

 by

Stuart Sutherland

www.sutherland-hdl.com

Verilog® HDL
Quick Reference Guide

based on the Verilog-2001 standard

(IEEE Std 1364-2001)

Sutherland
HDL

Copyright © 2001, Sutherland HDL, Inc., all rights reserved.

Permission is granted by Sutherlaand HDL to download and/or print
the PDF document containing this reference guide from
www.sutherland-hdl.com for personal use only. The reference guide
may not be used for commercial purposes or distributed in any form or
by any means without obtaining express permission from Sutherland
HDL.

Verilog® HDL
Quick Reference Guide

based on the Verilog-2001 standard
(IEEE Std 1364-2001)

by
Stuart Sutherland

published by

Sutherland HDL, Inc.
22805 SW 92nd Place
Tualatin, OR 97062

 (503) 692-0898

www.sutherland-hdl.com

Copyright © 1992, 1996, 2001 by Sutherland HDL, Inc. 09/2007

Sutherland
HDL

Copyright © 1992, 1996, 2001 by Sutherland HDL, Inc.
All rights reserved. No part of this book may be reproduced in any form
or by any means without the express written permission of Sutherland
HDL, Inc.

Sutherland HDL, Inc.
22805 SW 92nd Place
Tualatin, OR 97062-7225

Phone: (503) 692-0898
URL: www.sutherland-hdl.com

ISBN: 1-930368-03-8

Verilog® is a registered trademark of Cadence Design Systems,
San Jose, CA.

Verilog HDL Quick Reference Guide
Table of Contents

1.0 New Features In Verilog-2001 ... 1
2.0 Reserved Keywords .. 2
3.0 Concurrency ... 3
4.0 Lexical Conventions ... 3

4.1 Case Sensitivity ... 3
4.2 White Space Characters ... 3
4.3 Comments .. 3
4.4 Attributes ... 3
4.5 Identifiers (names) ... 4
4.6 Hierarchical Path Names ... 4
4.7 Hierarchy Scopes and Name Spaces 4
4.8 Logic Values .. 5
4.9 Logic Strengths .. 5
4.10 Literal Real Numbers .. 5
4.11 Literal Integer Numbers .. 6

5.0 Module Definitions ... 7
5.1 Module Items ... 7
5.2 Port Declarations ... 8

6.0 Data Type Declarations .. 10
6.1 Net Data Types .. 10
6.2 Variable Data Types .. 12
6.3 Other Data Types ... 14
6.4 Vector Bit Selects and Part Selects 15
6.5 Array Selects ... 15
6.6 Reading and Writing Arrays .. 15

7.0 Module Instances .. 16
8.0 Primitive Instances ... 18
9.0 Generate Blocks ... 20

10.0 Procedural Blocks ... 22
10.1 Procedural Time Controls .. 23
10.2 Sensitivity Lists ... 23
10.3 Procedural Assignment Statements 24
10.4 Procedural Programming Statements 25

11.0 Continuous Assignments .. 27
12.0 Operators .. 28
13.0 Task Definitions ... 30
14.0 Function Definitions ... 31
15.0 Specify Blocks .. 32

15.1 Pin-to-pin Path Delays ... 32
15.2 Path Pulse (Glitch) Detection .. 33
15.3 Timing Constraint Checks ... 34

16.0 User Defined Primitives (UDPs) .. 35
17.0 Common System Tasks and Functions 37
18.0 Common Compiler Directives .. 40
19.0 Configurations .. 42
20.0 Synthesis Supported Constructs ... 44

Verilog HDL Quick Reference Guide 2
1.0 New Features In Verilog-2001

Verilog-2001, officially the “IEEE 1364-2001 Verilog Hardware Description
Language”, adds several significant enhancements to the Verilog-1995 standard.

• Attribute properties (page 4)
• Generate blocks (page 21)
• Configurations (page 43)
• Combined port and data type declarations (page 8)
• ANSI C style port definitions (page 8)
• Arrays of net data types (page 11)
• Multidimensional arrays (page 11, 13)
• Variable initialization with declaration (page 13)
• Bit and part selects of array words (page 16)
• Indexed vector part selects (page 16)
• Explicit in-line parameter passing (page 17)
• Comma separated sensitive lists (page 24)
• Combinational logic sensitivity wild card (page 24)
• Inferred nets with any continuous assignment (page 28)
• Power operator (page 29)
• Signed arithmetic extensions (page 7, 9, 11, 13, 29, 32, 38)
• ANSI C style task/function I/O definitions (page 31, 32)
• Re-entrant tasks (page 31)
• Recursive functions (page 32)
• Constant functions (page 32)
• On-detect pulse detection (page 34)
• Negative pulse detection (page 34)
• Negative timing constraints (page 35)
• New timing constraint checks (page 35)
• Enhanced file I/O (page 39)
• Enhanced testing of invocation options (page 39)
• Enhanced conditional compilation (page 41)
• Disabling of implicit net declarations (page 41)

© Sutherland HDL, Inc. 3
2.0 Reserved Keywords

always
and
assign
automatic†
begin
buf
bufif0
bufif1
case
casex
casez
cell†
cmos
config†
deassign
default
defparam
design†
disable
edge
else
end
endcase
endconfig†
endfunction
endgenerate†
endmodule
endprimitive
endspecify
endtable
endtask
event
for
force
forever
fork
function
generate†
genvar†
highz0
highz1

if
ifnone
initial
instance†
inout
input
integer
join
large
liblist†
localparam†
macromodule
medium
module
nand
negedge
nmos
nor
not
noshowcancelled†
notif0
notif1
or
output
parameter
pmos
posedge
primitive
pull0
pull1
pulldown
pullup
pulsestyle_onevent†
pulsestyle_ondetect†
rcmos
real
realtime
reg
release
repeat
rnmos

rpmos
rtran
rtranif0
rtranif1
scalared
signed
showcancelled†
small
specify
specparam
strength
strong0
strong1
supply0
supply1
table
task
time
tran
tranif0
tranif1
tri
tri0
tri1
triand
trior
trireg
unsigned
use†
vectored
wait
wand
weak0
weak1
while
wire
wor
xnor
xor

4 Verilog HDL Quick Reference Guide

d.
3.0 Concurrency

The following Verilog HDL constructs are independent processes that are
evaluated concurrently in simulation time:
• module instances
• primitive instances
• continuous assignments
• procedural blocks

4.0 Lexical Conventions

4.1 Case Sensitivity
Verilog is case sensitive.

4.2 White Space Characters
blanks, tabs, newlines (carriage return), and formfeeds.

4.3 Comments
// begins a single line comment, terminated by a newline.
/* begins a multi-line block comment, terminated by a */.

4.4 Attributes
(* begins an attribute, terminated by a *).
• An attribute specifies special properties of a Verilog object or statement, for

use by specific software tools, such as synthesis. Attributes were added in
Verilog-2001.

• An attribute can appear as a prefix to a declaration, module items, statements,
or port connections.

• An attribute can appear as a suffix to an operator or a call to a function.
• An attribute may be assigned a value. If no value is specified, the default

value is 1.
• Multiple attributes can be specified as a comma-separated list.
• There are no standard attributes in the Verilog-2001 standard; Software tools

or other standards will define attributes as needed.

Attribute Example

(* full_case, parallel_case *) case (state)
 ...
endcase

assign sum = a + (* CLA=1 *) b;

† indicates new reserved words that were added in the Verilog-2001 standar

© Sutherland HDL, Inc. 5
4.5 Identifiers (names)
• Must begin with alphabetic or underscore characters a-z A-Z _
• May contain the characters a-z A-Z 0-9 _ and $
• May use any character by escaping with a backslash (\) at the beginning of

the identifier, and terminating with a white space.
• Identifiers created by an array of instances or a generate block may also

contain the characters [and].

4.6 Hierarchical Path Names
A net, variable, task or function can be referenced anywhere in the design
hierarchy using either a full or relative hierarchy path.
• A full path consists of the top-level module, followed by any number of

module instance names down to the object being reference. A period is used
to separate each name in the hierarchy path.

• A relative path consists of a module instance name in the current module,
followed by any number of module instance names down to the object being
referenced. A period is used to separate each name in the hierarchy path.

4.7 Hierarchy Scopes and Name Spaces
There are four primary types of name spaces.
• Global names are visible in all names spaces:

• Module, primitive and configuration definition names
• Text macro names (created by ‘define). Macro names are only visible

from the point of definition on; source code compiled prior to the definition
cannot see the macro names.

• Scope names create a new level of hierarchy:
• module definitions
• function definitions
• task definitions
• named blocks (begin—end or fork—join)

• Other name spaces:
• specify blocks
• attributes

An identifier name defined within a name space is unique to that space and
cannot be defined again within the same space. In general, references to an
identifier name within a scope will search first in the local scope, and then
search upward through the scope hierarchy up to a module boundary.

Examples Notes

adder legal identifier name

XOR uppercase identifier is unique from xor keyword

\reset- an escaped identifier (must be followed by a white space)

6 Verilog HDL Quick Reference Guide
4.8 Logic Values
Verilog uses a 4 value logic system for modeling. There are two additional
unknown logic values that may occur internal to the simulation, but which
cannot be used for modeling.

4.9 Logic Strengths
Logic values can have 8 strength levels: 4 driving, 3 capacitive, and high
impedance (no strength). A net with multiple drivers can have a combination of
strengths, represented as a pair of octal numbers, plus the value (e.g. 65X).

4.10 Literal Real Numbers

• Real numbers are represented in double-precision floating point form.
• There must be a value on either side of the decimal point.
• The value may only contain the characters 0-9 and underscore.

Logic Value Description

0 zero, low, or false
1 one, high, or true

z or Z high impedance (tri-stated or floating)
x or X unknown or uninitialized
L partially unknown; either 0 or Z, but not 1

(internal simulation value only)
H partially unknown; either 1 or Z, but not 0

(internal simulation value only)

Strength
Level

Strength
Name

Specification
Keyword

Display
Mnemonic

7 supply drive supply0 supply1 Su0 Su1

6 strong drive strong0 strong1 St0 St1

5 pull drive pull0 pull1 Pu0 Pu1

4 large capacitive large La0 La1

3 weak drive weak0 weak1 We0 We1

2 medium capacitive medium Me0 Me1

1 small capacitive small Sm0 Sm1

0 high impedance highz0 highz1 HiZ0 HiZ1

value.value decimal notation
base e exponent
base E exponent

scientific notation; there should be no space before
and after the e or E token

Examples Notes

0.5 must have value on both sides of decimal point

3e4 3 times 104 (30000)

5.8E-3 5.8 times 10-3 (0.0058)

© Sutherland HDL, Inc. 7
4.11 Literal Integer Numbers

• size (optional) is the number of bits in the number. Unsized integers default to
at least 32-bits.

• ’base represents the radix and sign property of the value. The base and sign
characters are not case sensitive (e.g. ’b and ’B are equivalent).

• The ? is another way of representing the Z logic value.
• An underscore is ignored (used to enhance readability). The underscore

cannot be used as the first character of the value.
• Values are expanded from right to left (lsb to msb).

• When size is fewer bits than value, the upper bits are truncated.
• When size is more bits than value, and the left-most bit of value is 0 or 1,

zeros are left-extended to fill the size.
• When size is more bits than value, and the left-most bit of value is Z or X,

the Z or X is left-extended to fill the size.
• Signed numbers are interpreted as 2’s complement values.
• Specifying a literal number as signed affects operations on the number; it

does not affect expanding a value to the specified size of the number.

value unsized decimal integer
size’base value sized integer in a specific radix (base)

Radix Symbol Legal Values

unsigned binary ’b 0, 1, x, X, z, Z, ?, _
unsigned octal ’o 0–7, x, X, z, Z, ?, _

unsigned decimal ’d 0–9, _
unsigned hexadecimal ’h 0–9, a–f, A–F, x, X, z, Z, ?, _

signed binary ’sb 0, 1, x, X, z, Z, ?, _
signed octal ’so 0–7, x, X, z, Z, ?, _

signed decimal ’sd 0–9, _
signed hexadecimal ’sh 0–9, a–f, A–F, x, X, z, Z, ?, _

Examples Size Sign Radix Binary Equivalent

10 unsized signed decimal 0...01010 (32-bits)

'o7 unsized unsigned octal 0...00111 (32-bits)

1'b1 1 bit unsigned binary 1

8'sHc5 8 bits signed hex 11000101

6'hF0 6 bits unsigned hex 110000 (truncated)

6'hA 6 bits unsigned hex 001010 (zero filled)

6'shA 6 bits signed hex 001010 (zero filled)

6'bZ 6 bits unsigned binary ZZZZZZ (Z filled)

8 Verilog HDL Quick Reference Guide
5.0 Module Definitions

Verilog HDL models are represented as modules.

(refer to the next page for the syntax of port declarations)

port_name can be either:
• A simple name, which implicitly connects the port to an internal signal with

the same name.
• A name with an explicit internal connection, in the form of
.port_name(signal), which connects the port to an internal signal with a
different name, or a bit select, part select, or concatenation of internal signals.
Note: it is the internal signal name that is given a direction, not the port name.

The keyword macromodule is a synonym for module.

5.1 Module Items
A module may contain any of the following items:

• Module items may appear in any order, but port, data_type or parameter
declarations must come before the declared name is referenced.

• Module functionality may be represented as:
• Behavioral or RTL — modeled with procedural blocks or continuous

assignment statements.
• Structural — a netlist of module instances or primitive instances.
• A mix of behavioral and structural.

ANSI-C Style Port List (added in Verilog-2001)
module module_name

#(parameter_declaration, parameter_declaration,...)
(port_declaration port_name, port_name,...,
 port_declaration port_name, port_name,...);
module items

endmodule

Old Style Port List
module module_name (port_name, port_name, ...);

port_declaration port_name, port_name,...;
port_declaration port_name, port_name,...;
module items

endmodule

data_type_declarations
parameter_declarations
module_instances
primitive_instances
generate_blocks
procedural_blocks
continuous_assignments
task_definitions
function_definitions
specify_blocks

(see section 6.0)
(see section 6.3)
(see section 7.0)
(see section 8.0)
(see section 9.0)
(see section 10.0)
(see section 11.0)
(see section 13.0)
(see section 14.0)
(see section 15.0)

© Sutherland HDL, Inc. 9
5.2 Port Declarations

• port_direction is declared as:
• input for scalar or vector input ports.
• output for scalar or vector output ports.
• inout for scalar or vector bidirectional ports.

• data_type (optional) is any of the types listed in section 6.0, except real.
Combined port/data type declarations were added in Verilog-2001.

• signed (optional) indicates that values passed through the port are
interpreted as 2’s complement signed values. If either the port or the data type
of the internal signal connected to the port are declared as signed, then both
are signed. Signed ports were added in Verilog-2001.

• range (optional) is a range from [msb :lsb] (most-significant-bit to least-
significant-bit).
• If no range is specified, ports are 1-bit wide.
• The msb and lsb must be a literal number, a constant, an expression, or a

call to a constant function.
• Either little-endian convention (the lsb is the smallest bit number) or big-

endian convention (the lsb is the largest bit number) may be used.
• The maximum port size may be limited, but will be at least 256 bits. Most

software tools have a limit of 1 million bits.
• Port/data type connection rules:

• A real variable cannot be directly connected to a port. Real numbers can
first be converted to or from 64-bit vectors using the $realtobits and
$bitstoreal system tasks.

• The port range and data type range must be the same (if different, some
software tools will use the data type size instead of reporting an error).

• The port direction must be declared before the data type is declared.

Combined Declarations (added in Verilog-2001)
port_direction data_type signed range port_name, port_name, ... ;

Old Style Declarations
port_direction signed range port_name, port_name, ... ;
data_type_declarations (see section 6.0)

input ports output ports inout ports

Module Instance
(outside the module)

expression, net
or variable types

(except real)

net types only net types only

Module Definition
(inside the module)

net types only net or
variable types
(except real)

net types only

10 Verilog HDL Quick Reference Guide

Port Declaration Examples Notes

input a,b,sel; three scalar (1-bit) ports

input signed [15:0] a, b; two 16-bit ports that pass 2’s
complement values, little
endian convention

output signed [31:0] result; 32-bit port; values passed
through the port are in 2’s
complement form

output reg signed [32:1] sum; 32-bit port; the internal
signal connected to the port
is a signed reg data type

inout [0:15] data_bus; big endian convention

input [15:12] addr; msb:lsb may be any integer

parameter WORD = 32;
input [WORD-1:0] addr;

constant expressions may be
used in the declaration

parameter SIZE = 4096;
input [log2(SIZE)-1:0] addr;

constant functions may be
called in the declaration

© Sutherland HDL, Inc. 11
6.0 Data Type Declarations

Verilog has two major data type classes:
• Net data types are used to make connections between parts of a design.

• Nets reflect the value and strength level of the drivers of the net or the
capacitance of the net, and do not have a value of their own.

• Nets have a resolution function, which resolves a final value when there are
multiple drivers on the net.

• Variable data types are used as temporary storage of programming data.
• Variables can only be assigned a value from within an initial procedure, an

always procedure, a task or a function.
• Variables can only store logic values; they cannot store logic strength.
• Variables are un-initialized at the start of simulation, and will contain a

logic X until a value is assigned.

6.1 Net Data Types

Nets are used connect structural components together.
• A net data type must be used when a signal is:

• Driven by the output of a module instance or primitive instance.
• Connected to an input or inout port of the module in which it is declared.
• On the left-hand side of a continuous assignment.

• net_type is one of the following keywords:

General Rules For Choosing The Correct Data Type Class

when a signal is driven by a module output, a primitive
output, or a continuous assignment

use a net type

when a signal is assigned a value in a Verilog procedure use a variable type

net_type signed [range] #(delay) net_name [array], ... ;
net_type (drive_strength) signed [range] #(delay) net_name =
continuous_assignment;
trireg (capacitance_strength) signed [range] #(delay, decay_time)
net_name [array], ... ;

wire interconnecting wire; CMOS resolution
wor wired outputs OR together; ECL resolution
wand wired outputs AND together; open-collector resolution
supply0 constant logic 0 (supply strength)
supply1 constant logic 1 (supply strength)
tri0 pulls down when tri-stated
tri1 pulls up when tri-stated
tri same as wire
trior same as wor
triand same as wand
trireg holds last value when tri-stated (capacitance strength)

12 Verilog HDL Quick Reference Guide
• signed (optional) indicates that values are interpreted as 2’s complement
signed values. If either a port or the net connected to the port is declared as
signed, then both are signed. Signed nets were added in Verilog-2001.

• [range] (optional) is a range from [msb :lsb] (most-significant-bit to least-
significant-bit).
• If no range is specified, the nets are 1-bit wide.
• The msb and lsb must be a literal number, a constant, an expression, or a

call to a constant function.
• Either little-endian convention (the lsb is the smallest bit number) or big-

endian convention (the lsb is the largest bit number) may be used.
• The maximum net size may be limited, but will be at least 65,536 bits (216)

bits. Most software tools have a limit of 1 million bits.
• delay (optional) may only be specified on net data types. The syntax is the

same as primitive delays (refer to section 8.0).
• [array] is [first_address : last_address][first_address : last_address]...

• Any number of array dimensions may be declared. Arrays of nets were
added in Verilog-2001.

• first_address and last_address must be a literal number, a constant, an
expression, or a call to a constant function.

• Either ascending or descending address order may be used.
• The maximum array size for each dimension may be limited, but is at least

16,777,216 (224). Most software tools have unlimited array sizes.
• (strength) (optional) is specified as (strength1, strength0) or (strength0,

strength1). See section 4.9 for the strength keywords.
• decay_time (optional) specifies the amount of time a trireg net will store a

charge after all drivers turn-off, before decaying to logic X. The syntax is
(rise_delay, fall_delay, decay_time). The default decay is infinite.

• The keywords vectored or scalared may be used immediately following
the net_type keyword. Software tools and/or the Verilog PLI may restrict
access to individual bits within a vector that is declared as vectored.

Net Declaration Examples Notes

wire a, b, c; 3 scalar (1-bit) nets

tri1 [7:0] data_bus; 8-bit net, pulls-up when tri-stated

wire signed [1:8] result; an 8-bit signed net

wire [7:0] Q [0:15][0:256]; a 2-dimensional array of 8-bit wires

wire #(2.4,1.8) carry; a net with rise, fall delays

wire [0:15] (strong1,pull0)
 sum = a + b;

a 16-bit net with drive strength and a
continuous assignment

trireg (small)
 #(0,0,35) ram_bit;

net with small capacitance and 35
time unit decay time

© Sutherland HDL, Inc. 13
6.2 Variable Data Types

Variable data types are used for programming storage in procedural blocks.
• Variables store logic values only, they do not store logic strength.
• A variable data type must be used when the signal is on the left-hand side

of a procedural assignment.
• Variables were called “registers” in older versions of the Verilog standard.

• variable_type is one of the following:

• signed (optional) may only be used with reg variables, and indicates that
values are interpreted as 2’s complement signed values. If either a port or the
reg connected to the port is declared as signed, then both are signed. Signed
reg variables were added in Verilog-2001.

• [range] (optional) may only be used with reg variables, and is a range from
[msb :lsb] (most-significant-bit to least-significant-bit).
• If no range is specified, then reg variables are 1-bit wide.
• The msb and lsb must be a literal number, a constant, an expression, or a

call to a constant function.
• Either little-endian convention (the lsb is the smallest bit number) or big-

endian convention (the lsb is the largest bit number) may be used.
• The maximum reg size may be limited, but will be at least 65,536 (216)

bits. Most software tools have a limit of 1 million bits.
• [array] is [first_address : last_address][first_address : last_address]...

• Any number of array dimensions may be declared. Variable arrays of more
than one dimension were added in Verilog-2001.

• first_address and last_address must be a literal number, a constant, an
expression, or a call to a constant function.

• Either ascending or descending address order may be used.
• The maximum array size for each dimension may be limited, but is at least

16,777,216 (224). Most software tools have unlimited array sizes.
• A one-dimensional array of reg variables with is referred to as a memory.

• initial_value (optional) sets the initial value of the variable.
• The value is set in simulation time 0, the same as if the variable had been

assigned a value in an initial procedure.
• If not initialized, the default value for reg, integer and time variables is X,

and the initial value for real and realtime variables is 0.0.
• Specifying the initial value as part of the variable declaration was added in

Verilog-2000

variable_type signed [range] variable_name, variable_name, ... ;
variable_type signed [range] variable_name = initial_value, ... ;
variable_type signed [range] variable_name [array], ... ;

reg a variable of any bit size; unsigned unless explicitly
declared as signed

integer a signed 32-bit variable
time an unsigned 64-bit variable
real a double-precision floating point variable

realtime same as real

14 Verilog HDL Quick Reference Guide
• The keywords vectored or scalared may be used immediately following
the reg keyword. Software tools and/or the Verilog PLI may restrict access
to individual bits within a vector that is declared as vectored.

Variable Declaration Examples Notes

reg a, b, c; three scalar (1-bit) variables

reg signed [7:0] d1, d2; two 8-bit signed variables

reg [7:0] Q [0:3][0:15]; a 2-dimensional array of 8-bit variables

integer i, j; two signed integer variables

real r1, r2; two double-precision variables

reg clock = 0, reset = 1; two reg variables with initial values

© Sutherland HDL, Inc. 15
6.3 Other Data Types

Declaration syntax:

• signed (optional) indicates that values are interpreted as 2’s complement
signed values. Signed constants were added in Verilog-2001.

• [range] (optional) is a range from [msb :lsb] (most-significant-bit to least-
significant-bit).
• If no range is specified, the constant will default to the size of the last value

initially assigned to it after any parameter redefinitions.
• The msb and lsb must be a literal number, a constant, an expression, or a

call to a constant function.
• Either little-endian convention (the lsb is the smallest bit number) or big-

endian convention (the lsb is the largest bit number) may be used.
• The maximum range may be limited, but will be at least 65,536 (216) bits.

Most software tools have a limit of 1 million bits.
• constant_type (optional) can be integer, time, real or realtime. A

constant declared with a type will have the same properties as a variable of
that type. If no type is specified, the constant will default to the data type of
the last value assigned to it, after any parameter redefinitions.

parameter a run-time constant for storing integers, real numbers, time,
delays, or ASCII strings; may be redefined for each instance
of a module (see section 7.0).

localparam a local constant for storing integers, real numbers, time,
delays, or ASCII strings; may not be directly redefined, but
may be indirectly redefined by assigning the localparam the
value of a parameter..

specparam a specify block constant for storing integers, real numbers,
time, delays or ASCII strings; may be declared in the module
scope or the specify block scope; may be redefined through
SDF files or the PLI.

genvar a temporary variable used only within a generate loop; cannot
be used anywhere else, and cannot be read during simulation.

event a momentary flag with no logic value or data storage; can be
used for synchronizing concurrent activities within a module.

parameter signed [range] constant_name = value, ... ;
parameter constant_type constant_name = value, ... ;
localparam signed [range] constant_name = value,...;
localparam constant_type constant_name = value, ... ;
specparam constant_name = value, ... ;
event event_name, ... ;

16 Verilog HDL Quick Reference Guide

6.4 Vector Bit Selects and Part Selects

• A bit select can be an integer, a constant, a net, a variable or an expression.
• A constant part select is a group of bits from within the vector

• The part select must be contiguous bits.
• The bit numbers must be a literal number or a constant.
• The order of the part select must be consistent with the declaration of the

vector (e.g. if the lsb is the the lowest bit number in the declaration, then
the lsb of the part select must also be the lowest bit number).

• Variable part selects can vary the starting point of the part select, but the
width of the part select must be a literal number, a constant or a call to a
constant function. Variable part selects were added in Verilog-2001.
• +: indicates the part select increases from the starting point.
• -: indicates the part select decreases from the starting point.

6.5 Array Selects

• An array select can be an integer, a net, a variable, or an expression.
• Multiple indices, bit selects and part selects from an array were added in

Verilog-2001.

6.6 Reading and Writing Arrays
• Only one element at a time within an array can be read from or written to.
• A memory array (a one-dimensional array of reg variables) can be loaded

using the $readmemb, $readmemh, $sreadmemb, or $sreadmemh system
tasks.

Data Type Examples Notes

parameter [2:0] s1 = 3’b001,
 s2 = 3’b010,
 s3 = 3’b100;

three 3-bit constants

parameter integer period = 10; an integer constant

localparam signed offset = -5; unsized signed constant defaults
to width of initial value

event data_ready, data_sent; two event data types

Bit Select
vector_name[bit_number]

Constant Part Select
vector_name[bit_number : bit_number]

Variable Part Select (added in Verilog-2001)
vector_name[starting_bit_number +: part_select_width]
vector_name[starting_bit_number -: part_select_width]

array_name[index][index]...
array_name[index][index]...[bit_number]
array_name[index][index]...[part_select]

© Sutherland HDL, Inc. 17
7.0 Module Instances

• Port order connections list the signals in the same order as the port list in the
module definition. Unconnected ports are designated by two commas with no
signal listed.

• Port name connections list both the port name and signal connected to it, in
any order.

• instance_name (required) is used to make multiple instances of the same
module unique from one another.

• instance_array_range (optional) instantiates multiple modules, each instance
is connected to different bits of a vector.
• The range is specified as [left_hand_index : right_hand_index].
• If the bit width of a module port in the array is the same as the width of the

signal connected to it, the full signal is connected to each instance of the
module.

• If the bit width of a module port is different than the width of the signal
connected to it, each module port instance is connected to a part select of
the signal, with the right-most instance index connected to the right-most
part of the vector, and progressing towards the left.

• There must be the correct number of bits in each signal to connect to all
instances (the signal size and port size must be multiples).

• Instance arrays were added in Verilog-1995, but many software tools did
not support them until Verilog-2001.

• Multiple instances of a module can also be created using a generate block
(see section 9.0).

• parameter values within a module may be redefined for each instance of the
module. Only parameter declarations may be redefined; localparam and
specparam constants cannot be redefined.
• Explicit redefinition uses a defparam statement with the parameter’s

hierarchical name.
• In-line implicit redefinition uses the # token as part of the module

instantiation. Parameter values are redefined in the same order in which
they are declared within the module.

• In-line explicit redefinition uses the # token as part of the module
instantiation. Parameter values may be redefined in any order. In-line
explicit parameter redefinition was added in Verilog-2001.

Port Order Connections
module_name instance_name instance_array_range (signal, signal, ...);

Port Name Connections
module_name instance_name instance_array_range
(.port_name(signal), .port_name(signal), ...);

Explicit Parameter Redefinition
defparam heirarchy_path.parameter_name = value;

In-line Implicit Parameter Redefinition
module_name #(value,value, ...) instance_name (signal, ...);

In-line Explicit Parameter Redefinition (added in Verilog-2001)
module_name #(.parameter_name(value),

.parameter_name(value), ...) instance_name (signal, ...);

18 Verilog HDL Quick Reference Guide

Module Instance Examples

module reg4 (output wire [3:0] q,
 input wire [3:0] d,
 input wire clk);

 //port order connection, no connection to 2nd port position
 dff u1 (q[0], , d[0], clk);

 //port name connection, qb not connected
 dff u2 (.clk(clk),.q(q[1]),.data(d[1]));

 //explicit parameter redefinition
 dff u3 (q[2], ,d[2], clk);
 defparam u3.delay = 3.2;

 //in-line implicit parameter redefinition
 dff #(2) u4 (q[3], , d[3], clk);

 //in-line explicit parameter redefinition
 dff #(.delay(3)) u5 (q[3], , d[3], clk);
endmodule

module dff (output q,
 output qb,
 input data,
 input clk);
 parameter delay = 1; //default delay parameter
 dff_udp #(delay) (q, data, clk);
 not (qb, q);
endmodule

Array of Instances Example

module tribuf64bit (output wire [63:0] out,
 input wire [63:0] in,
 input wire enable);

 //array of 8 8-bit tri-state buffers; each instance is connected
 //to 8-bit part selects of the 64-bit vectors; The scalar enable line
 //is connected to all instances

 tribuf8bit i[7:0] (out, in, enable);
endmodule

module tribuf8bit (output wire [7:0] y,
 input wire [7:0] a,
 input wire en);

 //array of 8 Verilog tri-state primitives; each bit of the
 //vectors is connected to a different primitive instance
 bufif1 u[7:0] (y, a, en);

endmodule

© Sutherland HDL, Inc. 19
8.0 Primitive Instances

• delay (optional) represents the propagation delay through a primitive. The
default delay is zero. Integers or real numbers may be used.

• Separate delays for 1, 2 or 3 transitions may be specified.
• Each transition may have a single delay or a min:typ:max delay range.

• strength (optional) is specified as (strength1, strength0) or (strength0,
strength1). The default is (strong1, strong0). Refer to section 4.9 for
strength keywords.
• Only gate primitives may have the output drive strength specified. Switch

primitives pass the input strength level to the output. Resistive switches
reduce the strength level as it passes through.

• instance_name (optional) may used to reference specific primitives in
configurations, debugging tools, schematic diagrams, etc.

gate_type (drive_strength) #(delay) instance_name
 [instance_array_range] (terminal, terminal, ...);
switch_type #(delay) instance_name
 [instance_array_range] (terminal, terminal, ...);

Gate Primitives Terminal Order and Quantity

and
or
xor

nand
nor
xnor

(1–output, 1-or-more–inputs)

buf not (1-or-more–outputs, 1–input)
bufif0
bufif1

notif0
notif1

(1–output, 1–input, 1–control)

pullup pulldown (1–output)
User Defined Primitive (1–output, 1-or-more–inputs)

Switch Primitives Terminal Order and Quantity

pmos
rpmos

nmos
rnmos

(1–output, 1–input, 1–control)

cmos rcmos (1–output, 1–input, n-control, p-control)
tran rtran (2–bidirectional-inouts)
tranif0
rtranif0

tranif1
rtranif1

(2–bidirectional-inouts, 1–control)

Delays Transitions represented (in order)

1 all output transitions
2 rise, fall output transitions
3 rise, fall, turn-off output transitions (turn-off delay is

the time for a tri-state primitive to transition to Z)

20 Verilog HDL Quick Reference Guide
• instance_array_range (optional) instantiates multiple primitives, each
instance is connected to different bits of a vector.
• The range is specified as [left-hand-index : right-hand-index].
• Primitive instances are connected with the right-most instance index

connected to the right-most bit of each vector, and progressing to the left.
• Vector signals must be the same size as the array.
• Scalar signals are connected to all instances in the array.
• Instance arrays were added in Verilog-1995, but many software tools did

not support them until Verilog-2001.
• Multiple instances of a primitive can also be created using a generate block

(see section 9.0).

Primitive Instance Examples Notes

and i1 (out,in1,in2); zero delay gate primitive

and #5 (o,i1,i2,i3,i4); same delay for all transitions

not #(2,3) u7 (out,in); separate rise & fall delays

buf (pull0,strong1)(y,a); output drive strengths

wire [31:0] y, a;
buf #2.7 i[31:0] (y,a);

array of 32 buffers

© Sutherland HDL, Inc. 21
9.0 Generate Blocks

Generate blocks provide control over the creation of many types of module
items. A generate block must be defined within a module, and is used to
generate code within that module. Generate blocks were added in Verilog-2001.
• genvar is an integer variable which must be a positive value. They may only

be used within a generate block. Genvar variables only have a value during
elaboration, and do not exist during simulation. Genvar variables must be
declared within the module where the genvar is used. They may be declared
either inside or outside of a generate block.

• generate_items are:
genvar_name = constant_expression;
net_declaration
variable_declaration
module_instance
primitive_instance
continuous_assignment
procedural_block
task_definition
function_definition
if (constant_expression)

generate_item or generate_item_group
if (constant_expression)

generate_item or generate_item_group
else

generate_item or generate_item_group
case (constant_expression)

genvar_value : generate_item or generate_item_group
genvar_value : generate_item or generate_item_group
...
default: generate_item or generate_item_group

endcase
for (genvar_name = constant_expression; constant_expression;
genvar_name = constant_expression)

generate_item or generate_item_group

• generate_item_group is:
begin: generate_block_name
 generate_item
 generate_item
 ...
end

genvar genvar_name, ... ;
generate

genvar genvar_name, ... ;
generate_items

endgenerate

22 Verilog HDL Quick Reference Guide
• A generate for loop permits one or more generate items to be instantiated
multiple times. The index loop variable must be a genvar.

• A generate if—else or case permits generate items to be conditionally
instantiated based on an expression that is deterministic at the time the design
is elaborated.

• generate_block_name (optional) is used to create a unique instance name for
each generated item.

• Task and function definitions are permitted within the generate scope, but not
in a generate for-loop. That is, only one definition of the task or function can
be generated.

Generate Block Examples

/* If the input bus widths are 8-bits or less, generate an instance of a carry-
look-ahead multiplier. If the input bus widths are greater than 8-bits,
generate an instance of a wallace-tree multiplier */

module multiplier (a, b, product);
 parameter a_width = 8, b_width = 8;
 localparam product_width = a_width + b_width;
 input [a_width-1:0] a;
 input [b_width-1:0] b;
 output [product_width-1:0] prod;

 generate
 if ((a_width < 8) || (b_width < 8))
 CLA_mult #(a_width, b_width) m (a, b, prod);
 else
 WALLACE_mult #(a_width, b_width) m (a, b, prod);
 endgenerate
endmodule

/* A parameterized gray-code to binary-code converter using a loop to
generate a continuous assignment for each bit of the converter */

module gray2bin1 (bin, gray);
 parameter SIZE = 8;
 output [SIZE-1:0] bin;
 input [SIZE-1:0] gray;

 genvar i;

 generate
 for (i=0; i<SIZE; i=i+1)
 begin: bit
 assign bin[i] = ^gray[SIZE-1:i];
 end
 endgenerate
endmodule

© Sutherland HDL, Inc. 23
10.0 Procedural Blocks

• type_of_block is either initial or always
• initial blocks process statements one time.
• always blocks are an infinite loop which process statements repeatedly.

• sensitivity_list (optional) is an event time control that controls when all
statements in the procedural block will be evaluated (refer to section 10.2).

• statement_group — end_of_statement_group controls the execution order
of two or more procedural statements. A statement group is not required if
there is only one procedural statement.
• begin—end groups two or more statements together sequentially, so that

statements are evaluated in the order they are listed. Each time control in
the group is relative to previous time controls.

• fork—join groups two or more statements together in parallel, so that all
statements are evaluated concurrently. Each time control in the group is
absolute to the time the group started.

• group_name (optional) creates a local hierarchy scope. Named groups may
have local variables, and may be aborted with a disable statement.

• local_variable_declarations (optional) must be a variable data type (may
only be declared in named statement groups).

• time_control is used to control when the next statement in a procedural block
is executed (refer to section 10.1).

• procedural_statement is either an assignment statement or a programming
statement (refer to sections 10.3 and 10.4).

type_of_block @(sensitivity_list)
statement_group :group_name

local_variable_declarations
time_control procedural_statements

end_of_statement_group

Procedural Block Examples Notes

initial
 begin: test_loop
 integer i;
 for (i=0; i<=15; i=i+1;
 #5 test_in = i;
 end

initial procedure executes
statements one time; the named
group allows a local variable to be
declared.

initial
 fork
 bus = 16’h0000;
 #10 bus = 16’hC5A5;
 #20 bus = 16’hFFAA;
 join

initial procedure executes
statements one time; the fork—
join group places statements in
parallel (the delays before each
statement are in absolute times).

always @(a or b or ci) begin
 sum = a + b + ci;
end

always procedure executes
statements repeatedly, controlled
by the sensitivity list.

always @(posedge clk)
 q = data;

a statement group is not required
when there is only one statement.

24 Verilog HDL Quick Reference Guide
10.1 Procedural Time Controls
#delay

Delays execution of the next statement for a specific amount of time. The
delay may be a literal number, a variable, or an expression.

@(edge signal or edge signal or ...)
@(edge signal, edge signal, ...)
@(*)

Delays execution of the next statement until there is a transition on a signal.
• edge (optional) maybe either posedge or negedge. If no edge is

specified, then any logic transition is used.
• Either a comma or the keyword or may be used to specify events on any

of several signals. The use of commas was added in Verilog-2001.
• signal may be a net type or variable type, and may be any vector size.
• An asterisk in place of the list of signals indicates sensitivity to any edge of

all signals that are read in the statement or statement group that follows.
@* was added in Verilog-2001.

• Parenthesis are not required when there is only one signal in the list and no
edge is specified.

wait (expression)
Delays execution of the next statement until the expression evaluates as true.

10.2 Sensitivity Lists
The sensitivity list is used at the beginning of an always procedure to infer
combinational logic or sequential logic behavior in simulation.
• always @(signal, signal, ...) infers combinational logic if the list of

signals contains all signals read within the procedure.
• always @* infers combinational logic. Simulation and synthesis will

automatically be sensitive to all signals read within the procedure. @* was
added in Verilog-2001.

• always @(posedge signal, negedge signal, ...) infers sequential
logic. Either the positive or negative edge can be specified for each signal in
the list. A specific edge should be specified for each signal in the list.

NOTE: The Verilog language does not have a true “sensitivity list”. Instead,
the @ time control at the beginning of a procedure delays the execution of all
statements within the procedure until an edge occurs on the signals listed.
Thus, if the @ control is the first thing in the procedure, the entire procedure
appears to be sensitive to changes in the signals listed. The @ token is a time
control, however, and not a true sensitivity list. An edge-sensitive time
control is only sensitive to changes when the procedure is suspended at that
control. If the procedure is suspended at another time control inside the
procedure, it will not be sensitive to changes at the time control in the pseudo
sensitivity list.

© Sutherland HDL, Inc. 25
10.3 Procedural Assignment Statements
variable = expression;

Blocking procedural assignment. Expression is evaluated and assigned when
the statement is encountered. In a begin—end sequential statement group,
execution of the next statement is blocked until the assignment is complete. In
the sequence begin m=n; n=m; end, the first assignment changes m
before the second assignment reads m.

variable <= expression;
Non-blocking procedural assignment. Expression is evaluated when the
statement is encountered, and assignment is postponed until the end of the
simulation time-step. In a begin—end sequential statement group, execution
of the next statement is not blocked; and will be evaluated before the
assignment is complete. In the sequence begin m<=n; n<=m; end,
both assignments will be evaluated before m or n changes.

timing_control variable = expression;
timing_control variable <= expression;

Delayed procedural assignments. Evaluation of the expression on the right-
hand side is delayed by the timing control.

variable = timing_control expression;
Blocking intra-assignment delay. Expression is evaluated in the time-step in
which the statement is encountered, and assigned in the time-step specified by
the timing control. In a begin—end sequence, execution of the next statement
in the sequence is blocked until the assignment is completed (which is when
the delay time has elapsed).

variable <= timing_control expression;
Non-blocking intra-assignment delay. Expression is evaluated in the time-step
in which the statement is encountered, and assigned at the end of the time-
step specified by the timing control. In a begin—end sequence, execution of
the next statement(s) in the sequence are not blocked, and can execute before
the delay has elapsed. Models transport delay.

assign variable = expression;
Procedural continuous assignment. Overrides any other procedural
assignments to a variable.

deassign variable;
De-activates a procedural continuous assignment.

force net_or_variable = expression;
Forces any data type to a value, overriding all other logic.

release net_or_variable;
Removes the effect of a force.

MODELING TIP: To avoid potential simulation race conditions in
zero-delay models:
• Use blocking assignments (=) to model combinational logic.
• Use non-blocking assignments (<=) to model sequential logic.

26 Verilog HDL Quick Reference Guide
10.4 Procedural Programming Statements
if (expression) statement or statement_group

Executes the next statement or statement group if the expression evaluates as
true.

if (expression) statement or statement_group
else statement or statement_group

Executes the first statement or statement group if the expression evaluates as
true. Executes the second statement or statement group if the expression
evaluates as false or unknown.

case (expression)
case_item: statement or statement_group
case_item, case_item: statement or statement_group
default: statement or statement_group

endcase
Compares the value of the expression to each case item and executes the
statement or statement group associated with the first matching case.
Executes the default if none of the cases match (the default case is optional).

casez (expression)
Special version of the case statement which uses a Z logic value to represent
don't-care bits in either the case expression or a case item. (the Z can also be
represented as a ?).

casex (expression)
Special version of the case statement which uses Z or X logic values to
represent don't-care bits in either the case expression or a case item. (the Z can
also be represented as a ?).

for (initial_assignment; expression; step_assignment)
statement or statement group

• Executes initial_assignment once, when the loop starts.
• Executes the statement or statement group as long as expression evaluates

as true.
• Executes step_assignment at the end of each pass through the loop.

while (expression) statement or statement group
A loop that executes a statement or statement group as long as an expression
evaluates as true. The expression is evaluated at the start of each pass of the
loop.

repeat (number) statement or statement_group
A loop that executes the statement or statement group a set number of times.
The number may be an expression (the expression is only evaluated when the
loop is first entered).

forever statement or statement_group
An infinite loop that continuously executes the statement or statement group.

disable group_name;
Discontinues execution of a named group of statements. Simulation of that
group jumps to the end of the group without executing any scheduled events.

© Sutherland HDL, Inc. 27

Procedural Statement Examples

initial // A 50 ns clock oscillator that starts after 1000 time units
 begin
 clk = 0;
 #1000 forever #25 clk = ~clk;
 end

// In this example, the sensitivity list infers sequential logic
always @(posedge clk)
 begin // non-blocking assignments prevent race conditions in byte swap
 word[15:8]<= word[7:0];
 word[7:0] <= word[15:8];
 end

// In this example, the sensitivity list infers combinational logic
always @(a, b, ci)
 sum = a + b + ci;

// In this example, the sensitivity list infers combinational logic,
// (the @* token infers sensitivity to any signal read in the statement or
// statement group which follows it, which are sel, a and b)
always @*
 begin
 if (sel==0) y = a + b;
 else y = a * b;
 end

// This example using illustrates several programming statements
always @(posedge clk) begin
 casez (opcode) //casez makes Z a don't care
 3'b1??: alu_out = accum; // ? in literal integer is same as Z
 3'b000: while (bloc_xfer) // loop until false
 repeat (5) @(posedge clk) // loop 5 clock cycles
 begin
 RAM[address] = data_bus;
 address = address + 1;
 end
 3'b011: begin : load // named group
 integer i; // local variable
 for (i=0; i<=255; i=i+1)
 @(negedge clk)
 data_bus = RAM[i];
 end
 default:$display(“illegal opcode in module %m”);
 endcase
end

28 Verilog HDL Quick Reference Guide
11.0 Continuous Assignments

Continuous assignments drive net types with the result of an expression. The
result is automatically updated anytime a value on the right-hand side changes.

• Explicit continuous assignments use the assign keyword to continuously
assign a value to a net.
• The net can be explicitly declared in a separate statement (see section 6.1).
• A net will be inferred if an undeclared name appears on the left side of the

assignment, and the name is declared as a port of the module containing the
continuous assignment. The net vector size will be the size of the port.

• New in Verilog-2001: A 1-bit net will be inferred if an undeclared name
appears on the left side of the assignment, and the name is not a port of the
module containing the continuous assignment.

• Implicit continuous assignments combine the net declaration and continuous
assignment into one statement, omitting the assign keyword.

• net_type may be any of the net data types except trireg.

• strength (optional) may only be specified when the continuous assignment is
combined with a net declaration. The default strength is (strong1, strong0).

• delay (optional) follows the same syntax as primitive delays (refer to section
8.0). The default delay is zero.

• expression may include any data type, any operator, and calls to functions.

• Continuous assignments model combinational logic. Each time a signal
changes on the right-hand side, the right-hand side is re-evaluated, and the
result is assigned to the net on the left-hand side.

• Continuous assignments are declared outside of procedural blocks. They
automatically become active at time zero, and are evaluated concurrently with
procedural blocks, module instances, and primitive instances.

Explicit Continuous Assignment
net_type [size] net_name;
assign #(delay) net_name = expression;

Implicit Continuous Assignment
net_type (strength) [size] #(delay) net_name = expression;

Continuous Assignment Examples

// Explicit continuous assignment
wire [31:0] mux_out;
assign mux_out = sel? a : b;

// Implicit continuous assignment; the net declaration
// and the continuous assignment are combined
tri [0:15] #2.8 buf_out = en? in: 16'bz;

// Implicit continuous assignment with strengths
wire [63:0] (strong1,pull0) alu_out =
 alu_function(opcode,a,b);

© Sutherland HDL, Inc. 29
12.0 Operators

• For most operations, the operands may be nets, variables, constants or
function calls. Some operations are not legal on real (floating-point) values.

• Operators which return a true/false result will return a 1-bit value where 1
represents true, 0 represents false, and X represents indeterminate.

Bitwise Operators

~ ~m invert each bit of m
& m & n AND each bit of m with each bit of n
| m | n OR each bit of m with each bit of n
^ m ^ n exclusive-OR each bit of m with n

~^ or ^~ m ~^ n exclusive-NOR each bit of m with n
<< m << n shift m left n-times and fill with zeros
>> m >> n shift m right n-times and fill with zeros

Unary Reduction Operators

& &m AND all bits in m together (1-bit result)
~& ~&m NAND all bits in m together (1-bit result)

| |m OR all bits in m together (1-bit result)
~| ~|m NOR all bits in m together (1-bit result)
^ ^m exclusive-OR all bits in m (1-bit result)

~^ or ^~ ~^m exclusive-NOR all bits in m (1-bit result)

Logical Operators

! !m is m not true? (1-bit True/False result)
&& m && n are both m and n true? (1-bit True/False result)

|| m || n are either m or n true? (1-bit True/False result)

Equality and Relational Operators (return X if an operand has X or Z)

== m == n is m equal to n? (1-bit True/False result)
!= m != n is m not equal to n? (1-bit True/False result)
< m < n is m less than n? (1-bit True/False result)
> m > n is m greater than n? (1-bit True/False result)

<= m <= n is m less than or equal to n? (1-bit True/False result)
>= m >= n is m greater than or equal to n? (1-bit True/False result)

Identity Operators (compare logic values 0, 1, X, and Z)

=== m === n is m identical to n? (1-bit True/False results)
!== m !== n is m not identical to n? (1-bit True/False result)

Miscellaneous Operators

? : sel?m:n conditional operator; if sel is true, return m: else return n
{} {m,n} concatenate m to n, creating a larger vector

{{}} {n{ }} replicate inner concatenation n-times
–> -> m trigger an event on an event data type

30 Verilog HDL Quick Reference Guide
12.1 Operator Expansion Rules
As a general rule, all operands in an expression are first expanded to the size of
the largest vector in the statement (including both sides of an assignment
statement). Concatenate and replicate operations are evaluated before the
expansion, and represent a new vector size.
• Unsigned operands are expanded by left-extending with zero.
• Signed operands are expanded by left-extending with the value of the most-

significant bit (the sign bit).
12.2 Arithmetic Operation Rules
For most operators (there are exceptions) all operands in the expression are used
to determine how the operation is performed:
• If any operand is real, then floating-point arithmetic will be performed.
• If any operand is unsigned, then unsigned arithmetic will be performed.
• If all operands are signed, then signed arithmetic will be performed.
• An operand can be “cast” to signed or unsigned using the $signed and
$unsigned system functions (added in Verilog-2001).

12.3 Operator Precedence
Compound expressions are evaluated in the order of operator precedence.
Operators within parenthesis have a higher precedence and are evaluated first.

Arithmetic Operators

+ m + n add n to m
– m - n subtract n from m
– -m negate m (2’s complement)
* m * n multiply m by n
/ m / n divide m by n

% m % n modulus of m / n
** m ** n m to the power n (new in Verilog-2001)

<<< m <<< n shift m left n-times, filling with 0 (new in Verilog-2001)
>>> m >>> n shift m right n-times; fill with value of sign bit if

expression is signed, otherwise fill with 0 (Verilog-2001)

 ! ~ + – (unary) highest precedence
 {} {{}}
 ()
 **
 * / %
 + – (binary)
 << >> <<< >>>
 < <= > >=
 == != === !==
 & ~&
 ^ ~^
 | ~|
 &&
 ||
 ?: lowest precedence

© Sutherland HDL, Inc. 31
13.0 Task Definitions

Tasks are analogous to subroutines in other languages.
• Must be declared within a module, and are local to that module.
• Must be called from an initial procedure, an always procedure or another task.
• May have any number of input, output or inout ports, including none.
• Tasks may contain time controls (#, @, or wait).
automatic (optional) allocates storage space each time the task is called,
allowing the task to be re-entrant (the task can be called while previous calls to
the task are still executing). Automatic tasks were added in Verilog-2001.
port_declaration can be:

• port_direction signed range
• port_direction reg signed range
• port_direction port_type

port_direction can be input, output or inout.
range (optional) is a range from [msb :lsb] (most-significant-bit to least-
significant-bit). msb and lsb must be a literal number, a constant, an expression,
or a call to a constant function. If no range is specified, the ports are 1-bit wide.
port_type can be integer, time, real or realtime.
signed (optional) indicates that values are interpreted as 2’s complement
signed values.

ANSI-C Style Task Declaration (added in Verilog-2001)
task automatic task_name (

port_declaration port_name, port_name, ... ,
port_declaration port_name, port_name, ...);
local variable declarations
procedural_statement or statement_group

endtask
Old Style Task Declaration

(port declarations determine the order signals are passed in/out of the task)
task automatic task_name;

port_declaration port_name, port_name, ...;
port_declaration port_name, port_name, ...;
local variable declarations
procedural_statement or statement_group

endtask

Example of a Task
//TASK DEFINITION (must be declared within a module)
task read_mem (input [15:0] address,
 output [31:0] data);
 begin
 read_request = 1;
 wait (read_grant) addr_bus = address;
 data = data_bus;
 #5 addr_bus = 16'bz; read_request = 0;
 end
endtask

//TASK CALL
always @(posedge clock)
 read_mem(PC, IR);

32 Verilog HDL Quick Reference Guide
14.0 Function Definitions

Functions:
• Must be declared within a module, and are local to that module.
• Return the value assigned to the function name.
• May be called any place an expression value can be used.
• Must have at least one input; may not have outputs or inouts.
• May not contain time controls or non-blocking assignments.
automatic (optional) allocates storage space for each function call, allowing
recursive function calls. Automatic functions were added in Verilog-2001.
range_or_type (optional) is the function return type or input type. The default is
a 1-bit reg. range_or_type can be:

• signed [msb :lsb]
• reg signed [msb :lsb]
• integer, time, real or realtime

signed (optional) indicates that the return value or input values are interpreted
as 2’s complement signed values. Signed functions were added in Verilog-2001.

14.1 Constant Functions
Constant functions (new in Verilog-2001) are functions with restrictions so that
the function can be evaluated at elaboration (before simulation starts running).
• Only locally declared variables can be referenced. Net types cannot be used.
• Parameter values used within the function must be defined before the function

is called. Parameter values should not be redefined using defparam.
• Can call other constant functions, but not in a context where a constant

expression is required (such as to declare port sizes).
• System function calls are illegal. System task calls are ignored.
• Hierarchical references are illegal.

ANSI-C Style Function Declaration (added in Verilog-2001)
function automatic range_or_type function_name (

input range_or_type port_name, port_name, ... ,
input range_or_type port_name, port_name, ...);
local variable declarations
procedural_statement or statement_group

endfunction
Old Style Function Declaration

(port declarations determine the order signals are passed into the function)
function automatic [range_or_type] function_name;

input range_or_type port_name, port_name, ... ;
input range_or_type port_name, port_name, ... ;
local variable declarations
procedural_statement or statement_group

endfunction

Example of a Function
function automatic [63:0] factorial (input reg [31:0] n);
 if (n<=1) factorial = 1;
 else factorial = n * factorial(n-1); //recursive call
endfunction
if (factorial(data) <= LIMIT) //function call

© Sutherland HDL, Inc. 33
15.0 Specify Blocks

15.1 Pin-to-pin Path Delays
• Simple path delay statement:
(input_port polarity:path_token output_port) = (delay);

• Edge-sensitive path delay:
(edge input_port path_token (output_port polarity:source)) = (delay);
• edge (optional) may be either posedge or negedge. If not specified, all

input transitions are used.
• source (optional) is the input port or value the output will receive. The

source is ignored by most logic simulators, but may be used by timing
analyzers.

• State-dependent path delay:
if (first_condition) simple_or_edge-sensitive_path_delay
if (next_condition) simple_or_edge-sensitive_path_delay
ifnone simple_path_delay
• Different delays for the same path can be specified.
• condition may only be based on input ports.
• Most operators may be used, but should resolve to true/false (X or Z is

considered true; if the condition resolves to a vector, only the lsb is used).
• Each delay for the same path must have a different condition or a different

edge-sensitive edge.
• The ifnone condition (optional) may only be a simple path delay, and

serves as a default if no other condition evaluates as true.
• polarity (optional) is either + or –. A – indicates the input will be inverted.

Polarity is ignored by most simulators, but may be used by timing analyzers.
• path_token is either *> for full connection or => for parallel connection.

• Parallel connection indicates each input bit of a vector is connected to its
corresponding output bit (bit 0 to bit 0, bit 1 to bit 1, ...)

• Full connection indicates an input bit may propagate to any output bit.
• Separate delay sets for 1, 2, 3, 6 or 12 transitions may be specified.

• Each delay set may have a single delay or a min:typ:max delay range.

specify
specparam_declarations (see 6.3)
simple_pin-to-pin_path_delay
edge-sensitive_pin-to-pin_path_delay
state-dependent_pin-to-pin_path_delay
timing_constraint_checks

endspecify

Delays Transitions represented (in order)

1 all output transitions
2 rise, fall output transitions
3 rise, fall, turn-off output transitions
6 rise, fall, 0–>Z, Z–>1, 1–>Z, Z–>0
12 rise, fall, 0->Z, Z->1, 1->Z, Z->0,

0->X, X->1, 1->X, X->0, X->Z, Z->X

34 Verilog HDL Quick Reference Guide

15.2 Path Pulse (Glitch) Detection
A pulse is a glitch on the inputs of a module path that is less than the delay of the
path. A special specparam constant can be used to control whether the pulse
will propagate to the output (transport delay), not propagate to the output
(inertial delay), or result in a logic X on the output.
specparam PATHPULSE$input$output = (reject_limit, error_limit);
specparam PATHPULSE$ = (reject_limit, error_limit);

• reject_limit is a delay value, or min:typ:max delay set, that is less than or
equal to the delay of a module path. Any pulse on the input that is less than or
equal to the reject limit will be cancelled (not propagate to the output).

• error_limit is a delay value, or min:typ:max delay set, that is greater than or
equal to the reject_limit and less than or equal to the delay of a module path.
Any pulse on the input greater than the error_limit will propagate to the
output. Any pulse less than or equal to the error_limit and greater than the
reject_limit will be propagated as a logic X to the output.

• A PATHPULSE$ specparam with no input to output path applies to all
module paths that do not have a specific PATHPULSE$ specparam.

• A single limit can be specified, in which case the reject and error limits will
be the same. The parenthesis can be omitted when there is a single value.

Verilog-2001 adds the following reserved words which can be used within a
specify block for greater pulse propagation accuracy.
pulsestyle_onevent list_of_path_outputs;

Indicates that a pulse propagates to a path output as an X, with the same delay
as if a valid input change had propagated to the output. This is the default
behavior, and matches Verilog-1995.

pulsestyle_ondetect list_of_path_outputs;
Indicates that as soon as a pulse is detected, a logic X is propagated to a path
output, without the path delay.

(continued on next page)

Path Delay Examples Notes

(a => b) = 1.8; parallel connection path; one delay for
all output transitions

(a -*> b) = 2:3:4; full connection path; one min:typ:max
delay range for all output transitions;
b receives the inverted value of a

specparam t1 = 3:4:6,
 t2 = 2:3:4;
(a => y) = (t1,t2);

different path delays for rise, fall
transitions

(posedge clk => (qb -: d))
 = (2.6, 1.8);

edge-sensitive path delay; timing path
is positive edge of clock to qb; qb
receives the inverted value of data

if (rst && pst)
(posedge clk=>(q +: d))=2;

state-dependent edge sensitive path
delay

if (opcode = 3'b000)
 (a,b *> o) = 15;
if (opcode = 3'b001)
 (a,b *> o) = 25;
ifnone (a,b *> o) = 10;

state-dependent path delays; an ALU
with different delays for certain
operations (default delay has no
condition)

© Sutherland HDL, Inc. 35
showcancelled list_of_path_outputs;
Indicates that a negative pulse, where the trailing edge of the pulse occurs
before the leading edge, will not propagate to the output. This is the default
behavior, and matches Verilog-1995.

noshowcancelled list_of_path_outputs;
Indicates that negative pulses propagate to the output as a logic X.

15.3 Timing Constraint Checks
Timing constraint checks are special tasks that model restrictions on input
changes, such as setup times and hold times.

Timing checks measure the delta between a reference_event and a data_event.
• data_event and reference_event signals must be module input ports.
• limit is a constant expression that represents the amount of time that must be

met for the constraint. The expression can be a min:typ:max delay set.
• notifier (optional) is a 1-bit reg variable that is automatically toggled

whenever the timing check detects a violation.
• stamptime_condition (optional) and checktime_condition (optional) are

conditions for enabling or disabling negative timing checks. These arguments
were added in Verilog-2001.

• delayed_ref (optional) and delayed_data (optional) are delayed signals for
negative timing checks. These arguments were added in Verilog-2001.

• event_based_flag (optional) when set, causes the timing check to be event
based instead of timer based. This argument was added in Verilog-2001.

• remain_active_flag (optional) wen set, causes the timing check to not
become inactive after the first violation is reported. This argument was added
in Verilog-2001.

• start_edge_offset and end_edge_offset are delay values (either positive or
negative) which expand or reduce the time in which no change can occur.

• $recrem, $timeskew and $fullskew were added in Verilog-2001.

$setup(data_event, reference_event, limit, notifier);
$hold(reference_event, data_event, limit, notifier);
$setuphold(reference_event, data_event, setup_limit, hold_limit, notifier,
stamptime_condition, checktime_condition, delayed_ref, delayed_data);
$recovery(reference_event, data_event, limit, notifier);
$removal(reference_event, data_event, limit, notifier);
$recrem(reference_event, data_event, recovery_limit, removal_limit,
notifier, stamptime_cond, checktime_cond, delayed_ref, delayed_data);
$skew(reference_event, data_event, limit, notifier);
$timeskew(reference_event, data_event, limit, notifier, event_based_flag,
remain_active_flag);
$fullskew(reference_event, data_event, data_skew_limit,
ref_skew_limit, notifier, event_based_flag, remain_active_flag);
$period(reference_event, limit, notifier);

$width(reference_event, limit, width_threshold, notifier);
$nochange(reference_event, data_event, start_edge_offset,
end_edge_offset, notifier);

36 Verilog HDL Quick Reference Guide
16.0 User Defined Primitives (UDPs

User Defined Primitives define new primitives, which are used exactly the same
as built-in primitives.

• All terminals must be scalar (1-bit).
• Only one output is allowed, which must be the first terminal.
• The maximum number of inputs is at least 9 inputs for a sequential UDP and

10 inputs for a combinational UDP.
• Logic levels of 0, 1, X and transitions between those values may be

represented in the table. The logic value Z is not supported with UDPs. A Z
value on a UDP input is treated as an X value.

• reg declaration (optional) defines a sequential UDP by creating internal
storage. Only the output may be declared a reg.

• initial (optional) is used to define the initial (power-up) state for
sequential UDP's. Only the logic values 0, 1, and X may be used. The default
state is X. In Verilog-2001, the initial value can be assigned in the declaration.

16.1 UDP Table Entries
input_logic_values : output_logic_value ;

• Combinational logic table entry. Only logic level values may be specified
(0, 1, X and don’t cares).

input_logic_values : previous_state : output_logic_value ;
• Sequential logic table entry. May only be used when the output is also

declared as a reg data type. Both input logic level and input logic
transition values may be specified.

• A white space must separate each input value in the table.
• The input values in the table must be listed in the same order as the terminal

list in the primitive statement.
• Any combination of input values not specified in the table will result in a

logic X (unknown) value on the output.

ANSI-C Style Port List (added in Verilog-2001)
primitive primitive_name

(output reg = logic_value terminal_declaration,
 input terminal_declarations);
table

table_entry;
table_entry;

endtable
endprimitive

Old Style Port List
primitive primitive_name (output, input, input, ...);

output terminal_declaration;
input terminal_declarations;
reg output_terminal;
initial output_terminal = logic_value;
table

table_entry;
table_entry;

endtable
endprimitive

© Sutherland HDL, Inc. 37
• Only one signal may have an edge transition specified for each table entry.
• If an edge transition is specified for one input, the UDP becomes sensitive to

transitions on all inputs. Therefore, all other inputs must have table entries to
cover transitions, or when the transition occurs the UDP will output an X.

• Level sensitive entries have precedence over edge sensitive table entries.
16.2 UDP Table Symbols

Truth Table
Symbol Definition

0 logic 0 on input or output
1 logic 1 on input or output

x or X unknown on input or output
– no change on output (sequential UDPs only)
? don't care if an input is 0, 1, or X

b or B don't care if and input is 0 or 1
(vw) input transition from logic v to logic w

 e.g.: (01) represents a transition from 0 to 1
r or R rising input transition: same as (01)
f or F falling input transition: same as (10)
p or P positive input transition: (01), (0X) or (X1)
n or N negative input transition: (10), (1X) or (X0)

* Any possible input transition: same as (??)

UDP Examples

primitive mux (y, a, b, sel); //COMBINATIONAL UDP
 output y;
 input sel, a, b;
 table //Table order for inputs
 // a b sel : y //matches primitive statement
 0 ? 0 : 0; //select a; don’t care on b
 1 ? 0 : 1; //select a; don’t care on b
 ? 0 1 : 0; //select b; don’t care on a
 ? 1 1 : 1; //select b; don’t care on a
 endtable
endprimitive

primitive dff //SEQUENTIAL UDP
 (output reg q = 0,
 input clk, rst, d);
 table
 // d clk rst:state:q
 ? ? 0 : ? :0; //low true reset
 0 R 1 : ? :0; //clock in a 0
 1 R 1 : ? :1: //clock in a 1
 ? N 1 : ? :-; //ignore negedge of clk
 * ? 1 : ? :-; //ignore all edges on d
 ? ? P : ? :-; //ignore posedge of rst
 0 (0X) 1 : 0 :-; //reduce pessimism
 1 (0X) 1 : 1 :-; //reduce pessimism
 endtable
endprimitive

38 Verilog HDL Quick Reference Guide
17.0 Common System Tasks and Functions

• System tasks and functions begin with a $ (dollar sign).
• The IEEE 1364 Verilog standard defines a number of standard system task

and system functions.
• Software tool vendors may define additional proprietary system tasks and

functions specific to their tool, such as for waveform displays.
• Simulator users may define additional system tasks and functions using the

Verilog Programming Language Interface (PLI).

17.1 Text Output System Tasks
$display(“text_with_format_specifiers”, list_of_arguments);
$displayb(“text_with_format_specifiers”, list_of_arguments);
$displayo(“text_with_format_specifiers”, list_of_arguments);
$displayh(“text_with_format_specifiers”, list_of_arguments);

Prints the formatted message when the statement is executed. A newline is
automatically added to the message. If no format is specified, the routines
default to decimal, binary, octal and hexadecimal formats, respectively.

$write(“text_with_format_specifiers”, list_of_arguments);
$writeb(“text_with_format_specifiers”, list_of_arguments);
$writeo(“text_with_format_specifiers”, list_of_arguments);
$writeh(“text_with_format_specifiers”, list_of_arguments);

Like $display statement, except that no newline is added.

$strobe(“text_with_format_specifiers”, list_of_arguments);
$strobeb(“text_with_format_specifiers”, list_of_arguments);
$strobeo(“text_with_format_specifiers”, list_of_arguments);
$strobeh(“text_with_format_specifiers”, list_of_arguments);

Like the $display statement, except that the printing of the text is delayed
until all simulation events in the current simulation time have executed.

$monitor(“text_with_format_specifiers”, list_of_arguments);
$monitorb(“text_with_format_specifiers”, list_of_arguments);
$monitoro(“text_with_format_specifiers”, list_of_arguments);
$monitorh(“text_with_format_specifiers”, list_of_arguments);

Invokes a background process that continuously monitors the arguments
listed, and prints the formatted message whenever one of the arguments
changes. A newline is automatically added to the message.

Text Formatting Codes

%b
%o
%d
%h
%e
%f
%t
%s

binary values
octal values
decimal values
hex values
real values–exponential
real values–decimal
formatted time values
character strings

%m
%l
\t
\n
\”
\\
%%

hierarchical name of scope
configuration library binding
print a tab
print a newline
print a quote
print a backslash
print a percent sign

%0b, %0o, %0d and %0h truncates any leading zeros in the value.
%e and %f may specify field widths (e.g. %5.2f).
%m and %l do not take an argument; they have an implied argument value.
The format letters are not case sensitive (i.e. %b and %B are equivalent).

© Sutherland HDL, Inc. 39
17.2 File I/O System Tasks and Functions
mcd = $fopen(“file_name”);
fd = $fopen(“file_name”, type);

A function that opens a disk file for writing, and returns an integer value.
• mcd is a multi-channel-descriptor with a single bit set. Multiple mcd’s can

be or’ed together to write to multiple files at the same time. An mcd file is
always opened as a new file for writing only. Bit 0 is reserved and
represents the simulator’s output window. Bit 31 is reserved and represents
that the channel is an fd, not an mcd.

• fd is a single-channel descriptor which has multiple bits set; bit 31 and at
least one other bit will be set. An fd file can be opened for either reading or
writing, and can be opened in append mode. Only one file can be read or
written to at a time using an fd. The fd was added in Verilog-2001.

• type is one of the following character strings:

$fclose(mcd_or_fd);
Closes a disk file that was opened by $fopen.

$fmonitor(mcd_or_fd, “text with format specifiers”, signal, signal,...);
$fdisplay(mcd_or_fd, “text with format specifiers”, signal, signal,...);
$fwrite(mcd_or_fd, “text with format specifiers”, signal, signal,...);
$fstrobe(mcd_or_fd, “text with format specifiers”, signal, signal,...);

Variations of the text display tasks that write to files.

Verilog-2001 adds several system functions similar to C file I/O functions:

c = $fgetc(fd);
code = $ungetc(c, fd);
code = $fgets(str, fd);
code = $fscanf(fd, format, arguments);
code = $fread(reg_variable, fd);
code = $fread(memory_array, fd, start, count);
position = $ftell(fd);
code = $fseek(fd, offset, operation);
code = $rewind(fd);
errno = $ferror(fd, str);
$fflush(mcd_or_fd);

17.3 Other Common System Tasks and Functions
$finish(n);

Finishes a simulation and exits the simulation process. n (optional) is 0, 1 or
2, and may cause extra information about the simulation to be displayed.

$stop(n);
Halts a simulation and enters an interactive debug mode.

“r” or “rb” open for reading
“w” or “wb” truncate to zero length or create for writing
“a” or “ab” append; open for writing at end of file

“r+”, “r+b”, or “rb+” open for update (reading and writing)
“w+”, “w+b”, or “wb+” truncate or create for update
“a+”, “a+b”, or “ab+” append; open or create for update at end-of-file

40 Verilog HDL Quick Reference Guide
$time
$stime
$realtime

Returns the current simulation time as a 64-bit vector, a 32-bit integer or a
real number, respectively.

$timeformat(unit, precision, “suffix”, min_field_width);
Controls the format used by the %t text format specifier.
• unit is the base that time is to be displayed in, where:

• precision is the number of decimal points to display.
• suffix is a string appended to the time, such as “ ns”.
• min_field_width is the minimum number of characters to display.
Example: $timeformat (-9, 2, “ns”, 10);

$printtimescale(module_hierarchical_name);
Prints the time scale of the specified module, or the scope from which it is
called if no module is specified.

signed_value = $signed(unsigned_value)
unsigned_value = $unsigned(signed_value)

Converts a value to or from a signed value; affects math operations and sign
extension. These system functions were added in Verilog-2001.

$swrite(reg_variable, format, arguments, format, arguments,...);
$swriteb(reg_variable, format, arguments, format, arguments,...);
$swriteo(reg_variable, format, arguments, format, arguments,...);
$swrited(reg_variable, format, arguments, format, arguments,...);
$sformat(reg_variable, format, arguments);

Similar to $write, except that the string is written to the reg variable instead of
to a file. These system tasks and functions were added in Verilog-2001.

code = $sscanf(str, format, arguments);
Similar to $fscanf, but reads values from a string. Added in Verilog-2001.

$readmemb(“file_name”, variable_array, start_address, end_address);
$readmemh(“file_name”, variable_array, start_address, end_address);

Loads the contents of a file into a memory array. The file must be an ASCII
file with values represented in binary ($readmemb) or hex ($readmemh).
Start and end address are optional.

64-bit_reg_variable = $realtobits(real_variable);
real_variable = $bitstoreal(64-bit_reg_variable);

Converts double-precision real variables to and from 64 bit reg vectors, so
that the real value can be passed through 64-bit ports.

integer = $test$plusargs(“invocation_option”)
integer = $value$plusargs(“invocation_option=format”, variable)

Tests the invocation command line for the invocation option. The option
must begin with a + on the command line, but the + is not included in the
string. If found, the routines return a non-zero value. $value$plusargs
converts any text following the string up to a white space to the format
specified, and puts the value into the second argument. Allowable formats
are %b, %o, %d, %h, %e, %f, %g and %s.

0
-1
-2
-3

=
=
=
=

1sec
100ms

10ms
1ms

-4
-5
-6

=
=
=

100us
10us

1us

-7
-8
-9

=
=
=

100ns
10ns

1ns

-10
-11
-12

=
=
=

100ps
10ps

1ps

-13
-14
-15

=
=
=

100fs
10fs

1fs

© Sutherland HDL, Inc. 41
18.0 Common Compiler Directives

Compiler directives provide a method for software tool vendors to control how
their tool will interpret Verilog HDL models.
• Compiler directives begin with the grave accent character (`).
• Compiler directives are not Verilog HDL statements; there is no semi-colon at

the end of compiler directives.
• Compiler directives are not bound by modules or by files. When a tool

encounters a compiler directive, the directive remains in effect until another
compiler directive either modifies it or turns it off.

`resetall
Resets all compiler directives that have a default back to their default.
Directives that have no default are not affected.

`timescale time_unit base / precision base
Specifies the time units and precision for delays:
• time_unit is the amount of time a delay of 1 represents. The time unit must

be 1, 10, or 100
• base is the time base for each unit, ranging from seconds to femtoseconds,

and must be: s ms us ns ps or fs
• precision and base represent how many decimal points of precision to use

relative to the time units.
Example: `timescale 1 ns / 10 ps

Indicates delays are in 1 nanosecond units with
2 decimal points of precision (10 ps is .01 ns).

Note: There is no default timescale in Verilog; delays are simply relative
numbers until a timescale directive declares the units and base the numbers
represent.

`define macro_name text_string
`define macro_name (arguments) text_string (arguments)

Text substitution macro. Allows a text string to be defined as a macro name.
• text_string will be substituted in place of the macro_name where ever the

macro name is used.
• text_string is terminated by a carriage return—the string must be on one

line.
• arguments are evaluated before text is substituted.
• The macro_name must also be preceded by the grave accent mark (`)

each time the macro name is used.
• Comments may be used—they are not substituted into the place of the

macro name.
Examples:

`define cycle 20 //clock period
always #(`cycle/2) clk = ~clk;
`define NAND(dval) nand #(dval)
`NAND(3) i1 (y,a,b);
`NAND(3:4:5) i2 (o,c,d);

`undef macro_name
Removes the definition of a macro name.

42 Verilog HDL Quick Reference Guide
`ifdef macro_name
`ifndef macro_name

verilog_source_code
`else

verilog_source_code
`elsif

verilog_source_code
`endif

Conditional compilation. Allows Verilog source code to be optionally
included, based on whether or not macro_name has been defined using the
`define compiler directive or the +define+ invocation option. The
‘ifndef and ‘elsif directives were added in Verilog-2001.

Example:
`ifdef RTL
 wire y = a & b;
`else
 and #1 (y,a,b);
`endif

`include “file_name”
File inclusion. The contents of another Verilog HDL source file is inserted
where the `include directive appears.

`celldefine
`endcelldefine

Flags the Verilog source code between the two directives as a cell. Some
tools, such as a delay calculator for an ASIC, need to distinguish between a
module that represents an ASIC cell and other modules in the design.

`default_nettype net_data_type
`default_nettype none

Changes the net data type to be used for implicit net declarations. Any of the
net data types may be specified. By default, the implicit net data type is wire.
If none is specified, then implicit net declarations are disabled, and all nets
must be explicitly declared (specifying none was added in Verilog-2001).

`unconnected_drive pull1
`unconnected_drive pull0
`nounconnected_drive

Determines what logic value will be applied to unconnected module inputs.
The default is `nounconnected_drive, meaning unconnected inputs and
nets float at high impedance.

`uselib file=<file> dir=<directory> libext=<extension>
Specifies the Verilog source library file or directory in which the compiler
should search for the definitions of modules or UDPs instantiated in a design.
A `uselib directive with no arguments removes any preceding library
search directives. Note: This directive is not part of the IEEE 1364 Verilog
standard, but is implemented in most Verilog simulators.

Example:
`uselib file=/models/rtl_lib
 ALU i1 (y1,a,b,op); //RTL model
`uselib dir=/models/gate_lib libext=.v
 ALU i2 (y2,a,b,op); //Gate model
`uselib //turn off `uselib searching

© Sutherland HDL, Inc. 43
19.0 Configurations

Configurations (added in Verilog-2001) are a set of rules to specify the exact
source description to be used for each module or primitive instance in a design.
The configuration block is Verilog source code; it can be compiled along with
the Verilog model source code.
• Verilog designs are modeled the same as in Verilog-1995.
• Configuration blocks are specified outside of module boundaries. The blocks

can be in the same files as the Verilog source code, or they can be in separate
files.

• A cell is the name of a module, primitive or another configuration.
• Symbolic library names are used within the configuration block. A symbolic

library is a logical collection of cells. The cell name must be the same as the
name of the module, primitive or configuration.

• library map files are used to map the symbolic library names to physical file
locations.

• The library binding information for module instances can be displayed during
simulation using the format specifier %l, which will print the
library_name.cell_name of the module containing the print statement.

19.1 Configuration Blocks

The config—endconfig is a design element, similar to a module, and exists
in the same Verilog name space as module and primitive names. The
configuration block contains a set of rules for searching for the Verilog source
description to bind to a particular instance of the design.
• design specifies the library and cell of the top-level module or modules in

the design hierarchy. There can only be one design statement, but multiple
top-level modules can be listed. The design statement must the first statement
in the configuration.
• lib_name. (optional) specifies which symbolic library contains the cell. If

the library name is omitted, then the library which contains the config is
used to search for the cell.

• cell_name (required) is the name of the module that is the top of the design
hierarchy represented by the configuration.

• default liblist specifies in which libraries to search for all instances
which do not match a more specific selection clause. The libraries are
searched in the order listed. For many designs, the default liblist may be all
that is needed to specify the configuration.
• list_of_library_names is a comma-separated list of symbolic library

names.

config config_name;
design lib_name.cell_name;
default liblist list_of_library_names;
cell lib_name.cell_name liblist list_of_library_names;
cell lib_name.cell_name use lib_name.cell_name:config_name;
instance hierarchy_name liblist list_of_library_names;
instance hierarchy_name use lib_name.cell_name:config_name;

endconfig

44 Verilog HDL Quick Reference Guide
• cell specifies a specific set of libraries in which to search for the source
code for that module or primitive name, instead of the libraries and order
specified in the default statement.
• lib_name. (optional) specifies which symbolic library contains the cell.
• cell_name (required) is the name of a module or primitive.

• instance specifies a specific set of libraries in which to search for the
source code for that specific module or primitive instance, instead of the
libraries and/or order specified in the default statement.
• hierarchy_name is the full hierarchy path name of an instance of a module

or primitive. The hierarchy path must start with the name specified in the
design statement.

• use (optional) specifies the location for a specific cell or instance of a cell,
instead of searching a for the cell in the default libraries.
• lib_name. (optional) specifies which symbolic library contains the cell.
• :config_name (optional) specifies that a different configuration block

should be used for the specified instance or cell. The design statement in
that configuration specifies the actual binding information.

19.2 Library Map Files

A separate file is used to map symbolic libraries to the physical file locations.
• The library map file contains library statements, include statements and

Verilog-style comments.
• The map file is not Verilog source code.
• If the source files are moved, only the map file needs to be modified; The

Verilog source code and configuration blocks do not need to be changed.
• lib_name defines the symbolic library name which will be reference in

configuration blocks.
• list_of_file_paths is a comma-separated list of operating system paths to one

or more directories or specific files.
• A path which ends in / includes all files in the specified directory

(identical to a path which ends with /*).
• A path which does not begin with / is relative to the directory in which the

current library map file is located.
• Special symbols can be used in the path:

• -incdir specifies where to search for files referenced by `include
directives in the Verilog source code.

• include library_map_file_path allows one library map file to reference
another library map file.

library lib_name list_of_file_paths, -incdir list_of_file_paths;
include library_map_file_path;

? single character wild card (matches any single character)
* multiple character wild card (matches any number of characters)
... hierarchical wild card (matches any number of hierarchical directories)
.. specifies the parent directory
. specifies the directory containing the lib.map

© Sutherland HDL, Inc. 45
20.0 Synthesis Supported Constructs

Following is a list of Verilog HDL constructs supported by most synthesis tools.
The list is based on a preliminary draft of the IEEE 1364.1 “Verilog Register
Transfer Level Synthesis” standard (this standard was not complete at the time
this reference guide was written). The list is not specific to any one tool—each
synthesis tool supports a unique subset of the Verilog language.

Verilog HDL Constructs Notes

module declarations fully supported
port declarations
 input output
 inout

fully supported; any vector size supported

net data types
 wire wand wor
 supply0 supply1

scalars and vectors fully supported

variable data types
 reg integer

• may be scalar or vector or variable array
• may be restricted to only making assignments

to a variable from just one procedure
• integers default to 32 bits

parameter constants limited to integers; parameter redefinition may
not be supported

literal integer numbers fully supported; all sizes and bases
module instances fully supported; both port order and port name

instantiation supported
primitive instances
 and nand
 or nor
 xor buf not
 bufif1 bufif0
 notif1 notif0

fully supported

assign
continuous assignment

fully supported; both explicit and implicit forms
are supported

assign procedural
continuous assignment

fully supported, but the deassign keyword
may not be supported

function definitions may only use supported constructs
task definitions may only use supported constructs
always
procedural block

must have a sensitivity list

begin—end
statement groups

fully supported; both named and unnamed
blocks are supported; fork—join statement
groups are not supported

= blocking
procedural assignment
<= non-blocking
procedural assignment

fully supported; may be restricted to using only
one type of assignment for all assignments to the
same variable

46 Verilog HDL Quick Reference Guide
New constructs in the Verilog-2001 standard that are expected to be supported
by synthesis:

• Comma-separated sensitivity lists
• @* combinational logic sensitivity
• Combined port/data type declaration
• ANSI C style port declarations
• Implicit nets with continuous assignments
• Multi-dimensional arrays
• Array bit and part selects
• Signed data types
• Signed literal numbers
• <<<, >>> arithmetic shifts
• ** power operator (may have restrictions)
• Recursive functions (the number of recursions must be able to be determined

at elaboration time)
• Sized parameters
• Explicit in-line parameter passing
• ‘ifndef and ‘elsif compiler directives

if if—else
case casex casez
decision statements

logic X and Z only supported as “don’t care”
bits

for loops the step assignment must be an increment or
decrement (+ -)

while loops
forever loops

loop must take one clock cycle for each loop
cycle (i.e.: an @(posedge clk) or
@(negedge clk) must be within the loop)

disable
statement group

must be used within the same named block that
is being disabled

operators
 & ~& | ~|
 ^ ^~ ~^
 == != < >
 <= =>
 ! && ||
 << >>
 {} {{}} ?:
 + - * /

operands may be:
• scalar or vector
• constant or variable
• the === and !== operators are not supported

vector bit selects
vector part selects

fully supported on the right-hand side of an
assignment; restricted to constant bit or part
selects on the left-hand side of an assignment

Verilog HDL Constructs Notes

© Sutherland HDL, Inc. 47
Notes:

Index 48
Symbols
! ...28
!= ...28
!== ...28
..16, 23
$ (system tasks/functions)37
$ (timing checks)34
% (modulus operator)29
% (text format codes)37
& ...28
&& ..28
(* ...3
* ..29
*) ...3
** ..29
*/ ...3
*> ..32
+ ..29, 32
- ...29, 32
-> ...28
-incdir ..43
/ ...29
/* ...3
// ..3
< ..28
<< ..28
<<< ..29
<= ..24, 28
= ..24
== ..28
=== ..28
=> ..32
> ..28
>= ..28
>> ..28
>>> ..29
? ...6
?: ..28
@ ...23
@* ...23
\ (escaped identifiers)4
^ ...28
^~ ..28
{ } ..28
{{ }} ..28

| ... 28
|| .. 28
~ .. 28
~& ... 28
~^ .. 28
~| ... 28
‘ (compiler directives) 40

A
always ... 22
and .. 18, 28
arrays of instances 4, 16, 19
arrays of nets 11, 15
arrays of variables 12, 15
assign .. 24
attributes ... 4
automatic 30, 31

B
base ... 6
begin ... 22
binary radix 6, 37
blocking assignment 24
buf ... 18
bufif0 .. 18
bufif1 .. 18

C
case ... 25
casex ... 25
casez ... 25
cell .. 41, 42
cmos .. 18
comments .. 3
compiler directives 40
concurrency 3
config .. 42
configuration blocks 42
constant functions 31
continuous assignment 27

D
data type declarations 10
data types 10, 12
deassign .. 24
decimal radix 6, 37
default ... 42
defparam 16

49 Index
delays11, 18, 23, 32, 40
design ..42
disable ...25

E
else ..25
end ...22
endcase ..25
endconfig42
endgenerate20
endprimitive35
endspecify32
endtask30, 31
escaped identifiers4
event ..14

F
for ..25
force ..24
forever ...25
fork ..22
function ...31

G
generate ...20
genvar14, 20

H
hexadecimal6
hexadecimal radix37
hierarchical path names4
hierarchy ...4
highz0..1 5
highz1..1 5

I
identifiers ..4
if ..25, 32
ifnone ..32
include ...43
initial ...22
inout ..8
input ..8
instance ...42
instance name16, 18
integer data type12
integer numbers6
intra-assignment delay24

J
join 2.. 2

K
keywords, list of 2

L
large .. 5
liblist ... 42
library ... 43
localparam 14
logic strengths 5
logic values 5

M
medium 5
memories 12, 15, 38, 39
module definitions 7
module instances 16

N
name space 4
names .. 4
nand .. 18
negedge 23, 32
net data types 10
nets .. 10
nmos ... 18
non-blocking assignment 24
nor ... 18
not ... 18
notif0 .. 18
notif1 .. 18

O
octal radix 6, 37
operator precedence 29
operators, list of 28
or 18, 23, 28
output .. 8

P
parameter 14, 16
path delays 32
path names 4
pmos ... 18
polarity .. 32
port declarations 8
posedge 23, 32

Index 50
precision ..40
primitive definitions35
primitive instances18
procedural blocks22
pull0 ..5
pull1 ..5
pulldown18
pullup ..18

R
radix ..6
rcmos ...18
re-entrant tasks30
real ..12
realtime ...12
recursive functions31
reg ...12
release ...24
repeat ...25
rnmos ..18
rpmos ..18
rtran ...18
rtranif0 ..18
rtranif1 ..18

S
scientific notation5
scopes ..4
sensitivity list22
signed8, 11, 12, 14, 30, 31
signed arithmetic29
small ..5
specify blocks32
specparam14
strength5, 11, 18, 27
strong0 ..5
strong1 ..5
supply05, 10
supply15, 10
synthesis ..44
system tasks/functions37

T
task ..30
time controls23
time data type12
time units40

timing checks 34
tran .. 18
tranif0 ... 18
tranif1 ... 18
transport delay 24
tri .. 10
tri0 .. 10
tri1 .. 10
triand ... 10
trior ... 10
trireg ... 10

U
use ... 42
User Defined Primitives 18, 35

V
variables .. 12

W
wait ... 23
wand ... 10
weak0 .. 5
weak1 .. 5
while ... 25
wire ... 10
wor .. 10

X
xnor ... 18, 28
xor ... 18, 28

suggested retail: $14.95

A complete reference on the Verilog Hardware Description Language,
covering the syntax and semantics of the Verilog HDL. Many examples
illustrate how to use Verilog. Includes synthesis supported constructs,
common system tasks and a list of what is new in the Verilog-2001
standard. Fully indexed for easy reference.

published by

Sutherland HDL, Incorporated
22805 SW 92nd Place
Tualatin, OR 97062

(503) 692-0898

www.sutherland-hdl.com

Sutherland HDL, Inc. provides expert
Verilog and SystemVerilog training workshops

Sutherland HDL also sells the Verilog PLI Quick Reference Guide,
covering the Verilog Programming Language Interface.

Verilog® HDL
Quick Reference Guide

based on the Verilog-2001 standard

(IEEE Std 1364-2001)

Sutherland
HDL

	Table of Contents
	1.0 New Features In Verilog-2001
	2.0 Reserved Keywords
	3.0 Concurrency
	4.0 Lexical Conventions
	4.1 Case Sensitivity
	4.2 White Space Characters
	4.3 Comments
	4.4 Attributes
	4.5 Identifiers (names)
	4.6 Hierarchical Path Names
	4.7 Hierarchy Scopes and Name Spaces
	4.8 Logic Values
	4.9 Logic Strengths
	4.10 Literal Real Numbers
	4.11 Literal Integer Numbers

	5.0 Module Definitions
	5.1 Module Items
	5.2 Port Declarations

	6.0 Data Type Declarations
	6.1 Net Data Types
	6.2 Variable Data Types
	6.3 Other Data Types
	6.4 Vector Bit Selects and Part Selects
	6.5 Array Selects
	6.6 Reading and Writing Arrays

	7.0 Module Instances
	8.0 Primitive Instances
	9.0 Generate Blocks
	10.0 Procedural Blocks
	10.1 Procedural Time Controls
	10.2 Sensitivity Lists
	10.3 Procedural Assignment Statements
	10.4 Procedural Programming Statements

	11.0 Continuous Assignments
	12.0 Operators
	13.0 Task Definitions
	14.0 Function Definitions
	15.0 Specify Blocks
	15.1 Pin-to-pin Path Delays
	15.2 Path Pulse (Glitch) Detection
	15.3 Timing Constraint Checks

	16.0 User Defined Primitives (UDPs
	17.0 Common System Tasks and Functions
	18.0 Common Compiler Directives
	19.0 Configurations
	20.0 Synthesis Supported Constructs
	Notes:

