
A First-step Towards an Architecture Tuning Methodology
for Low Power

ABSTRACT
We describe an automated environment to assist a system-on-a-
chip designer to tune a microprocessor core to a particular
application program that will run on the microprocessor, and
vice-versa, with the goal of reducing embedded system power
consumption. We limit such tuning to modifications that do not
change the microprocessor instruction set, thus avoiding the
large costs that would come with such a change. Our tuning
environment for the 8051 microcontroller is freely-available on
the web.

Keywords: system-on-a-chip, embedded systems,
parameterized architectures, cores, low-power, tuning.

1. Introduction
Today’s silicon chips can implement a system-on-chip (SOC),
where a single chip may contain components like a
microprocessor, memory, and perhaps tens of peripherals like
DMA (direct memory access) controllers, UART’s (universal
asynchronous receiver/transmitters), encoders/decoders, analog-
digital converters, and protocol interfaces. A designer may
acquire these components in the form of an intellectual property
core. A core may be a soft core, which is a behavioral
description written in a hardware description language (HDL),
where that description can be automatically synthesized down to
a structural description. It may be a firm core, which is a
structural description captured in an HDL. Or it may be a hard
core, which is a technology-specific layout description. In any
case, the various cores can be mixed together to form one large
chip description, from which an actual silicon chip is fabricated.

Designers are increasingly using SOC’s to implement embedded

systems, and embedded systems have a unique feature that
provides a unique but untapped optimization opportunity. A
unique feature of embedded systems that distinguishes them
from desktop computer systems is that an embedded system
typically executes a single application program for its lifetime.
In contrast, a desktop system will have hundreds of different
programs loaded onto it and executed. This single-program
feature of embedded systems provides the opportunity for us to
optimize the SOC components such that they execute that one
particular program very efficiently. We refer to such
optimization as architecture tuning. For example, a particular
program may have an inner loop that accounts for most of its
execution time, and that inner loop may include an operation
that moves register R0’s contents to register R1. On a regular
instantiation of a microprocessor core, that operation might
consume power as the data is read out of the register file,
through the ALU (arithmetic-logic unit), through the shifter, and
back into the register file. However, we could tune the
microprocessor to this particular program, by creating a shortcut
within the register file for that particular move from R0 to R1,
thus reducing power. Furthermore, we could then tune the
program to the microprocessor, by modifying the program to
replace other moves by moves from R0 to R1 when possible.

We have begun to investigate techniques for tuning a
microprocessor core to its particular embedded system
application, with a focus on tuning for low power. Towards this
end, we have developed an environment for automatically
providing extensive power data to a designer, data that can be
used to guide tuning decisions. We describe this environment in
this paper, and highlight how it can be used for tuning purposes.

2. Problem description and previous work
We are given a microprocessor soft core, and a single
application program that will run on that core. Our goal is to
modify the soft core description such that the synthesized core
will consume the minimum power possible while executing that
program. A secondary goal is to modify the program into a
functionally-equivalent program that consumes minimum power
when executing on the microprocessor. The microprocessor
modifications are restricted to those that maintain exact
instruction set compatibility, meaning that the modified
microprocessor executes exactly the same instruction set. No

Greg Stitt, Frank Vahid*, Tony Givargis
Department of Computer Science and Engineering

University of California, Riverside

{gstitt, vahid,givargis}@cs.ucr.edu

www.cs.ucr.edu/~dalton
*Also with the Center for Embedded Computer Systems at UC Irvine.

Roman Lysecky
Conexant, Department of IP Management

roman.lysecky@conexant.com

instructions may be omitted from the original instruction set.
Furthermore, no instructions may be added either.

The restriction to exact instruction set compatibility is necessary
since no modifications to compilers should be necessary, since
any required changes to current embedded system design
software would greatly limit the acceptance of the approach.
Furthermore, the binaries that execute on the modified
microprocessor must be portable to other versions of the
microprocessor in the future, and thus should have no
modifications made to them by special post-compilation passes
that would result in non-standard instructions. Because we wish
to make modifications to the structure of a microprocessor, our
investigations focus mainly on soft cores, since new structure
can be synthesized easily for soft cores.

Much previous work has focused on creating a microprocessor
that is tuned to a particular program [1]. However, these
approaches focus on actually choosing an instruction set that is
best for a particular program or set of programs, thus resulting in
an application-specific instruction-set processor, or ASIP. Our
focus is instead on standard microprocessor cores, since in many
cases standard cores provide tremendous advantages in terms of
high-quality and low-cost tool support, designer familiarity,
reduced design time, low-cost parts, and ease of future upgrades.

Some previous work focused on developing a compiler that
would generate code optimized for a particular microprocessor,
given power-per-instruction data of the microprocessor [7].
Some recent work [5] has focused on tuning a microprocessor
and application by creating an architectural description language
to describe architectural features (e.g., register file size, number
of ALU’s, etc.), and creating a compiler able to read that
language and hence optimize for the given features. This tuning
approach could be used for standard processors as well as
ASIP’s.

We have previously focused on tuning the parameterized
components external to a microprocessor, including cache, bus,
and peripheral cores, to a particular application, e.g., [4], and
have shown that order of magnitude improvements in power and
or performance are possible through such tuning. In this paper,
though, we focus on the microprocessor internals.

3. Environment
To enable a designer to tune an architecture and program, we
have found three tools to be particularly useful. Each provides a
unique view into the power consumption of
architecture/program pair. The first is the architecture view,
which gives a hierarchical summary of which microprocessor
components are consuming power as the program executes. The
second is the instruction-set view, which for a given architecture
tells us the power-per-instruction for every instruction in the
instruction-set. The third is the program/data memory view,
which tells us the power per memory location being consumed
by the executing program. We describe each in more detail in
the following sections.

We have implemented all three tools for the 8051
microcontroller. The 8051 is one of the most popular 8-bit
microcontrollers, and is used extensively in soft-core form as
part of larger embedded systems. We have developed our own
complete synthesizable soft core of the 8051 [8]. However, all
the tools could be implemented for any other microprocessor for
which a soft core is available. In the following sections, we’ ll
use the term “binary” to refer to a program file executable by the
8051 – such a file is actually known as a hex file in the context
of 8051’s, and is in the form of a text file.

3.1 Architectural view
The architectural view tool provides a hierarchical view of
where power is consumed in the microprocessor architecture
when it executes the application program. The tool’ s
components are shown in Figure 1. The ROM generator
translates a program binary into an HDL ROM entity, and
synthesizes this entity to structure. The RT-synthesizer converts
the microprocessor soft core HDL description into structure. The
microprocessor and ROM entities are connected. The Simulator
and power analyzer simulates the microprocessor executing the
program in ROM. During this time, the simulation records

Figure 1: Architectural view tool. Figure 2: Instruction-set view tool.

Microprocessor structure

Program binary

ROM generator

ROM entity

Simulator and power analyzer

“Flat” power data

Structural hierarchical power data translator and xdu
display

Microprocessor soft core

RT-synthesizer

Flat power data for instruction 3

Flat power data for instruction 2

Binaries to exe
instruction 3

Binaries to exer
instruction 2

Microprocessor structure

Binaries to exercise
instruction 1

ROM generator

ROM entity

Simulator and power analyzer

Flat power data for instruction 1

Power data collector, structural power data translator,
and xdu display

switching activity and determines the power for each net in the
synthesized system. The Structural hierarchical power data
translator and xdu display converts this “ flat” power-per-net
data into a hierarchical set of power data, where the hierarchy
corresponds to the hierarchy of entities in the synthesized
structure. The hierarchical output is formatted with the same
format of the Unix utility “du” . This allows the power results to
be used as input to the program “xdu”, which will display an
interactive tree representation of the power usage. All the
synthesis, simulation and power tools are Synopsys tools [6].
The remaining functionality is achieved using scripts.

3.2 Instruction-set view
The instruction-set view tool provides a view of the power
consumed by each instruction in the microprocessor’s
instruction-set, independent of the actual application program.
The tool’ s components are shown in Figure 2. It contains a
binary test program for each instruction. Each binary program
consists of hundreds of occurrences of the corresponding
instruction, using random data and addresses if the instruction
has such fields. Those occurrences are contained in a loop that
executes tens of times. For each binary, the tool generates a
ROM entity, connects it with the existing microprocessor
structure (which, if it doesn’t exist yet, must be synthesized from
the soft core), and runs simulation and power analysis. The
resulting power data is collected per instruction, with the power
for the loop subtracted from this data, and a power-per-
instruction table is created. Another table is created
hierarchically according to the classes of instructions
(arithmetic, moves, branches, etc.), so that xdu can again be
used to explore the data hierarchically.

Furthermore, the tool executes the structural hierarchy power
data translator, as was done in the architectural view tool, to
provide data on how each individual instruction consumes data
in the microprocessor.

All functionality outside the Synopsys synthesis, simulation and
power analysis tools is again achieved using scripts.

3.3 Program/data memory view
The program/data memory view tool provides the power
consumed by each instruction in the application program itself
(i.e., by each address in program memory corresponding to the
beginning of an instruction), and by each address in data
memory, as the program executes on the given microprocessor.
The tool’ s components are shown in Figure 3. The heart of the
tool is an instruction-set simulator, which reads and executes the
program binary. In addition to creating the simulator for the
8051, we have extended the simulator to lookup the per-

instruction power data, obtained by the instruction-set view tool,
as each instruction is simulated. Upon completion, the
instruction-set simulator outputs a file describing the frequency
of access of every memory location in program and data
memory, and the associated power of each (access frequency
times power-per-access). The program hiererarchy power
translator converts this data into hierarchical data, according to
the program block hierarchy, for examination using xdu. (This
translator currently only provides a flat view). The data memory
power data can also be grouped hierarchically according to
various regions of the memory space. For example, the 8051 has
a region holding four register sets, a bit-addressable region,
regions corresponding to external ports, etc.

3.4 Overall tuning environment
These three tools can automatically generate new power views
whenever we modify the soft core or program binaries, to assist
a designer detect candidate changes for tuning, and to examine
the effectiveness of such changes. The overall environment is
shown in Figure 4.

The instruction-set power view tool must be run whenever there
is a change to the microprocessor architecture. Because this tool
gathers data for every instruction in the instruction-set, it takes
about one day to run in our implementation.

The architectural view tool must be run whenever there is a
change in the program binary or the microprocessor core. It
requires about an hour in our implementation.

The program/memory data view tool must be run whenever
there is a change in the program binary or microprocessor core
(since it relies on the per-instruction power data generated by the
instruction-set power tool). This tool only requires seconds or
minutes to execute.

The design flow is shown in Figure 5. In response to the
provided power views, the designer can modify the architecture,
the binaries, or both. Changing the architecture requires about a
day for new power views, since all three tools must be re-run.
Changing the binaries requires only about an hour, since the
instruction-set view tool need not be re-run.

Figure 3: Program/data memory view tool.
Figure 4: Tuning environment.

Program binary

Instruction-set simulator

Per-instruction power data

Program hierarchy power translator and xdu display

Program/data memory access frequencies and power

Program binary Microprocessor core

Program/data
memory view
tool (seconds)

Architectural
view tool (1

hour)

Instruction-
set power

view tool (1
day)

Program
power data

Architecture
power data

Instruction-
set power

data

4. Experimental results
The following sections provide results from an experiment of
using the tuning environment on a particular fabricated
testbench application. The testbench consists mainly of several
arithmetic instructions followed by a square root calculation.
When synthesized, it produces a ROM entity consisting of 1162
bytes.

4.1 Architectural view
The first analysis tool that we ran was the architectural tool,
which generates a ROM from the given hex file, synthesizes and
simulates for a given period of time, and then outputs the results

in a format readable by xdu. For our model, ROM is separated
from all other components. This allows these two groups to be
synthesized separately, so that when multiple programs are
tested, only the ROM needs to be synthesized multiple times.
The synthesis of the ROM takes between a minute and an hour
depending on the size of the application. Synthesizing the rest
of the microprocessor takes approximately an hour. The results
are shown in Figure 6. These results show that most of the
power is consumed by the RAM, controller, and ALU. In this
case, the controller would be a good choice for first
examination. Although this figure shows a very simple
component configuration, any possible tree configuration can be
handled.

4.2 Instruction-set view
After creating the architectural view of power usage, we ran the
next tool in order to determine the average power per instruction
for our 8051 model. For each instruction, we ran the ROM
generator and then synthesized, simulated, and computed
average power. Not all the jump instructions are being tested at

Figure 5: Design flow when using the tuning
environment.

Figure 6: Hierarchical architectural view of power
for the testbench application.

Table 1: Average power per instruction

Instruction Power (mW)

ADDC_1 7.340834

ADD_1 7.350741

ANL_1 6.631394

CLR_1 3.76228

CPL_1 5.481627

DA 5.28897

DEC_1 5.368807

DIV 7.716592

INC_1 4.662862

MOVC_1 6.078014

MOVC_2 5.021021

MOV_1 5.577664

MOV_2 6.164267

MUL 5.522886

NOP 4.900275

ORL_1 6.954121

POP 8.103867

PUSH 8.7116

RL 4.302023

RLC 5.521254

RR 4.23862

RRC 5.307967

SETB_1 3.810065

SJMP 6.392

SUBB_1 7.740368

SWAP 3.671953

XCHD 9.479995

XCH_1 5.635007

XRL_1 6.792233

ROM

1.04 mW

ALU

1.62 mW

RAM

1.42 mW

CTRL

2.69 mW

DECODER

0.07 mW

Total

7.66 mW

Change
application

DONE

Change
architecture

Run program /
data memory view

tool

Run
architecture
view tool

Run instruction-
set view tool

Satisfied?

Yes

No

this time because they require extra considerations. The
instruction-set view tool is somewhat time consuming. It takes
approximately 15 minutes for ROM synthesis and system
simulation of each instruction. There are 111 instructions in the
8051 instruction set, thus leading to a running time of about a
day. A small sample of the output can be seen in Table 1.

In this example, the difference in power between instructions
ranges from approximately 3.8 mW to 9.5 mW. If the higher
power instructions are used frequently, it may be beneficial to
optimize those instructions in the architecture, or to change the
application to use other, lower power instructions if possible.

4.3 Program/data memory view
The power per instruction results become very useful when used
with the next step of analysis. At this point, the instruction set
simulator is run with the testbench application and statistics are
logged regarding both the program and data memory. A small
sample of the output for program memory statistics can be seen
in Table 2. This table shows data for two blocks of program
memory (as mentioned earlier, the LJMP and RET instruction
power has not yet been implemented). The first block (addresses
0 through 11) is executed quite frequently, whereas the second
block (12 through 22) is only executed approximately one fourth
as often. This view is obviously very effective in determining
what code blocks and areas of program memory are consuming
the most power. At this point, either the application could be
changed to use less power, or the microprocessor could be
changed to more efficiently implement one type of instruction
(in this case MOV_9).

The statistics logged for RAM are also useful. Table 3 shows
the areas of RAM that are accessed the most. The most
frequently accessed locations in this example are register bank 0
(Addr 0-7), location 208, and location 224. If accesses to these
regions of memory are optimized, it is obvious that a great deal
of power can be saved.

Unlike the other tools, the simulator doesn’t need to track actual
signal activity. Instead it uses the earlier-generated power-per-
instruction lookup table – similar in idea to [7]. Therefore, the
simulator is much faster than both the architectural and
instructional power tools. Simulation of 1000 instructions with
the previous tools takes approximately 15 minutes. With the
instruction set simulator, almost 50,000 instructions can be
simulated every second on a 550 MHz Intel Pentium III
machine.

4.4 Sample tuning optimizations
The data in the previous sections can be used to implement
several obvious optimizations. First, we note that RAM
consumes much power. Second, we note that most accesses to
RAM are to locations 208 and 224. Thus, if we pull those
locations out of the RAM and instead use internal registers, we
may be able to reduce power. To test this hypothesis, we
modified the core model by creating a new register inside the
CTRL module, and replaced accesses to location 224 by
accesses to that new register. We then re-ran the three view
tools, requiring about a day. The results showed that this one
change decreased overall power from 7.67 mW to 7.27 mW – a
5% decrease from just this one change. We observed that RAM
power was decreased from 1.42 mW to 0.8 mW, accompanied
by a smaller increase in CTRL power.

Many more tuning modifications are of course possible. For
example, we could partition the controller into two finite state
machines. One of these can handle the majority of instructions
and the other can be designed to efficiently handle instructions
that are most frequently executed and hence consume most
power. A good controller partitioning has been shown to reduce

Table 2: Program memory view

Addr Ins Freq Pwr Freq*Pwr

00000 LJMP 1 0 0

00003 MOV_9 108 5.46067 589.752

00005 MOV_9 108 5.46067 589.752

00007 MOV_9 108 5.46067 589.752

00009 MOV_9 108 5.46067 589.752

00011 RET 108 0 0

00012 MOV_9 27 5.46067 147.438

00014 MOV_9 27 5.46067 147.438

00016 MOV_9 27 5.46067 147.438

00018 MOV_9 27 5.46067 147.438

00020 MOV_4 27 4.83507 130.547

00022 LCALL 27 0 0

Table 3: Data memory view

Addr Purpose Accesses

00000 RegBank0 38765

00001 16127

00002 7562

00003 25012

00004 25737

00005 35160

00006 32750

00007 35143

00008 RegBank1 136

00009 136

00010 136

00011 136

00012 82

00013 82

00014 82

00015 109

00128 P0 1311

00129 SP 70317

00130 DPL 31189

00131 DPH 7977

00144 P1 161

00208 PSW 413527

00224 ACC 360949

00240 B 2598

controller power by over 50% [3][2] in many cases, and can be
implemented in a short amount of time using straightforward
techniques for rewriting the controller HDL behavioral
description.

We plan to use this environment to perform extensive tuning
optimizations on a number of applications, to determine the
range of power savings possible through such tuning.

5. Conclusion
We have developed a tool to assist a designer to tune a
microprocessor with its application. This is useful in design
methodologies that use a microprocessor soft core, when that
core will execute a single application for the core’s lifetime. An
important feature of our approach is that it does not modify the
microprocessor instruction set. Our environment provides
enough views to enable a designer to decide whether to focus on
modifying the architecture, application program, or both, as well
as to determine which part of each to focus on. The environment
is automated and mostly uses standard tools along with scripts.
The tuning environment for the 8051 is available, along with a
synthesizable 8051 soft core and an 8051 instruction-set
simulator, at the UCR Dalton project web page at
http://www.cs.ucr.edu/~dalton. The UCR Dalton project focuses
on issues related to IP-based system-on-a-chip design. Future
work may include speeding up iterations in the environment,
developing tuning strategies, and perhaps automating certain
tuning transformations.

6. Acknowledgements
This work was supported by the National Science Foundation
under grants CCR-9811164 and CCR-9876006.

References
[1] J. Fisher. Customized Instruction Sets for Embedded

Processors. Design Automation Conference, pp. 253-258,
1999.

[2] L. Benini, P. Vuillod, G. De Micheli and C. Coelho,
Synthesis of Low-Power Selectively-Clocked Systems
from High-Level Specifications. International Symposium
on System Synthesis, pp. 57-63, Nov. 1996.

[3] E. Hwang and F. Vahid and Y.C. Hsu. FSMD Functional
Partitioning for Low Power. Design Automation and Test
in Europe (DATE) Conference, pp. 22-28, March 1999.

[4] T. Givargis, J. Henkel and F. Vahid. Interface and Cache
Power Exploration for Core-Based Embedded Systems.
International Conference on Computer-Aided Design
(ICCAD), pp. 270-273, November 1999.

[5] A. Halambi, P. Grun, V. Ganesh, A. Khare, N. Dutt, A.
Nicolau. EXPRESSION: A Language for Architecture
Exploration through Compiler/Simulator Retargetability.
Design Automation and Test in Europe (DATE)
Conference, pp. 485-490, March 1999.

[6] Synopsys, http://www.synopsys.com.

[7] V. Tiwari, S. Malik, A. Wolfe. Power Analysis of
Embedded Software: A First Step Toward Sofware Power
Minimization. IEEE Transactions on VLSI Systems, vol. 2,
no. 4, pp. 437-445, 1994.

[8] The UCR Dalton Project, http://www.cs.ucr.edu/~dalton.

