
A Fast On-Chip Profiler Memory using a Pipelined Binary
Tree

Roman Lysecky, Susan Cotterell, Frank Vahid*
Department of Computer Science and Engineering

University of California, Riverside
{rlysecky, susanc, vahid}@cs.ucr.edu

*Also with the Center for Embedded Computer Systems at UC Irvine

Abstract
We introduce a novel memory architecture that can count the
occurrences of patterns on a system’s bus, a task known as
profiling. Such profiling can serve a variety of purposes, like
detecting a microprocessor’s software hot spots or frequently
used data values, which can be used to optimize various aspects
of the system. The memory, which we call ProMem, is based on a
pipelined binary search tree structure, yielding several beneficial
features, including non-intrusiveness, accurate counts, excellent
size and power efficiency, very fast access times, and the use of
standard memories with only simple additional logic. The main
limitation is that the set of potential patterns must be preloaded
into the memory. We describe the ProMem architecture, and show
excellent size and performance advantages compared with CAM
(content-addressable memory) based designs.

Keywords
Profiling, binary search tree, pipelined binary search tree, on-chip
profiler, memory, design, high-performance.

1. Introduction
Counting the frequency of occurrence of patterns on a computer
bus is a task that can be useful in a wide variety of problems. One
common use is to perform software profiling. In the domain of
computing, profiling generally means to determine the relative
frequency of code regions of interest as a program executes,
ranging from fine-grained items like individual statements or
basic blocks, to coarser-grained items such as loops or
subroutines. The term profiling has also been used to refer to
determining the relative frequencies of values that a variable takes
on during program execution. However, designing hardware that
profiles an executing application non-invasively yet accurately is
non-trivial, since updating profile counts fast enough is hard.

Most previous profiling approaches, being intended for
desktop computing systems, introduce runtime overhead. In
particular, either they “instrument” the code by inserting
additional code into the application binary [4], or they interrupt
the processor at particular intervals to sample the processor’s
registers [1][3]. However, for embedded systems, runtime
overhead is often not acceptable, since very tight real-time
constraints must be met.

A hardware technology that might seem to solve the problem
of detecting patterns in large pattern sets is content-addressable
memories (CAM). CAMs provide fast searches for a key in a
large data set. Given the data, a CAM returns the address at which
the key (data) resides in a memory. One type of CAM uses a fully
associative memory, which simultaneously compares every
location with the key. Fully associative memories have some

drawbacks for large data sets. First, their access time increases as
they become larger, since the signals for the key must be
distributed to all memory locations simultaneously. Thus, larger
CAMs have slower access times. Second, their size is greater than
regular RAM (random access memory). A typical SRAM (static
RAM) cell uses six transistors, whereas a typical fully associative
CAM cell having built-in comparison logic requires ten
transistors. Third, such a CAM may consume excessive power,
since every word of the CAM will be active on each access.

We therefore have developed a memory architecture
specifically intended for profiling. The profiler memory can be
used to keep counts of hundreds or thousands of bus patterns
simultaneously, in contrast to previous profiler hardware. Yet, the
memory has a simple interface to the bus it is monitoring, is very
size efficient, and can be composed from a collection of standard
register files or memories surrounded by a small amount of
additional logic. By using a novel pipelined binary search tree
architecture, our profiler memory achieves single-cycle
throughput, meaning complete accuracy even when monitoring
very fast sequences of patterns, such as those on the address bus
of modern embedded processors that fetch one instruction per
cycle. The binary search tree is implemented with a separate
module for each tree level, and thus scales well, becoming even
more efficient the larger it gets.

2. Problem Definition
Although we present the memory in the context of performing
code profiling by monitoring a processor’s address, the memory’s
use may actually extend to a variety of domains, such as network
monitoring, or any of a wide range of scientific applications
(chemistry, biology, physics) in which specific patterns in a
stream of data must be counted – applications that could range
from chemical analysis to DNA matching to space monitoring.

Code profiling requires that we count the frequency of target
addresses appearing on a microprocessor’s address bus, during
some given period. We assume that the set of target addresses has
been given to us. They could correspond to statements, blocks,
loops, subroutines, variables, arrays, or any combination thereof.
Our approach is independent of how these addresses are selected,
what they represent, or how they will be used.

We assume the address bus being monitored contains the
actual addresses of interest. We also assume that virtual memory
is not being used (the common case in embedded systems), so that
the physical addresses on the address bus need not be further
translated to virtual addresses. We assume target addresses could
appear as frequently as every clock cycle. We assume the
profiling circuit operates at the same (or lower) clock frequency
than the bus being monitored – specifically, we do not assume the
luxury of the profiling circuit having a faster clock than the bus.

We state the problem generally as follows. We must monitor
a bus B, having a width w, for a period of M clock cycles. During
each cycle t, a pattern pt appears on B, thus forming an input
pattern set P={p1, p2, ... pM}. A pattern is simply a combination of
w 0s and 1s on the bus. We are given a target pattern set TP={tp1,
tp2, ... tpn}; each target pattern is a combination of w 0s and 1s.
Our goal is to maintain a set of target pattern counts C={ctp1,
ctp2, ... ctpn}, such that ctpi equals the numbers of times pattern tpi
was seen on B during the period M. Specifically:

We assume our method of monitoring and counting must be
non-intrusive. In other words, we cannot introduce extra clock
cycles or change the patterns occurring over bus B. Non-
intrusiveness is important in embedded systems, since hard real-
time constraints often must be met, and precise timing of
input/output operations is often imperative. Increasing runtime by
even the smallest amount can lead to constraint violations,
radically different system behavior, and/or system failure.

We would also like our memory to be size and power
efficient, and to utilize standard memories generated by memory
compilers like those from Artisan [2].

3. A Self-Profiler Memory Architecture
The key to building an efficient self-profiler memory is to
recognize that we do not need single cycle lookup, or even single-
cycle write, but rather just single-cycle update throughput. In
other words, the memory must be able to accept a new pattern
every cycle, but the memory need not actually update the count
field of a matching target pattern until many cycles later.

3.1 Pipelined Binary Search Tree
To achieve a throughput of one new pattern every cycle, we
implement our ProMem memory structure using a pipelined
binary search tree structure to find the location of the given input
pattern and update associated pattern count. Figure 1(a) shows a
binary search tree for a target pattern set TP={a, b, c, d, e, f, g, h,
i, j, k}. We will implement the tree by using a separate module for
each tree level, with each module implementing a pipeline stage.

Figure 1(b) illustrates the target patterns that would appear in a
memory (target pattern memory, or TPM) in each module,
assuming a four stage ProMem design. We place the target
patterns in memory such that the following property holds:

A node’s children have the same high-order address bits
as the parent’s address, with the low order address bit of
each child indicating left (1) or right (0) child.

This relationship can be observed, for example, in the bolded bits
of Figure 1(b): f has address 01 in TPM2, and has left child g and
right child e with addresses 011 and 010 in TPM3.

3.2 Memory Architecture
Figure 2(a) shows the design of a single module within ProMem.
Each level's module consists of registers to latch the input pattern,
address, and enable signal (collectively referred to as the Pipeline
Register), a memory containing the target patterns (TPM), a
memory containing target patterns’ corresponding counts (CM), a
comparator, an incrementer, and some required logic.

From the pipeline register, the input pattern will be compared
against the contents of the TPMs at address As_i. The comparator
used in the comparison has two outputs: a greater than
comparison and an equal to comparison. If the current stage is
enabled by the cen_i signal and the input pattern is equal to the
target pattern, the cen_o signal will be set to 0, indicating the
pattern was found and no further searching is required. In
addition, the write port of the CM will be enabled to increment
the associated count value. However, because this requires a read
and write of the same memory location, we will need to use a
memory that has an independent read port and an independent
write port. Alternatively, if the input pattern does not match the
current target pattern, the result from the greater than comparison
will be concatenated with the input address, As_i, to create the
address for the next stage, As+1_o, and cen_o will be set to 1,

Figure 1: Conceptual view of ProMem: (a) binary search tree for
target pattern set, (b) storing each level (stage) in target pattern

memories (TPM) with corresponding memory addresses A
shown.

Figure 2: ProMem Module Design: (a) design of a module for stage
s (> 0), (b) structure of ProMem using modules (each stage is

actually twice the size of the previous stage).

(a) (b)

h

j d

b

a c e g

f i k

- - - -

1 0

0001 10 11

000001010011100 101 110 111

St
ag

e
0

St
ag

e
1

St
ag

e
2

St
ag

e
3

A1:
TPM1:

A2:
TPM2:

TPM0:

TP = {a,b,c,d,e,f,g.h.i,j,k}

h

j d

b

a c e g

f i k

∑
= 






 =

=
M

t

it
i otherwise

tppif
ctp

1 ,0
 ,1

(a)

TPMs
(2s×w)

Compare +1

> ps

 CMs
 (2s×c)

> As

> =

> cen

wr

rd 1rd

cen_ops_o As+1_o

Module Ctrl

 ps_iAs_i cen_i

dout dout

Pipeline Regs

ProMem stage s

(b)

ps cen

Stage 0

Pipeline Regs

Stage 1

Pipeline Regs

2

Stage 2

Pipeline Regs

Stage 3

Pipeline Regs

cen

Bus B being monitored

ProMem

3

ps

ps

ps

ps

4

cen

cen

cen

As

As

As

As

indicating we have not found the target pattern and need to
continue searching.

To deal with the issue of locations within our binary search
that do not contain valid addresses, we implement a simple
scheme that extends the width of the TPM by one bit. When a
valid target pattern is written to the TPM, the pattern is
concatenated with a single bit having the value of 1. Then, to
compare the target pattern to the input pattern, we also
concatenate the input pattern with a 1 bit before the pattern
reaches the comparator. If the two values when compared are
equal, we have found the target pattern. Otherwise, to determine if
the current target pattern is valid, we check the most significant
bit of the current target pattern. If the bit is 0, this indicates that
we do not have a valid target pattern, in which case we stop
searching.

To construct the entire ProMem structure, we simply connect
a module to the module for the next stage, as shown in Figure
2(b). Thus, to achieve a ProMem design that can handle a target
pattern set with 1023 entries, we will need to create a binary
search tree structure with 10 stages. However, using the modular
design for each level, extending the number of target patterns is as
simple as adding another level to the design.

We also implement a mechanism that utilizes the existing
pipeline structure for writing the target patterns into ProMem and
reading out the counts after monitoring is complete. However,
using this implementation, the entries written to ProMem must be
in sorted order. A description of how writing to and reading from
ProMem is implemented can be found in [5].

4. Results
We implemented ProMem in VHDL. We designed ProMem as a
combination of stages that are connected together in a top-level
entity. Because stage 0 of our ProMem has a different structure
then the remaining stages, stage 0 was implemented as its own
entity. The remaining stages use a single entity that contains a
generic STAGE, which specifies the stage of the instantiated
entity. Therefore, adding another stage to the design is as simple
as instantiating another stage and connecting the outputs of the
previous stage to the inputs of the new stage. We tested our
VHDL code at structural RTL level as well as the gate-level
description generated from synthesis.

Table 1 shows the area results from synthesizing an 8-stage
ProMem using 32-bit target patterns. We synthesized ProMem

with Synopsys Design Compiler using the UMC 0.18 technology
and memory libraries provided by Artisan Components [2]. The
table provides a breakdown of the area and timing for each stage,
displaying the size of the TPM and CM memories, the
ModuleController, and pipeline register, as well as the percentage
of the total design corresponding to the ModuleController. We see
that the size of each stage within the design is roughly twice that
of the previous stage, as expected since the sizes of both the TPM
and CM memories are doubled. Furthermore, for a ProMem with
255 entries, the ModuleController only consists of 3% percent of
the total design size. Furthermore, the larger the size of the
ProMem, the more efficient it becomes, as the overhead of the
ModuleController becomes much smaller compared to the size of
the memories.

Table 1 presents the access time for each stage of our 8-stage
ProMem design. For all stages, an access time of 4 ns was
achieved. More importantly, as each stage within the ProMem
grew in size, the access time did not increase, in contrast to a
CAM design. Furthermore, the access time of ProMem is
currently only limited by the access time of the memories for the
largest stage within the design. Hence, we can achieve a faster
ProMem design by using faster memories within each stage.

With respect to power, notice that our implementation
involves only one memory lookup and one comparison per stage.
Thus, ProMem does not suffer from the high power consumption
that a large fully associative CAM would require do to
simultaneously comparing every word in the memory with a key.

5. Conclusions and Future Work
Profiling is a key to numerous design problems that optimize a
program and/or architecture. An SOC platform that includes on-
chip profiling hardware, along with a software interface, can
enable profiling in real-time embedded environments. We
introduced a new memory architecture based on a pipelined
binary search tree that can monitor a bus for patterns on every
clock cycle. The memory has a simple interface to the monitored
bus, and scales very well as the memory gets larger. Such
profiling could be useful in a variety of scientific applications.

6. Acknowledgements
This work was supported in part by the National Science
Foundation (CCR-9876006), the UC MICRO program, and a
Department of Education GAANN fellowship.

7. References
[1] Anderson, J., et al. Continuous Profiling: Where Have All

the Cycles Gone? 16th ACM Symposium on Operating
Systems Design, 1997.

[2] Artisan Components, Inc. UMC .18 Technology Library,
http://www.artisan.com, 2002.

[3] Dean, J., et al. ProfileMe: Hardware Support for Instruction-
Level Profiling on Out-of-Order Processors. MICRO, 1997.

[4] Graham, S.L., P.B. Kessler and M.K. McKusick. gprof: a
Call Graph Execution Profiler. SIGPLAN Symposium on
Compiler Construction, pp. 120-126, 1982.

[5] Lysecky, R., S. Cotterell, F. Vahid. A Fast On-Chip Profiler
Memory. Design Automation Conference (DAC), pp. 28-33,
June 2002.

Table 1: ProMem area and timing results (8 stages, 32-bit target
patterns).

Stage
TPMs +

CMs
(Gates)

Pipeline
Register
(Gates)

Module
Controller

(Gates)

Module
Controller
(% total)

Total
(Gates)

Access
Time
(ns)

0 774 268 640 38% 1682 4
1 1618 274 713 27% 2606 4
2 3156 284 753 18% 4193 4
3 6468 298 812 11% 7577 4
4 12925 307 823 6% 14054 4
5 25870 313 934 3% 27117 4
6 53254 322 995 2% 54572 4
7 115477 327 1287 1% 117090 4

Total 219541 2393 6957 3% 228891 4

