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Abstract 
We introduce a novel memory architecture that can count the 
occurrences of patterns on a system’s bus, a task known as 
profiling. Such profiling can serve a variety of purposes, like 
detecting a microprocessor’s software hot spots or frequently 
used data values, which can be used to optimize various aspects 
of the system. The memory, which we call ProMem, is based on a 
pipelined binary search tree structure, yielding several beneficial 
features, including non-intrusiveness, accurate counts, excellent 
size and power efficiency, very fast access times, and the use of 
standard memories with only simple additional logic. The main 
limitation is that the set of potential patterns must be preloaded 
into the memory. We describe the ProMem architecture, and show 
excellent size and performance advantages compared with CAM 
(content-addressable memory) based designs.  
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1. Introduction 
Counting the frequency of occurrence of patterns on a computer 
bus is a task that can be useful in a wide variety of problems. One 
common use is to perform software profiling. In the domain of 
computing, profiling generally means to determine the relative 
frequency of code regions of interest as a program executes, 
ranging from fine-grained items like individual statements or 
basic blocks, to coarser-grained items such as loops or 
subroutines. The term profiling has also been used to refer to 
determining the relative frequencies of values that a variable takes 
on during program execution. However, designing hardware that 
profiles an executing application non-invasively yet accurately is 
non-trivial, since updating profile counts fast enough is hard.  

Most previous profiling approaches, being intended for 
desktop computing systems, introduce runtime overhead. In 
particular, either they “instrument” the code by inserting 
additional code into the application binary [4], or they interrupt 
the processor at particular intervals to sample the processor’s 
registers [1][3]. However, for embedded systems, runtime 
overhead is often not acceptable, since very tight real-time 
constraints must be met.  

A hardware technology that might seem to solve the problem 
of detecting patterns in large pattern sets is content-addressable 
memories (CAM). CAMs provide fast searches for a key in a 
large data set. Given the data, a CAM returns the address at which 
the key (data) resides in a memory. One type of CAM uses a fully 
associative memory, which simultaneously compares every 
location with the key. Fully associative memories have some 

drawbacks for large data sets. First, their access time increases as 
they become larger, since the signals for the key must be 
distributed to all memory locations simultaneously. Thus, larger 
CAMs have slower access times. Second, their size is greater than 
regular RAM (random access memory). A typical SRAM (static 
RAM) cell uses six transistors, whereas a typical fully associative 
CAM cell having built-in comparison logic requires ten 
transistors. Third, such a CAM may consume excessive power, 
since every word of the CAM will be active on each access. 

We therefore have developed a memory architecture 
specifically intended for profiling. The profiler memory can be 
used to keep counts of hundreds or thousands of bus patterns 
simultaneously, in contrast to previous profiler hardware. Yet, the 
memory has a simple interface to the bus it is monitoring, is very 
size efficient, and can be composed from a collection of standard 
register files or memories surrounded by a small amount of 
additional logic. By using a novel pipelined binary search tree 
architecture, our profiler memory achieves single-cycle 
throughput, meaning complete accuracy even when monitoring 
very fast sequences of patterns, such as those on the address bus 
of modern embedded processors that fetch one instruction per 
cycle. The binary search tree is implemented with a separate 
module for each tree level, and thus scales well, becoming even 
more efficient the larger it gets. 

2. Problem Definition 
Although we present the memory in the context of performing 
code profiling by monitoring a processor’s address, the memory’s 
use may actually extend to a variety of domains, such as network 
monitoring, or any of a wide range of scientific applications 
(chemistry, biology, physics) in which specific patterns in a 
stream of data must be counted – applications that could range 
from chemical analysis to DNA matching to space monitoring.  

Code profiling requires that we count the frequency of target 
addresses appearing on a microprocessor’s address bus, during 
some given period. We assume that the set of target addresses has 
been given to us. They could correspond to statements, blocks, 
loops, subroutines, variables, arrays, or any combination thereof. 
Our approach is independent of how these addresses are selected, 
what they represent, or how they will be used.  

We assume the address bus being monitored contains the 
actual addresses of interest. We also assume that virtual memory 
is not being used (the common case in embedded systems), so that 
the physical addresses on the address bus need not be further 
translated to virtual addresses. We assume target addresses could 
appear as frequently as every clock cycle. We assume the 
profiling circuit operates at the same (or lower) clock frequency 
than the bus being monitored – specifically, we do not assume the 
luxury of the profiling circuit having a faster clock than the bus.  



We state the problem generally as follows. We must monitor 
a bus B, having a width w, for a period of M clock cycles. During 
each cycle t, a pattern pt appears on B, thus forming an input 
pattern set P={p1, p2, ... pM}. A pattern is simply a combination of 
w 0s and 1s on the bus. We are given a target pattern set TP={tp1, 
tp2, ... tpn}; each target pattern is a combination of w 0s and 1s. 
Our goal is to maintain a set of target pattern counts C={ctp1, 
ctp2, ... ctpn}, such that ctpi equals the numbers of times pattern tpi 
was seen on B during the period M. Specifically: 

We assume our method of monitoring and counting must be 
non-intrusive. In other words, we cannot introduce extra clock 
cycles or change the patterns occurring over bus B. Non-
intrusiveness is important in embedded systems, since hard real-
time constraints often must be met, and precise timing of 
input/output operations is often imperative. Increasing runtime by 
even the smallest amount can lead to constraint violations, 
radically different system behavior, and/or system failure.  

We would also like our memory to be size and power 
efficient, and to utilize standard memories generated by memory 
compilers like those from Artisan [2].  

3. A Self-Profiler Memory Architecture 
The key to building an efficient self-profiler memory is to 
recognize that we do not need single cycle lookup, or even single-
cycle write, but rather just single-cycle update throughput. In 
other words, the memory must be able to accept a new pattern 
every cycle, but the memory need not actually update the count 
field of a matching target pattern until many cycles later.  

3.1 Pipelined Binary Search Tree  
To achieve a throughput of one new pattern every cycle, we 
implement our ProMem memory structure using a pipelined 
binary search tree structure to find the location of the given input 
pattern and update associated pattern count. Figure 1(a) shows a 
binary search tree for a target pattern set TP={a, b, c, d, e, f, g, h, 
i, j, k}. We will implement the tree by using a separate module for 
each tree level, with each module implementing a pipeline stage. 

Figure 1(b) illustrates the target patterns that would appear in a 
memory (target pattern memory, or TPM) in each module, 
assuming a four stage ProMem design. We place the target 
patterns in memory such that the following property holds:  

A node’s children have the same high-order address bits 
as the parent’s address, with the low order address bit of 
each child indicating left (1) or right (0) child.  

This relationship can be observed, for example, in the bolded bits 
of Figure 1(b): f has address 01 in TPM2, and has left child g and 
right child e with addresses 011 and 010 in TPM3.  

3.2 Memory Architecture 
Figure 2(a) shows the design of a single module within ProMem. 
Each level's module consists of registers to latch the input pattern, 
address, and enable signal (collectively referred to as the Pipeline 
Register), a memory containing the target patterns (TPM), a 
memory containing target patterns’ corresponding counts (CM), a 
comparator, an incrementer, and some required logic.  

From the pipeline register, the input pattern will be compared 
against the contents of the TPMs at address As_i. The comparator 
used in the comparison has two outputs: a greater than 
comparison and an equal to comparison. If the current stage is 
enabled by the cen_i signal and the input pattern is equal to the 
target pattern, the cen_o signal will be set to 0, indicating the 
pattern was found and no further searching is required. In 
addition, the write port of the CM will be enabled to increment 
the associated count value. However, because this requires a read 
and write of the same memory location, we will need to use a 
memory that has an independent read port and an independent 
write port. Alternatively, if the input pattern does not match the 
current target pattern, the result from the greater than comparison 
will be concatenated with the input address, As_i, to create the 
address for the next stage, As+1_o, and cen_o will be set to 1, 

Figure 1: Conceptual view of ProMem: (a) binary search tree for 
target pattern set, (b) storing each level (stage) in target pattern 

memories (TPM) with corresponding memory addresses A 
shown. 

 

Figure 2: ProMem Module Design: (a) design of a module for stage 
s (> 0), (b) structure of ProMem using modules (each stage is 

actually twice the size of the previous stage). 
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indicating we have not found the target pattern and need to 
continue searching.  

To deal with the issue of locations within our binary search 
that do not contain valid addresses, we implement a simple 
scheme that extends the width of the TPM by one bit. When a 
valid target pattern is written to the TPM, the pattern is 
concatenated with a single bit having the value of 1. Then, to 
compare the target pattern to the input pattern, we also 
concatenate the input pattern with a 1 bit before the pattern 
reaches the comparator. If the two values when compared are 
equal, we have found the target pattern. Otherwise, to determine if 
the current target pattern is valid, we check the most significant 
bit of the current target pattern. If the bit is 0, this indicates that 
we do not have a valid target pattern, in which case we stop 
searching. 

To construct the entire ProMem structure, we simply connect 
a module to the module for the next stage, as shown in Figure 
2(b). Thus, to achieve a ProMem design that can handle a target 
pattern set with 1023 entries, we will need to create a binary 
search tree structure with 10 stages. However, using the modular 
design for each level, extending the number of target patterns is as 
simple as adding another level to the design.  

We also implement a mechanism that utilizes the existing 
pipeline structure for writing the target patterns into ProMem and 
reading out the counts after monitoring is complete. However, 
using this implementation, the entries written to ProMem must be 
in sorted order. A description of how writing to and reading from 
ProMem is implemented can be found in [5].  

4. Results 
We implemented ProMem in VHDL. We designed ProMem as a 
combination of stages that are connected together in a top-level 
entity. Because stage 0 of our ProMem has a different structure 
then the remaining stages, stage 0 was implemented as its own 
entity. The remaining stages use a single entity that contains a 
generic STAGE, which specifies the stage of the instantiated 
entity. Therefore, adding another stage to the design is as simple 
as instantiating another stage and connecting the outputs of the 
previous stage to the inputs of the new stage. We tested our 
VHDL code at structural RTL level as well as the gate-level 
description generated from synthesis. 

Table 1 shows the area results from synthesizing an 8-stage 
ProMem using 32-bit target patterns. We synthesized ProMem 

with Synopsys Design Compiler using the UMC 0.18 technology 
and memory libraries provided by Artisan Components [2]. The 
table provides a breakdown of the area and timing for each stage, 
displaying the size of the TPM and CM memories, the 
ModuleController, and pipeline register, as well as the percentage 
of the total design corresponding to the ModuleController. We see 
that the size of each stage within the design is roughly twice that 
of the previous stage, as expected since the sizes of both the TPM 
and CM memories are doubled. Furthermore, for a ProMem with 
255 entries, the ModuleController only consists of 3% percent of 
the total design size. Furthermore, the larger the size of the 
ProMem, the more efficient it becomes, as the overhead of the 
ModuleController becomes much smaller compared to the size of 
the memories. 

Table 1 presents the access time for each stage of our 8-stage 
ProMem design. For all stages, an access time of 4 ns was 
achieved. More importantly, as each stage within the ProMem 
grew in size, the access time did not increase, in contrast to a 
CAM design. Furthermore, the access time of ProMem is 
currently only limited by the access time of the memories for the 
largest stage within the design. Hence, we can achieve a faster 
ProMem design by using faster memories within each stage. 

With respect to power, notice that our implementation 
involves only one memory lookup and one comparison per stage. 
Thus, ProMem does not suffer from the high power consumption 
that a large fully associative CAM would require do to 
simultaneously comparing every word in the memory with a key. 

5. Conclusions and Future Work 
Profiling is a key to numerous design problems that optimize a 
program and/or architecture. An SOC platform that includes on-
chip profiling hardware, along with a software interface, can 
enable profiling in real-time embedded environments. We 
introduced a new memory architecture based on a pipelined 
binary search tree that can monitor a bus for patterns on every 
clock cycle. The memory has a simple interface to the monitored 
bus, and scales very well as the memory gets larger. Such 
profiling could be useful in a variety of scientific applications. 
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Table 1: ProMem area and timing results (8 stages, 32-bit target 
patterns).  

Stage 
TPMs + 

CMs 
(Gates) 

Pipeline 
Register 
(Gates) 

Module 
Controller 

(Gates) 

Module 
Controller 
(% total) 

Total 
(Gates)

Access
Time 
(ns) 

0 774 268 640 38% 1682 4
1 1618 274 713 27% 2606 4
2 3156 284 753 18% 4193 4
3 6468 298 812 11% 7577 4
4 12925 307 823 6% 14054 4
5 25870 313 934 3% 27117 4
6 53254 322 995 2% 54572 4
7 115477 327 1287 1% 117090 4

Total 219541 2393 6957 3% 228891 4
 


