshine switch [9, 27]. 

 

 

 

 

 

 

 

Figure 2.5: A 4×4 three-stage Clos architecture, consisting of 2×3, 2×2, 

and 3×2 switch modules. 
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2.2. Buffering in packet switches 

Even with a non-blocking interconnect such as the crossbar, some 

buffering is necessary because packets that arrive at the interconnect 

are unscheduled and the switch has to multiplex them. There are three 

basic conditions where buffering is necessary: 1) The output port 

through which the packet needs to be routed is blocked by the next 

stage of the network. 2) Two packets destined for the same output port 

arrive simultaneously at different input ports but the output port can 

accept only one packet at a time. 3) The packet needs to be held while 

the routing module in the switch determines the output port to which 

the packet is sent. 

 

The optimal place for the queues in high-performance switches has long 

been studied. Here are some of the advantages and disadvantages of 

input (IQ), central shared (CS), and output queuing (OQ). 

2.2.1 Output queues  

Output queues are used when the aggregate throughput of the switch 

fabric and the memory is large enough to keep all the output links 

continuously busy, therefore making the system highly efficient. In such 

a case, quality of service (QoS) guarantees can be provided. For an N×N 

switch, generally, output queuing is implemented when the switch fabric 

runs at least N times faster than the speed of the input lines. This is a 

disadvantage when high-speed port processors or fast switch fabrics are 

not available. Another disadvantage of the output buffer is that in order 

to be able to handle simultaneous packet arrivals, each output buffer 

must have as many write inputs as there are input ports to the switch. 
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Implementing output buffers with multiple write inputs increases their 

cost and reduces their performance. Furthermore, having more than one 

write at a time can cause problems in buffer allocation for variable sized 

packets [23].  

2.2.2. Shared central buffers  

Complete sharing of the buffering space by all the ports results in the 

most efficient usage of memory resources. Hence, it would be ideal to 

use central buffers. However, there are fundamental difficulties in the 

efficient hardware implementation of switches with central buffers [23]. 

All the input ports and output ports access the shared central buffer; 

hence in the worst case the bandwidth of the central buffer has to be 

equal to sum of the bandwidth of all the ports. Furthermore for an N×N 

switch, the central buffer has to at least have 2×N ports to be accessible 

by all input and output ports. Multi-port memory is very expensive to 

implement and leads to poor performance because of its large access 

time. To avoid multi-port memories, it is possible to increase the buffer 

and connection line widths. However, that will cause the bandwidth to 

be wasted for cells that are smaller than the width of the bus. In addition 

to implementation difficulties, shared central buffers cause some 

performance problems. Complex control circuitry for variable size 

packets and “hogging” of the output ports as some performance issues 

examples are discussed in [23]. 

2.2.3. Input queues  

One advantage of having input buffers in a packet switch is that the 

buffer requires only one write port, because only one packet arrives at 

an input port at a time. The fabric and memory of an input queued (IQ) 
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switch need to be merely as fast as the line rate. This makes input 

queuing very appealing for switches with fast line rates or with large 

numbers of ports. Note the latter is the consequence of the fact that if 

output queues are chosen for an N×N switch, the fabric and memories 

have to be N times faster than the line rates, and memory is not fast 

enough as N increases. Moreover, for multicast traffic (traffic that is sent 

from a single input port to multiple output ports), a burst of n cells that 

are to be delivered to m output ports only needs n cell buffers for the IQ 

structure, rather than m×n buffers for OQ structure. Furthermore, if the 

buffer is a First in First Out (FIFO) buffer, it is very easy to deal with 

variable size packets and avoid memory management problems. 

 

The disadvantage of IQ switches with FIFO buffers is head of line (HOL) 

blocking. HOL blocking occurs when a packet at the head of queue, 

waiting for a busy output, blocks a packet behind it that is destined to 

an idle output. HOL blocking can have the worst effect when the traffic is 

periodic [3] and the scheduling algorithm is based on priority rotation. 

In such a case the throughput of the switch can be reduced to the 

throughput of a single link. Figure 2.6 provides an example of periodic 

traffic: in each time slot only one input and output can communicate 

with each other. 

 

Comparing output queuing with input queuing for non-blocking 

switches [12] shows that in output queuing, 100% of the output 

bandwidth can be utilized, while in input queuing the switch can be 

loaded up only to a maximum of 58% due to HOL blocking. The 58% 

utilization is achieved under the assumption that the input ports have 
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FIFO queues and the incoming traffic is governed by an independent 

identical Bernoulli process. In other words, it is assumed  that the 

probability that a packet arrives at each input in any given time slot is  

p, and each packet has the equal probability 1/N of being addressed to 

any given output.  

 

 

 

 

 

 

 

 

 

Figure 2.6: An input buffered switch with periodic traffic (worst case for 

HOL blocking). The packet labels are the destination output port 

numbers of arriving packets. 

 

Many subsequent studies have tackled improving the performance of 

input-queued packet switches. Some of the proposed techniques are as 

listed below.  

 

1) Using non-FIFO buffers: One scheme in this category is virtual 

output queuing (VOQ) [3, 16, 21, 23]. In this scheme each input 

has N queues or blocks of memory instead of one single FIFO 

queue. In other words, there is a separate queue for each input-

output pair (Figure 2.7).  
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Figure 2.7: Simple virtual output queuing (VOQ) structure. This 

architecture removes the HOL blocking effect [16]. 

 

There are three possible “multiple input queue” buffer structures [23]. 

Figure 2.8 shows these three schemes together with the standard FIFO 

architecture. Item 2.8.(a) in the Figure is the standard FIFO queue 

structure. It shows a 4×4 crossbar switch with a single FIFO buffer at 

each input. Packets that arrive at each input of the switch are queued in 

the buffer and served in the order that they arrived.  

 

What follows is a description of the three “multiple input queue” buffer 

structures -Figures 2.8.(b), (c), and (d). 

 

A. Statically allocated fully connected (SAFC) buffer [23] shown in Figure 

2.8.(b) eliminates HOL blocking by providing, at each input port, a 

separate FIFO queue for every output port. At every input port, packets 
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that are destined for output 1 are sent to queue 1, packets destined for 

output 2 are sent to queue 2, et cetera. When there is a separate FIFO 

queue for each output (in this case there are four separate FIFO queues 

at each input, corresponding to the four outputs of the switch) then 

packets in every queue are contending for the same output. Hence, the 

packet at the head of line cannot be blocking a packet behind it from 

being sent to an idle output (and hence no HOL blocking exists). In this 

architecture, every input can send N packets in every time slot (rather 

than one packet in case of single FIFO inputs). This increases the 

throughput of the switch.  

  

The SAFC scheme has the following disadvantages: 

 

i. Four separate crossbars must be controlled as opposed to a 

single crossbar;  

ii. Each input port requires four separate buffers and buffer 

controllers; 

iii. Buffer utilization is inefficient. The available buffer space is 

partitioned into four statistically allocated queues. Hence, 

the potential storage space for a given packet is only one 

quarter of the buffer space at each input port; 

iv. Pre-routing is required for every packet in order to 

determine the destination output port (and hence the input 

queue the packet belongs to). 
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Figure 2.8: Alternative designs of switches with input port buffers [23]. 

(a) Standard FIFO buffer, (b) N FIFO queues at each input (each FIFO 

queue connected to a separate crossbar), (c) N FIFO queues at each 

input (only one queue at each input port connected to the crossbar at 

any time), (d) N FIFO queues (with dynamic boundaries) at each input 

share the same buffer. 

 

B. Statically allocated multi -queue (SAMQ) buffer shown in Figure 2.8.(c) 

removes disadvantage i. from the list by sacrificing the high throughput 

[23]. Each input can send only one packet to the crossbar in every time 

slot (as opposed to N in the previous case). This removes the need to 
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control N crossbars at any time. Nevertheless, the remaining 

disadvantages of the SAFC buffers still exist. 

 

C. Dynamically allocated multi -queue (DAMQ) buffer [23] shown in 

Figure. 2.8.(d) has none of the disadvantages mentioned earlier. In this 

scheme each input buffer uses a single buffer pool. Virtual queues are 

allocated dynamically within each input buffer and that makes the 

buffer usage more efficient. Each virtual queue is maintained via a 

linked list. For each virtual queue, there is a head/tail register pointing 

to the head and tail of the corresponding linked list. A separate linked 

list is also maintained for the free storage space in the buffer. When a 

packet arrives, it is written to the memory location marked by the head 

of the free space linked list (no pre-routing required). While the packet is 

being written to the free buffer space, its header is looked up and its 

destination output port number is determined. The tail pointer of the 

link list corresponding to this output port destination will then change, 

to point to the arrived packets location.  

 

2) Operating the switch fabric at a faster speed than the input/output 

lines (speedup): This scheme reduces the effect of HOL blocking but 

does not remove it completely [6]. A speedup by a factor of S can remove 

S packets from each input port within each time slot. Therefore, for an 

N×N switch, if output buffers are used, the speedup is N, and if input 

buffers are used, the speedup is equal to one. For switches that use 

speedup, both input and output buffers are required.  
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3) Examining the first K cells in a FIFO queue where K>1 : Consider a 

switch with input port buffers as shown in Figure 2.9 [4]. The packet 

labels are destination port numbers.  

 

 

 

 

 

 

 

 

 

Figure 2.9: Input port queues for K-HOL scheme [4]. 

 

We define array Ai = [a i1, ai2, ai3, …, aiN]T where a is = d is the destination 

port number, i is the column number, and s is the source port number. 

We also define transmission array T = [t1, t2, …, tN]T, where ts = d indicates 

that input port s is assigned to transmit a packet to output port d. The 

underlying goal in this algorithm is to use arrays A1 to Ak in order to 

produce a transmission assignment array T that has as many non-zero 

elements as possible.  

 

There is no record that this scheme was ever implemented in hardware. 

This scheme improves the throughput, but it is sensitive to arrival 

patterns and may perform no better than regular FIFO when traffic 

occurs in bursts. 
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2.3. Scheduling algorithms 

The scheduler module in a packet switch decides when data is sent from 

particular inputs to their desired outputs. Normally, a request is sent 

from the input ports to the scheduler and the scheduler finds the best 

configuration of input-output pairs. The scheduling algorithm has to be 

fast, fair, and easy to implement in hardware. A comparison of several 

scheduling algorithms for input queued switches can be found in [17].  

 

The problem of scheduling, that is determining which input and output 

should be connected to each other in each time slot, is equivalent to 

finding a matching in a bipartite graph. Graph G is bipartite if its nodes 

are divided into two sets, and each edge has an end in one of the sets. 

Switch inputs and outputs form the two sets of nodes of the bipartite 

graph and the edges are the connections required by the queued cells. 

Figure 2.10 shows a bipartite graph G with M inputs and N outputs, 

together with a matching W on the graph. (M would be equal to N2 for an 

N×N switch with VOQ).  

 

 

 

 

 

 

Figure 2.10: Bipartite graph G, and a matching W on it 

 

1

2

3

M

2
1

 3

N

1

2

3

M

2
1

 3

N



23 
 

What follows is a description of several scheduling algorithms discussed 

in literature. 

 

1) Maximum Size Matching scheduling algorithm by McKeown, 

Anantharam, and Warland [16] finds the matching that contains the 

maximum number of edges. This algorithm is stable (and achieves 100% 

throughput) for independent uniform traffic but could lead to starvation 

(and hence queue overflow) or instability, if the arrival processes are not 

uniform [16]. Maximum size matching can also cause a reduced 

throughput for non-uniform traffic [20]. For non-uniform traffic, cells 

concentrate among a relatively small number of VOQ’s and therefore, 

the scheduling algorithm will not have many configurations to choose 

from. If the traffic is uniformly distributed among all the VOQ’s, the 

algorithm will have different choices in finding the maximum matching 

and will result in a higher throughput. In other words, the main problem 

with maximum size matching is that it does not consider the backlog of 

cells in the VOQ’s, or the cells that have been waiting in line to be 

served. Furthermore, this algorithm is too complex to implement in 

hardware. The best known maximum size matching algorithm converges 

in O(n5/2) time [15]. 

 

2) Maximum Weight Matching algorithm assigns a weight to each 

input queue [16]. The matching algorithm finds an input-output match 

that has the highest sum of weights. This algorithm is stable for both 

uniform and non-uniform traffic [16]. The weight assigned to each queue 

is usually equal to the occupancy of the queue and therefore the longest 

queue has the highest weight. Hence this algorithm is also called 
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Longest Queue First (LQF). The disadvantage of maximum weight 

matching is its high complexity i.e., O(N3logN). The algorithm can not be 

implemented in hardware because it needs multi-bit comparators to 

compare the weights of the queues. 

 

3) Oldest Cell First (OCF) scheduling leads to 100% throughput for 

independent arrivals and no queue will be starved [21]. This algorithm 

uses the waiting times of HOL cells as requesting weights and selects a 

match such that the sum of all queue waiting times is maximized. This 

algorithm, however, is too complex (i.e., O(N3logN)) to be implemented in 

hardware. 

 

4) Longest Port First (LPF) algorithm by McKeown is a variation of the 

LQF scheme [20]. However it does not have the complexity of LQF and 

can be implemented in hardware. In LQF algorithm, each queue has a 

weight equal to the length of the queue. In LPF, however, the weight 

(also called port occupancy) of each queue is the sum of aggregate input 

and output queue occupancies. This algorithm finds the match that is 

both maximum size and maximum weight. The complexity of the LPF 

scheme is O(N2.5), but it can be simplified with some approximations in 

order to be implemented in hardware.  

 

5) Parallel iterative matching (PIM) algorithm is based on randomness 

and iteration [15]. There are three steps in choosing the match between 

inputs and outputs: 

a. Each unmatched input sends a request to every output for 

which it has a queued cell; 
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b. If an unmatched output receives any request, it grants one 

by randomly selecting a request; 

c. If an input receives a grant, it accepts one by selecting an 

output randomly among those that granted its request. 

These three steps are repeated for the inputs that are not paired with 

any outputs, until they converge to a maximal match. A maximal match 

is one in which each node is either matched or has no edge to an 

unmatched node. 

 

In the PIM algorithm, randomness prevents queues from being starved. 

Also, in each iteration of random matching, a minimum average of 3/4 of 

the remaining possible connections are matched or eliminated. 

Therefore this algorithm converges to a maximal match in an average of 

O(log N) iterations. The disadvantage of this randomness is that it is 

expensive and difficult to implement in hardware. Furthermore, it can 

lead to unfairness between connections and the multiple iterations are 

time consuming. We prefer an algorithm that performs well in a single 

iteration. 

 

6) Round robin matching (RRM) overcomes the unfairness of random 

matching by granting requests and accepting grants according to a 

round robin priority scheme [15, 18]. There are three steps in this 

algorithm shown in Figure 2.11: 

a. In the Request step, each input sends a request (arrows in 

Figure 2.11) to every output for which it has a queued cell;   

b. In the Grant step, an output that has received any requests 

grants the one request that appears next in a fixed round 
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robin schedule starting from the highest priority element. 

The grants in the figure are arrows going from outputs to the 

inputs. The priority round robin of the output is then 

incremented (modulo N) one step beyond the granted input;  

c. In the Accept step, an input that has received grants accepts 

the grant that appears next in a fixed round robin schedule 

starting from the highest priority element. The priority 

round robin of the input is then incremented (modulo N) 

one step beyond the accepted output. 

 

 

 

 

 

 

 

 

Figure 2.11: Round robin matching (RRM) scheduling algorithm [11]. 

  

RRM algorithm removes the unfairness and complexity inherent in the 

PIM algorithm. The algorithm performs well on a single iteration and 

converges to a maximal match in an average of O(log N) iterations. Round 

robin arbiters (implemented as priority encoders) are much simpler and 

faster than random arbiters used in the PIM algorithm. Nevertheless, the 

RRM algorithm still performs poorly under heavy traffic due to a 

synchronization phenomenon described in [15]. 
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7) iSLIP  is an iterative algorithm achieved by making a small change to 

the RRM scheme [15]. iSLIP has the same three steps of RRM. Only the 

second step (Grant step) has changed and changed little: 

b. If an output receives any requests, it grants one that appears 

next in a fixed round robin schedule starting from the 

highest priority queue. However, the round robin at the 

output is not incremented (module N), unless the grant is 

accepted by the input in the Accept step. In other words, the 

priority round robin at the output side is incremented 

(provided that the grant was accepted) after the Accept step 

is passed. 

Those inputs and outputs not matched at the end of one iteration are 

eligible for matching in the next. This small change to the RRM 

algorithm makes iSLIP capable of handling heavy loads of traffic and 

eliminates starvation of any connections. The algorithm converges in an 

average of O(log N) and a maximum of N iterations. iSLIP can fit in a 

single chip and is readily implemented in hardware [17]. 

 

3.3. Examples of existing ATM switches 

The Knockout switch has a non-blocking, fully connected internal 

interconnect (fabric) [26, 27]. It is a modular switch with output FIFO 

buffers and a maximum line rate of 50 Mbps. The switch does not have a 

time-slot specific scheduling algorithm and multiple simultaneous 

packets can arrive at any output buffer. Up to 1000×1000 switches can 

be implemented employing the knockout fabric architecture. 
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The ForeRunner ASX-200 switch is an example of a modular bus 

architecture ATM switch [8] with shared memory output buffers. It 

supports up to 32 ATM ports ranging in speeds from T1/E1 (1.544 Mbps) 

to OC-12c/STM-4c (622 Mbps). 

 

The Tiny Terra switch is an input buffered switch with a crossbar fabric 

architecture [18]. This 32×32 switch employs VOQ mechanism, and an 

iSLIP scheduling algorithm [15]. The maximum line rate of the switch is 

10 Gbps. 

 

The 16×16 ATLAS I single chip ATM switch has a maximum line rate of 

622 Mbps [13]. The switch employs shared output buffers. The ATM cells 

are stored in the single shared buffer pool and are never moved until 

they depart the switch. The scheduling algorithm of the switch is priority 

based. Certain ATM cells have higher priorities and are scheduled to 

leave the switch earlier than other cells. 

 

The 32×32 Sunshine switch has output buffers and a self-routing 

Batcher-banyan fabric [9]. Input and output lines have a data rate of 155 

Mbps. Input cells are queued according to four service classes and are 

output in a round robin manner. 

 

In the design of the switch, presented in the next 5 chapters, we have 

chosen a crossbar fabric because it is a fully connected, non-blocking, 

and fast architecture. Input buffers are used to benefit from the 

advantages of input buffering discussed earlier in this chapter. To 

overcome the HOL blocking phenomenon inherent in FIFO input 
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buffers, we have employed the VOQ architecture. The scheduling 

algorithm used in the switch discussed in Chapter 5 is a fair, fast, 

simple, and efficient algorithm that can easily be implemented in 

hardware.   
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Chapter 3 

High-level switch view 

The overall view of the 4×4 switch design is given in Figure 3.1. The 

input lines to the switch are four data lines, four frame pulse inputs, one 

clock input, a reset input, and a global reset input. The output lines of 

the switch are 4 data output lines, 4 data valid lines, 4 output frame 

pulse lines, one clock output, and 4 outputs that indicate the origin of 

the data coming to each data output port. This switch is modular and 

can be scaled up or down with minor changes. A more detailed 

schematic of our 4×4 switch design is available in Appendix A.  

 

The four data inputs (data_in1 to data_in4) are each 8 bits wide, and 

carry fixed size Asynchronous Transfer Mode (ATM) packets. Other 

packet formats such as IP packets have to be fragmented into ATM cells  

first and before being input to the switch. One data byte can be input to 

the switch in every clock cycle. In our switch, data is both input and 

output on the rising edge of the clock. 

 

The clock input is global to all switch components. It is used to clock the 

input and output data streams. Another clock called c_bar_clock is 

internally generated within the input port modules. This clock has a 

period equal to a packet time. Packet time is the interval required for a 

packet to be output from the switch. The length of the packet time is 

dependent on the frequency of the clock inputs. The rule of our design 

is that the c_bar_clock should be 59 times slower than the clock input. 

For the 53 bytes in an ATM packet, 53 clock cycles are required and the 
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6 additional clock cycles are needed to account for internal delays as 

well as buffer updates.  

 

 

 

 
 

 

 

 

 

 

 

 

Figure 3.1: High-level schematic of the switch. It consists of 4 input 

ports, a crossbar fabric, and a fair scheduler. 

 

The frame pulse inputs (fp1 to fp 4) are one bit wide signals indicating 

the start of packets.  A pulse on the fp line should be at least one clock 

cycle wide. The frame pulse signal is checked on the falling edge of the 

clock input. The first data byte coming on the second rising edge after 

the frame pulse is detected, is considered as the first byte of the packet.   

 

The reset and global_reset inputs of the switch reset all the counters 

used in the design and initialize them to their starting values. The 
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global_reset signal resets the input buffers, where the ATM packets are 

stored, as well. In other words, if an error occurs while switching a 

packet,  the reset signal can be used to switch that packet again. 

However, if one wants to reset the whole switch and delete the contents 

of the buffers, global_reset should be used.  

 

The output ports in our switch do not have any processing capability or 

any storage capacity. They are currently only the pins of the chip. An 

output module such as the one described in Appendix B can be 

implemented at the output ports to reassemble the packets and store 

them until they are allowed to enter the network. Currently, the output 

lines of our switch are clock, data_out_port, fp_out_port, data_valid, and 

incoming_port_to_output.  

 

The output data bytes are sent out on data_out_port1  to data_out_port4  

output ports. The output frame pulse signals (fp_out_port1 to 

fp_out_port4 ) generated within the switch mark the beginning of 

outgoing packets for their corresponding data lines. The relationship 

between the beginning of the packet and the frame pulse for the output 

ports is similar to that of the inputs: the first byte of an outgoing packet 

is sent out on the second rising edge of the output clock after a pulse on 

the corresponding output’s frame pulse lines is detected. (The frame 

pulse line is checked on the falling edge of the clock.) 

 

The data_valid output lines (data_valid1 to data_valid4) indicate whether 

the data present at the corresponding output of the switch is valid for 
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sampling. If this line is logic low, the corresponding output line is invalid 

and should be ignored.  

 

A source port number signal (incoming_port_to_output1 to incoming 

port_to_output4) is available at each output port along with the data. This 

signal indicates at which input port the data originated. This signal can 

later be used for classifying and outputting the data according to a 

desired priority scheme. Furthermore, in cases where the packets are 

partially switched, the origin of each packet can be used to reassemble 

the data at the output ports. This matter is discussed further in 

Appendix B. 

 

Appendix C contains the VHDL source code for the voq_switch project 

and all the components in the switch. 
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Chapter 4 

Input ports 

There is an input port module for each of the four inputs of our 4×4 

switch. This module is responsible for handling, storing and processing 

the arriving ATM packets. This document refers to the input port module 

as the “voq_input” module. VOQ stands for virtual output queuing 

described in earlier chapters. VOQ has been implemented in the input 

port modules of our switch; hence its name.  

 

A high-level schematic of the voq_input module is shown in Figure 4.1. 

Each data byte arriving at the voq_input module is first written into a 

Random Access Memory (RAM) component called bufferx. This buffer 

holds up to 848 one-byte words. The second, third and fourth bytes of 

the packet are written into VCI registers as well as the buffer. These 

bytes, located in the header of the ATM packet, contain the Virtual 

Circuit Identifier (VCI) information. Figure 4.2 shows an ATM cell with its 

header and payload bytes.  

 

 

 

 

 

 

 

Figure 4.1: High-level schematic of voq_input module of the switch. 
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                           (a)                                                       (b) 

Figure 4.2: (a) An ATM cell consisting of a 5 byte header and a 48 byte 

payload. (b) The User Network Interface (UNI) ATM cell header. Bytes 2, 

3, and 4 contain the VCI information. 

 

Depending on the VCI information in the packet header, the ATM switch 

decides to which output port the ATM packet should be sent, and what 

the new VCI should be. In this document, “VCI bytes” refers to the 

second, third, and fourth bytes of the ATM header shown in Figure 

4.2.(b). Those 16 bits that are marked as VCI in this Figure are in turn 

called “VCI bits”. 

 

After the first four bytes of a packet are read, and while the rest of the 

bytes of the packet are being shifted in, the port controller extracts the 

address information (VCI bits) from the header of the arriving ATM 

packet and sends it to a Look Up Table (LUT) module. The LUT is a 

routing table that updates the VCI bytes of the header and returns the 

new VCI together with the destination output port number for that 

packet. The port controller then sends a request for that specific output 

port to the scheduler, and awaits a grant.   

 

Once a grant is issued for a certain packet, the data bytes are de-queued 

from the input buffer in the order that they had arrived. A counter for 
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the de-queue state machine within the port controller signals when the 

updated VCI bytes have to be read from the VCI registers. 

 

After the entire packet is sent, the same process is repeated for the next 

packet. Note that as soon as a grant for an output port is issued, the 

input port number is sent to the crossbar fabric so that the output port 

receiving the data knows where the packet originated from. Figure 4.3 

shows a detailed schematic of the voq_input module. In this Figure there 

is no central controller. The input port controller is actually a gathering 

of several seperate state machines shown in Figure 4.3:  

 

1. Write sequence state machine (Write_seq_SM process); 

2. VCI controller state machine (VCI_SM process); 

3. Read sequence state machine (Read_seq_SM process); 

4. Linked list update state machine (Linked_list_update process). 

 

The following sections describe the main components of the voq_input 

module (buffer, counters, LUT, VCI registers), and all the state machines 

mentioned earlier. 

 

4.1. Input buffer 

The input buffer in our switch design shown in Figure 4.4 is a 848 word 

dual port RAM. Each word is one byte wide. In order to address all the 

words in the 848 word RAM the address lines are 10 bits wide. The write 

address (wraddress) determines to where in the buffer the input data 

bytes should be written, and the read address (rdaddress) is where the 
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outgoing data bytes are read from. There is a separate enable input for 

both read and write operations (rden and wren). Read and write 

operations are synchronized with the rising edge of the main clock of the 

switch. 

 

Each input buffer is divided into 16 virtual blocks of 53 bytes length, 

shown in Figure 4.4. Every block is addressed with a pointer to its first 

byte and can hold one complete ATM packet. The choice buffer size is a 

trade off between the switch speed and the loss rate. The larger the 

buffer is, the smaller the probability of buffer overflow and the loss rate. 

On the other hand, the queuing delay increases as the buffer size grows. 

A large queuing delay reduces the switching speed and results in a low 

Quality of Service (QoS) in the network. For our 4×4 switch with input 

buffers, 16 is a reasonable number that does not cause overflow for 

uniform constant bit rate traffic. 

 

We require 4-bit-wide pointers to reference individual blocks. While de-

queuing (or en-queuing) packets, it suffices to have a pointer to the 

beginning of the block that holds (or will be holding) the packet. The 

read and write counters provide the offset for read and write addresses.  

 

The buffer in our design consists of five dynamic first in first out (FIFO) 

queues. The queues are dynamic in the sense that they do not have 

fixed sizes or locations in the buffer memory. Each block of the buffer 

could belong to any of these five queues.  

 

 



38 
 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: Voq_input module data path. It consists of two counters, a 

RAM component (bufferx), a ROM based look-up table (LUT), and four 

state machine based controllers. 
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Figure 4.4: The structure of the buffer in each voq_input module. The 

buffer is a 848 word RAM divided into 16 blocks.  

 

The five FIFO queues are maintained via linked lists. A certain structure 

called “queue_descriptor” is defined in VHDL for this purpose. Queue 1 

to queue 5 in our design are of “queue_descriptor” type. The 

“queue_descriptor” structure has three fields: head, tail, and empty. 
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Head and tail fields are of type pointer and empty field is a one bit flag. 

The head and tail fields of each queue point to the first and last blocks 

in the queue, respectively. A logic high value for the empty field of a 

queue shows that the queue is empty. 

 

Four of the queues, queue(0) to queue(3), correspond to the four output 

ports of the switch. In other words, packets that are destined for output 

1 are stored in queue(0). The packets destined for output 2 are stored in 

queue(1), etc. The fifth dynamic FIFO queue of the buffer is the 

free_space queue. This queue holds the empty blocks of the buffer. Note 

that an empty free_space queue is the equivalent of a full buffer. An 

empty free_space queue indicates that there is no free block left to 

accept a new packet. 

 

Whenever a packet arrives at the buffer, it is written into the block that 

is at the head of the free_space queue. Whenever a packet is to be read 

from the buffer and sent to a certain output port, it is read from the 

head of the queue that corresponds to that output port. 

 

Each block of memory in our buffer (refer to Figure 4.4) has three 

registers associated with it.  

� The “next_register”: Let’s assume that block x holds a packet that 

belongs to queue(i). The value of next register for block x - 

next_register(x) - is the location of the next block belonging to queue(i). 

This is how the members of different queues are distinguished, and 

how the order of the blocks in each queue is accounted for. A detailed 
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description of how the linked lists are manipulated is given in section 

4.8, where the linked_list_update process is described. 

 

� The “vci_out_vector”: The vci_out_vector(x), associated with block x, is 

where the updated VCI bytes of the packet in block x are stored.  

 

� The “ready_flag”: The third register associated with each block x is 

ready_flag(x). A logic high value of the ready_flag(x) indicates that an 

ATM packet has been completely written into block x. A logic low 

ready_flag shows that the corresponding block of the buffer is empty.  

 

4.2. Counters 

There are two main counters used in our design: counter_53 and 

dq_counter53 (refer to Figure 4.3). Both these counters are always 

enabled and will be incremented at the rising edge of the main clock, if 

they are neither  set nor cleared by their controllers. There is also a 

third counter in our design called the clock_gen_counter. This counter is 

a Mod(59) counter and assists in making the c_bar_clock signal. 

 

The first counter, counter_53, is 6 bits wide and counts the number of 

bytes that enter the voq_input module and are written (en-queued) into 

the input buffer. This counter is  mainly controlled by the write_seq_SM 

controller shown in Figure 4.3. The counter is always kept in a set 

condition and starts counting from zero once a frame pulse on the fp 

input of the voq_input module signals the beginning of a packet. This 

counter is set again, once the whole packet is read. 
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The second counter, the dq_counter53, is also a 6 bit counter. It is used 

for reading (de-queuing) the data bytes from the input buffer. This 

counter is mainly controlled by the Read_seq_SM controller shown in 

Figure 4.3. This controller enables the counter when a packet in the 

buffer receives a grant and is being de-queued from the buffer. The 

counter is cleared once a whole packet has been de-queued and the 

queues have been updated.  

 

4.3. Look-up table (port_LUT) 

The port_LUT is a Read Only Memory (ROM) based component that can 

be initialized with an arbitrary set of data, to form the routing table of 

the switch. The ROM has eight rows and each row is 36 bits wide. These 

bits consist of: a 16-bit input VCI, a 16-bit output VCI, and a 4-bit output 

port number. Figure 4.5 shows the LUT ROM in more detail. 

 

The LUT component searches through the ROM rows, until it finds a 

match between the input VCI bits in the ROM and the input_vci input to 

the LUT. If the match exists on row x of the ROM, the output VCI bits 

and the output port number bits in row x are displayed on output_vci 

and output_port_no outputs of the LUT component, respectively. The 

renable output is activated at the same time in order to signal that valid 

data is on the output ports of the LUT. If no match is found in the table, 

the output lines are all set to zero. 
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Figure 4.5: The port_LUT component is based on an 8 word ROM, where 

each word is 36 bits wide.  

 

4.4. VCI registers 

The VCI registers shown in Figure 4.3 (VCI_reg0, VCI_reg1, and 

VCI_reg2) are 8-bit wide registers. The input data lines of these registers 

are loaded into them (on the rising edge of the clock), provided that the 

registers are enabled. The outputs of these registers are concatenated 

and stored in a separate register called vci_in_vector. 

 

Upon the arrival of VCI bytes, the voq_input module enables the VCI 

registers. Three clock cycles after they are enabled, the registers will be 

holding correct VCI bytes, and vci_in_vector will have a valid value. 
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4.5. Write sequence controller (Write_seq_SM state machine) 

The write sequence controller module (Write_seq_SM) shown in Figure 

4.3 is comprised of a state machine called Write_seq_SM shown in 

Figure 4.6.a. This state machine has two states: S0 and S1. All the state 

transitions happen at the falling edge of the clock, and in each state the 

condition of reset is checked, as shown in "Reset check in write 

sequence state machine" diagram (Figure 4.6.b.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6.a: Write sequence state machine in each input port module 

(write_seq_SM process in voq_input.vhd file of Appendix C) 

 

The write sequence state machine, starts from state zero (S0) where all 

the signals are reset and the counter_53, which counts the number of 

written bytes, is set to all ones. The state machine remains in state zero 
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until a pulse on the fp input line indicates that a new packet is arriving. 

(The fp line is sampled on every falling edge of the clock.) Upon 

detection of a pulse on the fp line, if the buffer is not full, the state 

machine goes to state one (S1). In state one the arriving packet is written 

to the block that is at the head of the free_space FIFO queue (more on 

this later when we describe the linked list updates). The write address 

first points to the first byte of the block at the head of free_space queue, 

and moves forward as the counter_53 counts. This counter is 

incremented by one for each incoming data byte, and moves the write 

address pointer forward to the next position in the block.  

 

 

 

 

 

 

 

Figure 4.6.b: Reset check in write sequence state machine. In every state 

the reset signals are checked and in case any of them is true, the state 

machine moves to state zero.  

 

Furthermore, if the counter shows values 1, 2, or 3 in state one, the 

VCI_reg_en signal is set to logic one. Therefore, bytes 1, 2, and 3 are 

written into the VCI registers as well as the buffer itself. These bytes 

contain the VCI information needed for routing the packet through the 

switch. As soon as all the bytes of the packet are written and counter_53 
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reaches 53, the state machine goes back to state zero where it awaits the 

arrival of a new packet. 

 

4.6. VCI controller (VCI_SM state machine) 

The VCI state machine’s main function is handling and to updating the 

VCI bits of the packet that is being written into the buffer. It sends the 

VCI bits to the look-up table and retrieves the changed and updated VCI 

bits together with the output port number. It stores the updated VCI bits 

in a designated vector (vci_out_vector) so that the new VCI bytes can 

replace the old VCI bytes while the packet is being de-queued from the 

input buffer. The VCI_SM  state machine is shown in Figure 4.7. 

 

In state zero (S0), if counter53 is equal to 3, then the VCI bytes have 

already been read and are therefore stored in the vci_in_vector register. 

In state one (S1), the VCI bits (bits 4 to 19) of the vci_in_vector  are sent 

to the input of the look-up table. State two (S2) provides a clock cycle’s 

time for the look-up table to respond with a new VCI. State three (S3) 

checks if the look-up table has responded. If so, the vci_out_vector 

corresponding to the block to which it is being written is loaded with the 

correct VCI bytes. Furthermore, the destination port number of the 

packet is retrieved. The output port number, used in the linked list 

update process described in section 4.8, also indicates the queue 

number for the packet that has arrived.  

 

 

 



47 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7: VCI state machine in each input port module. (VCI_SM 

process in the voq_input.vhd file of Appendix C) 

 

In state three, if the look-up table does not output a valid output_vci by 

the time the whole packet is shifted into the buffer, then the state 

machine goes back to state zero. In such a case, the output port number 

and the vci_out_vector register of the block that received the packet will 

both be zero. Hence, if a packet with an unknown VCI (a VCI that does 

not exist in the LUT) arrives at our switch, the default updated VCI and 

the default destination port number of the packet will be set to zero. 
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4.7. Read sequence controller (Read_seq_SM state machine) 

The read sequence controller implements the Read_seq_SM state 

machine shown in Figure 4.8.a.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8.a: Read sequence state machine in each input port module. 

(Read_seq_SM process in the voq_input.vhd file of Appendix C.) 

 

This state machine has 10 states. The state transitions happen on the 

rising edge of the clock, and in each state the condition of reset  and a 

valid grant is checked as shown in the "reset/grant check in read 

sequence state machine" diagram (Figure 4.8.b) 
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The read sequence state machine handles the de-queuing of the 

packets. It reads the packet that is at the head of the queue receiving a 

grant (the read_queue). The read_pointer, points to the head of the 

read_queue.  

 

 

 

 

 

 

 

 

 

 

Figure 4.8.b: Reset/grant check in read sequence state machine. 

 

State zero (S0) awaits a non-zero grant, while the read enable signal is 

logic zero. As soon as a non-zero grant arrives, the state machine moves 

to state one (S1), where the read enable signal becomes logic one. It 

takes two clock cycles from the time that the read enable signal goes 

high to the time that valid data is displayed on the data output line of 

the buffer (RAM_out). Therefore, the actual reading starts in state three 

(S3). The output data line of the voq_input module is called 

parallel_data . The first byte of parallel_data  is equal to the data read 

from the buffer (RAM_out); the second, third, and fourth bytes are read 

from the vci_out_vector register, which contains the updated VCI, and the 

rest of the bytes are again read from the buffer. Data bytes are read until 
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dq_counter53 shows a value of 55 (53 for the bytes in the packet, 2 for 

the cycles it took until the buffer output displayed valid data). The state 

machine then resets all the signals and clears the dq_counter53 so that 

they are ready for the next packet that will be served. The value of the 

dq_counter53 is maintained as a temporary signal (dq_count53_temp) for 

two clock cycles. This time is required to update the linked lists. 

 

In each state, if there is a valid grant and no reset is active, the read 

address signal is assigned an appropriate value. The read address signal 

always starts from the first byte of the packet at the head of the read 

queue (the queue that is served). The read address signal is incremented 

by one after each byte is read. The dq_counter53 counter, counts the 

number of bytes that are de-queued and moves the read pointer forward 

as the de-queue process continues to read the rest of the packet. In case 

of a reset or a zero grant signal from the scheduler, the de-queuing is 

disabled and the output data is set to zero. 

 

The read sequence state machine also creates a frame pulse 

(data_out_fp), and a data_valid signal for the outgoing data. The out 

going frame pulse marks the beginning of the outgoing packet on the 

parallel_data_out output line. Similar to the incoming frame pulse, the 

first byte of the out going data can be read on the second rising edge of 

the clock after the pulse on the data_out_fp line is detected. The data is 

only valid when the data_valid signal is high. 
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4.8. Linked list update controller (linked_list_update process) 

The linked list update controller updates the linked lists that maintain 

the dynamic queues of the buffer. This state machine has three main 

functions: 

1. Initialize the linked lists whenever the global_reset signal of the 

switch goes high. 

2. Update the linked lists after a packet has been written to the 

input buffer. 

3. Update the linked lists after a packet has been read from the 

input buffer. 

4.8.1. Initializing the linked lists 

The linked list update process initializes the linked lists, the 

next_registers, and the ready_flags in the following manner (shown in 

Figure 4.9):  

 

 

 

 

 

Figure 4.9: The initial state of the ready flags and the next registers 

associated with each block of the buffer. 

 

For queues 1 to 4, head and tail fields point to the first block of the  

buffer (block 0), and the empty field is set to zero. In other words:  

queue(i).head = queue(i).tail = “0000”, queue(i).empty = ‘0’, for i = 0, 1, 2, 

3.  
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For the free_space queue, the head points to the first block (block 0) and 

the tail points to the last block (block 15) of the buffer. The empty field is 

set to logic 0 because the buffer consists of empty blocks at the start up. 

 

In the initialization stage, all the ready flags are set to zero and all the 

next registers point to their neighboring higher block in the buffer.  

 

4.8.2. Updating linked lists after a packet has been written 

Figure 4.10 shows how the linked lists, next registers, and ready flags 

are updated after a packet has been fully written into a certain block of 

the input buffer. Two operations have to take place. First, the packet has 

to be added to the queue it belongs to, and second, the block holding 

the packet has to be removed from the free_space queue. 

 

To achieve the first goal, the block holding the packet is added to the tail 

of the queue to which the packet belongs. Note that this queue number 

is equal to the destination port number of the packet, decided by the 

look-up table module.  

 

Let one assume that the newly arrived packet belongs to queue(i) (shown 

as Q(i) in Figure 4.10) and should be added to the queue(i)’s linked list. 

There are two cases to consider:  

1. queue(i) is empty and this packet is the first packet that has 

arrived destined for output I; 

2. queue(i) is not empty and there is at least one packet in it. 
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Figure 4.10: Diagram of the steps taken within the linked list update 

process to update the linked lists, the next registers, and the ready flags 

after a packet is written in the input buffer. 

 

In the first case, the voq_input module performs an add_empty  function, 

which adds a member to an empty linked list. The add_empty  function 

directs the head and tail of queue(i) to point to the block holding the 

packet (head of free_space) and resets the empty field of queue(i) to logic 

zero. 
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In the second case, the add_normal function is performed. This function 

assigns the new block as both the new tail of queue(i), and the next 

block for the old tail of queue(i). 

 

In both cases the ready_flag associated with the added block is set to 

logic 1 to show that the block is not empty and that it is holding a 

packet. 

 

Next, the block holding the newly arrived packet has to be removed from 

the free_space linked list. Again, there are two cases to consider. 

1. The free_space linked list has only one element (i.e., its head and 

tail point to the same block);  

2. The free_space linked list has more than one element (i.e., its 

head and tail are not similar). 

 

In the first case, the remove_oneElement function shown in Figure 4.10 

is performed. This function removes the last block from the free_space 

linked list by resetting the linked list’s empty field to logic 1. 

 

In the second case, the remove_normal function is performed. This 

function removes the new block from the  head  of the free_space linked 

list  by making the next block in the list the new head.  
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4.8.3. Updating the linked lists after a packet has been read 

After a packet has been read or de-queued from the buffer, the linked 

lists have to be updated in two ways. First, the block that was just read 

(the de-queued block) should be removed from the queue that it 

belonged to, and second, the same block should be added to the 

free_space linked list. Figure 4.11 shows a diagram of these operations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11: Diagram of the steps taken within the linked list update 

process to update the linked lists, the next registers, and the ready flags 

after a packet is de-queued from the input buffer. 
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Let one assume the de-queued block belongs to queue(i). The procedure 

taken here is the same as the last section. The functions performed are 

similar only they are performed on different queues. In this case, the 

queue being added to is the free_space queue and the queue being 

removed from is queue(i).  

 

As shown in Figure 4.11, while removing the packet from queue(i), two 

cases can occur: either queue(i) has a single element, in which case the 

remove_oneElement function is performed, or it has more than one 

element, in which case a remove_normal function takes place.   

 

In the remove_oneElement function the empty field of queue(i) is set to 

logic 1, declaring it an empty queue. In the remove_normal function, the 

next block to the de-queued block becomes the new head of queue(i). 

(Note that packets are removed from the head of the queues.) 

 

To add the removed block to the free_space, the voq_input module 

checks whether the free_space linked list is empty. If so, then the 

add_empty  function shown in Figure 4.11 is performed. This function 

points both the head and tail of the free_space  linked list to the de-

queued block. It also sets the empty field of  the free_space linked list to 

zero.  

 

If the free_space queue is not empty, then the de-queued block is added 

to the tail of the free_space linked list. The de-queued block becomes 

both the new tail of the list, and the next block for the old tail.  
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In both add functions, the ready_flag associated with the de-queued 

block is reset to logic 0 to indicate that the new block is empty. 

Other than data_valid, parallel_data_out, and data_out_fp signals, the 

voq_input module has a 4-bit port_request output connected to the 

Scheduler module of the switch. Each bit of the port_request signal  

corresponds to a different virtual queue inside the buffer. The request bit 

corresponding to a certain queue is logic high, as long as that queue is 

not empty.   

 

The VHDL source code for the modules voq_input and LUT are included 

in Appendices C.2 and C.5, respectively. The package file used in 

voq_input.vhd file is included in Appendix C.7. 
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Chapter 5 

The scheduler 

There is a centralized scheduler in the 4×4 switch that considers 

requests from all the input queues and determines the best realizable 

configuration for the crossbar. The scheduler’s decision is determined by 

a scheduling algorithm. This scheduling algorithm has to be fast, 

efficient, easy to implement in hardware, and fair in serving all the 

inputs. There are various scheduling algorithms, some of which were 

explained earlier in Chapter 2. The scheduling module (voq_c_bar) in the 

4×4 switch uses a crossbar scheduler architecture named Diagonal 

Propagation Arbiter (DPA) [11].  

 

DPA is a fair crossbar scheduler with a round robin priority rotation. The 

scheduling algorithm is based on a small combinational logic arbiter cell 

assigned to each input/output pair. When there is a request to send 

packets from a certain input port to a certain output port, the 

corresponding arbiter cell receives a request from the input. The arbiter 

then issues a grant for the requested output based on both the position 

of the priority round robin, and the grants issued to higher priority cells. 

For an n×n switch, the maximum arbitration delay through the whole 

switch is (n-1)D, where D is a single gate delay. In our switch the 

arbitration delay is very small (maximum 4.5 ns) and does not limit the 

performance and speed of the switch.  

 

The following sections first describe the basic two dimensional ripple-

carry arbiter, and then the DPA architecture in detail. The basic two 
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dimensional ripple-carry arbiter forms the base of the DPA architecture, 

and should therefore be explained first. 

 

5.1. Two dimensional ripple-carry arbiter  

Figure 5.1 shows the architecture of a two dimensional ripple-carry 

arbiter  for a 4×4 switch. 
 

 

 

 

 

 

 

 (a) (b) 

Figure 5.1: (a) Two dimensional ripple-carry arbiter. Bold cells are cells 

with request. (b) Two dimensional ripple-carry arbiter [11]. Bold cells are 

cells with request. Shaded cells are cells that have received grants.  

 

 
In Figure 5.1, the rows correspond to the input ports and the columns 

correspond to the output ports of the switch. The arbiter is built from a 

number of smaller cells called arbiter cells. A sample arbiter cell with its 

internal combinational logic is shown in Figure 5.2. The label pairs i, j 

written on each cell specify the requests that are handled by that 
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specific cell. Specifically they indicate that the cell is responsible for 

handling packets destined to go from input port i to output port j.  

 

Signal R (Request), shown in Figure 5.2, is an input to every i,j arbiter 

cell. It is active when there is a packet destined for output port j at the 

head of the input port i buffer. In our design, this means that there is a 

packet at the head of queue j of input port module i.  

 

Signal G (Grant), which is an output from every i,j arbiter cell, is active 

when the request from input port i to output port j has been granted by 

the scheduler.     

 

 

 

 

  

 

 

Figure 5.2: The basic arbiter cell with the combinational logic inside it 

[11]. A grant is issued when there is a request, and the arbiters on the 

top and on the left have not issued a grant. 

 
Since each input can be sending (and each output can be receiving) only 

one packet at a time, there should never be two or more granted 

R (Request)

E (East)W (West) arbiter cell

N (North)

S (South)
G (Grant)

N (North)

W (West)

R (Request) G (Grant)

E (East)

S (South)
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requests in each row (and each column). For instance, having two 

requests granted in the same column at one time, causes that the 

output port corresponding to that column to receive two packets 

simultaneously. To ensure that this problem never occurs, signals N 

(North), S (South), W (West), and E (East), shown in Figure 5.2, are 

introduced. These signals in each cell have the duty of relaying to the 

next cell, or receiving from the former cell, whether a request has been 

granted. In the ripple-carry architecture shown in Figure 5.1, the E 

signal of every arbiter cell is connected to the W signal of the cell on its 

right. Similarly, the S signal of every arbiter cell is connected to the N 

signal of the cell on its bottom. (The W signal of cells in the first column 

and the N signal of cells in the first row are always set to logic one. The S 

signal of the cells in the last row and the E signal of the cells in the last 

column are floating). The simple logic circuit of Figure 5.2 shows that 

whenever a Grant signal is asserted for a cell, signals South and East are 

forced to logic low so that the cells on the right and bottom are never 

able to issue grants.  

 

The arbitration process in the architecture of Figure 5.1 is based on the 

following algorithm:  

1) Start from the top left most cell (i.e. 1,1);  
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2) Once any cell is reached, move to its right and bottom cells 

(provided that they exist);  

3) For each arbiter cell, the G (Grant) signal is activated if and only if 

the R (Request) signal is active and there has not been any 

requests granted in the cells at the top and to the left;  

4) If a request is granted, activate the E (East) and S (South) signals. 

 

In Figure 5.1(a), bold squares indicate that the corresponding cell has 

been requested and, in Figure 5.1(b), shaded squares show that the 

corresponding square has received a grant. When there exists two or 

more requests in the same row or column, only one of them (the one 

higher or on the left) is granted. 

 

Assuming that each arbiter cell has a delay of D, then the time needed 

for realization of any permutation would be (2n-1)D for any n×n arbiter. 

Hurt et al. have introduced a modified version of the two-dimensional 

arbiter that has a shorter arbitration delay [11]. This new design called 

the diagonal propagation arbiter (DPA) is described in the next section. 

 

5.2. Diagonal propagation arbiter (DPA) architecture 

The key to the DPA design is that there are some cells in the two 

dimensional propagation arbiter (Figure 5.1) that are independent of one 

another, in the sense that granting one of them does not prevent 

granting the others. The cells that are independent of one another are 

put in diagonal rows, as shown in Figure 5.3 . For example, cells (1,1), 
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(4,2), (3,3) and (2,4) are independent of each other and so are the cells 

(2,1), (1,2), (4,3) and (3,4). 

 
 

 

 

 

 

 

 

Figure 5.3: Fixed priority Diagonal Propagation Arbiter (DPA) [11]. Bold 

squares indicate cells with requests. Shaded cells are cells that have 

received grants. 

 

The arbitration process in the DPA architecture begins by considering 

the first diagonal. If there is a request for every cell in the first diagonal 

of Figure 5.3, they can all be granted. Then, in the next time slot, the 

arbitration process moves to the second diagonal. The cells with requests 

in the second diagonal will only receive grants if no cells on the top or on 

the left of them have yet received grants.  

 

In this design, the arbitration delay for an n×n switch is nD, D being the 

delay of a single arbiter cell. This is smaller than the delay in the 

previous design (the two dimensional ripple-carry arbiter), which was 

(2n-1)D.  
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One issue that stands out in both ripple-carry and DPA architectures is 

the issue of unfairness. The ripple-carry design gives the priority to the 

cells that are higher and to the left. Specifically, it gives the highest 

priority to cell (1,1). Similarly, in the DPA architecture the highest 

priority is always given to the cells in the first diagonal. Therefore, these 

two designs are not fair. Optimally one should be able to rotate the 

priority so that every cell has the chance of being the highest priority 

cell.  

 

One solution to this problem could be to make a cyclic architecture by 

connecting the South signals of the cells in the last row (diagonal) to the 

North signals of the cells in the first row (diagonal). Similarly, the East 

signals of the last column have to be connected to the West signals of the 

first column.  

 

Such an  architecture would be fair because every cell can have the 

opportunity to be the highest priority cell. However, this architecture 

suffers from the fundamental problem of having a “combinational 

feedback loop”. Such architectures are difficult to design and test; they 

are not very well supported by logic synthesis tools and they have to be 

carefully simulated at the physical layout level.   

 

To overcome the problems accompanying the cyclic feedback 

architecture and to be able to, at the same time, rotate the priorities, 

Hurt et al. have found a solution. In this new architecture, shown in 

Figure 5.4, the first (n-1) diagonals of an n×n DPA scheduler are repeated 



65 
 

after the last row. The W signals of the first column and the N signals of 

the first diagonal are assigned to logic one. This architecture removes 

the need for a cyclic feedback. At every time slot only n2 cells (marked by 

the n×n bold window shown in Figure 5.4) are active. We call the bold 

window “the active window”. The cells on the first diagonal inside the 

active window have the highest priority. The active window moves one 

step down in every time slot to rotate the priority. When the top most 

diagonal is diagonal n, the active window has traveled all the way 

through the DPA scheduler and, therefore, goes back to its starting 

position shown in Figure 5.4. 

 

To implement priority rotations in this design, vector P is introduced. 

The (2n-1) elements of vector P are named pr. They correspond to the (2n-

1) diagonals of the scheduler in Figure 5.4. When the ith element of this 

vector is equal to 1, the ith diagonal of the arbiter is active, (and resides 

in the active window). The algorithm for priority rotations is: 

 set P = “1111000”. 

 if  P = “0001111” then  

           set P = “1111000”  

          else  

rotate P one position to the right. (This step is like moving 

the window one step down.) 
 

Figure 5.5 shows the arbiter cell of the rotating priority DPA. This arbiter 

is somewhat different from the basic arbiter cell introduced earlier. The 

difference is a signal called “Mask” (identical to the elements of vector P, 
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pr) that indicates whether the arbiter cell is in the active zone. If  the 

Mask input of a cell is logic 0, then there are no Grants given to that cell, 

and therefore, E and S signals shown in Figure 5.5 are forced to logic 1. 

The additional gates (one AND and two ORs) ensure that every request 

only takes effect if Mask is logic high.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4: Diagonal Propagation Arbiter (DPA) [11].  Shaded cells are 

cells that received grants, when the cells with requests are the bold 

squares and the highest priority is given to the first diagonal. 
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to the first diagonal. Figure 5.6 shows a similar example only with the 

highest priority given to the third diagonal. 

 

 

 

 

 

 

 

Figure 5.5: Modified arbitration cell for diagonal propagation arbiter 

(DPA) architecture [11] . 

 

 
 

 

 

 

 

 

 

 

 

Figure 5.6: Diagonal Propagation Arbiter (DPA) [11]. Shaded cells are 

cells that received grants, when the cells with requests are the bold 

squares and the highest priority is given to the third diagonal.  
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The input to the scheduler block in our switch is a 16 bit vector. The 

elements of this vector correspond to the 16 possible requests in a 4×4 

switch. This input vector is constructed from the request lines that come 

from each input port module. The output of the scheduler is also a 16 bit 

vector. This vector's elements are the grants issued by the scheduler. 

This array constructs the control lines of the fabric. 

 

In our voq_c_bar module, the priority vector P rotates on the rising edge 

of the c_bar_clock (the internal clock with the period of a packet time). 

The requests coming from the input port modules are also sent to the 

scheduler on the rising edge of the c_bar_clock. Therefore, for a whole 

packet time, the request and grant signals remain constant and a whole 

packet is de-queued from the input buffers.  

 
Appendix C.3 contains the VHDL source code for the voq_c_bar module. 
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Chapter 6 

The fabric 

The crossbar fabric module in the design (shown in figure 6.1) is 

responsible for physically connecting an input port to its destined 

output port, based on the grants issued by the scheduler. The inputs of 

voq_fabric (except for the cntrl input) are connected to the input port 

modules of our switch. The outputs of voq_fabric are connected to the 

output ports of the switch. The fabric makes the appropriate connection 

between each input and its corresponding output.  

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1: Crossbar fabric module in our switch is the physical 

connection between the input and output ports of the switch. 

 

The signals going through the fabric are: data bytes, frame pulse signals, 

data_valid signals, and the two-bit input port numbers. Each input to 

voq_fabric (except for input_data  and cntrl) is a 4-bit wide signal, where 
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each bit comes from a different input port module. For example, in case 

of the 4-bit input_fp input of voq_fabric, input_fp(0) comes from input 

port module 1, input_fp(1) comes from input port module 2, et cetera. 

The input_data  input of voq_fabric however, consists of 4 parallel “bytes”, 

rather than bits. Similarly, each byte comes from a different input port 

module. The cntrl input of voq_fabric is 16 bits wide and is connected to 

the grant output signal of the scheduler. This cntrl signal configures the 

fabric and makes the necessary connections. This is described in more 

detail later. 

 

Imagine a 4×4 crossbar similar to the one shown in Figure 6.2. Every 

four bit input signal of the voq_fabric module passes through a similar 

crossbar. In each crossbar, the 4 horizontal buses (rows) are connected 

to the 4 bits of a certain input of the voq_fabric. Similarly, the 4 vertical 

buses (columns) of the crossbar are connected to the 4 bits of a certain 

voq_fabric output. For example input_fp(0) is connected to the first input 

of a certain crossbar, input_fp(1) is connected to the second input of the 

same crossbar, et cetera. Therefore, ignoring the input_data  input for a 

moment, four copies of the crossbar are needed for the other four inputs 

of voq_fabric. Since input_data  is a 4×8 bit input signal, it requires eight 

copies of such a crossbar. Therefore, in the voq_fabric module, a sum of 

twelve crossbars pass the eight bit data bytes and the other four inputs .  

 

In every crossbar the cross points are controlled by the cntrl input of the 

voq_fabric module (Figure 6.3). Each bit of the cntrl input corresponds to 

one of the cross points of the crossbar. If a certain cntrl bit is logic high, 

then the corresponding cross point is closed. The inputi and outputi 
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signals, shown in Figure 6.3, stand for the inputs and outputs of 

voq_fabric. 

 

 

 

 

 

 

 

Figure 6.2: A 4×4 crossbar. The horizontal lines are connected to the 

inputs and the vertical lines are connected to the outputs of the 

voq_fabric module. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3: Crossbar for the voq_fabric module.  Each bit of cntrl input 

corresponds to a certain cross point in the crossbar. 
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The diagram of Figure 6.3 performs the following procedure: Each bit of 

the output is the logical sum (OR) of inputi’s bits 0 to 3 AND’d with the 

cntrl lines in that output bit’s column. For example (see Figures 6.4 and 

6.5), 

output_fp(2) = [ ( input_fp(0) AND cntrl(2) ) OR (input_fp(1) AND cntrl(6) ) OR 

(input_fp(2) AND cntrl(10) ) OR (input_fp(3) AND cntrl(14) ) ] 

 

Figure 6.4: The output_fp(2) is the logical sum of input_fp bits AND’d with 

corresponding cntrl bits. 

 

Figure 6.5 shows the 12 crossbars in the voq_fabric module. One copy of 

the crossbar is needed to connect the frame pulse lines from the input 

port modules to the output ports of the switch. Another copy of the 

crossbar is used for data_valid signals. In order to connect the outgoing 

data bytes from the input port modules to the data_out_port lines of the 

switch, 8 copies of the crossbar are used. Finally, two copies of the 
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crossbar are used to construct the source port number signals available 

at the outputs of the switch. Two constant vectors are input to the 4th 

and 5th inputs of the fabric. Depending on what the cntrl input of the 

voq_fabric is (which cross points are closed), certain bits of the constant 

vectors can pass through the crossbars. The values appearing on the 4th 

and 5th output ports of voq_fabric, are the 1st and the 0th bits of the 

origin port numbers of the outgoing data bytes, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5: The 12 copies of crossbar used in the voq_fabric module. The 

cntrl input configures the crossbars. 
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Figure 6.6: The crossbar used to pass the data_valid signals through the 

fabric. 
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Figure 6.7: The crossbar used to pass the 3rd bit of the data bytes 

through the fabric. 

 

The VHDL source code for the voq_fabric module is enclosed in Appendix 

C.4. 
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Chapter 7 

Device information and simulation results 

7.1. Device information 

We implemented the design in VHDL using ALTERA MAX+PLUS II tool 

[2] and its FLEX10KE device family FPGA's [1]. Currently, the whole 

project “voq_switch” utilizes one ALTERA FLEX10KE device. FLEX8000, 

MAX9000, and FLEX10KB ALTERA device families do not support more 

than 256 words of memory and this design could not fit on them. The 

behavioral VHDL description of this design is placed and routed on a 

FLEX10KE device by the MAX+PLUS II tool. A detailed device summary 

for this project is given in Table 7.1. This table shows that 28% of the 

available memory and 70% of the available logic cells (LC’s) are utilized.  
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Voq_switch EPF10K200SRC240-1 39 125 0 28224 28 % 6990 70% 

Table 7.1: Summary of the gates and logic cells used for the crossbar 

switch.  

 

We tested the functionality of each block, as well as the overall switch 

design via simulations and observed a correct functional and timing 

performance. The simulations were run on a PC platform with a 450 
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MHz Pentium III processor and a Windows NT operating system. The 

compilation time for the overall switch lasted two hours.  

 

The maximum achieved clock rate for this design on the 

EPF10K200SRC240-1 device is 16.6 MHz. The Timing Analyzer tool in 

MAX+PLUS II calculates this value based on the longest path in the 

design. On a different device, the clock rate could be either larger or 

smaller, depending on the device technology and the way MAX+PLUS II 

places and routes the design on the device. (FLEX10KE has a 0.22 

micron CMOS technology). Pipelining, i.e., dividing the switch data path 

to multiple sections and connecting a separate clock input to each, can 

also increase the highest achievable clock rate.  

 

We ran the simulations for 300 µsec and observed that the switch is 

capable of switching 4 input lines at the rate of 132.8 Mbps into 4 

output lines at the same rate. The packets are successfully routed and 

sent out of the switch. Eight bits of data are input to the switch at every 

clock cycle, and hence the line rate of 132.8 Mpbs is resulted from a 

16.6 MHz clock. It takes 53 clock cycles (3.18 µsec) for a single ATM 

packet to enter the switch and in our 300 µsec simulations close to 95 

packets were input. The simulations lasted a couple of minutes in real 

time. 

 

The traffic applied to this switch was a constant bit rate traffic with 

uniform distribution over all the input ports. The switch was not tested 

for other traffic types. The output data stream and the performance of 

the switch would be different for non-constant traffic distributions. For 
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instance, the buffers would have a higher overflow probability for traffic 

that occurs in bursts. Furthermore, cells entering the switch in a burst 

and destined for a common output can be delayed in the switch and can 

leave the switch with longer inter-packet times, due to the priority 

rotations in the fair round robin scheduler module.  

 

7.2. Simulation results 

We tested the functionality of every component in the switch via 

simulations. The simulation results are shown in Appendix D. The 

following sections give a detailed explanation of the simulation results.  

7.2.1. Simulation results of the switch (Appendix D.1) 

Appendix D.1 shows the results of a certain simulation of the switch that 

was run for 75 µsec (longer simulations were run as well, but have not 

been included in this document). Appendix D.1 shows a two-page 

overview of what is happening in this simulation.  

 

In Appendix D.1, one notes that 9 packets are input to every data input 

of the switch (there are 9 frame pulses on the input fp lines). On the 

data_out_port lines these packets are seen coming out of the output 

ports. The simulation data going to all of the inputs is the same, but 

according to the position of the priority round robin in the scheduler, 

only certain inputs are allowed to send their packet to their desired 

output port at any given time. For every packet, the origin port number 

(incoming_port_to_output) is output as well. Note that data on the output 

ports is only valid if the corresponding data_valid line is high. Also, note 
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that the output frame pulse signals (fp_out_port) mark the beginning of 

outgoing packets. The headers of the input test packets are set in such a 

way that, among the 9 packets that enter each input port, there are two 

packets destined for each of the 4 outputs and the last packet has an 

unknown destination. By default, in this design, when a packet has an 

unknown destination -i.e. when the header does not exist in the look up 

table- the packet is sent to output 1 of the switch and its VCI bytes are 

set to zero. Appendix D.1 shows that there are 8 packets coming out of 

each output port (2 packets from each input). Output 1, however, is 

sending out 12 packets (2 packets from 2 different inputs, and 1 

unknown packet from each of the inputs).   

 

The request, grant, and c_bar_P (the priority vector) output lines are not 

among the real output ports of the switch. They are only probed for 

testing and simulation reasons. The look-up table in all the input port 

modules of this switch is initialized with the same values for simplicity 

reasons. These values are shown in Table 7.2.  

 

  

 

 

 

 

 

 

Table 7.2: The input VCI, output VCI, and output port numbers stored in 

the look-up table module of the switch.  
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As described in earlier chapters, the switch has an internal clock that 

runs 59 times slower than the input clock. The period of this internal 

clock is actually equal to a packet time. At the rising edge of this clock, 

the priority vector is shifted in the crossbar scheduler and also a request 

is sent out from the input port modules to the scheduler.  

 

Table 7.3 provides a summary of the simulation results of Appendix D.1. 

We have filled the first 6 columns of this table with the input data, and 

have predicted the values of certain signals, registers and output ports, 

in the rest of the columns. Later, these parameters were compared with 

the simulation results and equal values were observed.    

 

Every packet coming to the data input ports of the switch is shown on a 

separate line in Table 7.3. There are 9 packets arriving at the input ports 

one after the other. For every arriving packet we have shown the first 

four bytes, and the last byte. The second, third, and fourth bytes of the 

packet are stored in the vci_in_vector register. Bits 4 to 19 of this vector 

contain the VCI information of the packet. This VCI value is searched in 

the look-up table (shown in Table 7.2) and the output VCI, together with 

the output port number, is determined. The output_vci value replaces the 

input_vci part (bits 4 to 19) of the vci_in_vector and is stored in the 

vci_out_vector register. When the packet is being sent out from the 

destination output port, the bytes of vci_out_vector are sent out in place 

of bytes 2, 3, and 4 of the packet. This effect is shown in the last 

columns of the table, where the first four and the last byte of the 

outgoing packet are shown. Note that for the last packet, because the 
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input_vci is not in the look-up table, the output_vci and the vci_out_vector 

are set to zero and the destination port number is set to 1.  

 

 

 

 

 

 

 

Table 7.3: Details of simulation results shown in Appendix D.1. Nine 

packets are sent to every input port of the switch. For every incoming 

packet, the table shows what the expected outgoing packet should be. 

 

We looked at the output data lines of the switch in our simulation and 

verified that every packet is indeed being output from the output port 

number for which it was destined (shown in Table 7.3). Also, the second, 

third, and fourth byte of every outgoing packet was the same as the 

vci_out_vector predicted in Table 7.3. Furthermore, Appendix D.1 shows 

that the incoming port number changes in a round robin manner to 

serve all the input ports.  
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7.2.2. Simulation results of the input port module (Appendix D.2) 

We tested the functionality of all the components of the switch via 

extensive simulations. As an example, Appendix D.2 shows the 

simulation results for the “voq_input” module of the switch. Some 

internal signals are also probed here for testing and validation purposes. 

The values of the linked lists, next registers, read/write addresses, 

counter values, enable signals, state variables, et cetera., are some 

examples of such internal signals. The accurate performance of the 

input module state machines discussed earlier in Chapter 3 was verified, 

based on the value of these signals. Note that the destination port 

number runs from 0 to 3 to indicate output ports 1 to 4. 

 

This simulation, also tested the voq_input module for overflow. We 

disable the de-queue process -by not providing any nonzero grant 

inputs- and see that after 16 packets arrive, the input module does not 

write any more packets into the buffer. The packets that arrive at the 

input ports after the buffer is full are simply dropped. The overflow 

occurs at around 75 µsec (in this simulation) when the last packet is 

written. Since no grant is issued, no packet is de-queued and therefore 

the buffer is filled and all the ready_flags are high. 
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Conclusion and future work 

This thesis project, used a hardware description language called VHDL 

to implement a 4×4 ATM crossbar switch.  

 

The 4×4 switch designed herein has three modules: “voq_input”, 

“voq_c_bar”, and “voq_fabric”. The voq_input module employs an existing 

algorithm called virtual output queuing (VOQ). The design of this module 

and the queue management scheme was described in Chapter 4. The 

voq_c_bar module discussed in Chapter 5 is a fair scheduler with an 

architecture called “diagonal propagation arbiter” (DPA). The voq_fabric 

module comprises the crossbar fabric of our switch and provides the 

physical connection between the inputs and outputs of the switch. The 

voq_fabric module was outlined in Chapter 6. 

 

The contributions of this project are: 

� A novel design and VHDL implementation of an input port module 

employing the VOQ algorithm; 

� VHDL implementation of the DPA algorithm; 

� A novel design and VHDL implementation of a crossbar fabric; 

� A novel composition of the modules into a 4×4 ATM witch and VHDL 

implementation of it.  

 

This design implementation entailed the employment of MAX+PLUS II 

software tool from ALTERA. Upon testing the functionality of the switch 

through simulations, satisfactory functional and timing performances 

were observed. The switch functions at a line rate of 132.8 Mbps with a 
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maximum clock frequency of 16.6 MHZ. This design can fit on a single 

FLEX10KE ALTERA chip. 

 

I started this project together with Arash Haidari. We designed an 8×8 

version of the scheduler, a fabric that handled serial bits, and input port 

modules with FIFO queues [10]. Our design could fit on 6 FLEX10KE 

FPGA’s, partly due to large pin numbers. Later, I designed an output 

port module for the 8×8 switch (presented in Appendix B), which is not 

included in the current switch design.  

 

I made further additions and  improvements to the design. I designed a 

new input port module that employs VOQ’s to prevent head of line (HOL) 

blocking. In order to achieve higher line rates in the new input port 

module, input data is in the form of parallel bytes (rather than serial 

bits). I also designed a new fabric that handles parallel data bytes. I 

scaled the design down to 4×4 because the compilation time for the 

overall design was too long (over 3 hours). The compilation time for the 

4×4 switch is roughly the same, however four dynamic queues with their 

linked list logic have been added to each input port. An 8×8 switch with 

eight dynamic queues in each input port would have been a much 

bigger design and would have resulted in even higher compilation times.  

 

One future plan for this project is to design output port modules with 

congestion control, policing, or priority mechanisms. An ATM switch 

should not send its packets out to the network unless there is consent 

from the down stream nodes. Otherwise congestion can occur in the 

network, or packets can be dropped due to buffer overflow at the 
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destination node. Implementation of algorithms that would handle the 

communication between the network and the switch is mainly done in 

output port modules. For example, a window based flow control design at 

the output port module can prevent bursts of data from entering the 

network. Implementation of such algorithms in an output port module is 

the next step for this project. 

 

Implementing the design on an ALTERA FLEX10KE chip and hardware 

testing and verification of the switch is another future plan. Finally, 

simulation and synthesis with Synopsys tools, gate level design, layout 

and manufacturing of the switch chip could be done.  
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Appendix A. Detailed schematic of the switch with its 

internal connections  
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Appendix B. Sample output port module 

This Appendix describes a sample output module that can be 

implemented at the output ports of our switch. This output port module 

can be used to reassemble the packets and store them until they are 

allowed to enter the network. 

 

 

 

 

 

 

 

 

The VHDL source code for the output port module shown above is in 

Appendix C (“output_fifo” project). The simulation results for this project 

are included in Appendix D. 

 

This module was designed earlier for an 8×8 version of our switch. In the 

8×8 version, the scheduler operated independently from the rest of the 

components. The scheduler clock used to be unsynchronized with the 

rest of the switch. Therefore, grant signals could be issued or changed at 

any moment. The grants could therefore change in the middle of 

switching a packet, causing the packet to be partially switched. As a 

result, the packets had to be reconstructed at the output ports. That is 

one of the functionalities of the output port modules.  
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The data packets exiting the switch stay in the FIFO queues of the 

output port modules, based on where they originated. Packets that are 

coming from input one, for example, are sent to FIFO0, and those 

coming from input 4 are stored in FIFO3. 
 

The output port modules have been designed, simulated and tested 

separately. A detailed device summery for an output port is given in 

Table B.1. This table shows that an output port modules fits into two 

Flex10KE devices. It utilizes 15% of the available LC’s and 66% of the 

available memory. The high memory utilization was expected because 

each output port module contains 8 separate queues for the data coming 

from the 8 input ports.  
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output_fifo 
EPF10K200S

BC356-1 
28 201 0 98304 100% 1496 14% 

Output_fifo1 
EPF10K50ET

C144-1 
18 65 0 32768 80% 528 18% 

TOTAL  46 266 0 131072 66% 2024 15% 

Table B.1. Device summery for the “output_fifo” project. This project fits 

into two FLEX10KE devices. 
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Output port modules are the blocks where congestion control, flow 

control, or policing algorithms can be implemented. An ATM switch can 

only send its packets out to the network if there is consent from the 

down stream node. Otherwise congestion can occur in the network, or 

packets can be dropped due to buffer overflow at the destination node. 

Implementation of algorithms that would handle the communication of 

the network and the switch is mainly done in output port modules. For 

example, a window based flow control design at the output module can 

prevent bursts of data into the network. Implementation of such 

algorithms is not a part of this project; therefore the de-queue process 

for the output module has not been implemented. Various priority 

algorithms, or any flow control scheme could be implemented for the de-

queue process.  
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Appendix C. VHDL source code for the switch and its 

components
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Appendix C.1. voq_switch.vhd  

The VHDL source code for the 4×4 switch 
-- voq_switch.vhd 
-- Maryam Keyvani 
-- Communication Networks Laboratory. Simon Fraser University 
-- August 2001 
-- This file is The VHDL source code for a 4x4 ATM switch 
-- The switch is composed of 4 input port modules (voq_input), 
-- one scheduler module (voq_c_bar), and one fabric module. 
 
 
LIBRARY ieee; 
USE ieee.std_logic_1164.ALL; 
USE ieee.std_logic_arith.ALL; 
USE ieee.std_logic_unsigned.ALL; 
 
LIBRARY lpm; 
USE lpm.lpm_components.ALL; 
 
USE work.voq_input_package.ALL; 
 
ENTITY voq_switch IS 
 PORT ( 
   fp1    : IN STD_LOGIC;   --input frame pulse lines 
   fp2    : IN STD_LOGIC;   
   fp3    : IN STD_LOGIC; 
   fp4    : IN STD_LOGIC; 
    
   data_in1  : IN BYTE;       --input data byte lines 
   data_in2  : IN BYTE; 
   data_in3  : IN BYTE; 
   data_in4  : IN BYTE; 
 
   global_reset    : IN STD_LOGIC;   --Resets all the counters, 
registers and the buffer 
              reset  : IN STD_LOGIC;   --Resets everything but the 
buffer 
   clock               : IN STD_LOGIC; 
       
   fp_out_port1    : OUT STD_LOGIC;   --output frame pulse lines 
   fp_out_port2    : OUT STD_LOGIC; 
   fp_out_port3    : OUT STD_LOGIC; 
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   fp_out_port4    : OUT STD_LOGIC;  
 
   data_out_port1  : OUT BYTE;        --output data_lines 
   data_out_port2  : OUT BYTE; 
   data_out_port3  : OUT BYTE; 
   data_out_port4  : OUT BYTE; 
   
   data_valid1   : OUT STD_LOGIC;  --output data_valid lines  
   data_valid2   : OUT STD_LOGIC; 
   data_valid3 : OUT STD_LOGIC; 
   data_valid4 : OUT STD_LOGIC; 
 
  --Source port number 
   incoming_port_to_output1  : OUT STD_LOGIC_VECTOR (2 
DOWNTO 0);  
   incoming_port_to_output2  : OUT STD_LOGIC_VECTOR (2 
DOWNTO 0); 
   incoming_port_to_output3  : OUT STD_LOGIC_VECTOR (2 
DOWNTO 0); 
   incoming_port_to_output4  : OUT STD_LOGIC_VECTOR (2 
DOWNTO 0); 
   --Priority vector output for simulation purpose 
   P   : OUT STD_LOGIC_VECTOR (7 DOWNTO 1);  
  --request to scheduler and grant coming from scheduler for simulation   
   request : OUT STD_LOGIC_VECTOR(16 DOWNTO 1); 
 
   grant  : OUT STD_LOGIC_VECTOR(16 DOWNTO 1) 
 
        ); 
 
END voq_switch; 
 
ARCHITECTURE structure OF voq_switch IS 
           
 COMPONENT voq_input  
  
  GENERIC(  

--Port is set to handle packets of size 53 bytes 
   PACKET_SIZE          : INTEGER:= 53;     
       

--Counter 53 is a 6 bit counter so it can service packets upto 64 bytes long 
  COUNTER_53_SIZE  : INTEGER:= 6;  
 

    --Each data byte is 8 bits long 
     DATA_SIZE             : INTEGER:= 8;  
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  --Number of words in buffer 

BUFFER_SIZE  : INTEGER:= 848; 
BUFFER_WIDTHU     : INTEGER:= 10;    --Recommended value is 
CEIL(LOG2(FIFO_SIZE)) 

    NO_OF_BLOCKS  : INTEGER:= 16;   --Has to be  
BUFFER_SIZE/PACKET_SIZE 
    NO_OF_QUEUES  : INTEGER:= 4;    --This value has to be 
equal to the number of output ports  
               NO_OF_PORTS   : INTEGER:= 4;  
    VCI_VECTOR_SIZE     : INTEGER:= 24;   --Each VCI is 2 Bytes 
    VCI_SIZE    : INTEGER:= 16; 
    OUTPUT_PORT_SIZE  : INTEGER:= 2;   --2 bits used to address an 
output port 
    LUT_OUTPUT_PORT_SIZE : INTEGER := 4; -- LUT output port 
number size 
        TRANSLATION_TABLE:  STRING := "lut1.mif"  
       ); 
 
  PORT( 
   data_in : IN BYTE; --STD_LOGIC_VECTOR (DATA_SIZE-1 
DOWNTO 0);    --Input serial data to the port 
  clock  : IN STD_LOGIC;    --Input clock to the port 
   fp  : IN STD_LOGIC;    --Input frame pulse to the port 
   global_reset : IN STD_LOGIC;    --Resets all the counters, 
registers and the FIFO 
   reset  : IN  STD_LOGIC;    --Resets everything but the FIFO 
   port_grant      : IN    STD_LOGIC_VECTOR(3 DOWNTO 0); --The grant 
vector for the port 
   port_request  : OUT   STD_LOGIC_VECTOR(3 DOWNTO 0); --The request 
vector for the port 
   c_bar_clock : OUT   STD_LOGIC; 
   data_out_fp : OUT   STD_LOGIC;     --frame pulse showing the 
beginning of the data being shifted out 
   data_valid : OUT   STD_LOGIC;     --is 1 when FIFO is dequeuing 
data (i.e. a grant is issued for the port) 
   parallel_data_out : OUT   STD_LOGIC_VECTOR(DATA_SIZE-1 
DOWNTO 0) --the byte of data going out 
   ); 
 

END COMPONENT; 
 
 

COMPONENT voq_c_bar 
     GENERIC ( 
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NO_OF_PORTS: INTEGER := 4; 
  -- NO_OF_GRANTS_REQ: INTEGER := 16;--Has to be NO_OF_PORTS^2 
   PRIO_VEC_SIZE: INTEGER := 7 --Has to be [2(NO_OF_PORTS)-1]  
   ); 
 
     PORT( 

arb_req    : IN  std_logic_vector(NO_OF_GRANTS_REQ DOWNTO 1); 
  clk, reset  : IN std_logic; 
   grant   : OUT std_logic_vector(NO_OF_GRANTS_REQ DOWNTO 1); 
   P  : OUT std_logic_vector(7 DOWNTO 1) 
  ); 
 END COMPONENT; 
 
 
 
 COMPONENT voq_fabric is 
      GENERIC( 
  SWITCH_SIZE : INTEGER:= 4;                --4x4 fabric by default 
  GRANT_SIZE : INTEGER:= 16               --16 lines used to issue grants 
        ); 
  
      PORT( 

--inputs 4, 5, and 6 are made by bits from a constant matrix that is formed by 
input port numbers outputs 4, 5, and 6 help make the incoming_port_to_output(i)s of 
the switch       
  input0  : IN  DATA_VECTOR;   --The 4 input data lines of type 
std_logic_vector(DATASIZE-1 DOWNTO 0) 
  input1  : IN  STD_LOGIC_VECTOR(SWITCH_SIZE-1 DOWNTO 0);   --The 4 
data_valid lines going to the fabric 
  input2  : IN  STD_LOGIC_VECTOR(SWITCH_SIZE-1 DOWNTO 0);   --The 
LSBs of input_port_name 
  input3  : IN  STD_LOGIC_VECTOR(SWITCH_SIZE-1 DOWNTO 0);   --The 
MSB of input_port_name 
  input4  : IN  STD_LOGIC_VECTOR(SWITCH_SIZE-1 DOWNTO 0);   --The 4 
input frame pulse lines  
  cntrl   : IN  STD_LOGIC_VECTOR(GRANT_SIZE-1 DOWNTO 0);    --The 
grant vector used to control the fabric 
  output0 : OUT DATA_VECTOR;   --The 4 output data lines of type 
std_logic_vecotr(DATASIZE-1 DOWNTO 0) 
  output1 : OUT STD_LOGIC_VECTOR(SWITCH_SIZE-1 DOWNTO 0);   --
data_valid lines 
  output2 : OUT STD_LOGIC_VECTOR(SWITCH_SIZE-1 DOWNTO 0);   --The 
LSBs of port_name out of the fabric  
  output3 : OUT STD_LOGIC_VECTOR(SWITCH_SIZE-1 DOWNTO 0);  --The 
MSB of port_name out of the fabric 
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   output4 : OUT STD_LOGIC_VECTOR(SWITCH_SIZE-1 DOWNTO 0)   --the 
4 output frame pulses for the 8 output ports 
  ); 
 
 END COMPONENT; 
 
 
 SIGNAL arb_req_signal: STD_LOGIC_VECTOR (16 DOWNTO 1); 
 
 --grant_signal connects the grant output of the c_bar scheduler, which is a 64 
bit vector, to the cntrl input  of the fabric. 
 SIGNAL grant_signal  : STD_LOGIC_VECTOR (16 DOWNTO 1); --the grant signal 
coming from the scheduler 
 
 
 SIGNAL input_data  : DATA_VECTOR;    --Connects data_out coming out of port 
to fabric input 
 
    --output_data connects the fabric data output (output(i)) to output data line of the 
switch ((data_out_port(i))  
 SIGNAL output_data   : DATA_VECTOR;  
 
  --input_fp connects the outgoing data's fp comming from the input port 
(data_out_fp) to the fabric input 
 SIGNAL input_fp      : STD_LOGIC_VECTOR (4 DOWNTO 1); 
     
 --output_fp connects the fabric frame pulse output (output2) to frame pulse 
output of the switch ((fp_out_port(i)) 
 SIGNAL output_fp     : STD_LOGIC_VECTOR (4  DOWNTO 1); 
 
 --Reset signal for crossbar scheduler 
 SIGNAL resetb :STD_LOGIC; 
  
 SIGNAL input_port_name_bits1 : STD_LOGIC_VECTOR(3 DOWNTO 0); --Will be 
hard coded to "1100" 
 
 SIGNAL input_port_name_bits0 : STD_LOGIC_VECTOR(3 DOWNTO 0);--Will be 
hard coded to  "1010" 
 
 SIGNAL source_to_output1   : STD_LOGIC_VECTOR(1 DOWNTO 0); --used to 
build the source port number (incoming_port_to_output1) 
 
 SIGNAL source_to_output2   : STD_LOGIC_VECTOR(1 DOWNTO 0); --used to 
build the source port number (incoming_port_to_output2) 
 



101 

 SIGNAL source_to_output3   : STD_LOGIC_VECTOR(1 DOWNTO 0); --used to 
build the source port number (incoming_port_to_output3) 
 
 SIGNAL source_to_output4   : STD_LOGIC_VECTOR(1 DOWNTO 0); --used to 
build the source port number (incoming_port_to_output4) 
 
 
 
--Signals needed to carry control info to the output ports 
 
 --data_valid_signal connects output3 of the fabric to data_valid(i), which is the 
output of the switch 
 SIGNAL data_valid_signal        : STD_LOGIC_VECTOR (4 DOWNTO 1);  
 SIGNAL data_valid_to_fabric         : STD_LOGIC_VECTOR (4 DOWNTO 1);--
Connects data_valid comming from each port to input3 going to the fabric.  
 
 SIGNAL port_name_bit0 : STD_LOGIC_VECTOR (4 DOWNTO 1);--Connected 
to the output4 of the fabric  
 SIGNAL port_name_bit1 : STD_LOGIC_VECTOR (4 DOWNTO 1);--Connected 
to the output5 of the fabric   
 
   
 SIGNAL  packet_clock : STD_LOGIC; 
 
   
BEGIN 
            --Output data lines of the switch are constructed here 
  --output_data is a vector that connects outgoing data from the fabric to 
outgoing data of the switch 
  data_out_port1 <= output_data(0);        
  data_out_port2 <= output_data(1);        
  data_out_port3 <= output_data(2);      
  data_out_port4 <= output_data(3);  
 
  --Outgoing frame pulse lines of the switch are constructed here 
  --output_fp is a vector that connects the outgoing frame pulse from the 
fabric to outgoing fp of the switch 
  fp_out_port1 <= output_fp(1);    
  fp_out_port2 <= output_fp(2);  
  fp_out_port3 <= output_fp(3);  
  fp_out_port4 <= output_fp(4);  
 
  data_valid1 <= data_valid_signal(1);  
  data_valid2 <= data_valid_signal(2); 
  data_valid3 <= data_valid_signal(3); 
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  data_valid4 <= data_valid_signal(4); 
   
  source_to_output1 <= port_name_bit1(1) & port_name_bit0(1); 
  source_to_output2 <= port_name_bit1(2) & port_name_bit0(2); 
  source_to_output3 <= port_name_bit1(3) & port_name_bit0(3); 
  source_to_output4 <= port_name_bit1(4) & port_name_bit0(4); 
   
  incoming_port_to_output1 <=  source_to_output1 + "001"; 
  incoming_port_to_output2 <=  source_to_output2 + "001"; 
  incoming_port_to_output3 <=  source_to_output3 + "001"; 
  incoming_port_to_output4 <=  source_to_output4 + "001"; 
 
   
--These vectors are connected to the fabric and according to the configuration of the 
fabric and the grants that are given, the number of the input port that was granted a 
request comes to the output of the fabric 
  input_port_name_bits1 <= "1100"; 
  input_port_name_bits0 <= "1010"; 
   
  request <= arb_ req_signal; 
  grant   <= grant_signal; 
  resetb  <= NOT global_reset; 
 
 
--**************** Component instantiation ***************************** 
 
 --Instances of ports 1 to 4 
        port1: voq_input 
 
  GENERIC MAP (   
   TRANSLATION_TABLE => "lut1.mif" 
       ) 
 
  PORT MAP (   

     data_in                  => data_in1, 
      clock                      => clock, 
      fp            => fp1, 
             global_reset            => global_reset,    

       reset            => reset,  
      queue3_out           => queue3_out1, 
      free_space_out       => free_space_out1, 

     ready_flag_out       => ready_flag_out1, 
      port_grant              => grant_signal (4 downto 1),        
      parallel_data_out   => input_data(0),      
      port_request          => arb_req_signal (4 downto 1),  
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        c_bar_clock           => packet_clock,        
    data_out_fp             => input_fp(1),  

      data_valid              => data_valid_to_fabric(1)  
    ); 
   
 
          port2: voq_input 
 
   GENERIC MAP (  
   TRANSLATION_TABLE => "lut2.mif" 
    ) 
 
  PORT MAP (   
         data_in        => data_in2, 
         clock         => clock,  
         fp          => fp2, 
                        global_reset   => global_reset,    
               reset      => reset,  
               port_grant     => grant_signal (8 downto 5),        
              parallel_data_out => input_data(1),      
               port_request   => arb_req_signal (8 downto 5),       
            data_out_fp    => input_fp(2),  
        data_valid     => data_valid_ to_fabric(2)  
       ); 
 
 
    port3: voq_input 
  GENERIC MAP (  
   TRANSLATION_TABLE => "lut3.mif" 
    ) 
 
  PORT MAP (   
     data_in      => data_in3, 
     clock       => clock,  
     fp        => fp3, 
                    global_reset => global_reset,    
          reset    => reset,  
           port_grant   => grant_signal (12 downto 9),        
           parallel_data_out     => input_data(2),      
           port_request => arb_req_signal (12 downto 9),  
    data_out_fp  => input_fp(3), 
    data_valid   => data_valid_to_fabric(3)               
      ); 
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   port4: voq_input  
 
      GENERIC MAP (  
  TRANSLATION_TABLE => "lut4.mif" 
     ) 
 
       PORT MAP (   
    data_in      => data_in4, 
               clock       => clock,  
    fp        => fp4, 
                   global_reset => global_reset,    
          reset    => reset,  
           port_grant   => grant_signal (16 downto 13),         
           parallel_data_out     => input_data(3),      
           port_request => arb_req_signal (16 downto 13),        
       data_out_fp  => input_fp(4),  
   data_valid   => data_valid_to_fabric(4)     
   ); 
 
 
 
 switch_c_bar: voq_c_bar 
 
  PORT MAP ( 
     arb_req => arb_req_signal, 
      clk     => packet_clock, 
     reset   => resetb, 
      grant  => grant_signal, 
      P  => P 
       ); 
 
 
  --Instance of the fabric 
 data_fabric: voq_fabric 
     
  PORT MAP ( 
       input0  => input_data,  
       input1  => input_fp,   
       input2  => data_valid_to_fabric, 
       input3  => input_port_name_bits0, 
       input4  => input_port_name_bits1, 
       cntrl   => grant_signal,    
       output0 => output_data, 
       output1 => output_fp, 
       output2 => data_valid_signal, 
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       output3 => port_name_bit0, 
       output4 => port_name_bit1 
    ); 
 
 
END structure; 
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Appendix C.2. voq_input.vhd 

VHDL source code for the input port module of the switch 
 
-- voq_input.vhd  
-- Maryam Keyvani 
-- Commuication Networks Laboratory, Simon Fraser University 
-- August 2001 
-- This file contains VHDL description of the input port modules used in the voq_switch 
project. 
-- The input port module, receives the incoming packets, stores them in buffer, looks up packet 
header, 
-- determines destination port number, updates packet header, sends a request for the 
destination port  
-- to the scheduler, and sends the packet out once a grant is received.  
 
 
LIBRARY ieee; 
USE ieee.std_logic_1164.ALL; 
USE ieee.std_logic_arith.ALL; 
USE ieee.std_logic_unsigned.ALL; 
LIBRARY lpm; 
USE lpm.lpm_components.ALL; 
USE work.voq_input_package.ALL; 
 
ENTITY voq_input IS 
  
 GENERIC(    PACKET_SIZE                      : INTEGER:= 53;   --Port is set to handle 
packets of size 53 bytes 
   COUNTER_53_SIZE         : INTEGER:= 6;    --Counter_53 is a 6 bit 
counter.  
   DATA_SIZE         : INTEGER:= 8;    --Each data byte is 8 bits 
long 
   BUFFER_SIZE         : INTEGER:= 848;  --Number of words in buffer 
   BUFFER_WIDTHU       : INTEGER:= 10;   --Recommeneded value is 
CEIL(LOG2(BUFFER_SIZE)) 
   NO_OF_BLOCKS   : INTEGER:= 16;   --Has to be 
BUFFER_SIZE/PACKET_SIZE 
   NO_OF_QUEUES   : INTEGER:= 4;    --This value has to be equal 
to the number of output ports  
   NO_OF_PORTS    : INTEGER:= 4;  
   VCI_VECTOR_SIZE     : INTEGER:= 24;   
   VCI_SIZE    : INTEGER:= 16;   --Each VCI is 2 Bytes. 
   OUTPUT_PORT_SIZE       : INTEGER:= 2;    --2 bits used to address an 
output port 
   LUT_OUTPUT_PORT_SIZE: INTEGER:= 4; 
   TRANSLATION_TABLE      : STRING := "lut1.mif"  
      ); 
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 PORT( 
  --Test Signals for simulation purposes 
   state            :OUT   INTEGER RANGE 0 TO 7; 
   cntrl_state      :OUT   INTEGER  RANGE 0 TO 7; 
   DQ_state         : OUT   INTEGER  RANGE 0 TO 15;  
 
   count53_out    : OUT   STD_LOGIC_VECTOR(COUNTER_53_SIZE-1 DOWNTO 
0); 
   c53sset_out     : OUT   STD_LOGIC; 
 
      input_vci_out             : OUT  STD_LOGIC_VECTOR (VCI_SIZE-1 DOWNTO 0); 
--Signal that goes to LUT to be looked up    
   output_vci_out             : OUT  STD_LOGIC_VECTOR (VCI_SIZE-1 DOWNTO 0);  
--The updated VCI  
   output_port_no_out : OUT   STD_LOGIC_VECTOR 
(LUT_OUTPUT_PORT_SIZE-1 DOWNTO 0); --The destination output port  
      out_vci_ready_out              : OUT  STD_LOGIC; -- Indicates whether output VCI 
and port no. are ready for pickup 
   destination_port_no_out: OUT STD_LOGIC_VECTOR(OUTPUT_PORT_SIZE-1 
DOWNTO 0);  
    
   vci_in_vector_out : OUT  VCI_VECTOR_TYPE; 
   VCI_reg_en_out  : OUT STD_LOGIC; 
 
   -- Buffer signals 
   buffer_output  : OUT    STD_LOGIC_VECTOR(DATA_SIZE-1 DOWNTO 
0); 
                         wr_address_signal_out   : OUT    STD_LOGIC_VECTOR(BUFFER_WIDTHU-1 
DOWNTO 0); 
   rd_address_signal_out  : OUT    STD_LOGIC_VECTOR(BUFFER_WIDTHU-1 
DOWNTO 0); 
   wr_en_signal_out : OUT    STD_LOGIC; 
   rd_en_signal_out : OUT  STD_LOGIC; 
 
 
   dq_count53_out : OUT   STD_LOGIC_VECTOR (COUNTER_53_SIZE-1 
DOWNTO 0); 
   dq_count53_temp_out   : OUT   STD_LOGIC_VECTOR (COUNTER_53_SIZE-1 
DOWNTO 0); 
 
  
        --linked lists 
   queue0_head_out : OUT   POINTER; 
   queue0_tail_out : OUT   POINTER; 
   queue0_empty_out : OUT  STD_LOGIC; 
   queue0_out  : OUT  QUEUE_DESCRIPTOR;  
   queue1_out  : OUT  QUEUE_DESCRIPTOR; 
   queue2_out  : OUT   QUEUE_DESCRIPTOR; 
   queue3_out  : OUT   QUEUE_DESCRIPTOR; 
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   free_space_out  : OUT   QUEUE_DESCRIPTOR; 
   free_space_head_out : OUT   POINTER; 
   free_space_tail_out : OUT   POINTER; 
   free_space_empty_out : OUT  STD_LOGIC; 
   next_register_out   : OUT NEXT_REGISTER_TYPE; 
   ready_flag_out  : OUT STD_LOGIC_VECTOR (NO_OF_BLOCKS-1 
DOWNTO 0); 
 
   read_pointer_out    : OUT INTEGER RANGE 0 to 15;  --Points to the block 
that has to be read 
   read_queue_out : OUT INTEGER RANGE 0 to 3;   --Is the queue number 
that is being read from 
   queue_no_out  : OUT INTEGER RANGE 0 to 3;   --Is the queue 
number that is being written to 
 
   
  --Actual entity ports 
   data_in   : IN STD_LOGIC_VECTOR (DATA_SIZE-1 
DOWNTO 0); --Prallel data byte input 
   clock   : IN STD_LOGIC;    --Input clock to the port 
   c_bar_clock  : OUT STD_LOGIC;     --Used for loading request, 
and issuing grants  
   fp   : IN STD_LOGIC;    --Input frame pulse to the 
port 
   global_reset  : IN STD_LOGIC;    --Resets all the counters, 
registers and the BUFFER 
   reset   : IN  STD_LOGIC;    --Resets everything but the 
BUFFER 
   port_grant                   : IN    STD_LOGIC_VECTOR(3 DOWNTO 0); --The grant 
vector for the port 
   port_request                  : OUT   STD_LOGIC_VECTOR(3 DOWNTO 0); --The 
request vector for the port 
   data_out_fp              : OUT   STD_LOGIC;     --Frame pulse showing the 
beginning of the outgoing packet 
   data_valid   : OUT   STD_LOGIC;    --is 1 when buffer is 
dequeuing data  
   parallel_data_out  : OUT   STD_LOGIC_VECTOR(DATA_SIZE-1 DOWNTO 
0) --Prallel data byte output 
      ); 
 
END voq_input; 
 
ARCHITECTURE behav OF voq_input IS 
   
 --Component Declaration 
 
 COMPONENT LUT 
   
  GENERIC (VCI_SIZE: INTEGER := 16; 
        PORT_SIZE: INTEGER := 4; 
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        ROM_WIDTH   : INTEGER := 36; --width of the look up table 
        ROM_WIDTHAD         : INTEGER := 3;  --Address width of 
LUT=log2(number of rows in table)  
        TRANSLATION_TABLE: STRING  
    ); 
 
  PORT (    input_vci          : IN STD_LOGIC_VECTOR (VCI_SIZE-1 downto 0); 
       output_port_no: OUT   STD_LOGIC_VECTOR (PORT_SIZE-1 downto 0 
); 
       output_vci   : OUT   STD_LOGIC_VECTOR (VCI_SIZE-1 downto 0); 
       clock   : IN  STD_LOGIC; 
      renable  : OUT   STD_LOGIC  
    ); 
 
      END COMPONENT; 
  
 
 FUNCTION ENCODE (s: STD_LOGIC_VECTOR (3 DOWNTO 0)) --Used to translate 
grant signal to a queue number 
     RETURN INTEGER IS 
   
  VARIABLE INT: INTEGER RANGE 0 to 3; 
  BEGIN 
    
   CASE s IS 
     WHEN "1000" => INT := 3; 
     WHEN "0100" => INT := 2; 
     WHEN "0010" => INT := 1; 
     WHEN "0001" => INT := 0; 
     WHEN OTHERS => NULL; 
   END CASE; 
  RETURN INT; 
 END FUNCTION;   
------------------------------------------------------------------------------------------------------ 
--************************************* SIGNALS ************************************************* 
---------------------------------------------------------------------------------------------------- 
 -- BUFFER signals  
 SIGNAL rd_en_signal   : STD_LOGIC; 
 SIGNAL wr_en_signal   : STD_LOGIC; 
 SIGNAL RAM_out   : STD_LOGIC_VECTOR(DATA_SIZE-1 DOWNTO 
0); 
 SIGNAL rd_address_signal   : STD_LOGIC_VECTOR(BUFFER_WIDTHU-1 DOWNTO 0); 
 SIGNAL wr_address_signal   : STD_LOGIC_VECTOR(BUFFER_WIDTHU-1 DOWNTO 0); 
 
 -- VCI registers and signals 
 SIGNAL VCI_reg_en   : STD_LOGIC;               --Loads VCI registers with VCI bytes 
 SIGNAL VCI_reg0_out      : BYTE;                    --Output of the first VCI register 
 SIGNAL VCI_reg1_out      : BYTE;                    --Output of the second VCI register 
 SIGNAL VCI_reg2_out      : BYTE;                    --Output of the third VCI register 
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 SIGNAL vci_in_vector       : VCI_VECTOR_TYPE;         --Where the incoming vci vector is 
stored 
 SIGNAL vci_out_vector     : VCI_VECTOR_ARRAY_TYPE;   --Where the updated vci is 
stored. One exists for each block. 
 SIGNAL input_vci             : STD_LOGIC_VECTOR (VCI_SIZE-1 DOWNTO 0);  --
Connected to input of LUT 
  
 
 --registers and flags 
 SIGNAL next_register : NEXT_REGISTER_TYPE;  --The next block in the linked list  
 SIGNAL ready_flag : STD_LOGIC_VECTOR (NO_OF_BLOCKS-1 DOWNTO 0); --
Shows a complete packet has been written 
 
 --Queue linked list pointers 
 SIGNAL temp  : POINTER;                --Latches the value of free_space.head 
 SIGNAL free_space : QUEUE_DESCRIPTOR;       --The free space linked list.  
 SIGNAL queue  : QUEUE_TYPE;             --An array of all 4 linked lists(queues) 
 SIGNAL read_pointer : INTEGER RANGE 0 to 15;  --Points to the block that has to be 
read 
 SIGNAL read_queue : INTEGER RANGE 0 to 3;   --Is the queue number that is 
being read from 
 SIGNAL queue_no : INTEGER RANGE 0 to 3;   --Is the queue number that is 
being written to 
 
 
 SIGNAL  HIGH  : STD_LOGIC; 
 SIGNAL  LOW    : STD_LOGIC; 
 
 --Counter_53 Signals 
 SIGNAL count53       : STD_LOGIC_VECTOR (COUNTER_53_SIZE-1 DOWNTO 0);  --6 
Bit output of counter 53 
 SIGNAL c53sset        : STD_LOGIC;                     --Synchronous clear for counter_53 
 
 --Dequeue counter 53 Signals 
 SIGNAL dq_c53aclr   : STD_LOGIC;                        --Asynchronous clear for 
dq_counter53 
 SIGNAL dq_count53   : STD_LOGIC_VECTOR (COUNTER_53_SIZE-1 
DOWNTO 0); --6 Bit output of dq counter 53 
 SIGNAL dq_c53aset                 : STD_LOGIC;                        --Is always set to LOW 
 SIGNAL data_valid_signal          : STD_LOGIC;                        --Shows when the data 
on the output line is valid 
 SIGNAL dq_count53_temp         : STD_LOGIC_VECTOR (COUNTER_53_SIZE-1 
DOWNTO 0);--Holds dp_count53 value for 2 extra clocks 
 SIGNAL dq_count53_temp_next : STD_LOGIC_VECTOR (COUNTER_53_SIZE-1 
DOWNTO 0); 
 SIGNAL count59  : STD_LOGIC_VECTOR (COUNTER_53_SIZE-1 
DOWNTO 0);--Used to construct of c_bar_clock 
         
  
 --LUT Signals 
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 SIGNAL output_port_no              : STD_LOGIC_VECTOR 
(LUT_OUTPUT_PORT_SIZE-1 DOWNTO 0); --The destination output port number  
 SIGNAL  output_vci              : STD_LOGIC_VECTOR (VCI_SIZE-1 DOWNTO 0);  --
The VCI to be placed in the outgoing packet   
 SIGNAL  out_vci_ready               : STD_LOGIC; --When 1, output VCI and port no. are 
ready for pickup 
 SIGNAL  lut_clock                      : STD_LOGIC; --The clock that will be connected to 
LUT through lut_run clock. 
 SIGNAL  lut_clock_signal           : STD_LOGIC; 
 
 --State Machines  
 SIGNAL current_state          : INTEGER RANGE 0 TO 7; 
 SIGNAL next_state               : INTEGER RANGE 0 TO 7; 
 SIGNAL cntrl_current_state  : INTEGER RANGE 0 TO 7; 
 SIGNAL cntrl_next_state       : INTEGER RANGE 0 TO 7; 
 SIGNAL DQ_current_state     : INTEGER RANGE 0 TO 15; 
 SIGNAL DQ_next_state         : INTEGER RANGE 0 TO 15; 
  
 
 --Processor Specific Signals 
 SIGNAL destination_port_no   : STD_LOGIC_VECTOR(OUTPUT_PORT_SIZE -1 
DOWNTO 0); --The destination port number. 
 SIGNAL port_req           : STD_LOGIC_VECTOR(NO_OF_PORTS-1 DOWNTO 0); --
The request vector to be sent out 
 SIGNAL parallel_data           : STD_LOGIC_VECTOR(DATA_SIZE-1 DOWNTO 0);   --
Data bytes going out of voq_input 
 SIGNAL data_out_fp_signal     : STD_LOGIC;   --Frame pulse output   
 
 SIGNAL request_clock          : STD_LOGIC;   --Same as c_bar_clock  
 
BEGIN 
 
 -- Output signal assignments for test and simulation purpose 
 state <= current_state; 
 count53_out <= count53; 
 c53sset_out <= c53sset; 
            output_port_no_out <= output_port_no;  
 output_vci_out <= output_vci;      
 out_vci_ready_out <= out_vci_ready; 
 input_vci_out <= input_vci; 
 destination_port_no_out <= destination_port_no; 
 
 vci_in_vector_out <= vci_in_vector; 
 VCI_reg_en_out   <= VCI_reg_en; 
 
  
 dq_count53_out <= dq_count53; 
 dq_count53_temp_out <= dq_count53_temp; 
            parallel_data_out <= parallel_data; 
 data_out_fp <= data_out_fp_signal; 
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 data_valid <= data_valid_signal; 
 cntrl_state <= cntrl_current_state; 
 DQ_state    <= DQ_current_state; 
 
 --linked lists 
 queue0_head_out  <= queue(0).head; 
 queue0_tail_out   <= queue(0).tail; 
 queue0_empty_out   <= queue(0).empty; 
 queue0_out   <= queue(0); 
 queue1_out   <= queue(1); 
 queue2_out   <= queue(2); 
 queue3_out         <= queue(3); 
 free_space_out        <= free_space; 
 free_space_head_out      <= free_space.head; 
 free_space_tail_out    <= free_space.tail; 
 free_space_empty_out    <= free_space.empty; 
 next_register_out      <= next_register; 
 ready_flag_out  <= ready_flag;  
 
 read_queue_out   <= read_queue; 
 queue_no_out   <= queue_no; 
 read_pointer_out  <= read_pointer; 
 
 --Buffer signals and ports 
 wr_address_signal_out   <= wr_address_signal; 
     rd_address_signal_out   <= rd_address_signal; 
     wr_en_signal_out  <= wr_en_signal; 
 rd_en_signal_out  <= rd_en_signal; 
 buffer_output    <= RAM_out; 
   
 c_bar_clock                    <= request_clock; 
 
 
 Write_Seq_SM :  PROCESS (clock) 
             
  BEGIN --Process 
   IF (clock='0' AND clock'event) THEN --At the falling edge of clock next 
state is calculated 
      IF ((global_reset = '0') AND (reset = '0')) THEN  
  
         CASE current_state IS 
      
              WHEN 0 =>   

              wr_en_signal <= '0'; 
      VCI_reg_en <= '0'; 
   --If new packet coming and buffer has free space 
      IF ( fp = '1' ) AND (free_space.empty = '0') THEN   

      next_state <= 1; 
          temp <= free_space.head; --Keep first byte of new packet in 
a temp  
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    c53sset <= '0';--start counting if there is a frame pulse 
 
      ELSE 
                    c53sset <= '1'; 
                                                    END IF;  
    
 
--This is the RAM address where the data byte is written     
              WHEN 1 => 

               wr_address_signal <= count53 + ((free_space.head)* "110101");  
                            wr_en_signal <= '1';      --Write the one byte of data that is 

coming in 
            
       IF (count53 /= "110100") THEN --Continue reading the 
remaining bits of packet  
           next_state <= 1; 
        ELSE                          --If the whole packet has been 
received 

              next_state <= 0;   
                c53sset <= '1'; 
        END IF; 
    

-- Send VCI bytes (bytes 2,3 and 4 of the header) to the VCI registers 
          IF ((count53 = "00001") OR (count53 = "00010") OR (count53 = 
"000011")) THEN   

         
          VCI_reg_en <= '1'; 

       ELSE  
             VCI_reg_en <= '0'; 
       END IF; 
            
    WHEN OTHERS => NULL; 
 
         END CASE; 
       
   ELSE  --In case of reset or if buffer is full, drop the incoming packet 

      IF ( (global_reset = '1') OR (reset = '1') OR (free_space.empty = '1'))   
THEN 

              next_state <= 0; 
              wr_en_signal <= '0'; 
              c53sset <= '1'; 
         END IF; 
   END IF; 
     END IF; 
 END PROCESS; 
 
 
 
 PROCESS (clock)  --State update process 
     BEGIN  
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         IF ( (global_reset = '1') OR (reset = '1')) THEN   --check for reset 
  current_state <= 0; 
  cntrl_current_state <= 0; 
  DQ_current_state <= 0; 
  dq_count53_temp <= "000000"; 
 
         ELSE  
  IF (clock = '1' AND clock'event) THEN  --At the rising edge of clock, update 
states 
      current_state <= next_state; 
      cntrl_current_state <= cntrl_next_state; 
      DQ_current_state <= DQ_next_state; 
      dq_count53_temp <= dq_count53_temp_next; 
                    END IF; 
        END IF; 
 END PROCESS; 
 
 
 
 VCI_SM : PROCESS (clock) 
       BEGIN -- Process 
         IF (clock = '0' AND clock'event) THEN  --cntrl_next_state is determined on falling 
edge 
             IF ( (global_reset = '0') AND (reset = '0')) THEN  
      CASE cntrl_current_state IS 
   WHEN 0 =>  
        IF (count53 = "000011") THEN --If VCI bytes are already input 
           cntrl_next_state <= 1; 
        ELSE 
           cntrl_next_state <= 0; 
        END IF; 
            
   WHEN 1 => 
        cntrl_next_state <= 2; 
        input_vci <= vci_in_vector (19 DOWNTO 4); --Send input VCI to LUT  
 
   WHEN 2 => 
        cntrl_next_state <= 3; --Wait for LUT to look up the header 
          
   WHEN 3 => --IF LUT has output a valid VCI update vci_out_vector 
        IF (out_vci_ready = '1') THEN  
               vci_out_vector (CONV_INTEGER (free_space.head)) (23 DOWNTO 
20) <= vci_in_vector (23 DOWNTO 20); 
            vci_out_vector (CONV_INTEGER (free_space.head)) (19 DOWNTO 
4) <= output_vci; 
            vci_out_vector (CONV_INTEGER (free_space.head)) (3 DOWNTO 
0) <= vci_in_vector (3 DOWNTO 0); 
  --Retrieve destination port number from LUT 
             destination_port_no <= output_port_no (1 DOWNTO 0); 
           cntrl_next_state <= 4; 
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       ELSE 
  --If packet is fully written and no valid vci is found in LUT,return to state0  
           IF (count53 = "110100") THEN  
               cntrl_next_state <= 0; 
           ELSE  
               cntrl_next_state <= 3; 
           END IF; 
                  END IF; 
 
   WHEN 4 => 
    cntrl_next_state <= 0;  
           
               WHEN OTHERS => NULL; 
 
      END CASE; 
 
     ELSIF ( (global_reset = '1') OR (reset = '1') ) THEN  
  cntrl_next_state <= 0; 
     END IF; 

END IF; 
    END PROCESS; 
  
 
 Read_seq_SM: PROCESS (clock) 
      BEGIN --Process  
          IF (clock = '0' AND clock'event) THEN --cntrl_next_state is determined on the 
falling edge 
  IF ( (global_reset = '0') AND (reset = '0')) AND (port_grant /= "0000") THEN  
 --RAM address where bytes are read from is the head of read_queue plus counter offset
       
      rd_address_signal <= ((queue(read_queue).head * "110101") + dq_count53); 
 
      CASE DQ_current_state IS 
 
           WHEN 0 => --Initial state 
   DQ_next_state <= 1; 
   rd_en_signal <= '0';             --Don't read from the buffer 
   dq_c53aclr <= '1';               --Clear the counter   
   dq_count53_temp_next <= "000000";--Clear the temporary dq_counter 
value 
        
          WHEN 1 =>  
   rd_en_signal <= '1'; --Start reading from buffer   
   dq_c53aclr<= '0';       --The dq_counter statrs counting 
   DQ_next_state <= 2; 
  --read_pointer points to the block that is being read 
   read_pointer <= CONV_INTEGER (queue(read_queue).head); 
   data_out_fp_signal <= '1'; --Make output frame pulse 
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          WHEN 2 => 
   DQ_next_state <= 3;     --Wait for data byte to be read from RAM 
 
         
        WHEN 3 => 
   --First byte of output packet is read from buffer 
   parallel_data <= RAM_out;   
   DQ_next_state <= 4; 
   data_out_fp_signal <= '0'; 
   data_valid_signal <= '1'; --Data on output port is valid 
 
            
         WHEN 4 => 
  --Second, third, and fourth bytes of output packet are read from vci_out_vector 
   DQ_next_state <= 5; 
   parallel_data <= vci_out_vector(read_pointer)(23 downto 16); 
 
 
        WHEN 5 =>  
   DQ_next_state <= 6; 
   parallel_data <= vci_out_vector(read_pointer)(15 downto 8); 
 
 
        WHEN 6 => 
   DQ_next_state <= 7; 
   parallel_data <= vci_out_vector(read_pointer)(7 downto 0); 
 
          WHEN 7 =>  
   IF (dq_count53 /= "110111") THEN  
  -- do nothing i.e. remain in this state 
   ELSE 
       dq_count53_temp_next <= dq_count53; --Keep dq_counter value for 
two more cycles 
       dq_c53aclr <= '1'; --clear the dq_counter 
       data_valid_signal <= '0'; 
           rd_en_signal <= '0'; 
       DQ_next_state <= 8; 
          
   END IF; 
   parallel_data <= RAM_out; --5th to 53rd byte of outgoing packet is read 
from buffer 
 
 
      WHEN 8 => 
   DQ_next_state <= 9;  --if count53 and dq_count53 reach their maximum 
at the same time the linked lists are updated first for write and then for read operation 
 
 
      WHEN 9 => 
   DQ_next_state <= 0; 
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   dq_count53_temp_next <= "000000"; 
         
 
        WHEN OTHERS => NULL; 
 
   END CASE; 
    
         ELSE 
  rd_en_signal <= '0'; 
  parallel_data <= "00000000";      
        END IF; 
               END IF; 
     
            END PROCESS; 
 
   
 
 Linked_list_update: PROCESS (clock) 
 
     BEGIN 
 --After writing a packet 
         IF (clock='0' AND clock'event) THEN  
 --If a full packet is written 
              IF (global_reset = '0') AND (reset = '0') AND (current_state = 1) AND (count53 = 
"110100") THEN 
      IF  queue(queue_no).empty = '1' THEN         --If queue(i) was empty 
           queue(queue_no).head <= free_space.head; --New head of queue(i) 
           queue(queue_no).empty <= '0';            --queue(i) is not empty any more 
      ELSE 
           next_register(CONV_INTEGER (queue(queue_no).tail)) <= temp; 
      END IF; 
        --The packet written always becomes the new tail of the queue, no matter if it is empty or 
not 
      queue(queue_no).tail <= free_space.head; 
     --This flag is one when the whole packet has been written and packet is ready to be read  
       ready_flag(CONV_INTEGER (temp)) <= '1';  
 
     IF (free_space.head = free_space.tail) THEN --If it was the last space in 
free_space  
         free_space.empty <= '1'; --free_space is empty from now on 
     ELSIF free_space.empty = '0' THEN           --If free_space is multi-element 
 --Remove Multi Element 
         free_space.head <= next_register(CONV_INTEGER (temp)); 
     END IF; 
  
     

--After reading a packet 
           ELSIF (global_reset = '0') AND (reset = '0') AND (DQ_current_state = 8) AND 
(dq_count53_temp = "110111") THEN  
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  IF queue(read_queue).head = queue(read_queue).tail THEN --If it was the last 
element in queue(i) 
       queue(read_queue).empty <= '1';                     --queue(i) is empty from now 
on     
  ELSE 
  -- remove_normal 
       queue(read_queue).head <= next_register(CONV_INTEGER 
(queue(read_queue).head)); 
  END IF; 
 
--Whether free_space is empty or not, when a packet is read it will be added to the tail of the 
free_space 
  free_space.tail <= queue(read_queue).head;  
 --When the whole packet it read, ready_flag has to be zero 
  ready_flag (read_pointer) <= '0';  
    
  IF free_space.empty = '0' THEN  --remove_normal 
 --The head of queue(i) has to point to next block in that queue 
     next_register(CONV_INTEGER (free_space.tail)) <= queue(read_queue).head;  
  ELSE --If free_space was empty 
 --one element added to the empty free_space will be both its head and tail 
      free_space.head  <= queue(read_queue).head;  
 --free_space is not empty any more as soon as a packet is read 
      free_space.empty <= '0';  
  END IF; 
 
         ELSIF (global_reset = '1') THEN   --Check for reset 
--free_space.head points to first, and free_space.tail points to last block of buffer 
   free_space.head <= "0000"; 
   free_space.tail    <= "1111"; 
   free_space.empty   <= '0';    
 
         --Each block pointing to the next block at startup 
   next_register(15) <= "0000"; 
   next_register(14) <= "1111";  
   next_register(13) <= "1110";  
   next_register(12) <= "1101";  
   next_register(11) <= "1100";  
   next_register(10) <= "1011";  
   next_register(9)  <= "1010";  
   next_register(8)  <= "1001"; 
   next_register(7)  <= "1000"; 
   next_register(6)  <= "0111"; 
   next_register(5)  <= "0110";  
   next_register(4)  <= "0101"; 
   next_register(3)  <= "0100"; 
   next_register(2)  <= "0011"; 
   next_register(1)  <= "0010"; 
   next_register(0)  <= "0001";  
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--Queues are empty at startup. Head and tail of all queues is pointing to first block 
   queue(3).head <= "0000"; 
   queue(3).tail <= "0000"; 
   queue(3).empty <= '1';   
      
   queue(2).head <= "0000"; 
   queue(2).tail <= "0000"; 
   queue(2).empty <= '1';  
 
   queue(1).head <= "0000"; 
   queue(1).tail <= "0000"; 
   queue(1).empty <= '1';  
 

  queue(0).head <= "0000"; 
   queue(0).tail <= "0000"; 
   queue(0).empty <= '1';  
          
   ready_flag <= "0000000000000000"; 
 
          END IF; 
    
     END IF; 
    
 END PROCESS; 
            
      
  
--This process builds the 59 time slower clock (c_bar_clock output) 
       
 clock_request_process: PROCESS (clock) 
     BEGIN 
        IF (clock = '0' and clock'event) THEN  
            IF (count59 = "000001")  THEN  
                request_clock <= '1'; 
            ELSE 
     request_clock <= '0'; 
            END IF; 
        END IF;    
 END PROCESS;  
 
 

--port_request output is updated at rising edge of c_bar_clock output 
request_process: PROCESS (request_clock) 

     BEGIN 
         IF (request_clock = '1' and request_clock'event) THEN  
  port_request <= port_req; 
         END IF; 
 
 END PROCESS; 
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--  Selected Signal Assignment 
 
 HIGH        <= '1'; 
 LOW         <= '0'; 
 lut_clock_signal <= clock; --Faster clocks may replace clock so that LUT can 
function faster 
 dq_c53aset    <= '0'; 
  
 vci_in_vector  <= VCI_reg0_out & VCI_reg1_out & VCI_reg2_out ; 
 --As long as a queue is not empty, there is request for that queue's corresponding 
output 
 port_req  <= (not queue(3).empty) & (not queue(2).empty) & (not queue(1).empty) 
& (not queue(0).empty); 
 queue_no  <= CONV_INTEGER (destination_port_no); 
 read_queue       <= ENCODE (port_grant);     --read_queue is the queue that has 
received grant 
    
 
 
 
--***************************** Component instantiation ******************************************* 
 counter_53 : lpm_counter 
     GENERIC MAP (LPM_WIDTH => COUNTER_53_SIZE) 
   
     PORT MAP    (clock  => clock, 
               aset   => c53sset, 
               q      => count53 
               ); 
 
  
 dq_counter53 : lpm_counter 
        GENERIC MAP (LPM_WIDTH => COUNTER_53_SIZE) 
   
        PORT MAP    (clock  => clock, 
              aclr   => dq_c53aclr, 
              aset   => dq_c53aset, 
     --      cnt_en => dq_count_en, 
              q      => dq_count53 
              ); 
  
 clock_gen_counter: lpm_counter 
     GENERIC MAP ( LPM_WIDTH => COUNTER_53_SIZE, 
        LPM_MODULUS => 59 
        ) 
   
        PORT MAP    (clock  => clock, 
              aclr   => reset, 
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              aset   => LOW, 
              q      => count59 
               ); 
  
 
 
 bufferx  : lpm_RAM_dp 
        GENERIC MAP ( LPM_WIDTH => DATA_SIZE, 
            LPM_WIDTHAD => BUFFER_WIDTHU, 
                      LPM_NUMWORDS => BUFFER_SIZE 
                                      ) 
   
     PORT MAP ( rdaddress   => rd_address_signal, 
            wraddress   => wr_address_signal,  
             rdclock       => clock, 
            wrclock      => clock, 

                       rden          => rd_en_signal, 
            wren          => wr_en_signal,  

                      data          => data_in, 
                          q           => RAM_out 
             ); 
     
      
 
 port_lut  : LUT 
    GENERIC MAP (VCI_SIZE  => VCI_SIZE, 
      PORT_SIZE => LUT_OUTPUT_PORT_SIZE, 
      TRANSLATION_TABLE => TRANSLATION_TABLE
  
       ) 
 
    PORT MAP (input_vci  => input_vci, 
       output_port_no => output_port_no, 
       output_vci  => output_vci, 
       clock    => lut_clock_signal, 
       renable  => out_vci_ready 
      ); 
  
 VCI_register2: lpm_ff 
        GENERIC MAP ( LPM_WIDTH => DATA_SIZE ) 
 
        PORT MAP ( data     => data_in, 
                    clock    => clock, 
              enable  => VCI_reg_en, 
                    q          => VCI_reg2_out  
              ); 
      
      
 
 VCI_register1: lpm_ff 
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        GENERIC MAP ( LPM_WIDTH => DATA_SIZE ) 
 
        PORT MAP ( data    => VCI_reg2_out, 
                    clock   => clock, 
              enable => VCI_reg_en, 
                    q         => VCI_reg1_out  
            ); 
     
 
 VCI_register0: lpm_ff 
        GENERIC MAP ( LPM_WIDTH => DATA_SIZE ) 
 
        PORT MAP ( data    => VCI_reg1_out, 
                    clock   => clock, 
              enable => VCI_reg_en, 
                    q         => VCI_reg0_out  
            ); 
      
 
END behav; 
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Appendix C.3. voq_c_bar.vhd 

VHDL source code for the crossbar scheduler module of the switch 
 
 
-- voq_c_bar.vhd 
-- Maryam Keyvani 
-- Communication Networks Laboratory, Simon Fraser University 
-- August 2001 
-- This file is the VHDL source code for a DPA scheduler for a 4x4 ATM switch 
 
 
LIBRARY ieee; 
USE ieee.std_logic_1164.ALL; 
USE ieee.std_logic_arith.ALL; 
USE ieee.std_logic_unsigned.ALL; 
 
LIBRARY lpm; 
USE lpm.lpm_components.ALL; 
 
USE work.voq_input_package.ALL; 
 
 
 
ENTITY voq_c_bar IS 
      GENERIC (NO_OF_PORTS: INTEGER := 4; 
   PRIO_VEC_SIZE: INTEGER := 7 --Has to be [2(NO_OF_PORTS)-1]  
  ); 
 
      PORT( 

    arb_req: IN std_logic_vector(NO_OF_GRANTS_REQ DOWNTO 1); 
     clk, reset : IN std_logic; 
     grant : OUT std_logic_vector(NO_OF_GRANTS_REQ DOWNTO 1); 
    P: OUT std_logic_vector(7 DOWNTO 1) 
   ); 
END voq_c_bar; 
 
 
ARCHITECTURE behaviour OF voq_c_bar IS 
 
     COMPONENT Arbiter 
   
 PORT(Req, North, West, Mask: IN std_logic; 
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          South, East, Grant: OUT std_logic); 
 END COMPONENT; 
   
 
 --Cross Bar Signal Declarations 
 SIGNAL south_2_north : c_bar_signal_array; 
 SIGNAL east_2_west     : c_bar_signal_array; 
 SIGNAL arb_mask        : c_bar_signal_array; 
 SIGNAL arb_grant        : c_bar_signal_array; 
 SIGNAL c_bar_P      : STD_LOGIC_VECTOR (7 DOWNTO 1); 
 SIGNAL High       : std_logic; 
 SIGNAL temp        : INTEGER RANGE 1 to 2; 
 
 BEGIN 
 
    grant(1)  <= arb_grant(1)(1) or arb_grant(5)(1); 
    grant(2)  <= arb_grant(1)(2) or arb_grant(5)(2); 
    grant(3)  <= arb_grant(1)(3) or arb_grant(5)(3); 
    grant(4)  <= arb_grant(1)(4); 
  
    grant(5)  <= arb_grant(2)(1) or arb_grant(6)(1); 
    grant(6)  <= arb_grant(2)(2) or arb_grant(6)(2); 
    grant(7)  <= arb_grant(2)(3); 
    grant(8)  <= arb_grant(2)(4) or arb_grant(5)(4); 
     
    grant(9)  <= arb_grant(3)(1) or arb_grant(7)(1); 
    grant(10) <= arb_grant(3)(2);  
    grant(11) <= arb_grant(3)(3) or arb_grant(6)(3); 
    grant(12) <= arb_grant(3)(4) or arb_grant(6)(4); 
     
    grant(13) <= arb_grant(4)(1);  
    grant(14) <= arb_grant(4)(2) or arb_grant(7)(2); 
    grant(15) <= arb_grant(4)(3) or arb_grant(7)(3); 
    grant(16) <= arb_grant(4)(4) or arb_grant(7)(4); 
     
     
    P <= c_bar_P; 
 
--This process rotates the priority vector 
        Active_Win : process (clk, reset) 
  BEGIN 
     if reset = '0' then 
        c_bar_P <= "0000000"; 
               elsif (clk = '1' and clk'event) then 
        case c_bar_P is 
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    when "1111000"  => c_bar_P <= "0111100"; 
    when "0111100"  => c_bar_P <= "0011110"; 
    when "0011110"  => c_bar_P <= "0001111"; 
    when "0001111"  => c_bar_P <= "1111000"; 
    when others        => c_bar_P <= "1111000"; 
         end case; 
    end if; 
        end process; 
 
 High <= '1'; 
  
--*************** Arbiter instantiation ************************************ 
--First Row 
 
Arbiter_1_1: Arbiter  
  

PORT MAP (Req => arb_req(1), North => High, West => High, Mask => c_bar_P(7),  
       South => south_2_north(1)(1), East => east_2_west(1)(1) , Grant => arb_grant(1)(1)); 
 
 
Arbiter_1_2: Arbiter  
    
 PORT MAP (Req => arb_req(2), North => south_2_north(7)(2), West => 
east_2_west(1)(1), Mask => c_bar_P(6), South => south_2_north(1)(2), East => 
east_2_west(1)(2) , Grant => arb_grant(1)(2)); 
 
 
Arbiter_1_3: Arbiter  
    
 PORT MAP (Req => arb_req(3), North => south_2_north(7)(3), West => 
east_2_west(1)(2), Mask => c_bar_P(5), South => south_2_north(1)(3), East => 
east_2_west(1)(3) , Grant => arb_grant(1)(3)); 
 
 
Arbiter_1_4: Arbiter  
 PORT MAP (Req => arb_req(4), North => south_2_north(7)(4), West => 
east_2_west(1)(3), Mask => c_bar_P(4), South => south_2_north(1)(4), East => 
east_2_west(1)(4) , Grant => arb_grant(1)(4)); 
 
 
   
--Second Row 
 
Arbiter_2_1: Arbiter  
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 PORT MAP (Req => arb_req(5), North => south_2_north(1)(1), West => 
east_2_west(5)(4), Mask => c_bar_P(6),  South => south_2_north(2)(1), East => 
east_2_west(2)(1) , Grant => arb_grant(2)(1)); 
 
 
Arbiter_2_2: Arbiter  
    
 PORT MAP (Req => arb_req(6), North => south_2_north(1)(2), West => 
east_2_west(2)(1), Mask => c_bar_P(5), South => south_2_north(2)(2), East => 
east_2_west(2)(2) , Grant => arb_grant(2)(2)); 
 
 
Arbiter_2_3: Arbiter  
    
 PORT MAP (Req => arb_req(7), North => south_2_north(1)(3), West => 
east_2_west(2)(2), Mask => c_bar_P(4), South => south_2_north(2)(3), East => 
east_2_west(2)(3) , Grant => arb_grant(2)(3)); 
 
 
Arbiter_2_4: Arbiter  
    
  PORT MAP (Req => arb_req(8), North => south_2_north(1)(4), West => 
east_2_west(2)(3), Mask => c_bar_P(3),  South => south_2_north(2)(4), East => 
east_2_west(2)(4) , Grant => arb_grant(2)(4)); 
 
 
  
--Third Row 
 
Arbiter_3_1: Arbiter  
    
 PORT MAP (Req => arb_req(9), North => south_2_north(2)(1), West => 
east_2_west(6)(4), Mask => c_bar_P(5), South => south_2_north(3)(1), East => 
east_2_west(3)(1) , Grant => arb_grant(3)(1)); 
 
 
Arbiter_3_2: Arbiter  
    
 PORT MAP (Req => arb_req(10), North => south_2_north(2)(2), West => 
east_2_west(3)(1), Mask => c_bar_P(4), South => south_2_north(3)(2), East => 
east_2_west(3)(2) , Grant => arb_grant(3)(2)); 
 
 
Arbiter_3_3: Arbiter  
    



127 

 PORT MAP (Req => arb_req(11), North => south_2_north(2)(3), West => 
east_2_west(3)(2), Mask => c_bar_P(3),  South => south_2_north(3)(3), East => 
east_2_west(3)(3) , Grant => arb_grant(3)(3)); 
 
 
Arbiter_3_4: Arbiter  
    
 PORT MAP (Req => arb_req(12), North => south_2_north(2)(4), West => 
east_2_west(3)(3), Mask => c_bar_P(2), South => south_2_north(3)(4), East => 
east_2_west(3)(4) , Grant => arb_grant(3)(4)); 
 
 
 
--Forth Row 
 
Arbiter_4_1: Arbiter  
    
 PORT MAP (Req => arb_req(13), North => south_2_north(3)(1), West => 
east_2_west(7)(4), Mask => c_bar_P(4), South => south_2_north(4)(1), East => 
east_2_west(4)(1) , Grant => arb_grant(4)(1)); 
 
 
Arbi ter_4_2: Arbiter  
    
 PORT MAP (Req => arb_req(14), North => south_2_north(3)(2), West => 
east_2_west(4)(1), Mask => c_bar_P(3), South => south_2_north(4)(2), East => 
east_2_west(4)(2) , Grant => arb_grant(4)(2)); 
 
 
Arbiter_4_3: Arbiter  
    
 PORT MAP (Req => arb_req(15), North => south_2_north(3)(3), West => 
east_2_west(4)(2), Mask => c_bar_P(2),  South => south_2_north(4)(3), East => 
east_2_west(4)(3) , Grant => arb_grant(4)(3)); 
 
 
Arbiter_4_4: Arbiter  
    
 PORT MAP (Req => arb_req(16), North => south_2_north(3)(4), West => 
east_2_west(4)(3), Mask => c_bar_P(1), South => south_2_north(4)(4), East => 
east_2_west(4)(4) , Grant => arb_grant(4)(4)); 
 
  
 
--Fifth Row 
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Arbiter_5_1: Arbiter  
    
 PORT MAP (Req => arb_req(1), North => south_2_north(4)(1), West => 
east_2_west(1)(4), Mask => c_bar_P(3), South => south_2_north(5)(1), East => 
east_2_west(5)(1) , Grant => arb_grant(5)(1)); 
 
 
Arbiter_5_2: Arbiter  
    
 PORT MAP (Req => arb_req(2), North => south_2_north(4)(2), West => 
east_2_west(5)(1), Mask => c_bar_P(2),  South => south_2_north(5)(2), East => 
east_2_west(5)(2) , Grant => arb_grant(5)(2)); 
 
 
Arbiter_5_3: Arbiter  
    
 PORT MAP (Req => arb_req(3), North => south_2_north(4)(3), West => 
east_2_west(5)(2), Mask => c_bar_P(1), South => south_2_north(5)(3), East => 
east_2_west(5)(3) , Grant => arb_grant(5)(3)); 
 
 
Arbiter_5_4: Arbiter  
    
 PORT MAP (Req => arb_req(8), North => HIGH, West => HIGH, Mask => 
c_bar_P(7), South => south_2_north(5)(4), East => east_2_west(5)(4) , Grant => 
arb_grant(5)(4)); 
 
  
 
--Sixth Row 
 
Arbiter_6_1: Arbiter  
    
 PORT MAP (Req => arb_req(5), North => south_2_north(5)(1), West => 
east_2_west(2)(4), Mask => c_bar_P(2), South => south_2_north(6)(1), East => 
east_2_west(6)(1) , Grant => arb_grant(6)(1)); 
 
 
Arbiter_6_2: Arbiter  
    
 PORT MAP (Req => arb_req(6), North => south_2_north(5)(2), West => 
east_2_west(6)(1), Mask => c_bar_P(1), South => south_2_north(6)(2), East => 
east_2_west(6)(2) , Grant => arb_grant(6)(2)); 
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Arbiter_6_3: Arbiter  
    
 PORT MAP (Req => arb_req(11), North => HIGH, West => HIGH, Mask => 
c_bar_P(7), South => south_2_north(6)(3), East => east_2_west(6)(3) , Grant => 
arb_grant(6)(3)); 
 
 
Arbiter_6_4: Arbiter  
    

PORT MAP (Req => arb_req(12), North => south_2_north(5)(4), West => 
east_2_west(6)(3), Mask => c_bar_P(6), South => south_2_north(6)(4), East => 
east_2_west(6)(4) , Grant => arb_grant(6)(4)); 
 
 
 
--Seventh Row 
 
Arbiter_7_1: Arbiter  
    
 PORT MAP (Req => arb_req(9), North => south_2_north(6)(1), West => 
east_2_west(3)(4), Mask => c_bar_P(1), South => south_2_north(7)(1), East => 
east_2_west(7)(1) , Grant => arb_grant(7)(1)); 
 
 
Arbiter_7_2: Arbiter  
    
 PORT MAP (Req => arb_req(14), North => HIGH, West => HIGH, Mask => 
c_bar_P(7), South => south_2_north(7)(2), East => east_2_west(7)(2) , Grant => 
arb_grant(7)(2)); 
 
 
Arbiter_7_3: Arbiter  
    
 PORT MAP (Req => arb_req(15), North => south_2_north(6)(3), West => 
east_2_west(7)(2), Mask => c_bar_P(6), South => south_2_north(7)(3), East => 
east_2_west(7)(3) , Grant => arb_grant(7)(3)); 
 
 
Arbiter_7_4: Arbiter  
    
 PORT MAP (Req => arb_req(16), North => south_2_north(6)(4), West => 
east_2_west(7)(3), Mask => c_bar_P(5), South => south_2_north(7)(4), East => 
east_2_west(7)(4) , Grant => arb_grant(7)(4)); 
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END behaviour;
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Appendix C.4. voq_fabric.vhd 

VHLD source code for the crossbar fabric module of the switch 

 
-- voq_fabric.vhd 
-- Designed by: Maryam Keyvani 
-- Communication Networks Lab, Simon Fraser University 
-- August 2001 
-- This is a crossbar fabric made from AND gates and OR gates 
-- The control lines of the fabric come from the size 16 std_logic_vector  
-- input "cntrl", which is in this case the "grant" signal comming from the scheduler.  
 
 
LIBRARY ieee; 
USE ieee.std_logic_1164.ALL; 
USE ieee.std_logic_arith.ALL; 
 
LIBRARY lpm; 
USE lpm.lpm_components.ALL; 
USE work.voq_input_package.ALL; 
 
    ENTITY voq_fabric is 
        GENERIC( 
  SWITCH_SIZE : INTEGER:= 4;              --4x4 fabric by default 
  GRANT_SIZE : INTEGER:= 16             --16 lines used to issue grants 
        ); 
  
        PORT( 
  input0  : IN  DATA_VECTOR;   --The 4 input data lines of type 
std_logic_vector(DATASIZE-1 DOWNTO 0) 
 
  input1  : IN  STD_LOGIC_VECTOR(SWITCH_SIZE-1 DOWNTO 0);   --The 4 
data_valid lines going to the fabric 
 
  input2  : IN  STD_LOGIC_VECTOR(SWITCH_SIZE-1 DOWNTO 0);   --The 
LSBs of input_port_name 
 
  input3  : IN  STD_LOGIC_VECTOR(SWITCH_SIZE-1 DOWNTO 0);   --The 
MSB bit of input_port_name 
 

 input4  : IN  STD_LOGIC_VECTOR(SWITCH_SIZE-1 DOWNTO 0);   --The 4 
input frame pulse lines  
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  cntrl   : IN  STD_LOGIC_VECTOR(GRANT_SIZE-1 DOWNTO 0);    --The 
grant vector used to control the fabric 
 
  output0 : OUT DATA_VECTOR;   --The 4 output data lines of type 
std_logic_vecotr(DATASIZE-1 DOWNTO 0) 
 
    output1 : OUT STD_LOGIC_VECTOR(SWITCH_SIZE-1 DOWNTO 0);   --
data_valid lines 
  output2 : OUT STD_LOGIC_VECTOR(SWITCH_SIZE-1 DOWNTO 0);   --The 
LSBs of port_name out of the fabric  
 
  output3 : OUT STD_LOGIC_VECTOR(SWITCH_SIZE-1 DOWNTO 0);  --The 
MSB of port_name out of the fabric 
 
  output4 : OUT STD_LOGIC_VECTOR(SWITCH_SIZE-1 DOWNTO 0)   --the 
4 output frame pulses for the 8 output ports 
  ); 
 
 END voq_fabric; 
 
 
Architecture behave of voq_fabric is 
 

begin 
output0(0)(0) <= ( (input0(0)(0) AND cntrl(0)) OR (input0(1)(0) AND cntrl(4)) OR 
(input0(2)(0) AND cntrl(8)) OR (input0(3)(0) AND cntrl(12)) ); 
 
output0(0)(1) <= ( (input0(0)(1) AND cntrl(0)) OR (input0(1)(1) AND cntrl(4)) OR 
(input0(2)(1) AND cntrl(8)) OR (input0(3)(1) AND cntrl(12)) ); 
 
output0(0)(2) <= ( (input0(0)(2) AND cntrl(0)) OR (input0(1)(2) AND cntrl(4)) OR 
(input0(2)(2) AND cntrl(8)) OR (input0(3)(2) AND cntrl(12)) ); 
 
output0(0)(3) <= ( (input0(0)(3) AND cntrl(0)) OR (input0(1)(3) AND cntrl(4)) OR 
(input0(2)(3) AND cntrl(8)) OR (input0(3)(3) AND cntrl(12)) ); 
 
output0(0)(4) <= ( (input0(0)(4) AND cntrl(0)) OR (input0(1)(4) AND cntrl(4)) OR 
(input0(2)(4) AND cntrl(8)) OR (input0(3)(4) AND cntrl(12)) ); 
   
output0(0)(5) <= ( (input0(0)(5) AND cntrl(0)) OR (input0(1)(5) AND cntrl(4)) OR 
(input0(2)(5) AND cntrl(8)) OR (input0(3)(5) AND cntrl(12))); 
 
output0(0)(6) <= ( (input0(0)(6) AND cntrl(0)) OR (input0(1)(6) AND cntrl(4)) OR 
(input0(2)(6) AND cntrl(8)) OR (input0(3)(6) AND cntrl(12))); 
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output0(0)(7) <= ( (input0(0)(7) AND cntrl(0)) OR (input0(1)(7) AND cntrl(4)) OR 
(input0(2)(7) AND cntrl(8)) OR (input0(3)(7) AND cntrl(12))); 
 
 
 
 
output0(1)(0) <= ( (input0(0)(0) AND cntrl(1)) OR (input0(1)(0) AND cntrl(5)) OR 
(input0(2)(0) AND cntrl(9)) OR (input0(3)(0) AND cntrl(13))); 
 
output0(1)(1) <= ( (input0(0)(1) AND cntrl(1)) OR (input0(1)(1) AND cntrl(5)) OR 
(input0(2)(1) AND cntrl(9)) OR (input0(3)(1) AND cntrl(13))); 
 
output0(1)(2) <= ( (input0(0)(2) AND cntrl(1)) OR (input0(1)(2) AND cntrl(5)) OR 
(input0(2)(2) AND cntrl(9)) OR (input0(3)(2) AND cntrl(13))); 
 
output0(1)(3) <= ( (input0(0)(3) AND cntrl(1)) OR (input0(1)(3) AND cntrl(5)) OR 
(input0(2)(3) AND cntrl(9)) OR (input0(3)(3) AND cntrl(13))); 
 
output0(1)(4) <= ( (input0(0)(4) AND cntrl(1)) OR (input0(1)(4) AND cntrl(5)) OR 
(input0(2)(4) AND cntrl(9)) OR (input0(3)(4) AND cntrl(13))); 
   
output0(1)(5) <= ( (input0(0)(5) AND cntrl(1)) OR (input0(1)(5) AND cntrl(5)) OR 
(input0(2)(5) AND cntrl(9)) OR (input0(3)(5) AND cntrl(13))); 
 
output0(1)(6) <= ( (input0(0)(6) AND cntrl(1)) OR (input0(1)(6) AND cntrl(5)) OR 
(input0(2)(6) AND cntrl(9)) OR (input0(3)(6) AND cntrl(13))); 
 
output0(1)(7) <= ( (input0(0)(7) AND cntrl(1)) OR (input0(1)(7) AND cntrl(5)) OR 
(input0(2)(7) AND cntrl(9)) OR (input0(3)(7) AND cntrl(13))); 
 
 
 
 
 
output0(2)(0) <= ( (input0(0)(0) AND cntrl(2)) OR (input0(1)(0) AND cntrl(6)) OR 
(input0(2)(0) AND cntrl(10)) OR (input0(3)(0) AND cntrl(14))); 
 
output0(2)(1) <= ( (input0(0)(1) AND cntrl(2)) OR (input0(1)(1) AND cntrl(6)) OR 
(input0(2)(1) AND cntrl(10)) OR (input0(3)(1) AND cntrl(14))); 
 
output0(2)(2) <= ( (input0(0)(2) AND cntrl(2)) OR (input0(1)(2) AND cntrl(6)) OR 
(input0(2)(2) AND cntrl(10)) OR (input0(3)(2) AND cntrl(14))); 
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output0(2)(3) <= ( (input0(0)(3) AND cntrl(2)) OR (input0(1)(3) AND cntrl(6)) OR 
(input0(2)(3) AND cntrl(10)) OR (input0(3)(3) AND cntrl(14))); 
 
output0(2)(4) <= ( (input0(0)(4) AND cntrl(2)) OR (input0(1)(4) AND cntrl(6)) OR 
(input0(2)(4) AND cntrl(10)) OR (input0(3)(4) AND cntrl(14))); 
   
output0(2)(5) <= ( (input0(0)(5) AND cntrl(2)) OR (input0(1)(5) AND cntrl(6)) OR 
(input0(2)(5) AND cntrl(10)) OR (input0(3)(5) AND cntrl(14))); 
 
output0(2)(6) <= ( (input0(0)(6) AND cntrl(2)) OR (input0(1)(6) AND cntrl(6)) OR 
(input0(2)(6) AND cntrl(10)) OR (input0(3)(6) AND cntrl(14))); 
 
output0(2)(7) <= ( (input0(0)(7) AND cntrl(2)) OR (input0(1)(7) AND cntrl(6)) OR 
(input0(2)(7) AND cntrl(10)) OR (input0(3)(7) AND cntrl(14))); 
 
 
 
 
output0(3)(0) <= ( (input0(0)(0) AND cntrl(3)) OR (input0(1)(0) AND cntrl(7)) OR 
(input0(2)(0) AND cntrl(11)) OR (input0(3)(0) AND cntrl(15))); 
 
output0(3)(1) <= ( (input0(0)(1) AND cntrl(3)) OR (input0(1)(1) AND cntrl(7)) OR 
(input0(2)(1) AND cntrl(11)) OR (input0(3)(1) AND cntrl(15))); 
 
output0(3)(2) <= ( (input0(0)(2) AND cntrl(3)) OR (input0(1)(2) AND cntrl(7)) OR 
(input0(2)(2) AND cntrl(11)) OR(input0(3)(2) AND cntrl(15))); 
 
output0(3)(3) <=( (input0(0)(3) AND cntrl(3)) OR (input0(1)(3) AND cntrl(7)) OR 
(input0(2)(3) AND cntrl(11)) OR (input0(3)(3) AND cntrl(15))); 
 
output0(3)(4) <= ( (input0(0)(4) AND cntrl(3)) OR (input0(1)(4) AND cntrl(7)) OR 
(input0(2)(4) AND cntrl(11)) OR (input0(3)(4) AND cntrl(15))); 
   
output0(3)(5) <= ( (input0(0)(5) AND cntrl(3)) OR (input0(1)(5) AND cntrl(7)) OR 
(input0(2)(5) AND cntrl(11)) OR (input0(3)(5) AND cntrl(15))); 
 
output0(3)(6) <= ( (input0(0)(6) AND cntrl(3)) OR (input0(1)(6) AND cntrl(7)) OR 
(input0(2)(6) AND cntrl(11)) OR (input0(3)(6) AND cntrl(15))); 
 
output0(3)(7) <= ( (input0(0)(7) AND cntrl(3)) OR (input0(1)(7) AND cntrl(7)) OR 
(input0(2)(7) AND cntrl(11)) OR (input0(3)(7) AND cntrl(15))); 
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output1(0) <= ( (input1(0) AND cntrl(0)) OR (input1(1) AND cntrl(4)) OR (input1(2) AND 
cntrl(8)) OR (input1(3) AND cntrl(12))); 
 
output1(1) <= ( (input1(0) AND cntrl(1)) OR (input1(1) AND cntrl(5)) OR (input1(2) AND 
cntrl(9)) OR (input1(3) AND cntrl(13))); 
 
output1(2) <= ( (input1(0) AND cntrl(2)) OR (input1(1) AND cntrl(6)) OR (input1(2) AND 
cntrl(10)) OR (input1(3) AND cntrl(14))); 
 
output1(3) <= ( (input1(0) AND cntrl(3)) OR (input1(1) AND cntrl(7)) OR (input1(2) AND 
cntrl(11)) OR (input1(3) AND cntrl(15))); 
 
 
 
 
output2(0) <= ( (input2(0) AND cntrl(0)) OR (input2(1) AND cntrl(4)) OR (input2(2) AND 
cntrl(8)) OR (input2(3) AND cntrl(12))); 
 
output2(1) <= ( (input2(0) AND cntrl(1)) OR (input2(1) AND cntrl(5)) OR (input2(2) AND 
cntrl(9)) OR (input2(3) AND cntrl(13))); 
 
output2(2) <= ( (input2(0) AND cntrl(2)) OR (input2(1) AND cntrl(6)) OR (input2(2) AND 
cntrl(10)) OR (input2(3) AND cntrl(14)) ); 
 
output2(3) <= ( (input2(0) AND cntrl(3)) OR (input2(1) AND cntrl(7)) OR (input2(2) AND 
cntrl(11)) OR (input2(3) AND cntrl(15)) ); 
 
 
 
output3(0) <= ( (input3(0) AND cntrl(0)) OR (input3(1) AND cntrl(4)) OR (input3(2) AND 
cntrl(8)) OR (input3(3) AND cntrl(12))); 
 
output3(1) <= ( (input3(0) AND cntrl(1)) OR (input3(1) AND cntrl(5)) OR (input3(2) AND 
cntrl(9)) OR (input3(3) AND cntrl(13))); 
 
output3(2) <= ( (input3(0) AND cntrl(2)) OR (input3(1) AND cntrl(6)) OR (input3(2) AND 
cntrl(10)) OR (input3(3) AND cntrl(14))); 
 
output3(3) <= ( (input3(0) AND cntrl(3)) OR (input3(1) AND cntrl(7)) OR (input3(2) AND 
cntrl(11)) OR (input3(3) AND cntrl(15))); 
 
 
output4(0) <= ( (input4(0) AND cntrl(0)) OR (input4(1) AND cntrl(4)) OR (input4(2) AND 
cntrl(8)) OR (input4(3) AND cntrl(12))); 
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output4(1) <= ( (input4(0) AND cntrl(1)) OR (input4(1) AND cntrl(5)) OR (input4(2) AND 
cntrl(9)) OR (input4(3) AND cntrl(13))); 
 
output4(2) <= ( (input4(0) AND cntrl(2)) OR (input4(1) AND cntrl(6)) OR (input4(2) AND 
cntrl(10)) OR (input4(3) AND cntrl(14))); 
 
output4(3) <= ( (input4(0) AND cntrl(3)) OR (input4(1) AND cntrl(7)) OR (input4(2) AND 
cntrl(11)) OR (input4(3) AND cntrl(15))); 
  
 
 
 end behave; 
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Appendix C.5. LUT.vhd 

VHDL source code for the look up table component of the switch 
-- lut.vhd 
-- Maryam Keyvani 
-- Communication Networks Laboratory, Simon Fraser University 
-- August 2001 
-- This file contains the VHDL description of a look up table module used in the 
voq_switch project 
-- The look up table is based on a ROM with 8 rows and 36 bit words. 
-- The input to the look up table is the VCI header of the ATM packet that has entered  
-- the network. The outputs of the look up table are the updated VCI for that packet, and  
the output port where the packet should go to. 
 
 
library ieee; 
use ieee.std_logic_1164.all; 
USE ieee.std_logic_arith.all; 
 
LIBRARY lpm; 
USE lpm.lpm_components.ALL; 
 
 
ENTITY LUT IS 
    GENERIC ( VCI_SIZE: INTEGER     := 16;     --Size of the VCI bytes 

PORT_SIZE: INTEGER   := 4;     --The output port number output of the 
LUT is 4 bits wide  

           ROM_WIDTH: INTEGER  := 36;    --Width of the look up table 
           ROM_WIDTHAD  : INTEGER := 3; --Address width of the look up table = 
log2(number of rows in the table)  
           TRANSLATION_TABLE: STRING := "lut1.mif"   -- The file used to initialize 
the ROM inside LUT 
  ); 
 
 PORT (input_vci :  IN STD_LOGIC_VECTOR (VCI_SIZE-1 downto 0);  
           output_port_no :  OUT   STD_LOGIC_VECTOR (PORT_SIZE-1 downto 0 ); 
           output_vci :  OUT   STD_LOGIC_VECTOR (VCI_SIZE-1 downto 0); 
           clock  :  IN  STD_LOGIC; 
           renable  :  OUT   STD_LOGIC  
  
    ); 
 
END LUT; 
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ARCHITECTURE behave of LUT is 
 
TYPE state is (S0, S1, S2, S3, S4, S5, S6, S7); 
 
 
SIGNAL ADDRESS, next_ADDRESS      : STD_LOGIC_VECTOR (2 downto 0); 
SIGNAL OUTPUT       : STD_LOGIC_VECTOR (ROM_WIDTH-1 downto 0); 
 
BEGIN  
 
PROCESS (clock) -- This process changes the address input of the ROM 
    
BEGIN 
  
   IF (clock = '1' and clock'event) then 
  
  
  case ADDRESS is 
 
    when "000" =>   next_ADDRESS <= "001";  
               
    when "001" =>   next_ADDRESS <= "010";  
 
    when "010" =>   next_ADDRESS <= "011";  
       
    when "011" =>   next_ADDRESS <= "100";  
         
    when "100" =>   next_ADDRESS <= "101";  
         
    when "101" =>   next_ADDRESS <= "110";        
 
    when "110" =>   next_ADDRESS <= "111";  
 
    when "111" =>   next_ADDRESS <= "000";  
      
    when others => NULL; 
 
 END case; 
     
  END IF; 
 
 



139 

END PROCESS; 
 
PROCESS (clock) 
 
 BEGIN 
 
 IF (clock ='0' and clock'event) then 
  ADDRESS <= next_ADDRESS; 
 END IF; 
END PROCESS; 
 
 
 
PROCESS (clock) 
 
BEGIN  
 
IF (clock ='1' and clock'event) then 
 
IF OUTPUT ( 35 downto 20 ) = input_vci then  -- If the input VCI was found in the table 
    output_vci <= OUTPUT ( 19 downto 4);  -- Updated VCI and output port number are 
sent out 
    output_port_no <= OUTPUT(3 DOWNTO 0); 
    renable <= '1';   
ELSE     
 output_vci <= "0000000000000000"; 
     output_port_no <= "0000";   
 renable <= '0'; 
END IF; 
END IF; 
 
END PROCESS; 
  
  
 
--LUT is an instance of lpm -rom 
my_LUT: lpm_rom 
 
GENERIC MAP (LPM_WIDTH   => ROM_WIDTH, 
    LPM_WIDTHAD => ROM_WIDTHAD, 
    LPM_FILE    => TRANSLATION_TABLE 
    ) 
     
PORT MAP    (address => ADDRESS, 
    inclock => clock, 
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    outclock => clock, 
    q => OUTPUT 
    ); 
 
END behave;
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Appendix C.6. output_fifo.vhd 

VHDL source code for the output port module that could be added to 

the switch 
 
-- output_fifo.vhd 
-- Maryam Keyvani 
--Communication Networks Laboratory, simon Fraser University 
-- This entity is supposed to collect the data in seperate fifos entering the output 
module  
 
 
LIBRARY ieee; 
USE ieee.std_logic_arith.ALL; 
USE ieee.std_logic_signed.ALL; 
USE ieee.std_logic_1164.ALL; 
 
LIBRARY lpm; 
USE lpm.lpm_components.ALL; 
USE work.Input_portx8_package.ALL; 
 
 
 
ENTITY output_fifo IS 
 
 GENERIC (COUNTER_8_SIZE    : INTEGER := 4; 
    COUNTER_53_SIZE   : INTEGER := 53; 
    FIFO_WIDTHU    : INTEGER := 11; 
    INCOMING_PORT_SIZE: INTEGER := 3; 
    DATA_SIZE         : INTEGER := 8; 
    FIFO_WIDTH     : INTEGER :=8; 
    FIFO_SIZE     : INTEGER := 2048 
    );  
      
 
 PORT   (--Input port for data and frame pulse. Frame pulse marks the beginning 
of a data packet leaving the switch. 
   data_in: IN STD_LOGIC_VECTOR (DATA_SIZE-1 DOWNTO 0);  
   fp_in  : IN STD_LOGIC;     
--fp8_in is a vector of frame pulses. Only each frame pulse goes high, as soon as 
data_valid goes high, and not at the beginning of packet, but at the beginning of the 
dummy packet. 
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--This enables us to check if a new packet is comming, as soon as data_valid goes 
high. 
     

 fp8_in  : IN STD_LOGIC_VECTOR (7 DOWNTO 0);  
    
--data_valid shows wehther the data on the ouput port of the switch (input port of this 
device) is valid or not 
   data_valid: IN STD_LOGIC;     
    
 --Shows the origin(input port) that is sending data packets to each output port of the 
switch (inputport of this device) 
   incoming_port_number : IN STD_LOGIC_VECTOR (2 DOWNTO 0);  
    
   clock           : IN STD_LOGIC; 
   global_reset  : IN STD_LOGIC; 
   reset          : IN STD_LOGIC; 
   clock8          : IN STD_LOGIC; 
 
   
 -- temporary Input/outputs for compilation reasons 
   rd_req            : IN  STD_LOGIC_VECTOR(7 DOWNTO 0); 
   fifo_out_port    : OUT ARRAY8x8;      
   fifo_full_port  : OUT STD_LOGIC_VECTOR (7 DOWNTO 0); 
   fifo_empty_port : OUT STD_LOGIC_VECTOR (7 DOWNTO 0); 
   fifo_rdusedw_port :OUT ARRAY8x11;      
   fifo_wrusedw_port :OUT ARRAY8x11; 
   wr_req_fifo :OUT STD_LOGIC_VECTOR(7 DOWNTO 0); 
   wr_req_enable_port :OUT STD_LOGIC 
   ); 
 
END output_fifo; 
 
 
ARCHITECTURE behav OF output_fifo IS  
 
 
--signals 
SIGNAL HIGH     : STD_LOGIC := '1'; 
SIGNAL LOW     : STD_LOGIC := '0'; 
 
--state signals 
SIGNAL current_state        : INTEGER RANGE 0 TO 25; 
SIGNAL next_state           : INTEGER RANGE 0 TO 25; 
SIGNAL incoming_port_number_int: INTEGER RANGE 0 TO 7; 
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--fifo signals 
--******** NOTE that "wr_req_i <= wr_reqi AND wr_req_enable" ****** 
--SIGNAL wr_req0, wr_req1, wr_req2, wr_req3, wr_req4, wr_req5, wr_req6, wr_req7: 
STD_LOGIC;  
SIGNAL wr_req : STD_LOGIC_VECTOR (DATA_SIZE-1 DOWNTO 0); --connected to the 
output of the decoder. 
-- The value for this signal is assigned in the WR_SM_PROCESS and is ANDed with  
-- all the wr_req0 to 7 to enable the writing of incoming bytes into the 8 FIFOs. 
SIGNAL wr_req_enable : STD_LOGIC;   
-- The wr_req_i signals are the signals connected to the wrreq of the FIFOs.  
-- wr_req_i = wr_reqi AND wr_req_enable.   
SIGNAL wr_req_0    : STD_LOGIC;  
SIGNAL wr_req_1    : STD_LOGIC; 
SIGNAL wr_req_2    : STD_LOGIC; 
SIGNAL wr_req_3    : STD_LOGIC; 
SIGNAL wr_req_4    : STD_LOGIC; 
SIGNAL wr_req_5    : STD_LOGIC; 
SIGNAL wr_req_6    : STD_LOGIC; 
SIGNAL wr_req_7    : STD_LOGIC; 
 
 
--SIGNAL rd_req  : STD_LOGIC_VECTOR(7 DOWNTO 0); 
SIGNAL faclr   : STD_LOGIC_VECTOR(7 DOWNTO 0); 
SIGNAL fifo_rdusedw   : ARRAY8x11; --Number of bytes in the main FIFO (not 
used by the processor) 
SIGNAL fifo_wrusedw   : ARRAY8x11; --Number of bytes in the main FIFO 
(used by the processor) 
SIGNAL fifo_out  : ARRAY8x8;  --Output of the FIFO 
SIGNAL fifo_full  : STD_LOGIC_VECTOR(7 DOWNTO 0); 
SIGNAL fifo_empty  : STD_LOGIC_VECTOR(7 DOWNTO 0); 
 
BEGIN 
--------------- 
fifo_out_port      <= fifo_out; 
fifo_full_port     <= fifo_full; 
fifo_empty_port  <= fifo_empty; 
fifo_rdusedw_port   <= fifo_rdusedw;     
fifo_wrusedw_port   <= fifo_wrusedw; 
wr_req_fifo(0)   <= wr_req_0; 
wr_req_fifo(1)   <= wr_req_1; 
wr_req_fifo(2)   <= wr_req_2; 
wr_req_fifo(3)   <= wr_req_3; 
wr_req_fifo(4)   <= wr_req_4; 
wr_req_fifo(5)   <= wr_req_5; 
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wr_req_fifo(6)   <= wr_req_6; 
wr_req_fifo(7)   <= wr_req_7; 
 
--This is where the actual write request signals connected to the FIFO's are made   
wr_req_0          <= wr_req(0) AND wr_req_enable; 
wr_req_1          <= wr_req(1) AND wr_req_enable; 
wr_req_2          <= wr_req(2) AND wr_req_enable; 
wr_req_3          <= wr_req(3) AND wr_req_enable; 
wr_req_4          <= wr_req(4) AND wr_req_enable; 
wr_req_5          <= wr_req(5) AND wr_req_enable; 
wr_req_6          <= wr_req(6) AND wr_req_enable; 
wr_req_7          <= wr_req(7) AND wr_req_enable; 
 
incoming_port_number_int <= conv_integer(incoming_port_number); 
wr_req_enable_port <= wr_req_enable; 
 
 
Write_Seq_SM :  PROCESS (clock) 
     
BEGIN --Process 
     IF (clock='0' AND clock'event) THEN -- at the falling edge of the clock next state is 
calculated 
 IF ( (global_reset = '0') AND (reset = '0')) THEN  

 IF data_valid = '1' THEN 
       CASE current_state IS 
     
          WHEN 0 =>  --frame pulse comming in state zero shows the 
beginning of a new packet 
   IF ( fp8_in(incoming_port_number_int) = '1')THEN   

   next_state <= 1; 
   ELSE 

  next_state <= 7;       
 END IF;  

           
 wr_req_enable <= '0';   
 
 --from state 1 to 8 we wait for the dummy packet to pass.    
             WHEN 1 => next_state <= 2;  
             
   WHEN 2 => next_state <= 3; 
 
   WHEN 3 => next_state <= 4; 
 
   WHEN 4 => next_state <= 5; 
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   WHEN 5 => next_state <= 6; 
 
   WHEN 6 => next_state <= 7; 
  
   WHEN 7 => next_state <= 8; 

`
 wr_req_enable <= '1'; 

   WHEN 8 => next_state <= 8; 
            
  
   WHEN OTHERS => NULL; 
 
      END CASE; 
       
  ELSE   
       next_state <= 0; 
      wr_req_enable <= '0'; 
      
  END IF; 
 
    ELSE --if it is reset or global_reset, go to state 0. 
  next_state <= 0; 
  wr_req_enable <= '0'; 
    END IF; 
 END IF; 
END PROCESS Write_Seq_SM; 
 
 
STATE_UPDATE: PROCESS (clock) 
 BEGIN -- Process 
     IF ( (global_reset = '1') OR (reset = '1')) THEN   --check for reset 
  current_state <= 0; 
   
     ELSE 
  IF (clock = '1' AND clock'event) THEN  -- at the rising edge of the clock, 
update the states 
  current_state <= next_state; 
       
  END IF; 
     END IF; 
END PROCESS STATE_UPDATE; 
 
 
 
RESET_PROCESS: PROCESS (global_reset, reset)  
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       BEGIN  
    IF global_reset = '1' THEN  
         faclr <= "11111111"; 
    ELSE  
         faclr <= "00000000"; 
    END IF; 
 
   
END PROCESS RESET_PROCESS; 
 
 
   
decoder : lpm_decode  
    GENERIC MAP (LPM_WIDTH => INCOMING_PORT_SIZE, 
        LPM_DECODES => DATA_SIZE 
        ) 
 
    PORT MAP   (data => incoming_port_number, 
         eq => wr_req  
   ); 
 
 
 --The output buffer(FIFO)  
 fifo0  : lpm_fifo_dc      
    GENERIC MAP (LPM_WIDTH    => FIFO_WIDTH,  
     LPM_WIDTHU   => FIFO_WIDTHU, 

              LPM_NUMWORDS => FIFO_SIZE 
           ) 
 
    PORT MAP    (data    => data_in, 
           rdclock => clock8,    --read clock is the clock for dequeing 
           wrclock => clock8,  --writing clock is the main clock 

   wrreq   => wr_req_0,    
    rdreq   => rd_req(0), 
    aclr   => faclr(0),      
         q    => fifo_out(0),       --output of the fifo  
          wrfull  => fifo_full(0), 
          rdempty => fifo_empty(0), 
          rdusedw => fifo_rdusedw(0),      
           wrusedw => fifo_wrusedw(0) 
     ); 
 
 
 
 fifo1    : lpm_fifo_dc   --The input port buffer(FIFO)  
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       GENERIC MAP (LPM_WIDTH    => DATA_SIZE,  
          LPM_NUMWORDS => FIFO_SIZE, 
          LPM_WIDTHU   => FIFO_WIDTHU 
        ) 
 
       PORT MAP    (data    => data_in, 
 --**** read clock has to be changed to dq_count8(2) later ****************** 
        rdclock => clock8,        --read clock is the clock for dequeing 
              wrclock => clock8,        --writing clock is the main clock 

       wrreq   => wr_req_1,    
        rdreq   => rd_req(1), 

       aclr   => faclr(1),      
        q    => fifo_out(1),     --output of the fifo  

       wrfull  => fifo_full(1), 
       rdempty => fifo_empty(1), 

      rdusedw => fifo_rdusedw(1),      
       wrusedw => fifo_wrusedw(1) 
    ); 
  
 
 
fifo2    : lpm_fifo_dc   --The input port buffer(FIFO)  
     GENERIC MAP (LPM_WIDTH    => DATA_SIZE,  
        LPM_NUMWORDS => FIFO_SIZE, 
        LPM_WIDTHU   => FIFO_WIDTHU 
   ) 
 
 
     PORT MAP    (data    => data_in, 
 --**** read clock has to be changed to dq_count8(2) later ****************** 
        rdclock => clock8,        --read clock is the clock for dequeing 
        wrclock => clock8,        --writing clock is the main clock 
        wrreq   => wr_req_2,    
        rdreq   => rd_req(2), 
        aclr   => faclr(2),      
         q    => fifo_out(2),     --output of the fifo  
        wrfull  => fifo_full(2), 
        rdempty => fifo_empty(2), 
        rdusedw => fifo_rdusedw(2),      
       wrusedw => fifo_wrusedw(2) 
   ); 
 
 
fifo3    : lpm_fifo_dc   --The input port buffer(FIFO)  
    GENERIC MAP (LPM_WIDTH    => DATA_SIZE,  
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        LPM_NUMWORDS => FIFO_SIZE, 
        LPM_WIDTHU   => FIFO_WIDTHU 
   ) 
 
    PORT MAP    (data    => data_in, 
 --**** read clock has to be changed to dq_count8(2) later ****************** 
        rdclock => clock8,        --read clock is the clock for dequeing 
        wrclock => clock8,        --writing clock is the main clock 
        wrreq   => wr_req_3,    
        rdreq   => rd_req(3), 
        aclr   => faclr(3),      
         q    => fifo_out(3),     --output of the fifo  
        wrfull  => fifo_full(3), 
        rdempty => fifo_empty(3), 
        rdusedw => fifo_rdusedw(3),      
        wrusedw => fifo_wrusedw(3)  ); 
 
 
fifo4    : lpm_fifo_dc   --The input port buffer(FIFO)  
     GENERIC MAP (LPM_WIDTH    => DATA_SIZE,  
        LPM_NUMWORDS => FIFO_SIZE, 
        LPM_WIDTHU   => FIFO_WIDTHU 
    ) 
 
     PORT MAP    (data    => data_in, 
 --**** read clock has to be changed to dq_count8(2) later ****************** 
       rdclock => clock8,        --read clock is the clock for dequeing 
       wrclock => clock8,        --writing clock is the main clock 
       wrreq   => wr_req_4,    
       rdreq   => rd_req(4), 
       aclr   => faclr(4),      
       q    => fifo_out(4),     --output of the fifo  
       wrfull  => fifo_full(4), 
       rdempty => fifo_empty(4), 
        rdusedw => fifo_rdusedw(4),      
      wrusedw => fifo_wrusedw(4) 
   ); 
 
 
fifo5    : lpm_fifo_dc   --The input port buffer(FIFO)  
     GENERIC MAP (LPM_WIDTH    => DATA_SIZE,  
        LPM_NUMWORDS => FIFO_SIZE, 
        LPM_WIDTHU   => FIFO_WIDTHU 
   ) 
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     PORT MAP    (data    => data_in, 
 --**** read clock has to be changed to dq_count8(2) later ****************** 

      rdclock => clock8,        --read clock is the clock for dequeing 
             wrclock => clock8,        --writing clock is the main clock 
        wrreq   => wr_req_5,    
        rdreq   => rd_req(5), 
        aclr   => faclr(5),      
        q    => fifo_out(5),     --output of the fifo  
        wrfull  => fifo_full(5), 
        rdempty => fifo_empty(5), 
    rdusedw => fifo_rdusedw(5),      
    wrusedw => fifo_wrusedw(5) 
   ); 
 
 
 
fifo6  : lpm_fifo_dc   --The input port buffer(FIFO)  
     GENERIC MAP (LPM_WIDTH    => DATA_SIZE,  
        LPM_NUMWORDS => FIFO_SIZE, 
        LPM_WIDTHU   => FIFO_WIDTHU 
   ) 
 
 
     PORT MAP    (data    => data_in, 
 --**** read clock has to be changed to dq_count8(2) later ****************** 
        rdclock => clock8,        --read clock is the clock for dequeing 
        wrclock => clock8,        --writing clock is the main clock 
        wrreq   => wr_req_6,    
        rdreq   => rd_req(6), 
        aclr   => faclr(6),      
         q    => fifo_out(6),     --output of the fifo  
        wrfull  => fifo_full(6), 
        rdempty => fifo_empty(6), 
    rdusedw => fifo_rdusedw(6),      
    wrusedw => fifo_wrusedw(6) 
    ); 
 
fifo7    : lpm_fifo_dc   --The input port buffer(FIFO)  
     GENERIC MAP (LPM_WIDTH    => DATA_SIZE,  
        LPM_NUMWORDS => FIFO_SIZE, 
        LPM_WIDTHU   => FIFO_WIDTHU 
   ) 
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     PORT MAP    (data    => data_in, 
 --**** read clock has to be changed to dq_count8(2) later ****************** 
        rdclock => clock8,        --read clock is the clock for dequeing 
        wrclock => clock8,        --writing clock is the main clock 
             wrreq   => wr_req_7,    
        rdreq   => rd_req(7), 
        aclr   => faclr(7),      
        q    => fifo_out(7),     --output of the fifo  
        wrfull  => fifo_full(7), 

       rdempty => fifo_empty(7), 
       rdusedw => fifo_rdusedw(7),      
       wrusedw => fifo_wrusedw(7) 
   ); 
 
 
END behav;
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Appendix C.7. voq_input_package.vhd 

VHDL source code for the package file of project voq_switch 
 
-- voq_input_package.vhd 
-- Maryam Keyvani 
-- Communication Networks Laboratory, Simon Fraser University 
-- August 2001 
-- This is the package fi le for the voq_switch project 
 
 
LIBRARY ieee; 
USE ieee.std_logic_1164.ALL; 
USE ieee.std_logic_arith.ALL; 
 
 
PACKAGE voq_input_package IS 
 
CONSTANT DATA_SIZE      : INTEGER       := 8;   -- Data is in bytes 
CONSTANT BUFFER_WIDTHU  : INTEGER := 10;  -- Buffer is 848 words long and needs a 
10 bit address line 
CONSTANT BUFFER_SIZE : INTEGER := 848;  
CONSTANT PACKET_SIZE : INTEGER := 53;  -- An ATM packet is 53 bytes 
CONSTANT SWITCH_SIZE     : INTEGER := 4;   -- The switch is 4x4 
CONSTANT NO_OF_BLOCKS: INTEGER  := 16;  -- Should be BUFFER_SIZE/PACKET_SIZE 
CONSTANT POINTER_WIDTH : INTEGER := 4;   -- Should be LOG(NO_OF_BLOCKS) 
CONSTANT NO_OF_QUEUES  : INTEGER := 4;   --It sould be equal to the number of 
output ports 
CONSTANT VCI_VECTOR_SIZE: INTEGER := 24;  -- vci_in_vector and vci_out_vector are 
24 bits wide  
CONSTANT NO_OF_GRANTS_REQ: INTEGER := 16; --request and grant vectors have 16 
bits  
 
-- VOQ_input TYPES 
SUBTYPE POINTER IS STD_LOGIC_VECTOR(POINTER_WIDTH-1 DOWNTO 0); 
SUBTYPE BYTE IS STD_LOGIC_VECTOR(DATA_SIZE-1 DOWNTO 0); 
SUBTYPE VCI_VECTOR_TYPE IS STD_LOGIC_VECTOR (VCI_VECTOR_SIZE-1 DOWNTO 
0); 
 
--each linked list is of this type  
TYPE QUEUE_DESCRIPTOR IS 
RECORD  
 head, tail: POINTER; 
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 empty: STD_LOGIC;  
END RECORD; 
 
--A 16 bit array of vci_vectors 
TYPE VCI_VECTOR_ARRAY_TYPE IS ARRAY (NO_OF_BLOCKS-1 DOWNTO 0) of 
VCI_VECTOR_TYPE; 
TYPE NEXT_REGISTER_TYPE IS ARRAY (NO_OF_BLOCKS-1 DOWNTO 0) of POINTER; 
TYPE QUEUE_TYPE IS ARRAY (NO_OF_QUEUES-1 DOWNTO 0) of QUEUE_DESCRIPTOR; 
 
-- An array of 4 bytes 
TYPE DATA_VECTOR IS ARRAY(SWITCH_SIZE-1 DOWNTO 0) of STD_LOGIC_VECTOR 
(DATA_SIZE-1 DOWNTO 0); 
 
--The signals used to connect arbiters 
TYPE c_bar_signal_array IS ARRAY (1 to 7) of STD_LOGIC_VECTOR(1 to 4); 
 
END voq_input_package; 
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Appendix D. Simulation results 
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Appendix D.1. Simulation results for the voq_switch project 

 

Pages 143 and 144 contain the simulation results for the voq_switch 

project. 
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Appendix D.2. Simulation results for the voq_input project 

 

Pages 146 and 147 contain the simulation results for the voq_input 

project.  
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