

VHDL IMPLEMENTATION OF A HIGH-SPEED SYMMETRIC

CROSSBAR SWITCH

by

Maryam Keyvani

B.Sc., University of Tehran, 1998

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE

in the School

of

Engineering Science

© Maryam Keyvani 2001

SIMON FRASER UNIVERSITY

August 2001

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy
or other means, without permission of the author.

ii

Approval

Name: Maryam Keyvani

Degree: Master of Applied Science

Title of thesis: VHDL implementation of a high-speed symmetric

crossbar switch.

Examining Committee:

 Dr. Mehrdad Saif

 Chair

 Dr. Ljiljana Trajkovic
 Senior Supervisor

 Dr. Stephen Hardy
 Supervisor

 Dr. Tony Dixon
 Examiner
 School of Computer Science
 Simon Fraser University

Date Approved:

iii

Abstract

We describe the methodology, the design, and the VHDL

implementation of three main blocks of a 4×4 input buffered crossbar

switch: the input port modules, the crossbar scheduler module, and the

crossbar fabric module. The components employ existing schemes and

architectures. However, the design and VHDL implementation of each of

the components, and the composition of the overall switch is a novelty.

All the blocks are implemented in VHDL employing an ALTERA

FLEX10KE device and using MAX+PLUS II software. The switch is

capable of handling asynchronous transfer mode (ATM) packets.

ATM packets enter the input data lines of the switch in the form of

bytes. Every input port module of the switch has a corresponding input

buffer. The data bytes entering the switch are first stored in this buffer.

There are four “dynamic virtual input queues” within each of the input

buffers. Based on the output port that the packet is destined for, every

packet in the input buffer is assigned to one of these four virtual queues.

The destination output port of every packet is determined based on the

Virtual Circuit Identifier (VCI) information from the header of the packet.

This VCI value is looked up in a routing table to determine the

destination output port and the updated VCI for the packet. A request

for the destination output port is then sent to the scheduler module of

the switch. The crossbar scheduler employs a round robin priority

rotation scheme that is fair to all the input ports. The scheduler

configures the fabric, and grants the requests of some or all the input

ports based on their position in the priority round robin. Any input port

iv

that receives a grant de-queues the packet from its input buffer and

sends it to the crossbar fabric module, which provides the physical

connection between the input and the output ports.

v

Acknowledgements

I would like to thank my senior supervisor, Dr. Ljiljana Trajkovic, for her

support, encouragement and guidance during the period of my studies.

She taught me a lot about research and guided me through every step of

my studies. I would also like to thank my co-supervisor, Dr. Stephen

Hardy, for his kindness, support, guidance, and valuable comments.

I would like to extend my special thanks to my friend and colleague

Arash Haidari. We started this project together and he was my partner in

designing the Fabric and the Scheduler modules. Without him this

project would not have gone forward. I thank him for his moral and

technical support.

My sincere thanks to Dr. Tony Dixon for his willingness to be in my

defense committee and his valuable comments.

Special thanks to my family for their support and kindness. Sincere

thanks to all my friends, specially Nazy Alborz, for their friendship and

support throughout the period of my studies at SFU.

vi

Table of Contents

Approval ... ii

Abstract.. iii

Acknowledgments ..v

List of Figures .. ix

List of Tables ..xi

1. Introduction ...1

2. Background information ..7

2.1. Internal interconnect of the switch....................................7

2.1.1. Bus architecture ...7

2.1.2. Ring architecture ..9

2.1.3. Crossbar architecture ...10

2.1.4. Multistage architecture ...11

2.2. Buffering in packet switches ...13

2.2.1 Output queues...13

2.2.2. Shared central buffers ..14

2.2.3. Input queues...14

2.3. Scheduling algorithms ..22

3.3. Examples of existing ATM switches27

3. High-level switch view ..30

4. Input ports ...34

4.1. Input buffer ...36

4.2. Counters..41

4.3. Look-up table (port_LUT) ...42

4.4. VCI registers ..43

4.5. Write sequence controller (Write_seq_SM state machine)..44

vii

4.6. VCI controller (VCI_SM state machine)..............................46

4.7. Read sequence controller (Read_seq_SM state machine) ..48

4.8. Linked list update controller (linked_list_update process) 51

4.8.1. Initializing the linked lists51

4.8.2. Updating linked lists after a packet has been

written ..52

4.8.3. Updating the linked lists after a packet has been

read...55

5. The scheduler ..58

5.1. Two dimensional ripple-carry arbiter.................................59

5.2. Diagonal propagation arbiter (DPA) architecture62

6. The fabric ...69

7. Device information and simulation results.....................................76

7.1. Device information...76

7.2. Simulation results ...78

7.2.1. Simulation results of the switch (Appendix D.1)...78

7.2.2. Simulation results of the input port module

(Appendix D.2) ..82

Conclusion and future work...83

References ...86

Appendix A. Detailed schematic of the switch with its internal

connections..91

Appendix B. Sample output port module...92

Appendix C. VHDL source code of the switch and its components95

Appendix C.1. voq_switch.vhd...96

Appendix C.2. voq_input.vhd..106

Appendix C.3. voq_c_bar.vhd ..123

viii

Appendix C.4. voq_fabric.vhd..131

Appendix C.5. LUT.vhd...137

Appendix C.6. output_fifo.vhd ..141

Appendix C.7. voq_input_package.vhd......................................151

Appendix D. Simulation results ...153

Appendix D.1. Simulation results for the voq_switch project....154

Appendix D.2. Simulation results for the voq_input project145

ix

List of Figures

Figure 2.1: Schematic of a bus architecture switch............................8

Figure 2.2: Schematic of a ring architecture switch9

Figure 2.3: An input buffered switch with crossbar architecture10

Figure 2.4: An 8×8 Omega architecture ...12

Figure 2.5: A 4×4 three-stage Clos architecture.................................12

Figure 2.6: An input buffered switch with periodic traffic..................16

Figure 2.7: Simple virtual output queuing (VOQ) structure17

Figure 2.8: Alternative designs of switches with input port buffers....19

Figure 2.9: Input port queues for K-HOL scheme21

Figure 2.10: Bipartite graph G, and a matching W on it22

Figure 2.11: Round robin matching (RRM) scheduling algorithm26

Figure 3.1: High-level schematic of the switch31

Figure 4.1: High-level schematic of voq_input module of the switch ..34

Figure 4.2: (a) An ATM cell consisting of a 5 byte header and a 48 byte

payload. (b) The User Network Interface (UNI) ATM cell header..........35

Figure 4.3: Voq_input module data path..38

Figure 4.4: The structure of the buffer in each voq_input module39

Figure 4.5: The port_LUT component...43

Figure 4.6.a: Write sequence state machine in each input port

module ...44

Figure 4.6.b: Reset check in write sequence state machine...............45

Figure 4.7: VCI state machine in each input port module47

Figure 4.8.a: Read sequence state machine in each input port

module ...48

Figure 4.8.b: Reset/grant check in read sequence state machine49

x

Figure 4.9: The initial state of the ready flags and the next registers

associated with each block of the buffer...51

Figure 4.10: Diagram of the steps taken within the linked list update

process to update the linked lists, the next registers, and the ready

flags after a packet is written in the input buffer...............................53

Figure 4.11: Diagram of the steps taken within the linked list update

process to update the linked lists, the next registers, and the ready

flags after a packet is de-queued from the input buffer55

Figure 5.1: Two dimensional ripple-carry arbiter59

Figure 5.2: The basic arbiter cell with the combination logic

inside it ..60

Figure 5.3: Fixed priority Diagonal Propagation Arbiter (DPA)...........63

Figure 5.4: Diagonal Propagation Arbiter (DPA)66

Figure 5.5: Modified arbitration cell for diagonal propagation arbiter

(DPA) architecture ..67

Figure 5.6: Diagonal Propagation Arbiter (DPA)67

Figure 6.1: Crossbar fabric module in our switch69

Figure 6.2: A 4×4 crossbar ...71

Figure 6.3: Crossbar for the voq_fabric module71

Figure 6.4: The output_fp(2) is the logical sum of input_fp bits 72

AND’d with corresponding cntrl bits.

Figure 6.4: The 12 copies of crossbar used in the voq_fabric module.73

Figure 6.5: The crossbar used to pass the data_valid signals through

 the fabric...74

Figure 6.6: The crossbar used to pass the 3rd bit of the data bytes

through the fabric..75

xi

List of Tables

Table 7.1: Summery of the gates and logic cells used for the crossbar

switch...76

Table 7.2: The input VCI, output VCI, and output port numbers

stored in the look up table module of our switch79

Table 7.3: Details of simulation results shown in Appendix D.1........81

1

Chapter 1

Introduction

Communication networks connect different geographically distributed

points, so that these points can communicate with each other. Since a

completely connected graph of such a network with N points would

require N(N-1)/2 links -practical for only small N- a partially connected

network is typically used.

Switching refers to the means by which the transmission facilities

(bandwidth, buffer capacity, etc.) are allocated to users to provide them

with a certain degree of connectivity. Switching systems reduce the

overall network costs by reducing the number of transmission links

required to enable a given population of users to communicate. They

also enable heterogeneity among terminals and transmission links, by

providing a variety of interface types. According to the type of

information being carried, there are various switching techniques,

chosen on the basis of optimizing the usage of bandwidth in the

network. The two main switching techniques are: circuit switching and

packet switching.

In circuit switching, a path is set up from the source to the destination

at the connection set-up time. Once this path is set up, it remains fully

connected for the duration of the connection. It is obvious that circuit

switching is only cost effective at times when there is a continuous flow

of data once the circuit is set up. This is certainly the characteristic of

2

voice communication and that is why circuit switching is mostly used in

telephone networks.

Communication among computers however, happens in bursts. Data

travels through these networks in the form of messages. Each message is

a block of data with a header that contains some control information

such as source and destination addresses, priority, message type, etc. In

data networks, there are certain gaps between the messages. The user

devices do not need the transmission link all the time, but when they

do, they require relatively high bandwidths. Assigning a continuous

connection with high bandwidth for such connections is obviously a

waste of resources and results in low utilizations. If the circuit of high

bandwidth was set up and released for each message transmission, then

the set up time incurred for each message transmission would be high

compared to the transmission time of the message. Thus, switches in

data networks incorporate the store and forward technique for

transmitting the messages.

In store and forward, a message is first sent from the source to the

switch to which it is attached. The switch scans the header of the

message and decides to which output to forward the message. The same

scheme is repeated from switch to switch until the message reaches its

destination. The advantage of such a switching scheme is that the

transmission links are occupied only for the duration of the

transmission of a message. After that the links are released in order to

transmit other messages. In other words, the bandwidth allocation in the

3

store and forward scheme is determined dynamically on the basis of a

particular message and a particular link in the network.

Packet switching is an extension of message switching. In packet

switching, messages are broken into certain blocks called packets, and

packets are transmitted independently using the store and forward

scheme. Some of the advantages of packet switching over message

switching according to [24] are as follows.

1) Messages are fragmented into packets that cannot exceed a

maximum size. This leads to fairness in the network utilization,

even when messages are long.

2) Successive packets in a message can be transmitted

simultaneously on different links, reducing the end-to-end

transmission delay. (This effect is called pipelining.)

3) Due to the smaller size of packets compared to messages, packets

are less likely to be rejected at the intermediate nodes due to

storage capacity limitation at the switches.

4) Both the probability of error and the error recovery time will be

lower for packets since they are smaller. Once an error occurs,

only the packet with the error needs to be retransmitted rather

than the whole message. This leads to a more efficient use of the

transmission bandwidth.

A packet switch is a box with N inputs and N outputs that routes the

packets arriving on its inputs to their requested outputs. One can say

that the main functions of packet switches are buffering and routing.

4

Besides these basic operations a switch can have other capabilities, such

as handling multicast traffic and priority functions.

Small N×N packet switches are the key components of the

interconnection networks used in multiprocessors and integrated

communication networking for data, voice, and video. A popular choice

in the hardware implementation of packet switches is crossbar

architecture [5, 13, 18, 22, 26]. Crossbar is a non-blocking architecture.

This means that any input-output pair can communicate with each other

as long as they do not interfere with the other input-output pairs. In

other words, any permutation of inputs and outputs is possible as long

as each input sends data to a different output, and each output receives

data from at most one input.

This document describes the design and implementation of an

asynchronous transfer mode (ATM) crossbar switch [14]. ATM is a means

of digital communication with the potential for replacing the conflicting

communication infrastructures (telephone networks, cable TV networks,

and computer networks) that nowadays need to be integrated into one.

These three information infrastructures have some overlaps among

themselves and are all moving from analog technology to digital

technology for transmission, switching, and multiplexing. New

technologies are being developed that are stepping along the way of

merging these three communication infrastructures. ATM technology is

intended to be used in networks that transport a variety of different

types of information including voice traffic that was traditionally carried

over telephone networks, data traffic typically carried on computer

5

networks, and multimedia traffic consisting of a mixture of image, audio

and video information. Each of these various types of traffic can have a

different requirement and places different demands on switching and

transmission facilities. Although ATM has not replaced datagram

networks altogether and hasn’t been the one and only dominant

technology (as it was promising 10 years ago), but still it has been

deployed in many networks. Vendors are continuing to study and

improve ATM technology to achieve the implementation of more and

more Quality of Service (QoS). In ATM networks data is transferred over

Virtual Circuits (VC’s) in 53-byte packets called cells.

Our implementation is done in VHSIC Hardware Description Language

(VHDL), using MAX+PLUS II software. The ATM crossbar switch that we

have implemented is a modular design (can be scaled) and consists of

three main components: input port modules, crossbar scheduler, and

crossbar fabric. The functionality of the switch can be described as

follows. The packets first enter the input ports of the switch where they

are queued based on their order of arrival. Each input port has a port

controller that determines the destination of a packet, based on the

packet header using a programmable mapper (routing table). The port

controller then sends a request to the scheduler for the destination

output port. The scheduler grants a request based on a priority

algorithm that ensures fair service to all the input ports. Once a grant is

issued, the crossbar fabric is configured to map the granted input ports

to their destination output ports.

6

Chapter 2 provides background information on queuing schemes, fabric

architectures and designs, and scheduling algorithms in packet

switches. We also introduce several examples of existing ATM switches.

In Chapter 3 an overall view of our switch is presented. Chapter 4

contains a detailed description of the switch input port modules. The

crossbar scheduler and crossbar fabric modules are introduced in

Chapters 5 and 6, respectively. Finally, Chapter 7 discusses the

implementation details and the simulation results of our design.

There are four Appendices in this document. Appendix A contains a

detailed schematic of our 4×4 packet switch and its internal

connections. Appendix B has the description of a sample output port

module that can be connected to the output ports of the switch.

Appendices C and D contain the source code for all the components and

the simulation results from the design, respectively.

7

Chapter 2

Background information

There are three main components in packet switches: 1) the block that

provides the physical connection between the input and output ports

(internal interconnect of the switch), 2) the internal storage (memory, in

general) where the packets that enter the switch are stored, and 3) the

scheduling module that determines the departure of packets from the

switch.

This Chapter provides background information on different designs,

architectures, and algorithms for these main components of packet

switches. In each case, the pros and cons of the architectures or

algorithms are discussed.

2.1. Internal interconnect of the switch

There have been discussions about what the internal interconnect of the

switch should be [3, 25]. The internal interconnect of the switch can be

in the form of a single stage network (shared bus, ring, crossbar) or a

multi-stage network of smaller switches arranged in a banyan [9]. What

follows are some pros and cons of each of these schemes.

2.1.1. Bus architecture

Bus architecture is probably the simplest way of transferring data to the

output ports (Figure 2.1). The inputs and outputs of the switch are

connected to a single bus or a number of parallel buses. The inputs have

to contend for the control of the bus. A bus arbitration technique has to

8

be implemented in the bus processor to arbitrate the control of the bus

among the input ports. In bus architecture switches, queuing is mostly

done at the output ports of the switch.

Figure 2.1: Schematic of a bus architecture switch with input port

processor (IPP), output port processor (OPP), and control processor [25].

In Figure 2.1, the input port processor (IPP) module processes the

incoming packets. Its functionalities include synchronizing the incoming

packets, looking up the packet header in routing tables, and updating

the header. The output port processors (OPP) module typically performs

some form of queuing and some congestion control. The control

processor configures the routing tables based on the user requests.

In a bus architecture switch, if the input/output line rate is R and there

are n ports, then the bus should have a minimum speed of Rn. This

means that, for a bus clock of r Hz, the bus has to be w = Rn/r bits wide.

This relation shows that the bus speed has to grow with the number of

links and that is a disadvantage for the bus architecture. Also, the

Control
Processor

IPP OPP

9

problem of capacitive loading on the signal lines rises as the number of

ports connected to the bus increases. This reduces the maximum clock

frequency of the bus.

2.1.2. Ring architecture

In this architecture, ports are connected in a ring. Cells are put into

empty time slots and taken from filled and matching time slots. Figure

2.2 shows the ring architecture. RI is the ring component of the switch.

Queuing in these switches is done mostly at output ports [25].

Figure 2.2: Schematic of a ring architecture switch. All the input and

output ports are connected in a ring [25].

The ring architecture has some additional latency compared to buses

but this is small enough for switching applications. The advantage of a

ring design over a bus architecture is that a ring does not suffer from

capacitive loading as the number of ports increases, since the

connections are point to point. Therefore, a ring architecture can have a

RI

RI

RI

RI

RI

RI

10

larger number of ports. However, similar to bus architecture, the speed

of the ring has to increase as the number of ports grows. For a ring

supporting n input/output ports (each operating at a data rate of R bits

per second), the ring speed should be a minimum of Rn. As n increases

the speed of the ring has to increase too. This is similar to the limitation

that exists on bus architecture.

2.1.3. Crossbar architecture

A crossbar consists of N horizontal buses (rows) and N vertical buses

(columns). Each horizontal bus is connected to an input port and each

vertical bus is connected to an output port. Crossbar switches are fully

connected switches. Therefore, in a crossbar switch, there is a direct

path from every input to every output. Figure 2.3 shows a crossbar

architecture with input queues.

Figure 2.3: An input queued switch with crossbar architecture.

Crossbars provide a direct connection between each input and output

port.

11

The speed of the crossbar depends on whether input queues or output

queues are used. In case of input queues, the input and output port

controllers have the advantage of working with merely the speed of the

links. If output queues are utilized, the switch fabric has to be fast

enough not to cause contention at the output ports. Section 2.2

discusses input queuing vs. output queuing.

Crossbar-based systems can be significantly less expensive than bus or

ring systems with equivalent performance because the crossbar allows

multiple data transfers to take place simultaneously. Furthermore,

crossbars are non-blocking, which means any input-output pair can talk

to each other as long as they do not interfere with other input-output

pairs. However, in the absence of a fast scheduling algorithm the

crossbar becomes a performance bottleneck for big switches. Crossbars

are generally expensive, but compared to the total cost of a switch, the

crossbar component contributes only a small fraction (around 5%

according to [3]).

2.1.4. Multistage architecture

For systems implemented using CMOS integrated circuits, buffered

multistage switches are among the attractive choices. In a multistage

architecture, the packets pass through multiple stages of the fabric,

made from smaller switch elements, rather than a single stage. In this

manner the switch can profit from a certain degree of parallelism. Figure

2.4 shows an example of a multistage switch composed of three stages.

This architecture is called an Omega architecture.

12

Figure 2.4: An 8×8 Omega architecture is an example of a multistage

switch.

Multistage switches can be either blocking or non-blocking [7]. Switches

with a Clos architecture shown in Figure 2.5 [7] are non-blocking.

Banyan architectures [9, 25, 27], on the other hand, suffer from internal

blocking. In other words, a cell destined for a certain output can be

delayed in the fabric by the contention caused by cells that are destined

for other outputs. This problem can be solved by sorting the cells

according to the output they are destined for, before sending them into

the banyan. Such an architecture, called Batcher-banyan architecture,

has been used in the Sunshine switch [9, 27].

Figure 2.5: A 4×4 three-stage Clos architecture, consisting of 2×3, 2×2,

and 3×2 switch modules.

2x3

2x3

2x2

2x2

2x2

3x2

3x2

1

2

3

4

1

2

3

4

13

2.2. Buffering in packet switches

Even with a non-blocking interconnect such as the crossbar, some

buffering is necessary because packets that arrive at the interconnect

are unscheduled and the switch has to multiplex them. There are three

basic conditions where buffering is necessary: 1) The output port

through which the packet needs to be routed is blocked by the next

stage of the network. 2) Two packets destined for the same output port

arrive simultaneously at different input ports but the output port can

accept only one packet at a time. 3) The packet needs to be held while

the routing module in the switch determines the output port to which

the packet is sent.

The optimal place for the queues in high-performance switches has long

been studied. Here are some of the advantages and disadvantages of

input (IQ), central shared (CS), and output queuing (OQ).

2.2.1 Output queues

Output queues are used when the aggregate throughput of the switch

fabric and the memory is large enough to keep all the output links

continuously busy, therefore making the system highly efficient. In such

a case, quality of service (QoS) guarantees can be provided. For an N×N

switch, generally, output queuing is implemented when the switch fabric

runs at least N times faster than the speed of the input lines. This is a

disadvantage when high-speed port processors or fast switch fabrics are

not available. Another disadvantage of the output buffer is that in order

to be able to handle simultaneous packet arrivals, each output buffer

must have as many write inputs as there are input ports to the switch.

14

Implementing output buffers with multiple write inputs increases their

cost and reduces their performance. Furthermore, having more than one

write at a time can cause problems in buffer allocation for variable sized

packets [23].

2.2.2. Shared central buffers

Complete sharing of the buffering space by all the ports results in the

most efficient usage of memory resources. Hence, it would be ideal to

use central buffers. However, there are fundamental difficulties in the

efficient hardware implementation of switches with central buffers [23].

All the input ports and output ports access the shared central buffer;

hence in the worst case the bandwidth of the central buffer has to be

equal to sum of the bandwidth of all the ports. Furthermore for an N×N

switch, the central buffer has to at least have 2×N ports to be accessible

by all input and output ports. Multi-port memory is very expensive to

implement and leads to poor performance because of its large access

time. To avoid multi-port memories, it is possible to increase the buffer

and connection line widths. However, that will cause the bandwidth to

be wasted for cells that are smaller than the width of the bus. In addition

to implementation difficulties, shared central buffers cause some

performance problems. Complex control circuitry for variable size

packets and “hogging” of the output ports as some performance issues

examples are discussed in [23].

2.2.3. Input queues

One advantage of having input buffers in a packet switch is that the

buffer requires only one write port, because only one packet arrives at

an input port at a time. The fabric and memory of an input queued (IQ)

15

switch need to be merely as fast as the line rate. This makes input

queuing very appealing for switches with fast line rates or with large

numbers of ports. Note the latter is the consequence of the fact that if

output queues are chosen for an N×N switch, the fabric and memories

have to be N times faster than the line rates, and memory is not fast

enough as N increases. Moreover, for multicast traffic (traffic that is sent

from a single input port to multiple output ports), a burst of n cells that

are to be delivered to m output ports only needs n cell buffers for the IQ

structure, rather than m×n buffers for OQ structure. Furthermore, if the

buffer is a First in First Out (FIFO) buffer, it is very easy to deal with

variable size packets and avoid memory management problems.

The disadvantage of IQ switches with FIFO buffers is head of line (HOL)

blocking. HOL blocking occurs when a packet at the head of queue,

waiting for a busy output, blocks a packet behind it that is destined to

an idle output. HOL blocking can have the worst effect when the traffic is

periodic [3] and the scheduling algorithm is based on priority rotation.

In such a case the throughput of the switch can be reduced to the

throughput of a single link. Figure 2.6 provides an example of periodic

traffic: in each time slot only one input and output can communicate

with each other.

Comparing output queuing with input queuing for non-blocking

switches [12] shows that in output queuing, 100% of the output

bandwidth can be utilized, while in input queuing the switch can be

loaded up only to a maximum of 58% due to HOL blocking. The 58%

utilization is achieved under the assumption that the input ports have

16

FIFO queues and the incoming traffic is governed by an independent

identical Bernoulli process. In other words, it is assumed that the

probability that a packet arrives at each input in any given time slot is

p, and each packet has the equal probability 1/N of being addressed to

any given output.

Figure 2.6: An input buffered switch with periodic traffic (worst case for

HOL blocking). The packet labels are the destination output port

numbers of arriving packets.

Many subsequent studies have tackled improving the performance of

input-queued packet switches. Some of the proposed techniques are as

listed below.

1) Using non-FIFO buffers: One scheme in this category is virtual

output queuing (VOQ) [3, 16, 21, 23]. In this scheme each input

has N queues or blocks of memory instead of one single FIFO

queue. In other words, there is a separate queue for each input-

output pair (Figure 2.7).

1

1

3 3 2 2 1 1

3 3 2 2 1 1

3 3 2 2 1

2 2 1 1

3 3 2 2 1

33

1

2

3

4

5

1

2

3

4

5

17

Figure 2.7: Simple virtual output queuing (VOQ) structure. This

architecture removes the HOL blocking effect [16].

There are three possible “multiple input queue” buffer structures [23].

Figure 2.8 shows these three schemes together with the standard FIFO

architecture. Item 2.8.(a) in the Figure is the standard FIFO queue

structure. It shows a 4×4 crossbar switch with a single FIFO buffer at

each input. Packets that arrive at each input of the switch are queued in

the buffer and served in the order that they arrived.

What follows is a description of the three “multiple input queue” buffer

structures -Figures 2.8.(b), (c), and (d).

A. Statically allocated fully connected (SAFC) buffer [23] shown in Figure

2.8.(b) eliminates HOL blocking by providing, at each input port, a

separate FIFO queue for every output port. At every input port, packets

A1

input 1
Q1,1

Q1,N

input M
QM,1

QM,N

AM

crossbar switch
output 1

output N

18

that are destined for output 1 are sent to queue 1, packets destined for

output 2 are sent to queue 2, et cetera. When there is a separate FIFO

queue for each output (in this case there are four separate FIFO queues

at each input, corresponding to the four outputs of the switch) then

packets in every queue are contending for the same output. Hence, the

packet at the head of line cannot be blocking a packet behind it from

being sent to an idle output (and hence no HOL blocking exists). In this

architecture, every input can send N packets in every time slot (rather

than one packet in case of single FIFO inputs). This increases the

throughput of the switch.

The SAFC scheme has the following disadvantages:

i. Four separate crossbars must be controlled as opposed to a

single crossbar;

ii. Each input port requires four separate buffers and buffer

controllers;

iii. Buffer utilization is inefficient. The available buffer space is

partitioned into four statistically allocated queues. Hence,

the potential storage space for a given packet is only one

quarter of the buffer space at each input port;

iv. Pre-routing is required for every packet in order to

determine the destination output port (and hence the input

queue the packet belongs to).

19

Figure 2.8: Alternative designs of switches with input port buffers [23].

(a) Standard FIFO buffer, (b) N FIFO queues at each input (each FIFO

queue connected to a separate crossbar), (c) N FIFO queues at each

input (only one queue at each input port connected to the crossbar at

any time), (d) N FIFO queues (with dynamic boundaries) at each input

share the same buffer.

B. Statically allocated multi -queue (SAMQ) buffer shown in Figure 2.8.(c)

removes disadvantage i. from the list by sacrificing the high throughput

[23]. Each input can send only one packet to the crossbar in every time

slot (as opposed to N in the previous case). This removes the need to

input
ports

 a) FIFO buffers

output ports

crossbar

N

input
ports

b) statically allocated fully
connected (SAFC)

N/4

output ports

4x1
4x14x14x1

d) dynamically allocated
multi-queue (DAMQ)

input
ports

output ports

N

crossbar

c) statically allocated
multi-queue (SAMQ)

input
ports crossbar

output ports

N/4

20

control N crossbars at any time. Nevertheless, the remaining

disadvantages of the SAFC buffers still exist.

C. Dynamically allocated multi -queue (DAMQ) buffer [23] shown in

Figure. 2.8.(d) has none of the disadvantages mentioned earlier. In this

scheme each input buffer uses a single buffer pool. Virtual queues are

allocated dynamically within each input buffer and that makes the

buffer usage more efficient. Each virtual queue is maintained via a

linked list. For each virtual queue, there is a head/tail register pointing

to the head and tail of the corresponding linked list. A separate linked

list is also maintained for the free storage space in the buffer. When a

packet arrives, it is written to the memory location marked by the head

of the free space linked list (no pre-routing required). While the packet is

being written to the free buffer space, its header is looked up and its

destination output port number is determined. The tail pointer of the

link list corresponding to this output port destination will then change,

to point to the arrived packets location.

2) Operating the switch fabric at a faster speed than the input/output

lines (speedup): This scheme reduces the effect of HOL blocking but

does not remove it completely [6]. A speedup by a factor of S can remove

S packets from each input port within each time slot. Therefore, for an

N×N switch, if output buffers are used, the speedup is N, and if input

buffers are used, the speedup is equal to one. For switches that use

speedup, both input and output buffers are required.

21

3) Examining the first K cells in a FIFO queue where K>1 : Consider a

switch with input port buffers as shown in Figure 2.9 [4]. The packet

labels are destination port numbers.

Figure 2.9: Input port queues for K-HOL scheme [4].

We define array Ai = [a i1, ai2, ai3, …, aiN]T where a is = d is the destination

port number, i is the column number, and s is the source port number.

We also define transmission array T = [t1, t2, …, tN]T, where ts = d indicates

that input port s is assigned to transmit a packet to output port d. The

underlying goal in this algorithm is to use arrays A1 to Ak in order to

produce a transmission assignment array T that has as many non-zero

elements as possible.

There is no record that this scheme was ever implemented in hardware.

This scheme improves the throughput, but it is sensitive to arrival

patterns and may perform no better than regular FIFO when traffic

occurs in bursts.

57....N

37

39....4

.... 8

K-HOL

A1
......Ak

22

2.3. Scheduling algorithms

The scheduler module in a packet switch decides when data is sent from

particular inputs to their desired outputs. Normally, a request is sent

from the input ports to the scheduler and the scheduler finds the best

configuration of input-output pairs. The scheduling algorithm has to be

fast, fair, and easy to implement in hardware. A comparison of several

scheduling algorithms for input queued switches can be found in [17].

The problem of scheduling, that is determining which input and output

should be connected to each other in each time slot, is equivalent to

finding a matching in a bipartite graph. Graph G is bipartite if its nodes

are divided into two sets, and each edge has an end in one of the sets.

Switch inputs and outputs form the two sets of nodes of the bipartite

graph and the edges are the connections required by the queued cells.

Figure 2.10 shows a bipartite graph G with M inputs and N outputs,

together with a matching W on the graph. (M would be equal to N2 for an

N×N switch with VOQ).

Figure 2.10: Bipartite graph G, and a matching W on it

1

2

3

M

2
1

 3

N

1

2

3

M

2
1

 3

N

23

What follows is a description of several scheduling algorithms discussed

in literature.

1) Maximum Size Matching scheduling algorithm by McKeown,

Anantharam, and Warland [16] finds the matching that contains the

maximum number of edges. This algorithm is stable (and achieves 100%

throughput) for independent uniform traffic but could lead to starvation

(and hence queue overflow) or instability, if the arrival processes are not

uniform [16]. Maximum size matching can also cause a reduced

throughput for non-uniform traffic [20]. For non-uniform traffic, cells

concentrate among a relatively small number of VOQ’s and therefore,

the scheduling algorithm will not have many configurations to choose

from. If the traffic is uniformly distributed among all the VOQ’s, the

algorithm will have different choices in finding the maximum matching

and will result in a higher throughput. In other words, the main problem

with maximum size matching is that it does not consider the backlog of

cells in the VOQ’s, or the cells that have been waiting in line to be

served. Furthermore, this algorithm is too complex to implement in

hardware. The best known maximum size matching algorithm converges

in O(n5/2) time [15].

2) Maximum Weight Matching algorithm assigns a weight to each

input queue [16]. The matching algorithm finds an input-output match

that has the highest sum of weights. This algorithm is stable for both

uniform and non-uniform traffic [16]. The weight assigned to each queue

is usually equal to the occupancy of the queue and therefore the longest

queue has the highest weight. Hence this algorithm is also called

24

Longest Queue First (LQF). The disadvantage of maximum weight

matching is its high complexity i.e., O(N3logN). The algorithm can not be

implemented in hardware because it needs multi-bit comparators to

compare the weights of the queues.

3) Oldest Cell First (OCF) scheduling leads to 100% throughput for

independent arrivals and no queue will be starved [21]. This algorithm

uses the waiting times of HOL cells as requesting weights and selects a

match such that the sum of all queue waiting times is maximized. This

algorithm, however, is too complex (i.e., O(N3logN)) to be implemented in

hardware.

4) Longest Port First (LPF) algorithm by McKeown is a variation of the

LQF scheme [20]. However it does not have the complexity of LQF and

can be implemented in hardware. In LQF algorithm, each queue has a

weight equal to the length of the queue. In LPF, however, the weight

(also called port occupancy) of each queue is the sum of aggregate input

and output queue occupancies. This algorithm finds the match that is

both maximum size and maximum weight. The complexity of the LPF

scheme is O(N2.5), but it can be simplified with some approximations in

order to be implemented in hardware.

5) Parallel iterative matching (PIM) algorithm is based on randomness

and iteration [15]. There are three steps in choosing the match between

inputs and outputs:

a. Each unmatched input sends a request to every output for

which it has a queued cell;

25

b. If an unmatched output receives any request, it grants one

by randomly selecting a request;

c. If an input receives a grant, it accepts one by selecting an

output randomly among those that granted its request.

These three steps are repeated for the inputs that are not paired with

any outputs, until they converge to a maximal match. A maximal match

is one in which each node is either matched or has no edge to an

unmatched node.

In the PIM algorithm, randomness prevents queues from being starved.

Also, in each iteration of random matching, a minimum average of 3/4 of

the remaining possible connections are matched or eliminated.

Therefore this algorithm converges to a maximal match in an average of

O(log N) iterations. The disadvantage of this randomness is that it is

expensive and difficult to implement in hardware. Furthermore, it can

lead to unfairness between connections and the multiple iterations are

time consuming. We prefer an algorithm that performs well in a single

iteration.

6) Round robin matching (RRM) overcomes the unfairness of random

matching by granting requests and accepting grants according to a

round robin priority scheme [15, 18]. There are three steps in this

algorithm shown in Figure 2.11:

a. In the Request step, each input sends a request (arrows in

Figure 2.11) to every output for which it has a queued cell;

b. In the Grant step, an output that has received any requests

grants the one request that appears next in a fixed round

26

robin schedule starting from the highest priority element.

The grants in the figure are arrows going from outputs to the

inputs. The priority round robin of the output is then

incremented (modulo N) one step beyond the granted input;

c. In the Accept step, an input that has received grants accepts

the grant that appears next in a fixed round robin schedule

starting from the highest priority element. The priority

round robin of the input is then incremented (modulo N)

one step beyond the accepted output.

Figure 2.11: Round robin matching (RRM) scheduling algorithm [11].

RRM algorithm removes the unfairness and complexity inherent in the

PIM algorithm. The algorithm performs well on a single iteration and

converges to a maximal match in an average of O(log N) iterations. Round

robin arbiters (implemented as priority encoders) are much simpler and

faster than random arbiters used in the PIM algorithm. Nevertheless, the

RRM algorithm still performs poorly under heavy traffic due to a

synchronization phenomenon described in [15].

g1 = 1

G1

N 1

2

a1 = 1

A1

N 1
2

34

a
3
 = 1

Request Grant Accept

A1

N 1

2

G2

N 1

2

g3 = 1

27

7) iSLIP is an iterative algorithm achieved by making a small change to

the RRM scheme [15]. iSLIP has the same three steps of RRM. Only the

second step (Grant step) has changed and changed little:

b. If an output receives any requests, it grants one that appears

next in a fixed round robin schedule starting from the

highest priority queue. However, the round robin at the

output is not incremented (module N), unless the grant is

accepted by the input in the Accept step. In other words, the

priority round robin at the output side is incremented

(provided that the grant was accepted) after the Accept step

is passed.

Those inputs and outputs not matched at the end of one iteration are

eligible for matching in the next. This small change to the RRM

algorithm makes iSLIP capable of handling heavy loads of traffic and

eliminates starvation of any connections. The algorithm converges in an

average of O(log N) and a maximum of N iterations. iSLIP can fit in a

single chip and is readily implemented in hardware [17].

3.3. Examples of existing ATM switches

The Knockout switch has a non-blocking, fully connected internal

interconnect (fabric) [26, 27]. It is a modular switch with output FIFO

buffers and a maximum line rate of 50 Mbps. The switch does not have a

time-slot specific scheduling algorithm and multiple simultaneous

packets can arrive at any output buffer. Up to 1000×1000 switches can

be implemented employing the knockout fabric architecture.

28

The ForeRunner ASX-200 switch is an example of a modular bus

architecture ATM switch [8] with shared memory output buffers. It

supports up to 32 ATM ports ranging in speeds from T1/E1 (1.544 Mbps)

to OC-12c/STM-4c (622 Mbps).

The Tiny Terra switch is an input buffered switch with a crossbar fabric

architecture [18]. This 32×32 switch employs VOQ mechanism, and an

iSLIP scheduling algorithm [15]. The maximum line rate of the switch is

10 Gbps.

The 16×16 ATLAS I single chip ATM switch has a maximum line rate of

622 Mbps [13]. The switch employs shared output buffers. The ATM cells

are stored in the single shared buffer pool and are never moved until

they depart the switch. The scheduling algorithm of the switch is priority

based. Certain ATM cells have higher priorities and are scheduled to

leave the switch earlier than other cells.

The 32×32 Sunshine switch has output buffers and a self-routing

Batcher-banyan fabric [9]. Input and output lines have a data rate of 155

Mbps. Input cells are queued according to four service classes and are

output in a round robin manner.

In the design of the switch, presented in the next 5 chapters, we have

chosen a crossbar fabric because it is a fully connected, non-blocking,

and fast architecture. Input buffers are used to benefit from the

advantages of input buffering discussed earlier in this chapter. To

overcome the HOL blocking phenomenon inherent in FIFO input

29

buffers, we have employed the VOQ architecture. The scheduling

algorithm used in the switch discussed in Chapter 5 is a fair, fast,

simple, and efficient algorithm that can easily be implemented in

hardware.

30

Chapter 3

High-level switch view

The overall view of the 4×4 switch design is given in Figure 3.1. The

input lines to the switch are four data lines, four frame pulse inputs, one

clock input, a reset input, and a global reset input. The output lines of

the switch are 4 data output lines, 4 data valid lines, 4 output frame

pulse lines, one clock output, and 4 outputs that indicate the origin of

the data coming to each data output port. This switch is modular and

can be scaled up or down with minor changes. A more detailed

schematic of our 4×4 switch design is available in Appendix A.

The four data inputs (data_in1 to data_in4) are each 8 bits wide, and

carry fixed size Asynchronous Transfer Mode (ATM) packets. Other

packet formats such as IP packets have to be fragmented into ATM cells

first and before being input to the switch. One data byte can be input to

the switch in every clock cycle. In our switch, data is both input and

output on the rising edge of the clock.

The clock input is global to all switch components. It is used to clock the

input and output data streams. Another clock called c_bar_clock is

internally generated within the input port modules. This clock has a

period equal to a packet time. Packet time is the interval required for a

packet to be output from the switch. The length of the packet time is

dependent on the frequency of the clock inputs. The rule of our design

is that the c_bar_clock should be 59 times slower than the clock input.

For the 53 bytes in an ATM packet, 53 clock cycles are required and the

31

6 additional clock cycles are needed to account for internal delays as

well as buffer updates.

Figure 3.1: High-level schematic of the switch. It consists of 4 input

ports, a crossbar fabric, and a fair scheduler.

The frame pulse inputs (fp1 to fp 4) are one bit wide signals indicating

the start of packets. A pulse on the fp line should be at least one clock

cycle wide. The frame pulse signal is checked on the falling edge of the

clock input. The first data byte coming on the second rising edge after

the frame pulse is detected, is considered as the first byte of the packet.

The reset and global_reset inputs of the switch reset all the counters

used in the design and initialize them to their starting values. The

fp

fp

Fabric
(voq_fabric)

voq_
input1

data_in

clock
port_grant

parallel_data_out

data_out_fp

data valid

voq_
input2

data_in

fp
clock

port_grant
data valid
port_request

data_in

clock

port_grant
data valid
port_request Scheduler

(voq_c_bar)
grant

data_out

source port no.

data valid

frame pulse

clock

global_reset

reset

data_in4

fp4

data_in2

fp2

data_in1

fp1

data_out_port1

fp_out_port1

data_valid1

incoming_port_to
_output1

data_out_port4

fp_out_port4

data_valid4

incoming_port_to
_output4

data_out_port2

fp_out_port2

data_valid2

incoming_port_to
_output2

x

x

x

x

x

to all input ports

voq_
input4

port_request

data_out_fp

data_out_fp

parallel_data_out

parallel_data_out

x

c_bar_clock

cntrl

clock

c_bar_clock

c_bar_clock

32

global_reset signal resets the input buffers, where the ATM packets are

stored, as well. In other words, if an error occurs while switching a

packet, the reset signal can be used to switch that packet again.

However, if one wants to reset the whole switch and delete the contents

of the buffers, global_reset should be used.

The output ports in our switch do not have any processing capability or

any storage capacity. They are currently only the pins of the chip. An

output module such as the one described in Appendix B can be

implemented at the output ports to reassemble the packets and store

them until they are allowed to enter the network. Currently, the output

lines of our switch are clock, data_out_port, fp_out_port, data_valid, and

incoming_port_to_output.

The output data bytes are sent out on data_out_port1 to data_out_port4

output ports. The output frame pulse signals (fp_out_port1 to

fp_out_port4) generated within the switch mark the beginning of

outgoing packets for their corresponding data lines. The relationship

between the beginning of the packet and the frame pulse for the output

ports is similar to that of the inputs: the first byte of an outgoing packet

is sent out on the second rising edge of the output clock after a pulse on

the corresponding output’s frame pulse lines is detected. (The frame

pulse line is checked on the falling edge of the clock.)

The data_valid output lines (data_valid1 to data_valid4) indicate whether

the data present at the corresponding output of the switch is valid for

33

sampling. If this line is logic low, the corresponding output line is invalid

and should be ignored.

A source port number signal (incoming_port_to_output1 to incoming

port_to_output4) is available at each output port along with the data. This

signal indicates at which input port the data originated. This signal can

later be used for classifying and outputting the data according to a

desired priority scheme. Furthermore, in cases where the packets are

partially switched, the origin of each packet can be used to reassemble

the data at the output ports. This matter is discussed further in

Appendix B.

Appendix C contains the VHDL source code for the voq_switch project

and all the components in the switch.

34

Chapter 4

Input ports

There is an input port module for each of the four inputs of our 4×4

switch. This module is responsible for handling, storing and processing

the arriving ATM packets. This document refers to the input port module

as the “voq_input” module. VOQ stands for virtual output queuing

described in earlier chapters. VOQ has been implemented in the input

port modules of our switch; hence its name.

A high-level schematic of the voq_input module is shown in Figure 4.1.

Each data byte arriving at the voq_input module is first written into a

Random Access Memory (RAM) component called bufferx. This buffer

holds up to 848 one-byte words. The second, third and fourth bytes of

the packet are written into VCI registers as well as the buffer. These

bytes, located in the header of the ATM packet, contain the Virtual

Circuit Identifier (VCI) information. Figure 4.2 shows an ATM cell with its

header and payload bytes.

Figure 4.1: High-level schematic of voq_input module of the switch.

input data

 output data

 request grant

bufferx

port controller

port LUT

VCI
registers

35

 (a) (b)

Figure 4.2: (a) An ATM cell consisting of a 5 byte header and a 48 byte

payload. (b) The User Network Interface (UNI) ATM cell header. Bytes 2,

3, and 4 contain the VCI information.

Depending on the VCI information in the packet header, the ATM switch

decides to which output port the ATM packet should be sent, and what

the new VCI should be. In this document, “VCI bytes” refers to the

second, third, and fourth bytes of the ATM header shown in Figure

4.2.(b). Those 16 bits that are marked as VCI in this Figure are in turn

called “VCI bits”.

After the first four bytes of a packet are read, and while the rest of the

bytes of the packet are being shifted in, the port controller extracts the

address information (VCI bits) from the header of the arriving ATM

packet and sends it to a Look Up Table (LUT) module. The LUT is a

routing table that updates the VCI bytes of the header and returns the

new VCI together with the destination output port number for that

packet. The port controller then sends a request for that specific output

port to the scheduler, and awaits a grant.

Once a grant is issued for a certain packet, the data bytes are de-queued

from the input buffer in the order that they had arrived. A counter for

GFC VPI

VPI VCI

VCI

VCI PT CLP

HEC

8 7 6 5 4 3 2 18 7 6 5 4 3 2 1

5 byte
ATM header

48 byte
ATM payload

36

the de-queue state machine within the port controller signals when the

updated VCI bytes have to be read from the VCI registers.

After the entire packet is sent, the same process is repeated for the next

packet. Note that as soon as a grant for an output port is issued, the

input port number is sent to the crossbar fabric so that the output port

receiving the data knows where the packet originated from. Figure 4.3

shows a detailed schematic of the voq_input module. In this Figure there

is no central controller. The input port controller is actually a gathering

of several seperate state machines shown in Figure 4.3:

1. Write sequence state machine (Write_seq_SM process);

2. VCI controller state machine (VCI_SM process);

3. Read sequence state machine (Read_seq_SM process);

4. Linked list update state machine (Linked_list_update process).

The following sections describe the main components of the voq_input

module (buffer, counters, LUT, VCI registers), and all the state machines

mentioned earlier.

4.1. Input buffer

The input buffer in our switch design shown in Figure 4.4 is a 848 word

dual port RAM. Each word is one byte wide. In order to address all the

words in the 848 word RAM the address lines are 10 bits wide. The write

address (wraddress) determines to where in the buffer the input data

bytes should be written, and the read address (rdaddress) is where the

37

outgoing data bytes are read from. There is a separate enable input for

both read and write operations (rden and wren). Read and write

operations are synchronized with the rising edge of the main clock of the

switch.

Each input buffer is divided into 16 virtual blocks of 53 bytes length,

shown in Figure 4.4. Every block is addressed with a pointer to its first

byte and can hold one complete ATM packet. The choice buffer size is a

trade off between the switch speed and the loss rate. The larger the

buffer is, the smaller the probability of buffer overflow and the loss rate.

On the other hand, the queuing delay increases as the buffer size grows.

A large queuing delay reduces the switching speed and results in a low

Quality of Service (QoS) in the network. For our 4×4 switch with input

buffers, 16 is a reasonable number that does not cause overflow for

uniform constant bit rate traffic.

We require 4-bit-wide pointers to reference individual blocks. While de-

queuing (or en-queuing) packets, it suffices to have a pointer to the

beginning of the block that holds (or will be holding) the packet. The

read and write counters provide the offset for read and write addresses.

The buffer in our design consists of five dynamic first in first out (FIFO)

queues. The queues are dynamic in the sense that they do not have

fixed sizes or locations in the buffer memory. Each block of the buffer

could belong to any of these five queues.

38

Figure 4.3: Voq_input module data path. It consists of two counters, a

RAM component (bufferx), a ROM based look-up table (LUT), and four

state machine based controllers.

data_in

8

8

8

 q
 wren rden

 wraddress rdaddress

bufferx

 rdclock

 wrclock
 data

wr_en_signal

RAM_out

wr_address_signal

9

6

aset

 q
counter_53

 clock

 count53

clock

Write_seq_SM

clock
fp

c53sset

count53

V
C

I_reg_en

rd_address_signal

rd_en_signal

9
Read_seq_SM

da
ta

_o
ut

_f
p

dq
_c

53
ac

lr

 aclr

q
dq_counter53

 clock

dq_count53

6

data_out_select

clock

reset

global_reset

dq_count53

port_grant

enable data
VCI_register2

 clock q

data_in

VCI_reg2_out

VCI_reg1_out

enable data
VCI_register1

 clock q

enable data
VCI_register0

 clock q

VCI_reg0_out

8

8

8

8

8

8

vci_in_vector

data_in

8

clock

clock

clock

clock

clock

port_LUT

output_vci

output_port_no

input_vci

4

 16

 16VCI_SM

vci_in_vector(19 downto 4)

input_vci

clock
enable

reset
global_reset

reset
global_reset

clock

 count53

6

out_vci_ready

loadi

vci_out_vector

vci_out_vector(i)

clock

clock

MUX

prallel_data_out
8

linked_list_update_SM

clock

reset

global_reset

free_space
queue

next_register

count53

dq_count53

free_spacefrom the linked list
update state machine

from counter_53 and
dq_counter53

prallel_data_out

39

Figure 4.4: The structure of the buffer in each voq_input module. The

buffer is a 848 word RAM divided into 16 blocks.

The five FIFO queues are maintained via linked lists. A certain structure

called “queue_descriptor” is defined in VHDL for this purpose. Queue 1

to queue 5 in our design are of “queue_descriptor” type. The

“queue_descriptor” structure has three fields: head, tail, and empty.

address

bl
oc

k
0

bl
oc

k
1

bl
oc

k
2

bl
oc

k
15

pointer = "0000"

pointer = "0001"

pointer = "0010"

pointer = "1111"

... ...

... ...

847
846

795
794
793

159
158
157

107
106
105

53
52
51

2
1
0

next_register(15)

vci_out_vector(15)

ready_flag(15)

next_register(2)

vci_out_vector(2)

ready_flag(2)

next_register(1)

vci_out_vector(1)

ready_flag(1)

next_register(0)

vci_out_vector(0)

ready_flag(0)

1 byte

40

Head and tail fields are of type pointer and empty field is a one bit flag.

The head and tail fields of each queue point to the first and last blocks

in the queue, respectively. A logic high value for the empty field of a

queue shows that the queue is empty.

Four of the queues, queue(0) to queue(3), correspond to the four output

ports of the switch. In other words, packets that are destined for output

1 are stored in queue(0). The packets destined for output 2 are stored in

queue(1), etc. The fifth dynamic FIFO queue of the buffer is the

free_space queue. This queue holds the empty blocks of the buffer. Note

that an empty free_space queue is the equivalent of a full buffer. An

empty free_space queue indicates that there is no free block left to

accept a new packet.

Whenever a packet arrives at the buffer, it is written into the block that

is at the head of the free_space queue. Whenever a packet is to be read

from the buffer and sent to a certain output port, it is read from the

head of the queue that corresponds to that output port.

Each block of memory in our buffer (refer to Figure 4.4) has three

registers associated with it.

� The “next_register”: Let’s assume that block x holds a packet that

belongs to queue(i). The value of next register for block x -

next_register(x) - is the location of the next block belonging to queue(i).

This is how the members of different queues are distinguished, and

how the order of the blocks in each queue is accounted for. A detailed

41

description of how the linked lists are manipulated is given in section

4.8, where the linked_list_update process is described.

� The “vci_out_vector”: The vci_out_vector(x), associated with block x, is

where the updated VCI bytes of the packet in block x are stored.

� The “ready_flag”: The third register associated with each block x is

ready_flag(x). A logic high value of the ready_flag(x) indicates that an

ATM packet has been completely written into block x. A logic low

ready_flag shows that the corresponding block of the buffer is empty.

4.2. Counters

There are two main counters used in our design: counter_53 and

dq_counter53 (refer to Figure 4.3). Both these counters are always

enabled and will be incremented at the rising edge of the main clock, if

they are neither set nor cleared by their controllers. There is also a

third counter in our design called the clock_gen_counter. This counter is

a Mod(59) counter and assists in making the c_bar_clock signal.

The first counter, counter_53, is 6 bits wide and counts the number of

bytes that enter the voq_input module and are written (en-queued) into

the input buffer. This counter is mainly controlled by the write_seq_SM

controller shown in Figure 4.3. The counter is always kept in a set

condition and starts counting from zero once a frame pulse on the fp

input of the voq_input module signals the beginning of a packet. This

counter is set again, once the whole packet is read.

42

The second counter, the dq_counter53, is also a 6 bit counter. It is used

for reading (de-queuing) the data bytes from the input buffer. This

counter is mainly controlled by the Read_seq_SM controller shown in

Figure 4.3. This controller enables the counter when a packet in the

buffer receives a grant and is being de-queued from the buffer. The

counter is cleared once a whole packet has been de-queued and the

queues have been updated.

4.3. Look-up table (port_LUT)

The port_LUT is a Read Only Memory (ROM) based component that can

be initialized with an arbitrary set of data, to form the routing table of

the switch. The ROM has eight rows and each row is 36 bits wide. These

bits consist of: a 16-bit input VCI, a 16-bit output VCI, and a 4-bit output

port number. Figure 4.5 shows the LUT ROM in more detail.

The LUT component searches through the ROM rows, until it finds a

match between the input VCI bits in the ROM and the input_vci input to

the LUT. If the match exists on row x of the ROM, the output VCI bits

and the output port number bits in row x are displayed on output_vci

and output_port_no outputs of the LUT component, respectively. The

renable output is activated at the same time in order to signal that valid

data is on the output ports of the LUT. If no match is found in the table,

the output lines are all set to zero.

43

Figure 4.5: The port_LUT component is based on an 8 word ROM, where

each word is 36 bits wide.

4.4. VCI registers

The VCI registers shown in Figure 4.3 (VCI_reg0, VCI_reg1, and

VCI_reg2) are 8-bit wide registers. The input data lines of these registers

are loaded into them (on the rising edge of the clock), provided that the

registers are enabled. The outputs of these registers are concatenated

and stored in a separate register called vci_in_vector.

Upon the arrival of VCI bytes, the voq_input module enables the VCI

registers. Three clock cycles after they are enabled, the registers will be

holding correct VCI bytes, and vci_in_vector will have a valid value.

port_lut

input_vci

16

output_vci

output_port_no

ROM

clock

renable

output VCI
output port

number

input VCI output VCI
output port

number

input VCI output VCI
output port

number

input VCI output VCI output port
number

input VCI

ROM
address

7

6

5

2

1

0

1 2 ... 15 16,17 18 ... 32,33 34 ... 36

16

4

input VCI output VCI output port
number

44

4.5. Write sequence controller (Write_seq_SM state machine)

The write sequence controller module (Write_seq_SM) shown in Figure

4.3 is comprised of a state machine called Write_seq_SM shown in

Figure 4.6.a. This state machine has two states: S0 and S1. All the state

transitions happen at the falling edge of the clock, and in each state the

condition of reset is checked, as shown in "Reset check in write

sequence state machine" diagram (Figure 4.6.b.)

Figure 4.6.a: Write sequence state machine in each input port module

(write_seq_SM process in voq_input.vhd file of Appendix C)

The write sequence state machine, starts from state zero (S0) where all

the signals are reset and the counter_53, which counts the number of

written bytes, is set to all ones. The state machine remains in state zero

count53 = 1 or 2
or 3

1

wr_en_signal = '0'
VCI_reg_en = '0'

fp = '1' AND
free_space.empty = '0'

wr_address_signal = count53 + ((free_space.head) * 53)
wr_en_signal = '1'

temp =
free_space.head

c53sset = '0'

c53sset = '1'

S0

S1

1

0

count53 = 53

1c53sset = '1'

0

VCI_reg_en = '1'

0

VCI_reg_en = '0'

45

until a pulse on the fp input line indicates that a new packet is arriving.

(The fp line is sampled on every falling edge of the clock.) Upon

detection of a pulse on the fp line, if the buffer is not full, the state

machine goes to state one (S1). In state one the arriving packet is written

to the block that is at the head of the free_space FIFO queue (more on

this later when we describe the linked list updates). The write address

first points to the first byte of the block at the head of free_space queue,

and moves forward as the counter_53 counts. This counter is

incremented by one for each incoming data byte, and moves the write

address pointer forward to the next position in the block.

Figure 4.6.b: Reset check in write sequence state machine. In every state

the reset signals are checked and in case any of them is true, the state

machine moves to state zero.

Furthermore, if the counter shows values 1, 2, or 3 in state one, the

VCI_reg_en signal is set to logic one. Therefore, bytes 1, 2, and 3 are

written into the VCI registers as well as the buffer itself. These bytes

contain the VCI information needed for routing the packet through the

switch. As soon as all the bytes of the packet are written and counter_53

global_reset = '0'
AND reset = '0'

current state

current state
logic

1

0wr_en_signal = '0'
c53sset = '1'

S0

46

reaches 53, the state machine goes back to state zero where it awaits the

arrival of a new packet.

4.6. VCI controller (VCI_SM state machine)

The VCI state machine’s main function is handling and to updating the

VCI bits of the packet that is being written into the buffer. It sends the

VCI bits to the look-up table and retrieves the changed and updated VCI

bits together with the output port number. It stores the updated VCI bits

in a designated vector (vci_out_vector) so that the new VCI bytes can

replace the old VCI bytes while the packet is being de-queued from the

input buffer. The VCI_SM state machine is shown in Figure 4.7.

In state zero (S0), if counter53 is equal to 3, then the VCI bytes have

already been read and are therefore stored in the vci_in_vector register.

In state one (S1), the VCI bits (bits 4 to 19) of the vci_in_vector are sent

to the input of the look-up table. State two (S2) provides a clock cycle’s

time for the look-up table to respond with a new VCI. State three (S3)

checks if the look-up table has responded. If so, the vci_out_vector

corresponding to the block to which it is being written is loaded with the

correct VCI bytes. Furthermore, the destination port number of the

packet is retrieved. The output port number, used in the linked list

update process described in section 4.8, also indicates the queue

number for the packet that has arrived.

47

Figure 4.7: VCI state machine in each input port module. (VCI_SM

process in the voq_input.vhd file of Appendix C)

In state three, if the look-up table does not output a valid output_vci by

the time the whole packet is shifted into the buffer, then the state

machine goes back to state zero. In such a case, the output port number

and the vci_out_vector register of the block that received the packet will

both be zero. Hence, if a packet with an unknown VCI (a VCI that does

not exist in the LUT) arrives at our switch, the default updated VCI and

the default destination port number of the packet will be set to zero.

S0

S1

S2 S3

S4

count53 = 3

input_vci = vci_in_vector (19 downto 4)

0

1

out_vci_ready

1

count53 = 52 0

0

1

vci_out_vector (free_space.head, 23 downto 20) <= vci_in_vector
vci_out_vector (free_space.head, 19 downto 4) <= output_vci
vci_out_vector (free_space.head, 3 downto 0) <= vci_in_vector

destination_port_no <= output_port_no

48

4.7. Read sequence controller (Read_seq_SM state machine)

The read sequence controller implements the Read_seq_SM state

machine shown in Figure 4.8.a.

Figure 4.8.a: Read sequence state machine in each input port module.

(Read_seq_SM process in the voq_input.vhd file of Appendix C.)

This state machine has 10 states. The state transitions happen on the

rising edge of the clock, and in each state the condition of reset and a

valid grant is checked as shown in the "reset/grant check in read

sequence state machine" diagram (Figure 4.8.b)

rd_en_signal = '0'
dq_c53aclr = '1'

dq_count53_temp_next = "000000"

parallel_data = RAM_out
data_out_fp_signal = '0'
data_valid_signal = '1'

S0

S1

1

rd_en_signal = '1' , dq_c53aclr = '0'
read_pointer = conv_integer (queue(read_queue).head)

data_out_fp_signal = '1'

S2

S3

parallel_data = vci_out_vector (read_pointer, 23 downto 16)

S4

parallel_data = vci_out_vector (read_pointer, 15 downto 8)

S5

parallel_data = vci_out_vector (read_pointer, 7 downto 0)

S6

dq_coun53 = 55

parallel_data = RAM_out

dq_c53aclr = '1'
dq_count53_temp = dq_count53

data_valid_signal = '0'
rd_en_signal = '0'

S7

S8

dq_count53_temp_next = "000000"

S9

49

The read sequence state machine handles the de-queuing of the

packets. It reads the packet that is at the head of the queue receiving a

grant (the read_queue). The read_pointer, points to the head of the

read_queue.

Figure 4.8.b: Reset/grant check in read sequence state machine.

State zero (S0) awaits a non-zero grant, while the read enable signal is

logic zero. As soon as a non-zero grant arrives, the state machine moves

to state one (S1), where the read enable signal becomes logic one. It

takes two clock cycles from the time that the read enable signal goes

high to the time that valid data is displayed on the data output line of

the buffer (RAM_out). Therefore, the actual reading starts in state three

(S3). The output data line of the voq_input module is called

parallel_data . The first byte of parallel_data is equal to the data read

from the buffer (RAM_out); the second, third, and fourth bytes are read

from the vci_out_vector register, which contains the updated VCI, and the

rest of the bytes are again read from the buffer. Data bytes are read until

reset = '0' AND
global_reset = '0' AND
port_grant /= "0000"

current state

current state logic

1

0rd_en_signal = '0'
parallel_data =

"00000000"
S0

rd_address_signal = ((queue(read_queue).head * 53) + dq_count53)

50

dq_counter53 shows a value of 55 (53 for the bytes in the packet, 2 for

the cycles it took until the buffer output displayed valid data). The state

machine then resets all the signals and clears the dq_counter53 so that

they are ready for the next packet that will be served. The value of the

dq_counter53 is maintained as a temporary signal (dq_count53_temp) for

two clock cycles. This time is required to update the linked lists.

In each state, if there is a valid grant and no reset is active, the read

address signal is assigned an appropriate value. The read address signal

always starts from the first byte of the packet at the head of the read

queue (the queue that is served). The read address signal is incremented

by one after each byte is read. The dq_counter53 counter, counts the

number of bytes that are de-queued and moves the read pointer forward

as the de-queue process continues to read the rest of the packet. In case

of a reset or a zero grant signal from the scheduler, the de-queuing is

disabled and the output data is set to zero.

The read sequence state machine also creates a frame pulse

(data_out_fp), and a data_valid signal for the outgoing data. The out

going frame pulse marks the beginning of the outgoing packet on the

parallel_data_out output line. Similar to the incoming frame pulse, the

first byte of the out going data can be read on the second rising edge of

the clock after the pulse on the data_out_fp line is detected. The data is

only valid when the data_valid signal is high.

51

4.8. Linked list update controller (linked_list_update process)

The linked list update controller updates the linked lists that maintain

the dynamic queues of the buffer. This state machine has three main

functions:

1. Initialize the linked lists whenever the global_reset signal of the

switch goes high.

2. Update the linked lists after a packet has been written to the

input buffer.

3. Update the linked lists after a packet has been read from the

input buffer.

4.8.1. Initializing the linked lists

The linked list update process initializes the linked lists, the

next_registers, and the ready_flags in the following manner (shown in

Figure 4.9):

Figure 4.9: The initial state of the ready flags and the next registers

associated with each block of the buffer.

For queues 1 to 4, head and tail fields point to the first block of the

buffer (block 0), and the empty field is set to zero. In other words:

queue(i).head = queue(i).tail = “0000”, queue(i).empty = ‘0’, for i = 0, 1, 2,

3.

block 15

next_register(15)

ready_flag(15) = '0'

next_register(14)

ready_flag(14) = '0'

next_register(0)

ready_flag(0) = '0'

next_register(1)

ready_flag(1) = '0'

block 0 block 1 block 14

52

For the free_space queue, the head points to the first block (block 0) and

the tail points to the last block (block 15) of the buffer. The empty field is

set to logic 0 because the buffer consists of empty blocks at the start up.

In the initialization stage, all the ready flags are set to zero and all the

next registers point to their neighboring higher block in the buffer.

4.8.2. Updating linked lists after a packet has been written

Figure 4.10 shows how the linked lists, next registers, and ready flags

are updated after a packet has been fully written into a certain block of

the input buffer. Two operations have to take place. First, the packet has

to be added to the queue it belongs to, and second, the block holding

the packet has to be removed from the free_space queue.

To achieve the first goal, the block holding the packet is added to the tail

of the queue to which the packet belongs. Note that this queue number

is equal to the destination port number of the packet, decided by the

look-up table module.

Let one assume that the newly arrived packet belongs to queue(i) (shown

as Q(i) in Figure 4.10) and should be added to the queue(i)’s linked list.

There are two cases to consider:

1. queue(i) is empty and this packet is the first packet that has

arrived destined for output I;

2. queue(i) is not empty and there is at least one packet in it.

53

Figure 4.10: Diagram of the steps taken within the linked list update

process to update the linked lists, the next registers, and the ready flags

after a packet is written in the input buffer.

In the first case, the voq_input module performs an add_empty function,

which adds a member to an empty linked list. The add_empty function

directs the head and tail of queue(i) to point to the block holding the

packet (head of free_space) and resets the empty field of queue(i) to logic

zero.

Add to queue(i)

Q(i).empty = 1

Q(i).head free_space.head
Q(i).tail free_space.head

ready_flag (free_space.head) '1'
Q(i).empty '0'

next_register(Q(i).tail) free_space.head
Q(i).tail free_space.head

ready_flag (free_space.head) '1'

1 0

add_normaladd_empty

remove_oneElement

free_space.head =
free_space.tail

 free_space.head next (free_space.head) free_space.empty '1'

remove_normal

01

Remove from free_space

54

In the second case, the add_normal function is performed. This function

assigns the new block as both the new tail of queue(i), and the next

block for the old tail of queue(i).

In both cases the ready_flag associated with the added block is set to

logic 1 to show that the block is not empty and that it is holding a

packet.

Next, the block holding the newly arrived packet has to be removed from

the free_space linked list. Again, there are two cases to consider.

1. The free_space linked list has only one element (i.e., its head and

tail point to the same block);

2. The free_space linked list has more than one element (i.e., its

head and tail are not similar).

In the first case, the remove_oneElement function shown in Figure 4.10

is performed. This function removes the last block from the free_space

linked list by resetting the linked list’s empty field to logic 1.

In the second case, the remove_normal function is performed. This

function removes the new block from the head of the free_space linked

list by making the next block in the list the new head.

55

4.8.3. Updating the linked lists after a packet has been read

After a packet has been read or de-queued from the buffer, the linked

lists have to be updated in two ways. First, the block that was just read

(the de-queued block) should be removed from the queue that it

belonged to, and second, the same block should be added to the

free_space linked list. Figure 4.11 shows a diagram of these operations.

Figure 4.11: Diagram of the steps taken within the linked list update

process to update the linked lists, the next registers, and the ready flags

after a packet is de-queued from the input buffer.

Remove from queue(i)

Q(i).head = Q(i).tail1 0

add_empty

remove_oneElement

free_space.empty = '0'

Q(i).empty '1'

remove_normal

01

Add to free_space

 Q(i).head next (Q(i).head)

free_space.head Q(i).head
free_space.tail Q(i).head
ready_flag (Q(i).head) '0'

Q(i).empty '1'

next_register(free_space.tail) Q(i).head
free_space.tail Q(i).head

ready_flag (free_space.head) '0'

add_normal

56

Let one assume the de-queued block belongs to queue(i). The procedure

taken here is the same as the last section. The functions performed are

similar only they are performed on different queues. In this case, the

queue being added to is the free_space queue and the queue being

removed from is queue(i).

As shown in Figure 4.11, while removing the packet from queue(i), two

cases can occur: either queue(i) has a single element, in which case the

remove_oneElement function is performed, or it has more than one

element, in which case a remove_normal function takes place.

In the remove_oneElement function the empty field of queue(i) is set to

logic 1, declaring it an empty queue. In the remove_normal function, the

next block to the de-queued block becomes the new head of queue(i).

(Note that packets are removed from the head of the queues.)

To add the removed block to the free_space, the voq_input module

checks whether the free_space linked list is empty. If so, then the

add_empty function shown in Figure 4.11 is performed. This function

points both the head and tail of the free_space linked list to the de-

queued block. It also sets the empty field of the free_space linked list to

zero.

If the free_space queue is not empty, then the de-queued block is added

to the tail of the free_space linked list. The de-queued block becomes

both the new tail of the list, and the next block for the old tail.

57

In both add functions, the ready_flag associated with the de-queued

block is reset to logic 0 to indicate that the new block is empty.

Other than data_valid, parallel_data_out, and data_out_fp signals, the

voq_input module has a 4-bit port_request output connected to the

Scheduler module of the switch. Each bit of the port_request signal

corresponds to a different virtual queue inside the buffer. The request bit

corresponding to a certain queue is logic high, as long as that queue is

not empty.

The VHDL source code for the modules voq_input and LUT are included

in Appendices C.2 and C.5, respectively. The package file used in

voq_input.vhd file is included in Appendix C.7.

58

Chapter 5

The scheduler

There is a centralized scheduler in the 4×4 switch that considers

requests from all the input queues and determines the best realizable

configuration for the crossbar. The scheduler’s decision is determined by

a scheduling algorithm. This scheduling algorithm has to be fast,

efficient, easy to implement in hardware, and fair in serving all the

inputs. There are various scheduling algorithms, some of which were

explained earlier in Chapter 2. The scheduling module (voq_c_bar) in the

4×4 switch uses a crossbar scheduler architecture named Diagonal

Propagation Arbiter (DPA) [11].

DPA is a fair crossbar scheduler with a round robin priority rotation. The

scheduling algorithm is based on a small combinational logic arbiter cell

assigned to each input/output pair. When there is a request to send

packets from a certain input port to a certain output port, the

corresponding arbiter cell receives a request from the input. The arbiter

then issues a grant for the requested output based on both the position

of the priority round robin, and the grants issued to higher priority cells.

For an n×n switch, the maximum arbitration delay through the whole

switch is (n-1)D, where D is a single gate delay. In our switch the

arbitration delay is very small (maximum 4.5 ns) and does not limit the

performance and speed of the switch.

The following sections first describe the basic two dimensional ripple-

carry arbiter, and then the DPA architecture in detail. The basic two

59

dimensional ripple-carry arbiter forms the base of the DPA architecture,

and should therefore be explained first.

5.1. Two dimensional ripple-carry arbiter

Figure 5.1 shows the architecture of a two dimensional ripple-carry

arbiter for a 4×4 switch.

 (a) (b)

Figure 5.1: (a) Two dimensional ripple-carry arbiter. Bold cells are cells

with request. (b) Two dimensional ripple-carry arbiter [11]. Bold cells are

cells with request. Shaded cells are cells that have received grants.

In Figure 5.1, the rows correspond to the input ports and the columns

correspond to the output ports of the switch. The arbiter is built from a

number of smaller cells called arbiter cells. A sample arbiter cell with its

internal combinational logic is shown in Figure 5.2. The label pairs i, j

written on each cell specify the requests that are handled by that

1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4

3,1

4,1

3,2

4,2

3,3

4,3

3,4

4,4

1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4

3,1

4,1

3,2

4,2

3,3

4,3

3,4

4,4

60

specific cell. Specifically they indicate that the cell is responsible for

handling packets destined to go from input port i to output port j.

Signal R (Request), shown in Figure 5.2, is an input to every i,j arbiter

cell. It is active when there is a packet destined for output port j at the

head of the input port i buffer. In our design, this means that there is a

packet at the head of queue j of input port module i.

Signal G (Grant), which is an output from every i,j arbiter cell, is active

when the request from input port i to output port j has been granted by

the scheduler.

Figure 5.2: The basic arbiter cell with the combinational logic inside it

[11]. A grant is issued when there is a request, and the arbiters on the

top and on the left have not issued a grant.

Since each input can be sending (and each output can be receiving) only

one packet at a time, there should never be two or more granted

R (Request)

E (East)W (West) arbiter cell

N (North)

S (South)
G (Grant)

N (North)

W (West)

R (Request) G (Grant)

E (East)

S (South)

61

requests in each row (and each column). For instance, having two

requests granted in the same column at one time, causes that the

output port corresponding to that column to receive two packets

simultaneously. To ensure that this problem never occurs, signals N

(North), S (South), W (West), and E (East), shown in Figure 5.2, are

introduced. These signals in each cell have the duty of relaying to the

next cell, or receiving from the former cell, whether a request has been

granted. In the ripple-carry architecture shown in Figure 5.1, the E

signal of every arbiter cell is connected to the W signal of the cell on its

right. Similarly, the S signal of every arbiter cell is connected to the N

signal of the cell on its bottom. (The W signal of cells in the first column

and the N signal of cells in the first row are always set to logic one. The S

signal of the cells in the last row and the E signal of the cells in the last

column are floating). The simple logic circuit of Figure 5.2 shows that

whenever a Grant signal is asserted for a cell, signals South and East are

forced to logic low so that the cells on the right and bottom are never

able to issue grants.

The arbitration process in the architecture of Figure 5.1 is based on the

following algorithm:

1) Start from the top left most cell (i.e. 1,1);

62

2) Once any cell is reached, move to its right and bottom cells

(provided that they exist);

3) For each arbiter cell, the G (Grant) signal is activated if and only if

the R (Request) signal is active and there has not been any

requests granted in the cells at the top and to the left;

4) If a request is granted, activate the E (East) and S (South) signals.

In Figure 5.1(a), bold squares indicate that the corresponding cell has

been requested and, in Figure 5.1(b), shaded squares show that the

corresponding square has received a grant. When there exists two or

more requests in the same row or column, only one of them (the one

higher or on the left) is granted.

Assuming that each arbiter cell has a delay of D, then the time needed

for realization of any permutation would be (2n-1)D for any n×n arbiter.

Hurt et al. have introduced a modified version of the two-dimensional

arbiter that has a shorter arbitration delay [11]. This new design called

the diagonal propagation arbiter (DPA) is described in the next section.

5.2. Diagonal propagation arbiter (DPA) architecture

The key to the DPA design is that there are some cells in the two

dimensional propagation arbiter (Figure 5.1) that are independent of one

another, in the sense that granting one of them does not prevent

granting the others. The cells that are independent of one another are

put in diagonal rows, as shown in Figure 5.3 . For example, cells (1,1),

63

(4,2), (3,3) and (2,4) are independent of each other and so are the cells

(2,1), (1,2), (4,3) and (3,4).

Figure 5.3: Fixed priority Diagonal Propagation Arbiter (DPA) [11]. Bold

squares indicate cells with requests. Shaded cells are cells that have

received grants.

The arbitration process in the DPA architecture begins by considering

the first diagonal. If there is a request for every cell in the first diagonal

of Figure 5.3, they can all be granted. Then, in the next time slot, the

arbitration process moves to the second diagonal. The cells with requests

in the second diagonal will only receive grants if no cells on the top or on

the left of them have yet received grants.

In this design, the arbitration delay for an n×n switch is nD, D being the

delay of a single arbiter cell. This is smaller than the delay in the

previous design (the two dimensional ripple-carry arbiter), which was

(2n-1)D.

2,1

1,1

2,1

3,1

4,1

4,2

1,2

2,2

3,2

3,3

4,3

1,3

2,3

2,4

3,4

4,4

1,4

64

One issue that stands out in both ripple-carry and DPA architectures is

the issue of unfairness. The ripple-carry design gives the priority to the

cells that are higher and to the left. Specifically, it gives the highest

priority to cell (1,1). Similarly, in the DPA architecture the highest

priority is always given to the cells in the first diagonal. Therefore, these

two designs are not fair. Optimally one should be able to rotate the

priority so that every cell has the chance of being the highest priority

cell.

One solution to this problem could be to make a cyclic architecture by

connecting the South signals of the cells in the last row (diagonal) to the

North signals of the cells in the first row (diagonal). Similarly, the East

signals of the last column have to be connected to the West signals of the

first column.

Such an architecture would be fair because every cell can have the

opportunity to be the highest priority cell. However, this architecture

suffers from the fundamental problem of having a “combinational

feedback loop”. Such architectures are difficult to design and test; they

are not very well supported by logic synthesis tools and they have to be

carefully simulated at the physical layout level.

To overcome the problems accompanying the cyclic feedback

architecture and to be able to, at the same time, rotate the priorities,

Hurt et al. have found a solution. In this new architecture, shown in

Figure 5.4, the first (n-1) diagonals of an n×n DPA scheduler are repeated

65

after the last row. The W signals of the first column and the N signals of

the first diagonal are assigned to logic one. This architecture removes

the need for a cyclic feedback. At every time slot only n2 cells (marked by

the n×n bold window shown in Figure 5.4) are active. We call the bold

window “the active window”. The cells on the first diagonal inside the

active window have the highest priority. The active window moves one

step down in every time slot to rotate the priority. When the top most

diagonal is diagonal n, the active window has traveled all the way

through the DPA scheduler and, therefore, goes back to its starting

position shown in Figure 5.4.

To implement priority rotations in this design, vector P is introduced.

The (2n-1) elements of vector P are named pr. They correspond to the (2n-

1) diagonals of the scheduler in Figure 5.4. When the ith element of this

vector is equal to 1, the ith diagonal of the arbiter is active, (and resides

in the active window). The algorithm for priority rotations is:

 set P = “1111000”.

 if P = “0001111” then

 set P = “1111000”

 else

rotate P one position to the right. (This step is like moving

the window one step down.)

Figure 5.5 shows the arbiter cell of the rotating priority DPA. This arbiter

is somewhat different from the basic arbiter cell introduced earlier. The

difference is a signal called “Mask” (identical to the elements of vector P,

66

pr) that indicates whether the arbiter cell is in the active zone. If the

Mask input of a cell is logic 0, then there are no Grants given to that cell,

and therefore, E and S signals shown in Figure 5.5 are forced to logic 1.

The additional gates (one AND and two ORs) ensure that every request

only takes effect if Mask is logic high.

Figure 5.4: Diagonal Propagation Arbiter (DPA) [11]. Shaded cells are

cells that received grants, when the cells with requests are the bold

squares and the highest priority is given to the first diagonal.

Figures 5.4 shows the cells that received grants (shaded cells) when the

cells with requests are the bold squares, and the highest priority is given

2,1

1,1

2,1

3,1

4,1

4,2

1,2

2,2

3,2

3,3

4,3

1,3

2,3

2,4

3,4

4,4

1,4

2,12,1

3,1

1,2

2,2

4,3

1,3

2,4

3,4

4,4

1,1

3,3

4,2

67

to the first diagonal. Figure 5.6 shows a similar example only with the

highest priority given to the third diagonal.

Figure 5.5: Modified arbitration cell for diagonal propagation arbiter

(DPA) architecture [11] .

Figure 5.6: Diagonal Propagation Arbiter (DPA) [11]. Shaded cells are

cells that received grants, when the cells with requests are the bold

squares and the highest priority is given to the third diagonal.

R (Request)

E (East)
W (West) arbiter cell

N (North)

S (South)

G (Grant)
Mask

Mask
Mask

Pr Mask

2,1

1,1

2,1

3,1

4,1

4,2

1,2

2,2

3,2

3,3

4,3

1,3

2,3

2,4

3,4

4,4

1,4

2,12,1

3,1

1,2

2,2

4,3

1,3

2,4

3,4

4,4

1,1

3,3

4,2

68

The input to the scheduler block in our switch is a 16 bit vector. The

elements of this vector correspond to the 16 possible requests in a 4×4

switch. This input vector is constructed from the request lines that come

from each input port module. The output of the scheduler is also a 16 bit

vector. This vector's elements are the grants issued by the scheduler.

This array constructs the control lines of the fabric.

In our voq_c_bar module, the priority vector P rotates on the rising edge

of the c_bar_clock (the internal clock with the period of a packet time).

The requests coming from the input port modules are also sent to the

scheduler on the rising edge of the c_bar_clock. Therefore, for a whole

packet time, the request and grant signals remain constant and a whole

packet is de-queued from the input buffers.

Appendix C.3 contains the VHDL source code for the voq_c_bar module.

69

Chapter 6

The fabric

The crossbar fabric module in the design (shown in figure 6.1) is

responsible for physically connecting an input port to its destined

output port, based on the grants issued by the scheduler. The inputs of

voq_fabric (except for the cntrl input) are connected to the input port

modules of our switch. The outputs of voq_fabric are connected to the

output ports of the switch. The fabric makes the appropriate connection

between each input and its corresponding output.

Figure 6.1: Crossbar fabric module in our switch is the physical

connection between the input and output ports of the switch.

The signals going through the fabric are: data bytes, frame pulse signals,

data_valid signals, and the two-bit input port numbers. Each input to

voq_fabric (except for input_data and cntrl) is a 4-bit wide signal, where

input_data

input_fp

input_data_valid

"1100"

"1010" port_name_bit0

cntrl

4x8

voq_fabric4

4

4

4

4

16

output_data

output_fp

output_data_valid

port_name_bit1

4x8

4

4

4

70

each bit comes from a different input port module. For example, in case

of the 4-bit input_fp input of voq_fabric, input_fp(0) comes from input

port module 1, input_fp(1) comes from input port module 2, et cetera.

The input_data input of voq_fabric however, consists of 4 parallel “bytes”,

rather than bits. Similarly, each byte comes from a different input port

module. The cntrl input of voq_fabric is 16 bits wide and is connected to

the grant output signal of the scheduler. This cntrl signal configures the

fabric and makes the necessary connections. This is described in more

detail later.

Imagine a 4×4 crossbar similar to the one shown in Figure 6.2. Every

four bit input signal of the voq_fabric module passes through a similar

crossbar. In each crossbar, the 4 horizontal buses (rows) are connected

to the 4 bits of a certain input of the voq_fabric. Similarly, the 4 vertical

buses (columns) of the crossbar are connected to the 4 bits of a certain

voq_fabric output. For example input_fp(0) is connected to the first input

of a certain crossbar, input_fp(1) is connected to the second input of the

same crossbar, et cetera. Therefore, ignoring the input_data input for a

moment, four copies of the crossbar are needed for the other four inputs

of voq_fabric. Since input_data is a 4×8 bit input signal, it requires eight

copies of such a crossbar. Therefore, in the voq_fabric module, a sum of

twelve crossbars pass the eight bit data bytes and the other four inputs .

In every crossbar the cross points are controlled by the cntrl input of the

voq_fabric module (Figure 6.3). Each bit of the cntrl input corresponds to

one of the cross points of the crossbar. If a certain cntrl bit is logic high,

then the corresponding cross point is closed. The inputi and outputi

71

signals, shown in Figure 6.3, stand for the inputs and outputs of

voq_fabric.

Figure 6.2: A 4×4 crossbar. The horizontal lines are connected to the

inputs and the vertical lines are connected to the outputs of the

voq_fabric module.

Figure 6.3: Crossbar for the voq_fabric module. Each bit of cntrl input

corresponds to a certain cross point in the crossbar.

inputi(0)

inputi(1)

ou
tp

ut
i(0

)

ou
tp

ut
i(1

)

ou
tp

ut
i(2

)

ou
tp

ut
i(3

)

inputi(2)

inputi(3)

cntrl(0) cntrl(1) cntrl(2) cntrl(3)

cntrl(4) cntrl(5)

cntrl(14)

cntrl(7)

cntrl(8) cntrl(9) cntrl(10) cntrl(11)

cntrl(12) cntrl(13)

cntrl(6)

cntrl(15)

72

The diagram of Figure 6.3 performs the following procedure: Each bit of

the output is the logical sum (OR) of inputi’s bits 0 to 3 AND’d with the

cntrl lines in that output bit’s column. For example (see Figures 6.4 and

6.5),

output_fp(2) = [(input_fp(0) AND cntrl(2)) OR (input_fp(1) AND cntrl(6)) OR

(input_fp(2) AND cntrl(10)) OR (input_fp(3) AND cntrl(14))]

Figure 6.4: The output_fp(2) is the logical sum of input_fp bits AND’d with

corresponding cntrl bits.

Figure 6.5 shows the 12 crossbars in the voq_fabric module. One copy of

the crossbar is needed to connect the frame pulse lines from the input

port modules to the output ports of the switch. Another copy of the

crossbar is used for data_valid signals. In order to connect the outgoing

data bytes from the input port modules to the data_out_port lines of the

switch, 8 copies of the crossbar are used. Finally, two copies of the

input_fp(1)

output_fp(2)

input_fp(2)

input_fp(3)

cntrl(14)

cntrl(10)

cntrl(6)

input_fp(0)

cntrl(2)

73

crossbar are used to construct the source port number signals available

at the outputs of the switch. Two constant vectors are input to the 4th

and 5th inputs of the fabric. Depending on what the cntrl input of the

voq_fabric is (which cross points are closed), certain bits of the constant

vectors can pass through the crossbars. The values appearing on the 4th

and 5th output ports of voq_fabric, are the 1st and the 0th bits of the

origin port numbers of the outgoing data bytes, respectively.

Figure 6.5: The 12 copies of crossbar used in the voq_fabric module. The

cntrl input configures the crossbars.

ou
tp

ut
i(0

)

ou
tp

ut
i(1

)

ou
tp

ut
i(2

)

ou
tp

ut
i(3

)

cntrl(0)
cntrl(1)

cntrl(2)
cntrl(3)

cntrl(5)

cntrl(7)

cntrl(11)cntrl(6)

ou
tp

ut
i(0

)

ou
tp

ut
i(1

)

ou
tp

ut
i(2

)

ou
tp

ut
i(3

)

cntrl(0)
cntrl(1)

cntrl(2)
cntrl(3)

cntrl(7)

cntrl(11)cntrl(6)

ou
tp

ut
_f

p(
3)

input_data0(0)

input_data0(1)

input_data0(2)

input_data0(3)

cntrl(4)

cntrl(14)
cntrl(8)

cntrl(9)
cntrl(10)

cntrl(12)
cntrl(13)

cntrl(15)

data_valid_input(0)

data_valid_input(1)

data_valid_input(2)

data_valid_input(3)

cntrl(4)
cntrl(5)

cntrl(14)
cntrl(8)

cntrl(9) cntrl(10)

cntrl(12) cntrl(13)

cntrl(15)

input_fp(0)

input_fp(1)

ou
tp

u_
fp

(0
)

ou
tp

ut
_f

p(
1)

ou
tp

ut
_f

p(
2)

input_fp(2)

input_fp(3)

cntrl(0) cntrl(1) cntrl(2) cntrl(3)

cntrl(4) cntrl(5)

cntrl(14)

cntrl(7)

cntrl(8) cntrl(9) cntrl(10) cntrl(11)

cntrl(12) cntrl(13)

cntrl(6)

cntrl(15)
ou

tp
ut

_f
p(

3)

74

Figure 6.6: The crossbar used to pass the data_valid signals through the

fabric.

input_data_valid

input_data_valid(0)

input_data_valid(1)

4

ou
tp

ut
_d

at
a_

va
lid

(0
)

ou
tp

ut
_d

at
a_

va
lid

4

input_data_valid(2)

input_data_valid(3)

ou
tp

ut
_d

at
a_

va
lid

(1
)

ou
tp

ut
_d

at
a_

va
lid

(2
)

ou
tp

ut
_d

at
a_

va
lid

(3
)

input_data_valid(1)

cntrl(5)

input_data_valid(3)

cntrl(14)

75

Figure 6.7: The crossbar used to pass the 3rd bit of the data bytes

through the fabric.

The VHDL source code for the voq_fabric module is enclosed in Appendix

C.4.

input_data_bit3

input_data_bit3(0)

input_data_bit3(1)

4

ou
tp

ut
_d

at
a_

bi
t3

(0
)

ou
tp

ut
_d

at
a_

bi
t3

4

input_data_bit3(2)

input_data_bit3(3)

ou
tp

ut
_d

at
a_

bi
t3

(1
)

ou
tp

ut
_d

at
a_

bi
t3

(2
)

ou
tp

ut
_d

at
a_

bi
t3

(3
)

input_data_bit3(0)

cntrl(2)

input_data_bit3(2)

cntrl(9)

76

Chapter 7

Device information and simulation results

7.1. Device information

We implemented the design in VHDL using ALTERA MAX+PLUS II tool

[2] and its FLEX10KE device family FPGA's [1]. Currently, the whole

project “voq_switch” utilizes one ALTERA FLEX10KE device. FLEX8000,

MAX9000, and FLEX10KB ALTERA device families do not support more

than 256 words of memory and this design could not fit on them. The

behavioral VHDL description of this design is placed and routed on a

FLEX10KE device by the MAX+PLUS II tool. A detailed device summary

for this project is given in Table 7.1. This table shows that 28% of the

available memory and 70% of the available logic cells (LC’s) are utilized.

P
ro

je
ct

Device

In
p
u

t
p
in

s

O
u

tp
u

t
in

s

B
id

ir
 p

in
s

M
em

or
y

b
it

s

M
em

or
y

%

u
ti

li
ze

d

LC
’s

LC
’s

 %

u
ti

li
ze

d
Voq_switch EPF10K200SRC240-1 39 125 0 28224 28 % 6990 70%

Table 7.1: Summary of the gates and logic cells used for the crossbar

switch.

We tested the functionality of each block, as well as the overall switch

design via simulations and observed a correct functional and timing

performance. The simulations were run on a PC platform with a 450

77

MHz Pentium III processor and a Windows NT operating system. The

compilation time for the overall switch lasted two hours.

The maximum achieved clock rate for this design on the

EPF10K200SRC240-1 device is 16.6 MHz. The Timing Analyzer tool in

MAX+PLUS II calculates this value based on the longest path in the

design. On a different device, the clock rate could be either larger or

smaller, depending on the device technology and the way MAX+PLUS II

places and routes the design on the device. (FLEX10KE has a 0.22

micron CMOS technology). Pipelining, i.e., dividing the switch data path

to multiple sections and connecting a separate clock input to each, can

also increase the highest achievable clock rate.

We ran the simulations for 300 µsec and observed that the switch is

capable of switching 4 input lines at the rate of 132.8 Mbps into 4

output lines at the same rate. The packets are successfully routed and

sent out of the switch. Eight bits of data are input to the switch at every

clock cycle, and hence the line rate of 132.8 Mpbs is resulted from a

16.6 MHz clock. It takes 53 clock cycles (3.18 µsec) for a single ATM

packet to enter the switch and in our 300 µsec simulations close to 95

packets were input. The simulations lasted a couple of minutes in real

time.

The traffic applied to this switch was a constant bit rate traffic with

uniform distribution over all the input ports. The switch was not tested

for other traffic types. The output data stream and the performance of

the switch would be different for non-constant traffic distributions. For

78

instance, the buffers would have a higher overflow probability for traffic

that occurs in bursts. Furthermore, cells entering the switch in a burst

and destined for a common output can be delayed in the switch and can

leave the switch with longer inter-packet times, due to the priority

rotations in the fair round robin scheduler module.

7.2. Simulation results

We tested the functionality of every component in the switch via

simulations. The simulation results are shown in Appendix D. The

following sections give a detailed explanation of the simulation results.

7.2.1. Simulation results of the switch (Appendix D.1)

Appendix D.1 shows the results of a certain simulation of the switch that

was run for 75 µsec (longer simulations were run as well, but have not

been included in this document). Appendix D.1 shows a two-page

overview of what is happening in this simulation.

In Appendix D.1, one notes that 9 packets are input to every data input

of the switch (there are 9 frame pulses on the input fp lines). On the

data_out_port lines these packets are seen coming out of the output

ports. The simulation data going to all of the inputs is the same, but

according to the position of the priority round robin in the scheduler,

only certain inputs are allowed to send their packet to their desired

output port at any given time. For every packet, the origin port number

(incoming_port_to_output) is output as well. Note that data on the output

ports is only valid if the corresponding data_valid line is high. Also, note

79

that the output frame pulse signals (fp_out_port) mark the beginning of

outgoing packets. The headers of the input test packets are set in such a

way that, among the 9 packets that enter each input port, there are two

packets destined for each of the 4 outputs and the last packet has an

unknown destination. By default, in this design, when a packet has an

unknown destination -i.e. when the header does not exist in the look up

table- the packet is sent to output 1 of the switch and its VCI bytes are

set to zero. Appendix D.1 shows that there are 8 packets coming out of

each output port (2 packets from each input). Output 1, however, is

sending out 12 packets (2 packets from 2 different inputs, and 1

unknown packet from each of the inputs).

The request, grant, and c_bar_P (the priority vector) output lines are not

among the real output ports of the switch. They are only probed for

testing and simulation reasons. The look-up table in all the input port

modules of this switch is initialized with the same values for simplicity

reasons. These values are shown in Table 7.2.

Table 7.2: The input VCI, output VCI, and output port numbers stored in

the look-up table module of the switch.

input VCI output VCI output port
number

7080

3747

0E1E

D3E3

AABA

C4D4

6171

2838

E963

56C9

B9E0

210A

5BED

FA23

0104

FFFF

2

2

3

4

1

3

4

1

80

As described in earlier chapters, the switch has an internal clock that

runs 59 times slower than the input clock. The period of this internal

clock is actually equal to a packet time. At the rising edge of this clock,

the priority vector is shifted in the crossbar scheduler and also a request

is sent out from the input port modules to the scheduler.

Table 7.3 provides a summary of the simulation results of Appendix D.1.

We have filled the first 6 columns of this table with the input data, and

have predicted the values of certain signals, registers and output ports,

in the rest of the columns. Later, these parameters were compared with

the simulation results and equal values were observed.

Every packet coming to the data input ports of the switch is shown on a

separate line in Table 7.3. There are 9 packets arriving at the input ports

one after the other. For every arriving packet we have shown the first

four bytes, and the last byte. The second, third, and fourth bytes of the

packet are stored in the vci_in_vector register. Bits 4 to 19 of this vector

contain the VCI information of the packet. This VCI value is searched in

the look-up table (shown in Table 7.2) and the output VCI, together with

the output port number, is determined. The output_vci value replaces the

input_vci part (bits 4 to 19) of the vci_in_vector and is stored in the

vci_out_vector register. When the packet is being sent out from the

destination output port, the bytes of vci_out_vector are sent out in place

of bytes 2, 3, and 4 of the packet. This effect is shown in the last

columns of the table, where the first four and the last byte of the

outgoing packet are shown. Note that for the last packet, because the

81

input_vci is not in the look-up table, the output_vci and the vci_out_vector

are set to zero and the destination port number is set to 1.

Table 7.3: Details of simulation results shown in Appendix D.1. Nine

packets are sent to every input port of the switch. For every incoming

packet, the table shows what the expected outgoing packet should be.

We looked at the output data lines of the switch in our simulation and

verified that every packet is indeed being output from the output port

number for which it was destined (shown in Table 7.3). Also, the second,

third, and fourth byte of every outgoing packet was the same as the

vci_out_vector predicted in Table 7.3. Furthermore, Appendix D.1 shows

that the incoming port number changes in a round robin manner to

serve all the input ports.

70

72 A773

vci_in_vector input_vci output_vci
output

port no.
vci_out_vector

by
te

1

by
te

2

by
te

3

by
te

4

by
te

5

la
st

 b
yt

e

input data byte stream

by
te

1

by
te

2

by
te

3

by
te

4

by
te

5

la
st

 b
yt

e

output data byte stream

0607 08 09 0A 3A 070809 7080 E963 2 0E9639 0E 96 39 0A 3A06

3C 3D 3E 3F 40 70 3D3E3F D3E3 210A 4 3210AF 3C 32 10 AF 40

74 75 76 A7 737475 3747 56C9 2 756C95 72 75 6C 95 76

A9 AA AB AC AD DD AAABAC AABA 5BED 1 A5BEDC A9 A5 BE DC AD DD

DF E0 E1 E2 E3 13 E0E1E2 0E1E B9E0 3 EB9E02 DF EB 9E 02 E3 13

15 16 17 18 1A 49 161718 6171 0104 4 101048 15 10 10 48 19 49

4B 4C 4D 4E 4F 7F 4C4D4E C4D4 FA23 3 4FA23E 4B 4F A2 3E 4F 7F

81 82 83 84 85 B5 828384 2838 FFFF 1 8FFFF4 81 8F FF F4 85 B5

B7 B8 B9 BA BB EB B8B9BA 8B9B 0000 0 000000 B7 00 00 00 BB BB

82

7.2.2. Simulation results of the input port module (Appendix D.2)

We tested the functionality of all the components of the switch via

extensive simulations. As an example, Appendix D.2 shows the

simulation results for the “voq_input” module of the switch. Some

internal signals are also probed here for testing and validation purposes.

The values of the linked lists, next registers, read/write addresses,

counter values, enable signals, state variables, et cetera., are some

examples of such internal signals. The accurate performance of the

input module state machines discussed earlier in Chapter 3 was verified,

based on the value of these signals. Note that the destination port

number runs from 0 to 3 to indicate output ports 1 to 4.

This simulation, also tested the voq_input module for overflow. We

disable the de-queue process -by not providing any nonzero grant

inputs- and see that after 16 packets arrive, the input module does not

write any more packets into the buffer. The packets that arrive at the

input ports after the buffer is full are simply dropped. The overflow

occurs at around 75 µsec (in this simulation) when the last packet is

written. Since no grant is issued, no packet is de-queued and therefore

the buffer is filled and all the ready_flags are high.

83

Conclusion and future work

This thesis project, used a hardware description language called VHDL

to implement a 4×4 ATM crossbar switch.

The 4×4 switch designed herein has three modules: “voq_input”,

“voq_c_bar”, and “voq_fabric”. The voq_input module employs an existing

algorithm called virtual output queuing (VOQ). The design of this module

and the queue management scheme was described in Chapter 4. The

voq_c_bar module discussed in Chapter 5 is a fair scheduler with an

architecture called “diagonal propagation arbiter” (DPA). The voq_fabric

module comprises the crossbar fabric of our switch and provides the

physical connection between the inputs and outputs of the switch. The

voq_fabric module was outlined in Chapter 6.

The contributions of this project are:

� A novel design and VHDL implementation of an input port module

employing the VOQ algorithm;

� VHDL implementation of the DPA algorithm;

� A novel design and VHDL implementation of a crossbar fabric;

� A novel composition of the modules into a 4×4 ATM witch and VHDL

implementation of it.

This design implementation entailed the employment of MAX+PLUS II

software tool from ALTERA. Upon testing the functionality of the switch

through simulations, satisfactory functional and timing performances

were observed. The switch functions at a line rate of 132.8 Mbps with a

84

maximum clock frequency of 16.6 MHZ. This design can fit on a single

FLEX10KE ALTERA chip.

I started this project together with Arash Haidari. We designed an 8×8

version of the scheduler, a fabric that handled serial bits, and input port

modules with FIFO queues [10]. Our design could fit on 6 FLEX10KE

FPGA’s, partly due to large pin numbers. Later, I designed an output

port module for the 8×8 switch (presented in Appendix B), which is not

included in the current switch design.

I made further additions and improvements to the design. I designed a

new input port module that employs VOQ’s to prevent head of line (HOL)

blocking. In order to achieve higher line rates in the new input port

module, input data is in the form of parallel bytes (rather than serial

bits). I also designed a new fabric that handles parallel data bytes. I

scaled the design down to 4×4 because the compilation time for the

overall design was too long (over 3 hours). The compilation time for the

4×4 switch is roughly the same, however four dynamic queues with their

linked list logic have been added to each input port. An 8×8 switch with

eight dynamic queues in each input port would have been a much

bigger design and would have resulted in even higher compilation times.

One future plan for this project is to design output port modules with

congestion control, policing, or priority mechanisms. An ATM switch

should not send its packets out to the network unless there is consent

from the down stream nodes. Otherwise congestion can occur in the

network, or packets can be dropped due to buffer overflow at the

85

destination node. Implementation of algorithms that would handle the

communication between the network and the switch is mainly done in

output port modules. For example, a window based flow control design at

the output port module can prevent bursts of data from entering the

network. Implementation of such algorithms in an output port module is

the next step for this project.

Implementing the design on an ALTERA FLEX10KE chip and hardware

testing and verification of the switch is another future plan. Finally,

simulation and synthesis with Synopsys tools, gate level design, layout

and manufacturing of the switch chip could be done.

86

References

[1] ALTERA FLEX 10KE devices:

http://www.altera.com/html/products/f10ke.html

[2] ALTERA MAX+PLUS II software,

http://www.altera.com/html/tools/maxplus.html

[3] T. E. Anderson, S. S. Owicki, J. B. Saxe, and C. P. Thacker, “High

speed switch scheduling for local area networks,” ACM Transactions on

Computer Systems, pp. 319-352, November 1993.

[4] M. Chen and N. D. Georganas, “A fast algorithm for multi-

channel/port traffic scheduling,” Proc. IEEE Supercom/ICC ’94, New

Orleans, Louisiana, May 1994, pp. 96-100.

[5] H. S. Chi and Y. Tamir, “Decomposed arbiters for large crossbars with

multi-queue input buffers,” Proc. of International Conference on

Computer Design, Cambridge, Massachusetts, October 1991, pp. 233-

238.

[6] S. T. Chuang, A. Goel, N. McKeown, and B. Prabhakar, “Matching

output queuing with a combined input output queued switch,” Computer

Systems Technical Report CSL-TR-98-758, March 1998.

87

[7] J. Duato, S. Yalamanchili, and L. Ni, Interconnection Networks: An

Engineering Approach, Los Alamitos, CA: IEEE Computer Society Press,

1997, pp. 17-28.

[8] ForeRunner ASX-200:

http://www.marconi.com/html/solutions/asx200bxasx1000andasx1200

.htm

[9] J. Giacopelli, J. Hickey, W. Marcus, W. Sincoskie, and M. Littlewood,

“Sunshine: A high-performance self routing broadband packet switch

architecture,” IEEE Journal on Selected Areas in Communications, vol. 9,

no. 8, pp.1289-1298, October 1991.

[10] A. Haidari-Khabbaz, “Hardware implementation of a high-speed

crossbar switch,” B.A.Sc. Thesis, Simon Fraser University, Burnaby,

November 2000.

[11] J. Hurt, A. May, X. Zhu, and B. Lin, “Design and implementation of

high-speed symmetric crossbar schedulers,” Proc. IEEE International

Conference on Communications (ICC’99), Vancouver, Canada, June 1999,

pp. 253-258.

[12] M. J. Karol, M. G. Hluchyj, and S. P. Morgan, “Input versus output

queuing on a space-division packet switch,” IEEE Transactions on

Communication, vol. COM-35, no. 12, pp. 1347-1356, December 1987.

[13] M. Katevenis, D. Serpanos, and P. Vatsolaki, “ATLAS I: A General-

Purpose, Single-Chip ATM Switch with Credit-Based Flow Control”, Proc.

88

of the Hot Interconnects IV Symposium, Palo Alto, California, August 1996,

pp. 63-73

[14] S. Keshav, An Engineering Approach to Computer Networking.

Reading, MA: Addison Wesley, January 1998, pp. 47-64.

[15] N. McKeown, “The iSLIP scheduling algorithm for input-queued

switches,” IEEE Transactions on Networking, vol. 7, no. 2, pp. 188-201,

April 1999.

[16] N. McKeown, V. Anamtharam, and J. Warland, “Achieving 100%

throughput in an input-queued switch,” Proc. INFOCOM’96, San

Francisco, March 1996, pp. 296-302.

[17] N. McKeown and T. E. Anderson, “A quantitative comparison of

scheduling algorithms for input-queued switches," Computer Networks

and ISDN Systems, vol. 30, no. 24, pp. 2309-2326, Dec. 1998.

[18] N. McKeown, M. Izzard, A. Mekkittikul, B. Ellersick, and M.

Horowitz, “The Tiny Tera: A small, high bandwidth network switch,” IEEE

Micro, January/February 1997, pp. 26-33.

[19] N. McKeown, P. Varaiya, J. Warland, “Scheduling cells in an input-

queued switch,” Electronic Letters, no. 25, pp. 2174-2175, Dec. 1993.

89

[20] A. Mekkittikul and N. McKeown, “A practical scheduling algorithm

to achieve 100% throughput in input-queued switches,” Proc. IEEE

INFOCOM 1998, vol. 2, Apr. 1998, San Francisco, pp. 792-799.

[21] A. Mekkittikul and N. McKeown, “A starvation-free algorithm for

achieving 100% throughput in an input-queued switch,” Proc. ICCCN’96,

Washington D.C., October 1996, pp. 226-231.

[22] Y. Tamir and H.C. Chi, “Symmetric crossbar arbiters for VLSI

communication switches,” IEEE Transactions on Parallel and Distributed

Systems, vol. 4, no. 1, pp. 13-27, January 1993.

[23] Y. Tamir and G. L. Frazier, “Dynamically-allocated multi-queue

buffers for VLSI communication switches,” IEEE Transactions on

Computers, vol. 41, no. 6, pp. 725-737, June 1992.

[24] F. A. Tobagi, “Fast packet switch architectures for broadband

integrated services digital networks,” Proc. of the IEEE, vol. 78, January

1990, pp. 133-178.

[25] J. Turner and N. Yamanaka, “Architectural choices in large scale

ATM switches,” IEICE Transactions in Communications, vol. E81-B, no. 2,

pp.120-137, February 1998.

[26] Y. Yeh, M.G. Hluchyj, and A. S. Acampora “The knockout switch: A

simple, modular architecure for high-performance packet switching,”

90

IEEE Journal on Selected Areas in Communications, vol. SAC-5, no. 8,

Oct. 1987.

[27] E. W. Zegura, “Architectures for ATM switching systems,” IEEE

Communications Magazine, pp. 28-37, Feb. 1993.

91

Appendix A. Detailed schematic of the switch with its

internal connections

4

P
or

t_
gr

an
t

P
or

t_
gr

an
t

fp

da
ta

_i
n

pa
ra

lle
l_

da
ta

_o
ut

 d
at

a_
ou

t_
fp

da
ta

_v
al

id
in

pu
t p

or
t 1

(v
oq

_i
np

ut
)

 p

or
t_

re
qu

es
t

fp

da
ta

_i
n

in
pu

t p
or

t 2
(v

oq
_i

np
ut

)

in
pu

t_
fp

da
ta

_v
al

id
_t

o_
fa

br
ic

fa
br

ic
(v

oq
_f

ab
ric

)

gr
an

t_
si

gn
al

sc
he

du
le

r
(v

oq
_c

_b
ar

)

ar
b_

re
q

gr
an

t

ar
b_

re
q_

si
gn

al1
1
0
0

1
0
1
0

in
pu

t_
po

rt
_n

am
e_

bi
ts

1

in
pu

t_
po

rt
_n

am
e_

bi
ts

0

in

pu
t1

in
p

u
t2

in
p

u
t3

in
p

u
t4

in
p

u
t5

cn
trl

4 4

4x
8

4 4

4

1
6

4
4

16

4 4

16

4

da
ta

_o
ut

_p
or

t1

fp

_o
ut

_p
or

t1

da
ta

_v
al

id
1

in
co

m
in

g_
po

rt
_t

o_
ou

tp
ut

1

po
rt_

na
m

e_
bi

t1

po
rt

_n
am

e_
bi

t0

ou
tp

ut
1

ou
tp

ut
2

o
u

tp
u

3

ou
tp

ut
4

ou
tp

ut
5

ou
tp

ut
_d

at
a

ou
tp

ut
_f

p

da
ta

_v
al

id
_s

ig
na

l

4

4x
8

4

4

4

da
ta

_i
n1

fp
1

4

8

 d
at

a_
in

2

fp
2

2

2

4

da
ta

_i
n4

fp
4

 d

at
a_

ou
t_

po
rt

2

fp

_o
ut

_p
or

t2

da
ta

_v
al

id
2

in
co

m
in

g_
po

rt
_t

o_
ou

tp
ut

2

 d

at
a_

ou
t_

po
rt

4

fp

_o
ut

_p
or

t4

da
ta

_v
al

id
4

in
co

m
in

g_
po

rt
_t

o_
ou

tp
ut

4

cl

oc
k

cl
oc

k

in
pu

t p
or

t4
(v

oq
_i

np
ut

)

gl
ob

al
_r

es
et

re
se

t
to

 a
ll

th
e

in
pu

t
po

rt
m

od
ul

es

8

8

8

in
pu

t_
da

ta

1
by

te

1
 b

yt
e

4
bi

ts

4
bi

ts

cl

oc
k

8

pa
ra

lle
l_

da
ta

_o
ut

 d
at

a_
ou

t_
fp

da
ta

_v
al

id

 p

or
t_

re
qu

es
t8

pa
ra

lle
l_

da
ta

_o
ut

 d
at

a_
ou

t_
fp

da
ta

_v
al

id

 p

or
t_

re
qu

es
t8 4

c_bar_clock

to
 th

e
sc

he
du

le
r

c_
ba

r_
cl

oc
k

fr
om

 v
oq

_i
np

ut
1

m
od

ul
e

cl
oc

k

92

Appendix B. Sample output port module

This Appendix describes a sample output module that can be

implemented at the output ports of our switch. This output port module

can be used to reassemble the packets and store them until they are

allowed to enter the network.

The VHDL source code for the output port module shown above is in

Appendix C (“output_fifo” project). The simulation results for this project

are included in Appendix D.

This module was designed earlier for an 8×8 version of our switch. In the

8×8 version, the scheduler operated independently from the rest of the

components. The scheduler clock used to be unsynchronized with the

rest of the switch. Therefore, grant signals could be issued or changed at

any moment. The grants could therefore change in the middle of

switching a packet, causing the packet to be partially switched. As a

result, the packets had to be reconstructed at the output ports. That is

one of the functionalities of the output port modules.

M
 U

 X

FIFO0

FIFO1

FIFO7

incoming_
port_to_output

data_out

. . .

93

The data packets exiting the switch stay in the FIFO queues of the

output port modules, based on where they originated. Packets that are

coming from input one, for example, are sent to FIFO0, and those

coming from input 4 are stored in FIFO3.

The output port modules have been designed, simulated and tested

separately. A detailed device summery for an output port is given in

Table B.1. This table shows that an output port modules fits into two

Flex10KE devices. It utilizes 15% of the available LC’s and 66% of the

available memory. The high memory utilization was expected because

each output port module contains 8 separate queues for the data coming

from the 8 input ports.

Chip/ POF Device

In
p
u

t
p
in

s

O
u

tp
u

t
p
in

s

B
ir

id
 p

in
s

M
em

or
y

b
it

s

M
em

or
y

%

U
ti

liz
ed

L
C

’s

LC
’s

 %
 U

ti
li
ze

d

output_fifo
EPF10K200S

BC356-1
28 201 0 98304 100% 1496 14%

Output_fifo1
EPF10K50ET

C144-1
18 65 0 32768 80% 528 18%

TOTAL 46 266 0 131072 66% 2024 15%

Table B.1. Device summery for the “output_fifo” project. This project fits

into two FLEX10KE devices.

94

Output port modules are the blocks where congestion control, flow

control, or policing algorithms can be implemented. An ATM switch can

only send its packets out to the network if there is consent from the

down stream node. Otherwise congestion can occur in the network, or

packets can be dropped due to buffer overflow at the destination node.

Implementation of algorithms that would handle the communication of

the network and the switch is mainly done in output port modules. For

example, a window based flow control design at the output module can

prevent bursts of data into the network. Implementation of such

algorithms is not a part of this project; therefore the de-queue process

for the output module has not been implemented. Various priority

algorithms, or any flow control scheme could be implemented for the de-

queue process.

95

Appendix C. VHDL source code for the switch and its

components

96

Appendix C.1. voq_switch.vhd

The VHDL source code for the 4×4 switch
-- voq_switch.vhd
-- Maryam Keyvani
-- Communication Networks Laboratory. Simon Fraser University
-- August 2001
-- This file is The VHDL source code for a 4x4 ATM switch
-- The switch is composed of 4 input port modules (voq_input),
-- one scheduler module (voq_c_bar), and one fabric module.

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;
USE ieee.std_logic_unsigned.ALL;

LIBRARY lpm;
USE lpm.lpm_components.ALL;

USE work.voq_input_package.ALL;

ENTITY voq_switch IS
 PORT (
 fp1 : IN STD_LOGIC; --input frame pulse lines
 fp2 : IN STD_LOGIC;
 fp3 : IN STD_LOGIC;
 fp4 : IN STD_LOGIC;

 data_in1 : IN BYTE; --input data byte lines
 data_in2 : IN BYTE;
 data_in3 : IN BYTE;
 data_in4 : IN BYTE;

 global_reset : IN STD_LOGIC; --Resets all the counters,
registers and the buffer
 reset : IN STD_LOGIC; --Resets everything but the
buffer
 clock : IN STD_LOGIC;

 fp_out_port1 : OUT STD_LOGIC; --output frame pulse lines
 fp_out_port2 : OUT STD_LOGIC;
 fp_out_port3 : OUT STD_LOGIC;

97

 fp_out_port4 : OUT STD_LOGIC;

 data_out_port1 : OUT BYTE; --output data_lines
 data_out_port2 : OUT BYTE;
 data_out_port3 : OUT BYTE;
 data_out_port4 : OUT BYTE;

 data_valid1 : OUT STD_LOGIC; --output data_valid lines
 data_valid2 : OUT STD_LOGIC;
 data_valid3 : OUT STD_LOGIC;
 data_valid4 : OUT STD_LOGIC;

 --Source port number
 incoming_port_to_output1 : OUT STD_LOGIC_VECTOR (2
DOWNTO 0);
 incoming_port_to_output2 : OUT STD_LOGIC_VECTOR (2
DOWNTO 0);
 incoming_port_to_output3 : OUT STD_LOGIC_VECTOR (2
DOWNTO 0);
 incoming_port_to_output4 : OUT STD_LOGIC_VECTOR (2
DOWNTO 0);
 --Priority vector output for simulation purpose
 P : OUT STD_LOGIC_VECTOR (7 DOWNTO 1);
 --request to scheduler and grant coming from scheduler for simulation
 request : OUT STD_LOGIC_VECTOR(16 DOWNTO 1);

 grant : OUT STD_LOGIC_VECTOR(16 DOWNTO 1)

);

END voq_switch;

ARCHITECTURE structure OF voq_switch IS

 COMPONENT voq_input

 GENERIC(

--Port is set to handle packets of size 53 bytes
 PACKET_SIZE : INTEGER:= 53;

--Counter 53 is a 6 bit counter so it can service packets upto 64 bytes long
 COUNTER_53_SIZE : INTEGER:= 6;

 --Each data byte is 8 bits long
 DATA_SIZE : INTEGER:= 8;

98

 --Number of words in buffer

BUFFER_SIZE : INTEGER:= 848;
BUFFER_WIDTHU : INTEGER:= 10; --Recommended value is
CEIL(LOG2(FIFO_SIZE))

 NO_OF_BLOCKS : INTEGER:= 16; --Has to be
BUFFER_SIZE/PACKET_SIZE
 NO_OF_QUEUES : INTEGER:= 4; --This value has to be
equal to the number of output ports
 NO_OF_PORTS : INTEGER:= 4;
 VCI_VECTOR_SIZE : INTEGER:= 24; --Each VCI is 2 Bytes
 VCI_SIZE : INTEGER:= 16;
 OUTPUT_PORT_SIZE : INTEGER:= 2; --2 bits used to address an
output port
 LUT_OUTPUT_PORT_SIZE : INTEGER := 4; -- LUT output port
number size
 TRANSLATION_TABLE: STRING := "lut1.mif"
);

 PORT(
 data_in : IN BYTE; --STD_LOGIC_VECTOR (DATA_SIZE-1
DOWNTO 0); --Input serial data to the port
 clock : IN STD_LOGIC; --Input clock to the port
 fp : IN STD_LOGIC; --Input frame pulse to the port
 global_reset : IN STD_LOGIC; --Resets all the counters,
registers and the FIFO
 reset : IN STD_LOGIC; --Resets everything but the FIFO
 port_grant : IN STD_LOGIC_VECTOR(3 DOWNTO 0); --The grant
vector for the port
 port_request : OUT STD_LOGIC_VECTOR(3 DOWNTO 0); --The request
vector for the port
 c_bar_clock : OUT STD_LOGIC;
 data_out_fp : OUT STD_LOGIC; --frame pulse showing the
beginning of the data being shifted out
 data_valid : OUT STD_LOGIC; --is 1 when FIFO is dequeuing
data (i.e. a grant is issued for the port)
 parallel_data_out : OUT STD_LOGIC_VECTOR(DATA_SIZE-1
DOWNTO 0) --the byte of data going out
);

END COMPONENT;

COMPONENT voq_c_bar
 GENERIC (

99

NO_OF_PORTS: INTEGER := 4;
 -- NO_OF_GRANTS_REQ: INTEGER := 16;--Has to be NO_OF_PORTS^2
 PRIO_VEC_SIZE: INTEGER := 7 --Has to be [2(NO_OF_PORTS)-1]
);

 PORT(

arb_req : IN std_logic_vector(NO_OF_GRANTS_REQ DOWNTO 1);
 clk, reset : IN std_logic;
 grant : OUT std_logic_vector(NO_OF_GRANTS_REQ DOWNTO 1);
 P : OUT std_logic_vector(7 DOWNTO 1)
);
 END COMPONENT;

 COMPONENT voq_fabric is
 GENERIC(
 SWITCH_SIZE : INTEGER:= 4; --4x4 fabric by default
 GRANT_SIZE : INTEGER:= 16 --16 lines used to issue grants
);

 PORT(

--inputs 4, 5, and 6 are made by bits from a constant matrix that is formed by
input port numbers outputs 4, 5, and 6 help make the incoming_port_to_output(i)s of
the switch
 input0 : IN DATA_VECTOR; --The 4 input data lines of type
std_logic_vector(DATASIZE-1 DOWNTO 0)
 input1 : IN STD_LOGIC_VECTOR(SWITCH_SIZE-1 DOWNTO 0); --The 4
data_valid lines going to the fabric
 input2 : IN STD_LOGIC_VECTOR(SWITCH_SIZE-1 DOWNTO 0); --The
LSBs of input_port_name
 input3 : IN STD_LOGIC_VECTOR(SWITCH_SIZE-1 DOWNTO 0); --The
MSB of input_port_name
 input4 : IN STD_LOGIC_VECTOR(SWITCH_SIZE-1 DOWNTO 0); --The 4
input frame pulse lines
 cntrl : IN STD_LOGIC_VECTOR(GRANT_SIZE-1 DOWNTO 0); --The
grant vector used to control the fabric
 output0 : OUT DATA_VECTOR; --The 4 output data lines of type
std_logic_vecotr(DATASIZE-1 DOWNTO 0)
 output1 : OUT STD_LOGIC_VECTOR(SWITCH_SIZE-1 DOWNTO 0); --
data_valid lines
 output2 : OUT STD_LOGIC_VECTOR(SWITCH_SIZE-1 DOWNTO 0); --The
LSBs of port_name out of the fabric
 output3 : OUT STD_LOGIC_VECTOR(SWITCH_SIZE-1 DOWNTO 0); --The
MSB of port_name out of the fabric

100

 output4 : OUT STD_LOGIC_VECTOR(SWITCH_SIZE-1 DOWNTO 0) --the
4 output frame pulses for the 8 output ports
);

 END COMPONENT;

 SIGNAL arb_req_signal: STD_LOGIC_VECTOR (16 DOWNTO 1);

 --grant_signal connects the grant output of the c_bar scheduler, which is a 64
bit vector, to the cntrl input of the fabric.
 SIGNAL grant_signal : STD_LOGIC_VECTOR (16 DOWNTO 1); --the grant signal
coming from the scheduler

 SIGNAL input_data : DATA_VECTOR; --Connects data_out coming out of port
to fabric input

 --output_data connects the fabric data output (output(i)) to output data line of the
switch ((data_out_port(i))
 SIGNAL output_data : DATA_VECTOR;

 --input_fp connects the outgoing data's fp comming from the input port
(data_out_fp) to the fabric input
 SIGNAL input_fp : STD_LOGIC_VECTOR (4 DOWNTO 1);

 --output_fp connects the fabric frame pulse output (output2) to frame pulse
output of the switch ((fp_out_port(i))
 SIGNAL output_fp : STD_LOGIC_VECTOR (4 DOWNTO 1);

 --Reset signal for crossbar scheduler
 SIGNAL resetb :STD_LOGIC;

 SIGNAL input_port_name_bits1 : STD_LOGIC_VECTOR(3 DOWNTO 0); --Will be
hard coded to "1100"

 SIGNAL input_port_name_bits0 : STD_LOGIC_VECTOR(3 DOWNTO 0);--Will be
hard coded to "1010"

 SIGNAL source_to_output1 : STD_LOGIC_VECTOR(1 DOWNTO 0); --used to
build the source port number (incoming_port_to_output1)

 SIGNAL source_to_output2 : STD_LOGIC_VECTOR(1 DOWNTO 0); --used to
build the source port number (incoming_port_to_output2)

101

 SIGNAL source_to_output3 : STD_LOGIC_VECTOR(1 DOWNTO 0); --used to
build the source port number (incoming_port_to_output3)

 SIGNAL source_to_output4 : STD_LOGIC_VECTOR(1 DOWNTO 0); --used to
build the source port number (incoming_port_to_output4)

--Signals needed to carry control info to the output ports

 --data_valid_signal connects output3 of the fabric to data_valid(i), which is the
output of the switch
 SIGNAL data_valid_signal : STD_LOGIC_VECTOR (4 DOWNTO 1);
 SIGNAL data_valid_to_fabric : STD_LOGIC_VECTOR (4 DOWNTO 1);--
Connects data_valid comming from each port to input3 going to the fabric.

 SIGNAL port_name_bit0 : STD_LOGIC_VECTOR (4 DOWNTO 1);--Connected
to the output4 of the fabric
 SIGNAL port_name_bit1 : STD_LOGIC_VECTOR (4 DOWNTO 1);--Connected
to the output5 of the fabric

 SIGNAL packet_clock : STD_LOGIC;

BEGIN
 --Output data lines of the switch are constructed here
 --output_data is a vector that connects outgoing data from the fabric to
outgoing data of the switch
 data_out_port1 <= output_data(0);
 data_out_port2 <= output_data(1);
 data_out_port3 <= output_data(2);
 data_out_port4 <= output_data(3);

 --Outgoing frame pulse lines of the switch are constructed here
 --output_fp is a vector that connects the outgoing frame pulse from the
fabric to outgoing fp of the switch
 fp_out_port1 <= output_fp(1);
 fp_out_port2 <= output_fp(2);
 fp_out_port3 <= output_fp(3);
 fp_out_port4 <= output_fp(4);

 data_valid1 <= data_valid_signal(1);
 data_valid2 <= data_valid_signal(2);
 data_valid3 <= data_valid_signal(3);

102

 data_valid4 <= data_valid_signal(4);

 source_to_output1 <= port_name_bit1(1) & port_name_bit0(1);
 source_to_output2 <= port_name_bit1(2) & port_name_bit0(2);
 source_to_output3 <= port_name_bit1(3) & port_name_bit0(3);
 source_to_output4 <= port_name_bit1(4) & port_name_bit0(4);

 incoming_port_to_output1 <= source_to_output1 + "001";
 incoming_port_to_output2 <= source_to_output2 + "001";
 incoming_port_to_output3 <= source_to_output3 + "001";
 incoming_port_to_output4 <= source_to_output4 + "001";

--These vectors are connected to the fabric and according to the configuration of the
fabric and the grants that are given, the number of the input port that was granted a
request comes to the output of the fabric
 input_port_name_bits1 <= "1100";
 input_port_name_bits0 <= "1010";

 request <= arb_ req_signal;
 grant <= grant_signal;
 resetb <= NOT global_reset;

--**************** Component instantiation *****************************

 --Instances of ports 1 to 4
 port1: voq_input

 GENERIC MAP (
 TRANSLATION_TABLE => "lut1.mif"
)

 PORT MAP (

 data_in => data_in1,
 clock => clock,
 fp => fp1,
 global_reset => global_reset,

 reset => reset,
 queue3_out => queue3_out1,
 free_space_out => free_space_out1,

 ready_flag_out => ready_flag_out1,
 port_grant => grant_signal (4 downto 1),
 parallel_data_out => input_data(0),
 port_request => arb_req_signal (4 downto 1),

103

 c_bar_clock => packet_clock,
 data_out_fp => input_fp(1),

 data_valid => data_valid_to_fabric(1)
);

 port2: voq_input

 GENERIC MAP (
 TRANSLATION_TABLE => "lut2.mif"
)

 PORT MAP (
 data_in => data_in2,
 clock => clock,
 fp => fp2,
 global_reset => global_reset,
 reset => reset,
 port_grant => grant_signal (8 downto 5),
 parallel_data_out => input_data(1),
 port_request => arb_req_signal (8 downto 5),
 data_out_fp => input_fp(2),
 data_valid => data_valid_ to_fabric(2)
);

 port3: voq_input
 GENERIC MAP (
 TRANSLATION_TABLE => "lut3.mif"
)

 PORT MAP (
 data_in => data_in3,
 clock => clock,
 fp => fp3,
 global_reset => global_reset,
 reset => reset,
 port_grant => grant_signal (12 downto 9),
 parallel_data_out => input_data(2),
 port_request => arb_req_signal (12 downto 9),
 data_out_fp => input_fp(3),
 data_valid => data_valid_to_fabric(3)
);

104

 port4: voq_input

 GENERIC MAP (
 TRANSLATION_TABLE => "lut4.mif"
)

 PORT MAP (
 data_in => data_in4,
 clock => clock,
 fp => fp4,
 global_reset => global_reset,
 reset => reset,
 port_grant => grant_signal (16 downto 13),
 parallel_data_out => input_data(3),
 port_request => arb_req_signal (16 downto 13),
 data_out_fp => input_fp(4),
 data_valid => data_valid_to_fabric(4)
);

 switch_c_bar: voq_c_bar

 PORT MAP (
 arb_req => arb_req_signal,
 clk => packet_clock,
 reset => resetb,
 grant => grant_signal,
 P => P
);

 --Instance of the fabric
 data_fabric: voq_fabric

 PORT MAP (
 input0 => input_data,
 input1 => input_fp,
 input2 => data_valid_to_fabric,
 input3 => input_port_name_bits0,
 input4 => input_port_name_bits1,
 cntrl => grant_signal,
 output0 => output_data,
 output1 => output_fp,
 output2 => data_valid_signal,

105

 output3 => port_name_bit0,
 output4 => port_name_bit1
);

END structure;

106

Appendix C.2. voq_input.vhd

VHDL source code for the input port module of the switch

-- voq_input.vhd
-- Maryam Keyvani
-- Commuication Networks Laboratory, Simon Fraser University
-- August 2001
-- This file contains VHDL description of the input port modules used in the voq_switch
project.
-- The input port module, receives the incoming packets, stores them in buffer, looks up packet
header,
-- determines destination port number, updates packet header, sends a request for the
destination port
-- to the scheduler, and sends the packet out once a grant is received.

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;
USE ieee.std_logic_unsigned.ALL;
LIBRARY lpm;
USE lpm.lpm_components.ALL;
USE work.voq_input_package.ALL;

ENTITY voq_input IS

 GENERIC(PACKET_SIZE : INTEGER:= 53; --Port is set to handle
packets of size 53 bytes
 COUNTER_53_SIZE : INTEGER:= 6; --Counter_53 is a 6 bit
counter.
 DATA_SIZE : INTEGER:= 8; --Each data byte is 8 bits
long
 BUFFER_SIZE : INTEGER:= 848; --Number of words in buffer
 BUFFER_WIDTHU : INTEGER:= 10; --Recommeneded value is
CEIL(LOG2(BUFFER_SIZE))
 NO_OF_BLOCKS : INTEGER:= 16; --Has to be
BUFFER_SIZE/PACKET_SIZE
 NO_OF_QUEUES : INTEGER:= 4; --This value has to be equal
to the number of output ports
 NO_OF_PORTS : INTEGER:= 4;
 VCI_VECTOR_SIZE : INTEGER:= 24;
 VCI_SIZE : INTEGER:= 16; --Each VCI is 2 Bytes.
 OUTPUT_PORT_SIZE : INTEGER:= 2; --2 bits used to address an
output port
 LUT_OUTPUT_PORT_SIZE: INTEGER:= 4;
 TRANSLATION_TABLE : STRING := "lut1.mif"
);

107

 PORT(
 --Test Signals for simulation purposes
 state :OUT INTEGER RANGE 0 TO 7;
 cntrl_state :OUT INTEGER RANGE 0 TO 7;
 DQ_state : OUT INTEGER RANGE 0 TO 15;

 count53_out : OUT STD_LOGIC_VECTOR(COUNTER_53_SIZE-1 DOWNTO
0);
 c53sset_out : OUT STD_LOGIC;

 input_vci_out : OUT STD_LOGIC_VECTOR (VCI_SIZE-1 DOWNTO 0);
--Signal that goes to LUT to be looked up
 output_vci_out : OUT STD_LOGIC_VECTOR (VCI_SIZE-1 DOWNTO 0);
--The updated VCI
 output_port_no_out : OUT STD_LOGIC_VECTOR
(LUT_OUTPUT_PORT_SIZE-1 DOWNTO 0); --The destination output port
 out_vci_ready_out : OUT STD_LOGIC; -- Indicates whether output VCI
and port no. are ready for pickup
 destination_port_no_out: OUT STD_LOGIC_VECTOR(OUTPUT_PORT_SIZE-1
DOWNTO 0);

 vci_in_vector_out : OUT VCI_VECTOR_TYPE;
 VCI_reg_en_out : OUT STD_LOGIC;

 -- Buffer signals
 buffer_output : OUT STD_LOGIC_VECTOR(DATA_SIZE-1 DOWNTO
0);
 wr_address_signal_out : OUT STD_LOGIC_VECTOR(BUFFER_WIDTHU-1
DOWNTO 0);
 rd_address_signal_out : OUT STD_LOGIC_VECTOR(BUFFER_WIDTHU-1
DOWNTO 0);
 wr_en_signal_out : OUT STD_LOGIC;
 rd_en_signal_out : OUT STD_LOGIC;

 dq_count53_out : OUT STD_LOGIC_VECTOR (COUNTER_53_SIZE-1
DOWNTO 0);
 dq_count53_temp_out : OUT STD_LOGIC_VECTOR (COUNTER_53_SIZE-1
DOWNTO 0);

 --linked lists
 queue0_head_out : OUT POINTER;
 queue0_tail_out : OUT POINTER;
 queue0_empty_out : OUT STD_LOGIC;
 queue0_out : OUT QUEUE_DESCRIPTOR;
 queue1_out : OUT QUEUE_DESCRIPTOR;
 queue2_out : OUT QUEUE_DESCRIPTOR;
 queue3_out : OUT QUEUE_DESCRIPTOR;

108

 free_space_out : OUT QUEUE_DESCRIPTOR;
 free_space_head_out : OUT POINTER;
 free_space_tail_out : OUT POINTER;
 free_space_empty_out : OUT STD_LOGIC;
 next_register_out : OUT NEXT_REGISTER_TYPE;
 ready_flag_out : OUT STD_LOGIC_VECTOR (NO_OF_BLOCKS-1
DOWNTO 0);

 read_pointer_out : OUT INTEGER RANGE 0 to 15; --Points to the block
that has to be read
 read_queue_out : OUT INTEGER RANGE 0 to 3; --Is the queue number
that is being read from
 queue_no_out : OUT INTEGER RANGE 0 to 3; --Is the queue
number that is being written to

 --Actual entity ports
 data_in : IN STD_LOGIC_VECTOR (DATA_SIZE-1
DOWNTO 0); --Prallel data byte input
 clock : IN STD_LOGIC; --Input clock to the port
 c_bar_clock : OUT STD_LOGIC; --Used for loading request,
and issuing grants
 fp : IN STD_LOGIC; --Input frame pulse to the
port
 global_reset : IN STD_LOGIC; --Resets all the counters,
registers and the BUFFER
 reset : IN STD_LOGIC; --Resets everything but the
BUFFER
 port_grant : IN STD_LOGIC_VECTOR(3 DOWNTO 0); --The grant
vector for the port
 port_request : OUT STD_LOGIC_VECTOR(3 DOWNTO 0); --The
request vector for the port
 data_out_fp : OUT STD_LOGIC; --Frame pulse showing the
beginning of the outgoing packet
 data_valid : OUT STD_LOGIC; --is 1 when buffer is
dequeuing data
 parallel_data_out : OUT STD_LOGIC_VECTOR(DATA_SIZE-1 DOWNTO
0) --Prallel data byte output
);

END voq_input;

ARCHITECTURE behav OF voq_input IS

 --Component Declaration

 COMPONENT LUT

 GENERIC (VCI_SIZE: INTEGER := 16;
 PORT_SIZE: INTEGER := 4;

109

 ROM_WIDTH : INTEGER := 36; --width of the look up table
 ROM_WIDTHAD : INTEGER := 3; --Address width of
LUT=log2(number of rows in table)
 TRANSLATION_TABLE: STRING
);

 PORT (input_vci : IN STD_LOGIC_VECTOR (VCI_SIZE-1 downto 0);
 output_port_no: OUT STD_LOGIC_VECTOR (PORT_SIZE-1 downto 0
);
 output_vci : OUT STD_LOGIC_VECTOR (VCI_SIZE-1 downto 0);
 clock : IN STD_LOGIC;
 renable : OUT STD_LOGIC
);

 END COMPONENT;

 FUNCTION ENCODE (s: STD_LOGIC_VECTOR (3 DOWNTO 0)) --Used to translate
grant signal to a queue number
 RETURN INTEGER IS

 VARIABLE INT: INTEGER RANGE 0 to 3;
 BEGIN

 CASE s IS
 WHEN "1000" => INT := 3;
 WHEN "0100" => INT := 2;
 WHEN "0010" => INT := 1;
 WHEN "0001" => INT := 0;
 WHEN OTHERS => NULL;
 END CASE;
 RETURN INT;
 END FUNCTION;
--
--************************************* SIGNALS ***
--
 -- BUFFER signals
 SIGNAL rd_en_signal : STD_LOGIC;
 SIGNAL wr_en_signal : STD_LOGIC;
 SIGNAL RAM_out : STD_LOGIC_VECTOR(DATA_SIZE-1 DOWNTO
0);
 SIGNAL rd_address_signal : STD_LOGIC_VECTOR(BUFFER_WIDTHU-1 DOWNTO 0);
 SIGNAL wr_address_signal : STD_LOGIC_VECTOR(BUFFER_WIDTHU-1 DOWNTO 0);

 -- VCI registers and signals
 SIGNAL VCI_reg_en : STD_LOGIC; --Loads VCI registers with VCI bytes
 SIGNAL VCI_reg0_out : BYTE; --Output of the first VCI register
 SIGNAL VCI_reg1_out : BYTE; --Output of the second VCI register
 SIGNAL VCI_reg2_out : BYTE; --Output of the third VCI register

110

 SIGNAL vci_in_vector : VCI_VECTOR_TYPE; --Where the incoming vci vector is
stored
 SIGNAL vci_out_vector : VCI_VECTOR_ARRAY_TYPE; --Where the updated vci is
stored. One exists for each block.
 SIGNAL input_vci : STD_LOGIC_VECTOR (VCI_SIZE-1 DOWNTO 0); --
Connected to input of LUT

 --registers and flags
 SIGNAL next_register : NEXT_REGISTER_TYPE; --The next block in the linked list
 SIGNAL ready_flag : STD_LOGIC_VECTOR (NO_OF_BLOCKS-1 DOWNTO 0); --
Shows a complete packet has been written

 --Queue linked list pointers
 SIGNAL temp : POINTER; --Latches the value of free_space.head
 SIGNAL free_space : QUEUE_DESCRIPTOR; --The free space linked list.
 SIGNAL queue : QUEUE_TYPE; --An array of all 4 linked lists(queues)
 SIGNAL read_pointer : INTEGER RANGE 0 to 15; --Points to the block that has to be
read
 SIGNAL read_queue : INTEGER RANGE 0 to 3; --Is the queue number that is
being read from
 SIGNAL queue_no : INTEGER RANGE 0 to 3; --Is the queue number that is
being written to

 SIGNAL HIGH : STD_LOGIC;
 SIGNAL LOW : STD_LOGIC;

 --Counter_53 Signals
 SIGNAL count53 : STD_LOGIC_VECTOR (COUNTER_53_SIZE-1 DOWNTO 0); --6
Bit output of counter 53
 SIGNAL c53sset : STD_LOGIC; --Synchronous clear for counter_53

 --Dequeue counter 53 Signals
 SIGNAL dq_c53aclr : STD_LOGIC; --Asynchronous clear for
dq_counter53
 SIGNAL dq_count53 : STD_LOGIC_VECTOR (COUNTER_53_SIZE-1
DOWNTO 0); --6 Bit output of dq counter 53
 SIGNAL dq_c53aset : STD_LOGIC; --Is always set to LOW
 SIGNAL data_valid_signal : STD_LOGIC; --Shows when the data
on the output line is valid
 SIGNAL dq_count53_temp : STD_LOGIC_VECTOR (COUNTER_53_SIZE-1
DOWNTO 0);--Holds dp_count53 value for 2 extra clocks
 SIGNAL dq_count53_temp_next : STD_LOGIC_VECTOR (COUNTER_53_SIZE-1
DOWNTO 0);
 SIGNAL count59 : STD_LOGIC_VECTOR (COUNTER_53_SIZE-1
DOWNTO 0);--Used to construct of c_bar_clock

 --LUT Signals

111

 SIGNAL output_port_no : STD_LOGIC_VECTOR
(LUT_OUTPUT_PORT_SIZE-1 DOWNTO 0); --The destination output port number
 SIGNAL output_vci : STD_LOGIC_VECTOR (VCI_SIZE-1 DOWNTO 0); --
The VCI to be placed in the outgoing packet
 SIGNAL out_vci_ready : STD_LOGIC; --When 1, output VCI and port no. are
ready for pickup
 SIGNAL lut_clock : STD_LOGIC; --The clock that will be connected to
LUT through lut_run clock.
 SIGNAL lut_clock_signal : STD_LOGIC;

 --State Machines
 SIGNAL current_state : INTEGER RANGE 0 TO 7;
 SIGNAL next_state : INTEGER RANGE 0 TO 7;
 SIGNAL cntrl_current_state : INTEGER RANGE 0 TO 7;
 SIGNAL cntrl_next_state : INTEGER RANGE 0 TO 7;
 SIGNAL DQ_current_state : INTEGER RANGE 0 TO 15;
 SIGNAL DQ_next_state : INTEGER RANGE 0 TO 15;

 --Processor Specific Signals
 SIGNAL destination_port_no : STD_LOGIC_VECTOR(OUTPUT_PORT_SIZE -1
DOWNTO 0); --The destination port number.
 SIGNAL port_req : STD_LOGIC_VECTOR(NO_OF_PORTS-1 DOWNTO 0); --
The request vector to be sent out
 SIGNAL parallel_data : STD_LOGIC_VECTOR(DATA_SIZE-1 DOWNTO 0); --
Data bytes going out of voq_input
 SIGNAL data_out_fp_signal : STD_LOGIC; --Frame pulse output

 SIGNAL request_clock : STD_LOGIC; --Same as c_bar_clock

BEGIN

 -- Output signal assignments for test and simulation purpose
 state <= current_state;
 count53_out <= count53;
 c53sset_out <= c53sset;
 output_port_no_out <= output_port_no;
 output_vci_out <= output_vci;
 out_vci_ready_out <= out_vci_ready;
 input_vci_out <= input_vci;
 destination_port_no_out <= destination_port_no;

 vci_in_vector_out <= vci_in_vector;
 VCI_reg_en_out <= VCI_reg_en;

 dq_count53_out <= dq_count53;
 dq_count53_temp_out <= dq_count53_temp;
 parallel_data_out <= parallel_data;
 data_out_fp <= data_out_fp_signal;

112

 data_valid <= data_valid_signal;
 cntrl_state <= cntrl_current_state;
 DQ_state <= DQ_current_state;

 --linked lists
 queue0_head_out <= queue(0).head;
 queue0_tail_out <= queue(0).tail;
 queue0_empty_out <= queue(0).empty;
 queue0_out <= queue(0);
 queue1_out <= queue(1);
 queue2_out <= queue(2);
 queue3_out <= queue(3);
 free_space_out <= free_space;
 free_space_head_out <= free_space.head;
 free_space_tail_out <= free_space.tail;
 free_space_empty_out <= free_space.empty;
 next_register_out <= next_register;
 ready_flag_out <= ready_flag;

 read_queue_out <= read_queue;
 queue_no_out <= queue_no;
 read_pointer_out <= read_pointer;

 --Buffer signals and ports
 wr_address_signal_out <= wr_address_signal;
 rd_address_signal_out <= rd_address_signal;
 wr_en_signal_out <= wr_en_signal;
 rd_en_signal_out <= rd_en_signal;
 buffer_output <= RAM_out;

 c_bar_clock <= request_clock;

 Write_Seq_SM : PROCESS (clock)

 BEGIN --Process
 IF (clock='0' AND clock'event) THEN --At the falling edge of clock next
state is calculated
 IF ((global_reset = '0') AND (reset = '0')) THEN

 CASE current_state IS

 WHEN 0 =>

 wr_en_signal <= '0';
 VCI_reg_en <= '0';
 --If new packet coming and buffer has free space
 IF (fp = '1') AND (free_space.empty = '0') THEN

 next_state <= 1;
 temp <= free_space.head; --Keep first byte of new packet in
a temp

113

 c53sset <= '0';--start counting if there is a frame pulse

 ELSE
 c53sset <= '1';
 END IF;

--This is the RAM address where the data byte is written
 WHEN 1 =>

 wr_address_signal <= count53 + ((free_space.head)* "110101");
 wr_en_signal <= '1'; --Write the one byte of data that is

coming in

 IF (count53 /= "110100") THEN --Continue reading the
remaining bits of packet
 next_state <= 1;
 ELSE --If the whole packet has been
received

 next_state <= 0;
 c53sset <= '1';
 END IF;

-- Send VCI bytes (bytes 2,3 and 4 of the header) to the VCI registers
 IF ((count53 = "00001") OR (count53 = "00010") OR (count53 =
"000011")) THEN

 VCI_reg_en <= '1';

 ELSE
 VCI_reg_en <= '0';
 END IF;

 WHEN OTHERS => NULL;

 END CASE;

 ELSE --In case of reset or if buffer is full, drop the incoming packet

 IF ((global_reset = '1') OR (reset = '1') OR (free_space.empty = '1'))
THEN

 next_state <= 0;
 wr_en_signal <= '0';
 c53sset <= '1';
 END IF;
 END IF;
 END IF;
 END PROCESS;

 PROCESS (clock) --State update process
 BEGIN

114

 IF ((global_reset = '1') OR (reset = '1')) THEN --check for reset
 current_state <= 0;
 cntrl_current_state <= 0;
 DQ_current_state <= 0;
 dq_count53_temp <= "000000";

 ELSE
 IF (clock = '1' AND clock'event) THEN --At the rising edge of clock, update
states
 current_state <= next_state;
 cntrl_current_state <= cntrl_next_state;
 DQ_current_state <= DQ_next_state;
 dq_count53_temp <= dq_count53_temp_next;
 END IF;
 END IF;
 END PROCESS;

 VCI_SM : PROCESS (clock)
 BEGIN -- Process
 IF (clock = '0' AND clock'event) THEN --cntrl_next_state is determined on falling
edge
 IF ((global_reset = '0') AND (reset = '0')) THEN
 CASE cntrl_current_state IS
 WHEN 0 =>
 IF (count53 = "000011") THEN --If VCI bytes are already input
 cntrl_next_state <= 1;
 ELSE
 cntrl_next_state <= 0;
 END IF;

 WHEN 1 =>
 cntrl_next_state <= 2;
 input_vci <= vci_in_vector (19 DOWNTO 4); --Send input VCI to LUT

 WHEN 2 =>
 cntrl_next_state <= 3; --Wait for LUT to look up the header

 WHEN 3 => --IF LUT has output a valid VCI update vci_out_vector
 IF (out_vci_ready = '1') THEN
 vci_out_vector (CONV_INTEGER (free_space.head)) (23 DOWNTO
20) <= vci_in_vector (23 DOWNTO 20);
 vci_out_vector (CONV_INTEGER (free_space.head)) (19 DOWNTO
4) <= output_vci;
 vci_out_vector (CONV_INTEGER (free_space.head)) (3 DOWNTO
0) <= vci_in_vector (3 DOWNTO 0);
 --Retrieve destination port number from LUT
 destination_port_no <= output_port_no (1 DOWNTO 0);
 cntrl_next_state <= 4;

115

 ELSE
 --If packet is fully written and no valid vci is found in LUT,return to state0
 IF (count53 = "110100") THEN
 cntrl_next_state <= 0;
 ELSE
 cntrl_next_state <= 3;
 END IF;
 END IF;

 WHEN 4 =>
 cntrl_next_state <= 0;

 WHEN OTHERS => NULL;

 END CASE;

 ELSIF ((global_reset = '1') OR (reset = '1')) THEN
 cntrl_next_state <= 0;
 END IF;

END IF;
 END PROCESS;

 Read_seq_SM: PROCESS (clock)
 BEGIN --Process
 IF (clock = '0' AND clock'event) THEN --cntrl_next_state is determined on the
falling edge
 IF ((global_reset = '0') AND (reset = '0')) AND (port_grant /= "0000") THEN
 --RAM address where bytes are read from is the head of read_queue plus counter offset

 rd_address_signal <= ((queue(read_queue).head * "110101") + dq_count53);

 CASE DQ_current_state IS

 WHEN 0 => --Initial state
 DQ_next_state <= 1;
 rd_en_signal <= '0'; --Don't read from the buffer
 dq_c53aclr <= '1'; --Clear the counter
 dq_count53_temp_next <= "000000";--Clear the temporary dq_counter
value

 WHEN 1 =>
 rd_en_signal <= '1'; --Start reading from buffer
 dq_c53aclr<= '0'; --The dq_counter statrs counting
 DQ_next_state <= 2;
 --read_pointer points to the block that is being read
 read_pointer <= CONV_INTEGER (queue(read_queue).head);
 data_out_fp_signal <= '1'; --Make output frame pulse

116

 WHEN 2 =>
 DQ_next_state <= 3; --Wait for data byte to be read from RAM

 WHEN 3 =>
 --First byte of output packet is read from buffer
 parallel_data <= RAM_out;
 DQ_next_state <= 4;
 data_out_fp_signal <= '0';
 data_valid_signal <= '1'; --Data on output port is valid

 WHEN 4 =>
 --Second, third, and fourth bytes of output packet are read from vci_out_vector
 DQ_next_state <= 5;
 parallel_data <= vci_out_vector(read_pointer)(23 downto 16);

 WHEN 5 =>
 DQ_next_state <= 6;
 parallel_data <= vci_out_vector(read_pointer)(15 downto 8);

 WHEN 6 =>
 DQ_next_state <= 7;
 parallel_data <= vci_out_vector(read_pointer)(7 downto 0);

 WHEN 7 =>
 IF (dq_count53 /= "110111") THEN
 -- do nothing i.e. remain in this state
 ELSE
 dq_count53_temp_next <= dq_count53; --Keep dq_counter value for
two more cycles
 dq_c53aclr <= '1'; --clear the dq_counter
 data_valid_signal <= '0';
 rd_en_signal <= '0';
 DQ_next_state <= 8;

 END IF;
 parallel_data <= RAM_out; --5th to 53rd byte of outgoing packet is read
from buffer

 WHEN 8 =>
 DQ_next_state <= 9; --if count53 and dq_count53 reach their maximum
at the same time the linked lists are updated first for write and then for read operation

 WHEN 9 =>
 DQ_next_state <= 0;

117

 dq_count53_temp_next <= "000000";

 WHEN OTHERS => NULL;

 END CASE;

 ELSE
 rd_en_signal <= '0';
 parallel_data <= "00000000";
 END IF;
 END IF;

 END PROCESS;

 Linked_list_update: PROCESS (clock)

 BEGIN
 --After writing a packet
 IF (clock='0' AND clock'event) THEN
 --If a full packet is written
 IF (global_reset = '0') AND (reset = '0') AND (current_state = 1) AND (count53 =
"110100") THEN
 IF queue(queue_no).empty = '1' THEN --If queue(i) was empty
 queue(queue_no).head <= free_space.head; --New head of queue(i)
 queue(queue_no).empty <= '0'; --queue(i) is not empty any more
 ELSE
 next_register(CONV_INTEGER (queue(queue_no).tail)) <= temp;
 END IF;
 --The packet written always becomes the new tail of the queue, no matter if it is empty or
not
 queue(queue_no).tail <= free_space.head;
 --This flag is one when the whole packet has been written and packet is ready to be read
 ready_flag(CONV_INTEGER (temp)) <= '1';

 IF (free_space.head = free_space.tail) THEN --If it was the last space in
free_space
 free_space.empty <= '1'; --free_space is empty from now on
 ELSIF free_space.empty = '0' THEN --If free_space is multi-element
 --Remove Multi Element
 free_space.head <= next_register(CONV_INTEGER (temp));
 END IF;

--After reading a packet
 ELSIF (global_reset = '0') AND (reset = '0') AND (DQ_current_state = 8) AND
(dq_count53_temp = "110111") THEN

118

 IF queue(read_queue).head = queue(read_queue).tail THEN --If it was the last
element in queue(i)
 queue(read_queue).empty <= '1'; --queue(i) is empty from now
on
 ELSE
 -- remove_normal
 queue(read_queue).head <= next_register(CONV_INTEGER
(queue(read_queue).head));
 END IF;

--Whether free_space is empty or not, when a packet is read it will be added to the tail of the
free_space
 free_space.tail <= queue(read_queue).head;
 --When the whole packet it read, ready_flag has to be zero
 ready_flag (read_pointer) <= '0';

 IF free_space.empty = '0' THEN --remove_normal
 --The head of queue(i) has to point to next block in that queue
 next_register(CONV_INTEGER (free_space.tail)) <= queue(read_queue).head;
 ELSE --If free_space was empty
 --one element added to the empty free_space will be both its head and tail
 free_space.head <= queue(read_queue).head;
 --free_space is not empty any more as soon as a packet is read
 free_space.empty <= '0';
 END IF;

 ELSIF (global_reset = '1') THEN --Check for reset
--free_space.head points to first, and free_space.tail points to last block of buffer
 free_space.head <= "0000";
 free_space.tail <= "1111";
 free_space.empty <= '0';

 --Each block pointing to the next block at startup
 next_register(15) <= "0000";
 next_register(14) <= "1111";
 next_register(13) <= "1110";
 next_register(12) <= "1101";
 next_register(11) <= "1100";
 next_register(10) <= "1011";
 next_register(9) <= "1010";
 next_register(8) <= "1001";
 next_register(7) <= "1000";
 next_register(6) <= "0111";
 next_register(5) <= "0110";
 next_register(4) <= "0101";
 next_register(3) <= "0100";
 next_register(2) <= "0011";
 next_register(1) <= "0010";
 next_register(0) <= "0001";

119

--Queues are empty at startup. Head and tail of all queues is pointing to first block
 queue(3).head <= "0000";
 queue(3).tail <= "0000";
 queue(3).empty <= '1';

 queue(2).head <= "0000";
 queue(2).tail <= "0000";
 queue(2).empty <= '1';

 queue(1).head <= "0000";
 queue(1).tail <= "0000";
 queue(1).empty <= '1';

 queue(0).head <= "0000";
 queue(0).tail <= "0000";
 queue(0).empty <= '1';

 ready_flag <= "0000000000000000";

 END IF;

 END IF;

 END PROCESS;

--This process builds the 59 time slower clock (c_bar_clock output)

 clock_request_process: PROCESS (clock)
 BEGIN
 IF (clock = '0' and clock'event) THEN
 IF (count59 = "000001") THEN
 request_clock <= '1';
 ELSE
 request_clock <= '0';
 END IF;
 END IF;
 END PROCESS;

--port_request output is updated at rising edge of c_bar_clock output
request_process: PROCESS (request_clock)

 BEGIN
 IF (request_clock = '1' and request_clock'event) THEN
 port_request <= port_req;
 END IF;

 END PROCESS;

120

-- Selected Signal Assignment

 HIGH <= '1';
 LOW <= '0';
 lut_clock_signal <= clock; --Faster clocks may replace clock so that LUT can
function faster
 dq_c53aset <= '0';

 vci_in_vector <= VCI_reg0_out & VCI_reg1_out & VCI_reg2_out ;
 --As long as a queue is not empty, there is request for that queue's corresponding
output
 port_req <= (not queue(3).empty) & (not queue(2).empty) & (not queue(1).empty)
& (not queue(0).empty);
 queue_no <= CONV_INTEGER (destination_port_no);
 read_queue <= ENCODE (port_grant); --read_queue is the queue that has
received grant

--***************************** Component instantiation ***
 counter_53 : lpm_counter
 GENERIC MAP (LPM_WIDTH => COUNTER_53_SIZE)

 PORT MAP (clock => clock,
 aset => c53sset,
 q => count53
);

 dq_counter53 : lpm_counter
 GENERIC MAP (LPM_WIDTH => COUNTER_53_SIZE)

 PORT MAP (clock => clock,
 aclr => dq_c53aclr,
 aset => dq_c53aset,
 -- cnt_en => dq_count_en,
 q => dq_count53
);

 clock_gen_counter: lpm_counter
 GENERIC MAP (LPM_WIDTH => COUNTER_53_SIZE,
 LPM_MODULUS => 59
)

 PORT MAP (clock => clock,
 aclr => reset,

121

 aset => LOW,
 q => count59
);

 bufferx : lpm_RAM_dp
 GENERIC MAP (LPM_WIDTH => DATA_SIZE,
 LPM_WIDTHAD => BUFFER_WIDTHU,
 LPM_NUMWORDS => BUFFER_SIZE
)

 PORT MAP (rdaddress => rd_address_signal,
 wraddress => wr_address_signal,
 rdclock => clock,
 wrclock => clock,

 rden => rd_en_signal,
 wren => wr_en_signal,

 data => data_in,
 q => RAM_out
);

 port_lut : LUT
 GENERIC MAP (VCI_SIZE => VCI_SIZE,
 PORT_SIZE => LUT_OUTPUT_PORT_SIZE,
 TRANSLATION_TABLE => TRANSLATION_TABLE

)

 PORT MAP (input_vci => input_vci,
 output_port_no => output_port_no,
 output_vci => output_vci,
 clock => lut_clock_signal,
 renable => out_vci_ready
);

 VCI_register2: lpm_ff
 GENERIC MAP (LPM_WIDTH => DATA_SIZE)

 PORT MAP (data => data_in,
 clock => clock,
 enable => VCI_reg_en,
 q => VCI_reg2_out
);

 VCI_register1: lpm_ff

122

 GENERIC MAP (LPM_WIDTH => DATA_SIZE)

 PORT MAP (data => VCI_reg2_out,
 clock => clock,
 enable => VCI_reg_en,
 q => VCI_reg1_out
);

 VCI_register0: lpm_ff
 GENERIC MAP (LPM_WIDTH => DATA_SIZE)

 PORT MAP (data => VCI_reg1_out,
 clock => clock,
 enable => VCI_reg_en,
 q => VCI_reg0_out
);

END behav;

123

Appendix C.3. voq_c_bar.vhd

VHDL source code for the crossbar scheduler module of the switch

-- voq_c_bar.vhd
-- Maryam Keyvani
-- Communication Networks Laboratory, Simon Fraser University
-- August 2001
-- This file is the VHDL source code for a DPA scheduler for a 4x4 ATM switch

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;
USE ieee.std_logic_unsigned.ALL;

LIBRARY lpm;
USE lpm.lpm_components.ALL;

USE work.voq_input_package.ALL;

ENTITY voq_c_bar IS
 GENERIC (NO_OF_PORTS: INTEGER := 4;
 PRIO_VEC_SIZE: INTEGER := 7 --Has to be [2(NO_OF_PORTS)-1]
);

 PORT(

 arb_req: IN std_logic_vector(NO_OF_GRANTS_REQ DOWNTO 1);
 clk, reset : IN std_logic;
 grant : OUT std_logic_vector(NO_OF_GRANTS_REQ DOWNTO 1);
 P: OUT std_logic_vector(7 DOWNTO 1)
);
END voq_c_bar;

ARCHITECTURE behaviour OF voq_c_bar IS

 COMPONENT Arbiter

 PORT(Req, North, West, Mask: IN std_logic;

124

 South, East, Grant: OUT std_logic);
 END COMPONENT;

 --Cross Bar Signal Declarations
 SIGNAL south_2_north : c_bar_signal_array;
 SIGNAL east_2_west : c_bar_signal_array;
 SIGNAL arb_mask : c_bar_signal_array;
 SIGNAL arb_grant : c_bar_signal_array;
 SIGNAL c_bar_P : STD_LOGIC_VECTOR (7 DOWNTO 1);
 SIGNAL High : std_logic;
 SIGNAL temp : INTEGER RANGE 1 to 2;

 BEGIN

 grant(1) <= arb_grant(1)(1) or arb_grant(5)(1);
 grant(2) <= arb_grant(1)(2) or arb_grant(5)(2);
 grant(3) <= arb_grant(1)(3) or arb_grant(5)(3);
 grant(4) <= arb_grant(1)(4);

 grant(5) <= arb_grant(2)(1) or arb_grant(6)(1);
 grant(6) <= arb_grant(2)(2) or arb_grant(6)(2);
 grant(7) <= arb_grant(2)(3);
 grant(8) <= arb_grant(2)(4) or arb_grant(5)(4);

 grant(9) <= arb_grant(3)(1) or arb_grant(7)(1);
 grant(10) <= arb_grant(3)(2);
 grant(11) <= arb_grant(3)(3) or arb_grant(6)(3);
 grant(12) <= arb_grant(3)(4) or arb_grant(6)(4);

 grant(13) <= arb_grant(4)(1);
 grant(14) <= arb_grant(4)(2) or arb_grant(7)(2);
 grant(15) <= arb_grant(4)(3) or arb_grant(7)(3);
 grant(16) <= arb_grant(4)(4) or arb_grant(7)(4);

 P <= c_bar_P;

--This process rotates the priority vector
 Active_Win : process (clk, reset)
 BEGIN
 if reset = '0' then
 c_bar_P <= "0000000";
 elsif (clk = '1' and clk'event) then
 case c_bar_P is

125

 when "1111000" => c_bar_P <= "0111100";
 when "0111100" => c_bar_P <= "0011110";
 when "0011110" => c_bar_P <= "0001111";
 when "0001111" => c_bar_P <= "1111000";
 when others => c_bar_P <= "1111000";
 end case;
 end if;
 end process;

 High <= '1';

--*************** Arbiter instantiation ************************************
--First Row

Arbiter_1_1: Arbiter

PORT MAP (Req => arb_req(1), North => High, West => High, Mask => c_bar_P(7),
 South => south_2_north(1)(1), East => east_2_west(1)(1) , Grant => arb_grant(1)(1));

Arbiter_1_2: Arbiter

 PORT MAP (Req => arb_req(2), North => south_2_north(7)(2), West =>
east_2_west(1)(1), Mask => c_bar_P(6), South => south_2_north(1)(2), East =>
east_2_west(1)(2) , Grant => arb_grant(1)(2));

Arbiter_1_3: Arbiter

 PORT MAP (Req => arb_req(3), North => south_2_north(7)(3), West =>
east_2_west(1)(2), Mask => c_bar_P(5), South => south_2_north(1)(3), East =>
east_2_west(1)(3) , Grant => arb_grant(1)(3));

Arbiter_1_4: Arbiter
 PORT MAP (Req => arb_req(4), North => south_2_north(7)(4), West =>
east_2_west(1)(3), Mask => c_bar_P(4), South => south_2_north(1)(4), East =>
east_2_west(1)(4) , Grant => arb_grant(1)(4));

--Second Row

Arbiter_2_1: Arbiter

126

 PORT MAP (Req => arb_req(5), North => south_2_north(1)(1), West =>
east_2_west(5)(4), Mask => c_bar_P(6), South => south_2_north(2)(1), East =>
east_2_west(2)(1) , Grant => arb_grant(2)(1));

Arbiter_2_2: Arbiter

 PORT MAP (Req => arb_req(6), North => south_2_north(1)(2), West =>
east_2_west(2)(1), Mask => c_bar_P(5), South => south_2_north(2)(2), East =>
east_2_west(2)(2) , Grant => arb_grant(2)(2));

Arbiter_2_3: Arbiter

 PORT MAP (Req => arb_req(7), North => south_2_north(1)(3), West =>
east_2_west(2)(2), Mask => c_bar_P(4), South => south_2_north(2)(3), East =>
east_2_west(2)(3) , Grant => arb_grant(2)(3));

Arbiter_2_4: Arbiter

 PORT MAP (Req => arb_req(8), North => south_2_north(1)(4), West =>
east_2_west(2)(3), Mask => c_bar_P(3), South => south_2_north(2)(4), East =>
east_2_west(2)(4) , Grant => arb_grant(2)(4));

--Third Row

Arbiter_3_1: Arbiter

 PORT MAP (Req => arb_req(9), North => south_2_north(2)(1), West =>
east_2_west(6)(4), Mask => c_bar_P(5), South => south_2_north(3)(1), East =>
east_2_west(3)(1) , Grant => arb_grant(3)(1));

Arbiter_3_2: Arbiter

 PORT MAP (Req => arb_req(10), North => south_2_north(2)(2), West =>
east_2_west(3)(1), Mask => c_bar_P(4), South => south_2_north(3)(2), East =>
east_2_west(3)(2) , Grant => arb_grant(3)(2));

Arbiter_3_3: Arbiter

127

 PORT MAP (Req => arb_req(11), North => south_2_north(2)(3), West =>
east_2_west(3)(2), Mask => c_bar_P(3), South => south_2_north(3)(3), East =>
east_2_west(3)(3) , Grant => arb_grant(3)(3));

Arbiter_3_4: Arbiter

 PORT MAP (Req => arb_req(12), North => south_2_north(2)(4), West =>
east_2_west(3)(3), Mask => c_bar_P(2), South => south_2_north(3)(4), East =>
east_2_west(3)(4) , Grant => arb_grant(3)(4));

--Forth Row

Arbiter_4_1: Arbiter

 PORT MAP (Req => arb_req(13), North => south_2_north(3)(1), West =>
east_2_west(7)(4), Mask => c_bar_P(4), South => south_2_north(4)(1), East =>
east_2_west(4)(1) , Grant => arb_grant(4)(1));

Arbi ter_4_2: Arbiter

 PORT MAP (Req => arb_req(14), North => south_2_north(3)(2), West =>
east_2_west(4)(1), Mask => c_bar_P(3), South => south_2_north(4)(2), East =>
east_2_west(4)(2) , Grant => arb_grant(4)(2));

Arbiter_4_3: Arbiter

 PORT MAP (Req => arb_req(15), North => south_2_north(3)(3), West =>
east_2_west(4)(2), Mask => c_bar_P(2), South => south_2_north(4)(3), East =>
east_2_west(4)(3) , Grant => arb_grant(4)(3));

Arbiter_4_4: Arbiter

 PORT MAP (Req => arb_req(16), North => south_2_north(3)(4), West =>
east_2_west(4)(3), Mask => c_bar_P(1), South => south_2_north(4)(4), East =>
east_2_west(4)(4) , Grant => arb_grant(4)(4));

--Fifth Row

128

Arbiter_5_1: Arbiter

 PORT MAP (Req => arb_req(1), North => south_2_north(4)(1), West =>
east_2_west(1)(4), Mask => c_bar_P(3), South => south_2_north(5)(1), East =>
east_2_west(5)(1) , Grant => arb_grant(5)(1));

Arbiter_5_2: Arbiter

 PORT MAP (Req => arb_req(2), North => south_2_north(4)(2), West =>
east_2_west(5)(1), Mask => c_bar_P(2), South => south_2_north(5)(2), East =>
east_2_west(5)(2) , Grant => arb_grant(5)(2));

Arbiter_5_3: Arbiter

 PORT MAP (Req => arb_req(3), North => south_2_north(4)(3), West =>
east_2_west(5)(2), Mask => c_bar_P(1), South => south_2_north(5)(3), East =>
east_2_west(5)(3) , Grant => arb_grant(5)(3));

Arbiter_5_4: Arbiter

 PORT MAP (Req => arb_req(8), North => HIGH, West => HIGH, Mask =>
c_bar_P(7), South => south_2_north(5)(4), East => east_2_west(5)(4) , Grant =>
arb_grant(5)(4));

--Sixth Row

Arbiter_6_1: Arbiter

 PORT MAP (Req => arb_req(5), North => south_2_north(5)(1), West =>
east_2_west(2)(4), Mask => c_bar_P(2), South => south_2_north(6)(1), East =>
east_2_west(6)(1) , Grant => arb_grant(6)(1));

Arbiter_6_2: Arbiter

 PORT MAP (Req => arb_req(6), North => south_2_north(5)(2), West =>
east_2_west(6)(1), Mask => c_bar_P(1), South => south_2_north(6)(2), East =>
east_2_west(6)(2) , Grant => arb_grant(6)(2));

129

Arbiter_6_3: Arbiter

 PORT MAP (Req => arb_req(11), North => HIGH, West => HIGH, Mask =>
c_bar_P(7), South => south_2_north(6)(3), East => east_2_west(6)(3) , Grant =>
arb_grant(6)(3));

Arbiter_6_4: Arbiter

PORT MAP (Req => arb_req(12), North => south_2_north(5)(4), West =>
east_2_west(6)(3), Mask => c_bar_P(6), South => south_2_north(6)(4), East =>
east_2_west(6)(4) , Grant => arb_grant(6)(4));

--Seventh Row

Arbiter_7_1: Arbiter

 PORT MAP (Req => arb_req(9), North => south_2_north(6)(1), West =>
east_2_west(3)(4), Mask => c_bar_P(1), South => south_2_north(7)(1), East =>
east_2_west(7)(1) , Grant => arb_grant(7)(1));

Arbiter_7_2: Arbiter

 PORT MAP (Req => arb_req(14), North => HIGH, West => HIGH, Mask =>
c_bar_P(7), South => south_2_north(7)(2), East => east_2_west(7)(2) , Grant =>
arb_grant(7)(2));

Arbiter_7_3: Arbiter

 PORT MAP (Req => arb_req(15), North => south_2_north(6)(3), West =>
east_2_west(7)(2), Mask => c_bar_P(6), South => south_2_north(7)(3), East =>
east_2_west(7)(3) , Grant => arb_grant(7)(3));

Arbiter_7_4: Arbiter

 PORT MAP (Req => arb_req(16), North => south_2_north(6)(4), West =>
east_2_west(7)(3), Mask => c_bar_P(5), South => south_2_north(7)(4), East =>
east_2_west(7)(4) , Grant => arb_grant(7)(4));

130

END behaviour;

131

Appendix C.4. voq_fabric.vhd

VHLD source code for the crossbar fabric module of the switch

-- voq_fabric.vhd
-- Designed by: Maryam Keyvani
-- Communication Networks Lab, Simon Fraser University
-- August 2001
-- This is a crossbar fabric made from AND gates and OR gates
-- The control lines of the fabric come from the size 16 std_logic_vector
-- input "cntrl", which is in this case the "grant" signal comming from the scheduler.

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;

LIBRARY lpm;
USE lpm.lpm_components.ALL;
USE work.voq_input_package.ALL;

 ENTITY voq_fabric is
 GENERIC(
 SWITCH_SIZE : INTEGER:= 4; --4x4 fabric by default
 GRANT_SIZE : INTEGER:= 16 --16 lines used to issue grants
);

 PORT(
 input0 : IN DATA_VECTOR; --The 4 input data lines of type
std_logic_vector(DATASIZE-1 DOWNTO 0)

 input1 : IN STD_LOGIC_VECTOR(SWITCH_SIZE-1 DOWNTO 0); --The 4
data_valid lines going to the fabric

 input2 : IN STD_LOGIC_VECTOR(SWITCH_SIZE-1 DOWNTO 0); --The
LSBs of input_port_name

 input3 : IN STD_LOGIC_VECTOR(SWITCH_SIZE-1 DOWNTO 0); --The
MSB bit of input_port_name

 input4 : IN STD_LOGIC_VECTOR(SWITCH_SIZE-1 DOWNTO 0); --The 4
input frame pulse lines

132

 cntrl : IN STD_LOGIC_VECTOR(GRANT_SIZE-1 DOWNTO 0); --The
grant vector used to control the fabric

 output0 : OUT DATA_VECTOR; --The 4 output data lines of type
std_logic_vecotr(DATASIZE-1 DOWNTO 0)

 output1 : OUT STD_LOGIC_VECTOR(SWITCH_SIZE-1 DOWNTO 0); --
data_valid lines
 output2 : OUT STD_LOGIC_VECTOR(SWITCH_SIZE-1 DOWNTO 0); --The
LSBs of port_name out of the fabric

 output3 : OUT STD_LOGIC_VECTOR(SWITCH_SIZE-1 DOWNTO 0); --The
MSB of port_name out of the fabric

 output4 : OUT STD_LOGIC_VECTOR(SWITCH_SIZE-1 DOWNTO 0) --the
4 output frame pulses for the 8 output ports
);

 END voq_fabric;

Architecture behave of voq_fabric is

begin
output0(0)(0) <= ((input0(0)(0) AND cntrl(0)) OR (input0(1)(0) AND cntrl(4)) OR
(input0(2)(0) AND cntrl(8)) OR (input0(3)(0) AND cntrl(12)));

output0(0)(1) <= ((input0(0)(1) AND cntrl(0)) OR (input0(1)(1) AND cntrl(4)) OR
(input0(2)(1) AND cntrl(8)) OR (input0(3)(1) AND cntrl(12)));

output0(0)(2) <= ((input0(0)(2) AND cntrl(0)) OR (input0(1)(2) AND cntrl(4)) OR
(input0(2)(2) AND cntrl(8)) OR (input0(3)(2) AND cntrl(12)));

output0(0)(3) <= ((input0(0)(3) AND cntrl(0)) OR (input0(1)(3) AND cntrl(4)) OR
(input0(2)(3) AND cntrl(8)) OR (input0(3)(3) AND cntrl(12)));

output0(0)(4) <= ((input0(0)(4) AND cntrl(0)) OR (input0(1)(4) AND cntrl(4)) OR
(input0(2)(4) AND cntrl(8)) OR (input0(3)(4) AND cntrl(12)));

output0(0)(5) <= ((input0(0)(5) AND cntrl(0)) OR (input0(1)(5) AND cntrl(4)) OR
(input0(2)(5) AND cntrl(8)) OR (input0(3)(5) AND cntrl(12)));

output0(0)(6) <= ((input0(0)(6) AND cntrl(0)) OR (input0(1)(6) AND cntrl(4)) OR
(input0(2)(6) AND cntrl(8)) OR (input0(3)(6) AND cntrl(12)));

133

output0(0)(7) <= ((input0(0)(7) AND cntrl(0)) OR (input0(1)(7) AND cntrl(4)) OR
(input0(2)(7) AND cntrl(8)) OR (input0(3)(7) AND cntrl(12)));

output0(1)(0) <= ((input0(0)(0) AND cntrl(1)) OR (input0(1)(0) AND cntrl(5)) OR
(input0(2)(0) AND cntrl(9)) OR (input0(3)(0) AND cntrl(13)));

output0(1)(1) <= ((input0(0)(1) AND cntrl(1)) OR (input0(1)(1) AND cntrl(5)) OR
(input0(2)(1) AND cntrl(9)) OR (input0(3)(1) AND cntrl(13)));

output0(1)(2) <= ((input0(0)(2) AND cntrl(1)) OR (input0(1)(2) AND cntrl(5)) OR
(input0(2)(2) AND cntrl(9)) OR (input0(3)(2) AND cntrl(13)));

output0(1)(3) <= ((input0(0)(3) AND cntrl(1)) OR (input0(1)(3) AND cntrl(5)) OR
(input0(2)(3) AND cntrl(9)) OR (input0(3)(3) AND cntrl(13)));

output0(1)(4) <= ((input0(0)(4) AND cntrl(1)) OR (input0(1)(4) AND cntrl(5)) OR
(input0(2)(4) AND cntrl(9)) OR (input0(3)(4) AND cntrl(13)));

output0(1)(5) <= ((input0(0)(5) AND cntrl(1)) OR (input0(1)(5) AND cntrl(5)) OR
(input0(2)(5) AND cntrl(9)) OR (input0(3)(5) AND cntrl(13)));

output0(1)(6) <= ((input0(0)(6) AND cntrl(1)) OR (input0(1)(6) AND cntrl(5)) OR
(input0(2)(6) AND cntrl(9)) OR (input0(3)(6) AND cntrl(13)));

output0(1)(7) <= ((input0(0)(7) AND cntrl(1)) OR (input0(1)(7) AND cntrl(5)) OR
(input0(2)(7) AND cntrl(9)) OR (input0(3)(7) AND cntrl(13)));

output0(2)(0) <= ((input0(0)(0) AND cntrl(2)) OR (input0(1)(0) AND cntrl(6)) OR
(input0(2)(0) AND cntrl(10)) OR (input0(3)(0) AND cntrl(14)));

output0(2)(1) <= ((input0(0)(1) AND cntrl(2)) OR (input0(1)(1) AND cntrl(6)) OR
(input0(2)(1) AND cntrl(10)) OR (input0(3)(1) AND cntrl(14)));

output0(2)(2) <= ((input0(0)(2) AND cntrl(2)) OR (input0(1)(2) AND cntrl(6)) OR
(input0(2)(2) AND cntrl(10)) OR (input0(3)(2) AND cntrl(14)));

134

output0(2)(3) <= ((input0(0)(3) AND cntrl(2)) OR (input0(1)(3) AND cntrl(6)) OR
(input0(2)(3) AND cntrl(10)) OR (input0(3)(3) AND cntrl(14)));

output0(2)(4) <= ((input0(0)(4) AND cntrl(2)) OR (input0(1)(4) AND cntrl(6)) OR
(input0(2)(4) AND cntrl(10)) OR (input0(3)(4) AND cntrl(14)));

output0(2)(5) <= ((input0(0)(5) AND cntrl(2)) OR (input0(1)(5) AND cntrl(6)) OR
(input0(2)(5) AND cntrl(10)) OR (input0(3)(5) AND cntrl(14)));

output0(2)(6) <= ((input0(0)(6) AND cntrl(2)) OR (input0(1)(6) AND cntrl(6)) OR
(input0(2)(6) AND cntrl(10)) OR (input0(3)(6) AND cntrl(14)));

output0(2)(7) <= ((input0(0)(7) AND cntrl(2)) OR (input0(1)(7) AND cntrl(6)) OR
(input0(2)(7) AND cntrl(10)) OR (input0(3)(7) AND cntrl(14)));

output0(3)(0) <= ((input0(0)(0) AND cntrl(3)) OR (input0(1)(0) AND cntrl(7)) OR
(input0(2)(0) AND cntrl(11)) OR (input0(3)(0) AND cntrl(15)));

output0(3)(1) <= ((input0(0)(1) AND cntrl(3)) OR (input0(1)(1) AND cntrl(7)) OR
(input0(2)(1) AND cntrl(11)) OR (input0(3)(1) AND cntrl(15)));

output0(3)(2) <= ((input0(0)(2) AND cntrl(3)) OR (input0(1)(2) AND cntrl(7)) OR
(input0(2)(2) AND cntrl(11)) OR(input0(3)(2) AND cntrl(15)));

output0(3)(3) <=((input0(0)(3) AND cntrl(3)) OR (input0(1)(3) AND cntrl(7)) OR
(input0(2)(3) AND cntrl(11)) OR (input0(3)(3) AND cntrl(15)));

output0(3)(4) <= ((input0(0)(4) AND cntrl(3)) OR (input0(1)(4) AND cntrl(7)) OR
(input0(2)(4) AND cntrl(11)) OR (input0(3)(4) AND cntrl(15)));

output0(3)(5) <= ((input0(0)(5) AND cntrl(3)) OR (input0(1)(5) AND cntrl(7)) OR
(input0(2)(5) AND cntrl(11)) OR (input0(3)(5) AND cntrl(15)));

output0(3)(6) <= ((input0(0)(6) AND cntrl(3)) OR (input0(1)(6) AND cntrl(7)) OR
(input0(2)(6) AND cntrl(11)) OR (input0(3)(6) AND cntrl(15)));

output0(3)(7) <= ((input0(0)(7) AND cntrl(3)) OR (input0(1)(7) AND cntrl(7)) OR
(input0(2)(7) AND cntrl(11)) OR (input0(3)(7) AND cntrl(15)));

135

output1(0) <= ((input1(0) AND cntrl(0)) OR (input1(1) AND cntrl(4)) OR (input1(2) AND
cntrl(8)) OR (input1(3) AND cntrl(12)));

output1(1) <= ((input1(0) AND cntrl(1)) OR (input1(1) AND cntrl(5)) OR (input1(2) AND
cntrl(9)) OR (input1(3) AND cntrl(13)));

output1(2) <= ((input1(0) AND cntrl(2)) OR (input1(1) AND cntrl(6)) OR (input1(2) AND
cntrl(10)) OR (input1(3) AND cntrl(14)));

output1(3) <= ((input1(0) AND cntrl(3)) OR (input1(1) AND cntrl(7)) OR (input1(2) AND
cntrl(11)) OR (input1(3) AND cntrl(15)));

output2(0) <= ((input2(0) AND cntrl(0)) OR (input2(1) AND cntrl(4)) OR (input2(2) AND
cntrl(8)) OR (input2(3) AND cntrl(12)));

output2(1) <= ((input2(0) AND cntrl(1)) OR (input2(1) AND cntrl(5)) OR (input2(2) AND
cntrl(9)) OR (input2(3) AND cntrl(13)));

output2(2) <= ((input2(0) AND cntrl(2)) OR (input2(1) AND cntrl(6)) OR (input2(2) AND
cntrl(10)) OR (input2(3) AND cntrl(14)));

output2(3) <= ((input2(0) AND cntrl(3)) OR (input2(1) AND cntrl(7)) OR (input2(2) AND
cntrl(11)) OR (input2(3) AND cntrl(15)));

output3(0) <= ((input3(0) AND cntrl(0)) OR (input3(1) AND cntrl(4)) OR (input3(2) AND
cntrl(8)) OR (input3(3) AND cntrl(12)));

output3(1) <= ((input3(0) AND cntrl(1)) OR (input3(1) AND cntrl(5)) OR (input3(2) AND
cntrl(9)) OR (input3(3) AND cntrl(13)));

output3(2) <= ((input3(0) AND cntrl(2)) OR (input3(1) AND cntrl(6)) OR (input3(2) AND
cntrl(10)) OR (input3(3) AND cntrl(14)));

output3(3) <= ((input3(0) AND cntrl(3)) OR (input3(1) AND cntrl(7)) OR (input3(2) AND
cntrl(11)) OR (input3(3) AND cntrl(15)));

output4(0) <= ((input4(0) AND cntrl(0)) OR (input4(1) AND cntrl(4)) OR (input4(2) AND
cntrl(8)) OR (input4(3) AND cntrl(12)));

136

output4(1) <= ((input4(0) AND cntrl(1)) OR (input4(1) AND cntrl(5)) OR (input4(2) AND
cntrl(9)) OR (input4(3) AND cntrl(13)));

output4(2) <= ((input4(0) AND cntrl(2)) OR (input4(1) AND cntrl(6)) OR (input4(2) AND
cntrl(10)) OR (input4(3) AND cntrl(14)));

output4(3) <= ((input4(0) AND cntrl(3)) OR (input4(1) AND cntrl(7)) OR (input4(2) AND
cntrl(11)) OR (input4(3) AND cntrl(15)));

 end behave;

137

Appendix C.5. LUT.vhd

VHDL source code for the look up table component of the switch
-- lut.vhd
-- Maryam Keyvani
-- Communication Networks Laboratory, Simon Fraser University
-- August 2001
-- This file contains the VHDL description of a look up table module used in the
voq_switch project
-- The look up table is based on a ROM with 8 rows and 36 bit words.
-- The input to the look up table is the VCI header of the ATM packet that has entered
-- the network. The outputs of the look up table are the updated VCI for that packet, and
the output port where the packet should go to.

library ieee;
use ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;

LIBRARY lpm;
USE lpm.lpm_components.ALL;

ENTITY LUT IS
 GENERIC (VCI_SIZE: INTEGER := 16; --Size of the VCI bytes

PORT_SIZE: INTEGER := 4; --The output port number output of the
LUT is 4 bits wide

 ROM_WIDTH: INTEGER := 36; --Width of the look up table
 ROM_WIDTHAD : INTEGER := 3; --Address width of the look up table =
log2(number of rows in the table)
 TRANSLATION_TABLE: STRING := "lut1.mif" -- The file used to initialize
the ROM inside LUT
);

 PORT (input_vci : IN STD_LOGIC_VECTOR (VCI_SIZE-1 downto 0);
 output_port_no : OUT STD_LOGIC_VECTOR (PORT_SIZE-1 downto 0);
 output_vci : OUT STD_LOGIC_VECTOR (VCI_SIZE-1 downto 0);
 clock : IN STD_LOGIC;
 renable : OUT STD_LOGIC

);

END LUT;

138

ARCHITECTURE behave of LUT is

TYPE state is (S0, S1, S2, S3, S4, S5, S6, S7);

SIGNAL ADDRESS, next_ADDRESS : STD_LOGIC_VECTOR (2 downto 0);
SIGNAL OUTPUT : STD_LOGIC_VECTOR (ROM_WIDTH-1 downto 0);

BEGIN

PROCESS (clock) -- This process changes the address input of the ROM

BEGIN

 IF (clock = '1' and clock'event) then

 case ADDRESS is

 when "000" => next_ADDRESS <= "001";

 when "001" => next_ADDRESS <= "010";

 when "010" => next_ADDRESS <= "011";

 when "011" => next_ADDRESS <= "100";

 when "100" => next_ADDRESS <= "101";

 when "101" => next_ADDRESS <= "110";

 when "110" => next_ADDRESS <= "111";

 when "111" => next_ADDRESS <= "000";

 when others => NULL;

 END case;

 END IF;

139

END PROCESS;

PROCESS (clock)

 BEGIN

 IF (clock ='0' and clock'event) then
 ADDRESS <= next_ADDRESS;
 END IF;
END PROCESS;

PROCESS (clock)

BEGIN

IF (clock ='1' and clock'event) then

IF OUTPUT (35 downto 20) = input_vci then -- If the input VCI was found in the table
 output_vci <= OUTPUT (19 downto 4); -- Updated VCI and output port number are
sent out
 output_port_no <= OUTPUT(3 DOWNTO 0);
 renable <= '1';
ELSE
 output_vci <= "0000000000000000";
 output_port_no <= "0000";
 renable <= '0';
END IF;
END IF;

END PROCESS;

--LUT is an instance of lpm -rom
my_LUT: lpm_rom

GENERIC MAP (LPM_WIDTH => ROM_WIDTH,
 LPM_WIDTHAD => ROM_WIDTHAD,
 LPM_FILE => TRANSLATION_TABLE
)

PORT MAP (address => ADDRESS,
 inclock => clock,

140

 outclock => clock,
 q => OUTPUT
);

END behave;

141

Appendix C.6. output_fifo.vhd

VHDL source code for the output port module that could be added to

the switch

-- output_fifo.vhd
-- Maryam Keyvani
--Communication Networks Laboratory, simon Fraser University
-- This entity is supposed to collect the data in seperate fifos entering the output
module

LIBRARY ieee;
USE ieee.std_logic_arith.ALL;
USE ieee.std_logic_signed.ALL;
USE ieee.std_logic_1164.ALL;

LIBRARY lpm;
USE lpm.lpm_components.ALL;
USE work.Input_portx8_package.ALL;

ENTITY output_fifo IS

 GENERIC (COUNTER_8_SIZE : INTEGER := 4;
 COUNTER_53_SIZE : INTEGER := 53;
 FIFO_WIDTHU : INTEGER := 11;
 INCOMING_PORT_SIZE: INTEGER := 3;
 DATA_SIZE : INTEGER := 8;
 FIFO_WIDTH : INTEGER :=8;
 FIFO_SIZE : INTEGER := 2048
);

 PORT (--Input port for data and frame pulse. Frame pulse marks the beginning
of a data packet leaving the switch.
 data_in: IN STD_LOGIC_VECTOR (DATA_SIZE-1 DOWNTO 0);
 fp_in : IN STD_LOGIC;
--fp8_in is a vector of frame pulses. Only each frame pulse goes high, as soon as
data_valid goes high, and not at the beginning of packet, but at the beginning of the
dummy packet.

142

--This enables us to check if a new packet is comming, as soon as data_valid goes
high.

 fp8_in : IN STD_LOGIC_VECTOR (7 DOWNTO 0);

--data_valid shows wehther the data on the ouput port of the switch (input port of this
device) is valid or not
 data_valid: IN STD_LOGIC;

 --Shows the origin(input port) that is sending data packets to each output port of the
switch (inputport of this device)
 incoming_port_number : IN STD_LOGIC_VECTOR (2 DOWNTO 0);

 clock : IN STD_LOGIC;
 global_reset : IN STD_LOGIC;
 reset : IN STD_LOGIC;
 clock8 : IN STD_LOGIC;

 -- temporary Input/outputs for compilation reasons
 rd_req : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
 fifo_out_port : OUT ARRAY8x8;
 fifo_full_port : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 fifo_empty_port : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 fifo_rdusedw_port :OUT ARRAY8x11;
 fifo_wrusedw_port :OUT ARRAY8x11;
 wr_req_fifo :OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
 wr_req_enable_port :OUT STD_LOGIC
);

END output_fifo;

ARCHITECTURE behav OF output_fifo IS

--signals
SIGNAL HIGH : STD_LOGIC := '1';
SIGNAL LOW : STD_LOGIC := '0';

--state signals
SIGNAL current_state : INTEGER RANGE 0 TO 25;
SIGNAL next_state : INTEGER RANGE 0 TO 25;
SIGNAL incoming_port_number_int: INTEGER RANGE 0 TO 7;

143

--fifo signals
--******** NOTE that "wr_req_i <= wr_reqi AND wr_req_enable" ******
--SIGNAL wr_req0, wr_req1, wr_req2, wr_req3, wr_req4, wr_req5, wr_req6, wr_req7:
STD_LOGIC;
SIGNAL wr_req : STD_LOGIC_VECTOR (DATA_SIZE-1 DOWNTO 0); --connected to the
output of the decoder.
-- The value for this signal is assigned in the WR_SM_PROCESS and is ANDed with
-- all the wr_req0 to 7 to enable the writing of incoming bytes into the 8 FIFOs.
SIGNAL wr_req_enable : STD_LOGIC;
-- The wr_req_i signals are the signals connected to the wrreq of the FIFOs.
-- wr_req_i = wr_reqi AND wr_req_enable.
SIGNAL wr_req_0 : STD_LOGIC;
SIGNAL wr_req_1 : STD_LOGIC;
SIGNAL wr_req_2 : STD_LOGIC;
SIGNAL wr_req_3 : STD_LOGIC;
SIGNAL wr_req_4 : STD_LOGIC;
SIGNAL wr_req_5 : STD_LOGIC;
SIGNAL wr_req_6 : STD_LOGIC;
SIGNAL wr_req_7 : STD_LOGIC;

--SIGNAL rd_req : STD_LOGIC_VECTOR(7 DOWNTO 0);
SIGNAL faclr : STD_LOGIC_VECTOR(7 DOWNTO 0);
SIGNAL fifo_rdusedw : ARRAY8x11; --Number of bytes in the main FIFO (not
used by the processor)
SIGNAL fifo_wrusedw : ARRAY8x11; --Number of bytes in the main FIFO
(used by the processor)
SIGNAL fifo_out : ARRAY8x8; --Output of the FIFO
SIGNAL fifo_full : STD_LOGIC_VECTOR(7 DOWNTO 0);
SIGNAL fifo_empty : STD_LOGIC_VECTOR(7 DOWNTO 0);

BEGIN

fifo_out_port <= fifo_out;
fifo_full_port <= fifo_full;
fifo_empty_port <= fifo_empty;
fifo_rdusedw_port <= fifo_rdusedw;
fifo_wrusedw_port <= fifo_wrusedw;
wr_req_fifo(0) <= wr_req_0;
wr_req_fifo(1) <= wr_req_1;
wr_req_fifo(2) <= wr_req_2;
wr_req_fifo(3) <= wr_req_3;
wr_req_fifo(4) <= wr_req_4;
wr_req_fifo(5) <= wr_req_5;

144

wr_req_fifo(6) <= wr_req_6;
wr_req_fifo(7) <= wr_req_7;

--This is where the actual write request signals connected to the FIFO's are made
wr_req_0 <= wr_req(0) AND wr_req_enable;
wr_req_1 <= wr_req(1) AND wr_req_enable;
wr_req_2 <= wr_req(2) AND wr_req_enable;
wr_req_3 <= wr_req(3) AND wr_req_enable;
wr_req_4 <= wr_req(4) AND wr_req_enable;
wr_req_5 <= wr_req(5) AND wr_req_enable;
wr_req_6 <= wr_req(6) AND wr_req_enable;
wr_req_7 <= wr_req(7) AND wr_req_enable;

incoming_port_number_int <= conv_integer(incoming_port_number);
wr_req_enable_port <= wr_req_enable;

Write_Seq_SM : PROCESS (clock)

BEGIN --Process
 IF (clock='0' AND clock'event) THEN -- at the falling edge of the clock next state is
calculated
 IF ((global_reset = '0') AND (reset = '0')) THEN

 IF data_valid = '1' THEN
 CASE current_state IS

 WHEN 0 => --frame pulse comming in state zero shows the
beginning of a new packet
 IF (fp8_in(incoming_port_number_int) = '1')THEN

 next_state <= 1;
 ELSE

 next_state <= 7;
 END IF;

 wr_req_enable <= '0';

 --from state 1 to 8 we wait for the dummy packet to pass.
 WHEN 1 => next_state <= 2;

 WHEN 2 => next_state <= 3;

 WHEN 3 => next_state <= 4;

 WHEN 4 => next_state <= 5;

145

 WHEN 5 => next_state <= 6;

 WHEN 6 => next_state <= 7;

 WHEN 7 => next_state <= 8;

`
 wr_req_enable <= '1';

 WHEN 8 => next_state <= 8;

 WHEN OTHERS => NULL;

 END CASE;

 ELSE
 next_state <= 0;
 wr_req_enable <= '0';

 END IF;

 ELSE --if it is reset or global_reset, go to state 0.
 next_state <= 0;
 wr_req_enable <= '0';
 END IF;
 END IF;
END PROCESS Write_Seq_SM;

STATE_UPDATE: PROCESS (clock)
 BEGIN -- Process
 IF ((global_reset = '1') OR (reset = '1')) THEN --check for reset
 current_state <= 0;

 ELSE
 IF (clock = '1' AND clock'event) THEN -- at the rising edge of the clock,
update the states
 current_state <= next_state;

 END IF;
 END IF;
END PROCESS STATE_UPDATE;

RESET_PROCESS: PROCESS (global_reset, reset)

146

 BEGIN
 IF global_reset = '1' THEN
 faclr <= "11111111";
 ELSE
 faclr <= "00000000";
 END IF;

END PROCESS RESET_PROCESS;

decoder : lpm_decode
 GENERIC MAP (LPM_WIDTH => INCOMING_PORT_SIZE,
 LPM_DECODES => DATA_SIZE
)

 PORT MAP (data => incoming_port_number,
 eq => wr_req
);

 --The output buffer(FIFO)
 fifo0 : lpm_fifo_dc
 GENERIC MAP (LPM_WIDTH => FIFO_WIDTH,
 LPM_WIDTHU => FIFO_WIDTHU,

 LPM_NUMWORDS => FIFO_SIZE
)

 PORT MAP (data => data_in,
 rdclock => clock8, --read clock is the clock for dequeing
 wrclock => clock8, --writing clock is the main clock

 wrreq => wr_req_0,
 rdreq => rd_req(0),
 aclr => faclr(0),
 q => fifo_out(0), --output of the fifo
 wrfull => fifo_full(0),
 rdempty => fifo_empty(0),
 rdusedw => fifo_rdusedw(0),
 wrusedw => fifo_wrusedw(0)
);

 fifo1 : lpm_fifo_dc --The input port buffer(FIFO)

147

 GENERIC MAP (LPM_WIDTH => DATA_SIZE,
 LPM_NUMWORDS => FIFO_SIZE,
 LPM_WIDTHU => FIFO_WIDTHU
)

 PORT MAP (data => data_in,
 --**** read clock has to be changed to dq_count8(2) later ******************
 rdclock => clock8, --read clock is the clock for dequeing
 wrclock => clock8, --writing clock is the main clock

 wrreq => wr_req_1,
 rdreq => rd_req(1),

 aclr => faclr(1),
 q => fifo_out(1), --output of the fifo

 wrfull => fifo_full(1),
 rdempty => fifo_empty(1),

 rdusedw => fifo_rdusedw(1),
 wrusedw => fifo_wrusedw(1)
);

fifo2 : lpm_fifo_dc --The input port buffer(FIFO)
 GENERIC MAP (LPM_WIDTH => DATA_SIZE,
 LPM_NUMWORDS => FIFO_SIZE,
 LPM_WIDTHU => FIFO_WIDTHU
)

 PORT MAP (data => data_in,
 --**** read clock has to be changed to dq_count8(2) later ******************
 rdclock => clock8, --read clock is the clock for dequeing
 wrclock => clock8, --writing clock is the main clock
 wrreq => wr_req_2,
 rdreq => rd_req(2),
 aclr => faclr(2),
 q => fifo_out(2), --output of the fifo
 wrfull => fifo_full(2),
 rdempty => fifo_empty(2),
 rdusedw => fifo_rdusedw(2),
 wrusedw => fifo_wrusedw(2)
);

fifo3 : lpm_fifo_dc --The input port buffer(FIFO)
 GENERIC MAP (LPM_WIDTH => DATA_SIZE,

148

 LPM_NUMWORDS => FIFO_SIZE,
 LPM_WIDTHU => FIFO_WIDTHU
)

 PORT MAP (data => data_in,
 --**** read clock has to be changed to dq_count8(2) later ******************
 rdclock => clock8, --read clock is the clock for dequeing
 wrclock => clock8, --writing clock is the main clock
 wrreq => wr_req_3,
 rdreq => rd_req(3),
 aclr => faclr(3),
 q => fifo_out(3), --output of the fifo
 wrfull => fifo_full(3),
 rdempty => fifo_empty(3),
 rdusedw => fifo_rdusedw(3),
 wrusedw => fifo_wrusedw(3));

fifo4 : lpm_fifo_dc --The input port buffer(FIFO)
 GENERIC MAP (LPM_WIDTH => DATA_SIZE,
 LPM_NUMWORDS => FIFO_SIZE,
 LPM_WIDTHU => FIFO_WIDTHU
)

 PORT MAP (data => data_in,
 --**** read clock has to be changed to dq_count8(2) later ******************
 rdclock => clock8, --read clock is the clock for dequeing
 wrclock => clock8, --writing clock is the main clock
 wrreq => wr_req_4,
 rdreq => rd_req(4),
 aclr => faclr(4),
 q => fifo_out(4), --output of the fifo
 wrfull => fifo_full(4),
 rdempty => fifo_empty(4),
 rdusedw => fifo_rdusedw(4),
 wrusedw => fifo_wrusedw(4)
);

fifo5 : lpm_fifo_dc --The input port buffer(FIFO)
 GENERIC MAP (LPM_WIDTH => DATA_SIZE,
 LPM_NUMWORDS => FIFO_SIZE,
 LPM_WIDTHU => FIFO_WIDTHU
)

149

 PORT MAP (data => data_in,
 --**** read clock has to be changed to dq_count8(2) later ******************

 rdclock => clock8, --read clock is the clock for dequeing
 wrclock => clock8, --writing clock is the main clock
 wrreq => wr_req_5,
 rdreq => rd_req(5),
 aclr => faclr(5),
 q => fifo_out(5), --output of the fifo
 wrfull => fifo_full(5),
 rdempty => fifo_empty(5),
 rdusedw => fifo_rdusedw(5),
 wrusedw => fifo_wrusedw(5)
);

fifo6 : lpm_fifo_dc --The input port buffer(FIFO)
 GENERIC MAP (LPM_WIDTH => DATA_SIZE,
 LPM_NUMWORDS => FIFO_SIZE,
 LPM_WIDTHU => FIFO_WIDTHU
)

 PORT MAP (data => data_in,
 --**** read clock has to be changed to dq_count8(2) later ******************
 rdclock => clock8, --read clock is the clock for dequeing
 wrclock => clock8, --writing clock is the main clock
 wrreq => wr_req_6,
 rdreq => rd_req(6),
 aclr => faclr(6),
 q => fifo_out(6), --output of the fifo
 wrfull => fifo_full(6),
 rdempty => fifo_empty(6),
 rdusedw => fifo_rdusedw(6),
 wrusedw => fifo_wrusedw(6)
);

fifo7 : lpm_fifo_dc --The input port buffer(FIFO)
 GENERIC MAP (LPM_WIDTH => DATA_SIZE,
 LPM_NUMWORDS => FIFO_SIZE,
 LPM_WIDTHU => FIFO_WIDTHU
)

150

 PORT MAP (data => data_in,
 --**** read clock has to be changed to dq_count8(2) later ******************
 rdclock => clock8, --read clock is the clock for dequeing
 wrclock => clock8, --writing clock is the main clock
 wrreq => wr_req_7,
 rdreq => rd_req(7),
 aclr => faclr(7),
 q => fifo_out(7), --output of the fifo
 wrfull => fifo_full(7),

 rdempty => fifo_empty(7),
 rdusedw => fifo_rdusedw(7),
 wrusedw => fifo_wrusedw(7)
);

END behav;

151

Appendix C.7. voq_input_package.vhd

VHDL source code for the package file of project voq_switch

-- voq_input_package.vhd
-- Maryam Keyvani
-- Communication Networks Laboratory, Simon Fraser University
-- August 2001
-- This is the package fi le for the voq_switch project

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;

PACKAGE voq_input_package IS

CONSTANT DATA_SIZE : INTEGER := 8; -- Data is in bytes
CONSTANT BUFFER_WIDTHU : INTEGER := 10; -- Buffer is 848 words long and needs a
10 bit address line
CONSTANT BUFFER_SIZE : INTEGER := 848;
CONSTANT PACKET_SIZE : INTEGER := 53; -- An ATM packet is 53 bytes
CONSTANT SWITCH_SIZE : INTEGER := 4; -- The switch is 4x4
CONSTANT NO_OF_BLOCKS: INTEGER := 16; -- Should be BUFFER_SIZE/PACKET_SIZE
CONSTANT POINTER_WIDTH : INTEGER := 4; -- Should be LOG(NO_OF_BLOCKS)
CONSTANT NO_OF_QUEUES : INTEGER := 4; --It sould be equal to the number of
output ports
CONSTANT VCI_VECTOR_SIZE: INTEGER := 24; -- vci_in_vector and vci_out_vector are
24 bits wide
CONSTANT NO_OF_GRANTS_REQ: INTEGER := 16; --request and grant vectors have 16
bits

-- VOQ_input TYPES
SUBTYPE POINTER IS STD_LOGIC_VECTOR(POINTER_WIDTH-1 DOWNTO 0);
SUBTYPE BYTE IS STD_LOGIC_VECTOR(DATA_SIZE-1 DOWNTO 0);
SUBTYPE VCI_VECTOR_TYPE IS STD_LOGIC_VECTOR (VCI_VECTOR_SIZE-1 DOWNTO
0);

--each linked list is of this type
TYPE QUEUE_DESCRIPTOR IS
RECORD
 head, tail: POINTER;

152

 empty: STD_LOGIC;
END RECORD;

--A 16 bit array of vci_vectors
TYPE VCI_VECTOR_ARRAY_TYPE IS ARRAY (NO_OF_BLOCKS-1 DOWNTO 0) of
VCI_VECTOR_TYPE;
TYPE NEXT_REGISTER_TYPE IS ARRAY (NO_OF_BLOCKS-1 DOWNTO 0) of POINTER;
TYPE QUEUE_TYPE IS ARRAY (NO_OF_QUEUES-1 DOWNTO 0) of QUEUE_DESCRIPTOR;

-- An array of 4 bytes
TYPE DATA_VECTOR IS ARRAY(SWITCH_SIZE-1 DOWNTO 0) of STD_LOGIC_VECTOR
(DATA_SIZE-1 DOWNTO 0);

--The signals used to connect arbiters
TYPE c_bar_signal_array IS ARRAY (1 to 7) of STD_LOGIC_VECTOR(1 to 4);

END voq_input_package;

153

Appendix D. Simulation results

154

Appendix D.1. Simulation results for the voq_switch project

Pages 143 and 144 contain the simulation results for the voq_switch

project.

155

156

157

Appendix D.2. Simulation results for the voq_input project

Pages 146 and 147 contain the simulation results for the voq_input

project.

158

159

