
Abstraction of Word-level Linear Arithmetic
Functions from Bit-level Component Descriptions

Pallab Dasgupta P.P. Chakrabarti Amit Nandi Sekar Krishna
Arindam Chakrabarti

Department of Computer Science & Engineering,
Indian Institute of Technology, Kharagpur, INDIA 721302

pallab,ppchak@cse.iitkgp.ernet.in

Abstract

RTL descriptions for word-level arithmetic components
typically specify the architecture at the bit-level of the reg-
isters. The problem studied in this paper is to abstract
the word-level functionality of a component from its bit-
level specification. This is particularly useful in simulation
since word-level descriptions can be simulated much faster
than bit-level descriptions. Word-level abstractions are also
useful for reducing the complexity of component matching,
since the number of words is significantly smaller than the
number of bits. This paper presents an algorithm for ab-
straction of word-level linear functions from bit-level com-
ponent descriptions. We also present complexity results for
component matching which justifies the advantage of per-
forming abstraction prior to component matching.

1. Introduction

The RTL description of a word-level arithmetic function
is typically specified at the bit-level of the registers. For
example, the RTL descriptions of a ripple-carry adder and
a carry-save adder differ at the bit-level, where as, at the
word level they both have the same functionality, namely
addition. The bit-level RTL description of an arithmetic
function is significantly more complex than its behavioral
word-level description.

The abstraction problem studied in this paper is as fol-
lows. We are given a component description which has a
set ofn words,v1 � v2 ��������� vn, as inputs and a set ofk words,
y1 � y2 ��������� yk, as outputs1. The logic implemented by the
component can be specified at the bit level. We are to deter-
mine whether the function represented by each outputyi can
be abstracted into some word-level linear arithmetic func-

1Boolean variables are treated as single bit words.

tion, fi , such thatyi
� fi

�
v1 � v2 ��������� vn � . We consider com-

ponents which are solely combinational.

The abstraction problem is closely related to the verifica-
tion problem [2, 3], but presents an important difference. In
the verification problem, we are given the word-level func-
tion, f , and are required to verify whether the component
implementsf . In the abstraction problem, we are required
to determinef .

Word-level abstraction of components is useful for sev-
eral reasons. Firstly, simulating word-level operations is
significantly faster than simulating its bit-level description.
A word-level abstraction allows us to rewrite the compo-
nent in terms of word-level operations prior to simulation.
This is an important gain, since simulators spend most of
the time in simulating combinational logic between cycles,
and many instances of a component can be present.

Secondly, a word-level representation has fewer vari-
ables, and is therefore better suited for component match-
ing and verification. Most of the literature on verification
[2, 3, 5, 7] assumes that the function,f , and the compo-
nent are specified in terms of the same set of input vari-
ables. Thus by using the same variable ordering, we are able
to convert both the component and the given function into
canonical forms such as ROBDDs [1] or BMDs [2] and test
their equivalence. Component matching is a more difficult
problem, since the names of the variables used in a compo-
nent may be different from the names of the inputs of the
function, and the mapping from the inputs of the function
to the inputs of the component is not given.

In this paper, we present an algorithm for determining
word-level abstractions for linear arithmetic components.
The algorithm works in two phases. In the first phase, we
create a *BMD [2, 3] representation of the component and
hypothesize a word-level function from it. In the second
phase, we verify the hypothesis. We show that if the hy-
pothesis fails, then the component does not have a word-
level functionality, otherwise the hypothesis yields the cor-

0-7695-0993-2/2001/$10.00 © 2001 IEEE
4

rectabstraction.
As a relatedresult,we show that thecomponentmatch-

ing problem is NP-hard for word-level linear arithmetic
functions. We furthershow that evenwhenthe numberof
inputsof thecomponentis identicalto thenumberof vari-
ablesof thegivenfunction,componentmatchingis unlikely
to be possiblein polytime, since the graph-isomorphism
problem(which is not known to be in P) reducesto this
versionof thecomponentmatchingproblem.

2 Abstraction, verification, and matching

The word-level abstractionproblem is definedas fol-
lows. We aregivena componentdescription,C, which has
a setof input words,v1 � v2 ��������� vn, andoneor moreoutput
words, w1 � w2 ��������� wk. The componentdefinesthe output
wordsasfunctionsof theinputwords,which maybeat the
bit level or at thewordlevel. Weneedto determinewhether
an outputword, wi , modelsa word-level linear arithmetic
function on the setof input words. The following exam-
ple comparesthe componentabstraction,verificationand
matchingproblems.

Example1 TheVerilog moduleshown in Fig 1 describesa cir-
cuit at the bit-level. We are to determinewhetherthe module
implementsany word-level linear arithmetic function. In this
case,the answeris yes,and the function is r � xy 	 2yz. If we
now modify the circuit slightly, say, by assigningoutput r[0]
asy[1]&q[0] insteadof y[0]&q[0] , thentheoutputword, r,
canno longerbedescribedby a lineararithmeticfunctionof x, y,
andz.

Theverificationproblemis simplerthantheabstractionprob-
lem, sincewe aregiven the function, r � xy 	 2yz, areareasked
to verify whetherthecomponentimplementsthe function. Since
the*BMD representationof a lineararithmeticfunctionis canon-
ical for a givenvariableordering,we canperformtheverification
by constructingthe*BMD representationfor thecomponentand
checkingwhetherit is identicalto the*BMD representationof the
functionwith thesamevariableordering.Fig 2 shows the*BMD
representationfor the circuit of Fig 1 with the variableordering:
y
 1�
� y
 0��� z
 1��� x
 1��� z
 0��� x
 0� .

In the componentmatchingproblemwe aregiven a function,
say, f � 3pq, and are requiredto determinewhetherthe given
componentmatchesthefunction. In this case,it doesmatch,if p
is assignedto y, andq is assignedto bothx andz. Thusfor com-
ponentmatchingwe have to determinethematchingbetweenthe
parametersof thegivenfunctionandtheinputsof thecomponent,
providedsuchacorrespondenceexistsat theword-level. �

3 The abstraction algorithm

In this section,we presentan algorithm which deter-
mineswhethera givenoutputword of a givencomponent

module shadd (r, x, y, z);
output [4:0] r;
input [1:0] x;
input [1:0] y;
input [1:0] z;
wire [3:0] q;

assign q[0] = x[0];
assign q[1] = x[1]ˆz[0];
assign q[2] = z[1]ˆ(x[1] & z[0]);
assign q[3] = x[1] & z[0] & z[1];
assign r[0] = y[0] & q[0];
assign r[1] = (y[0] & q[1])ˆ(y[1] & q[0]);
assign r[2] = (y[1] & q[1])ˆ(y[0] & q[2])

ˆ(y[0] & y[1] & q[0] & q[1]);
assign r[3] = (y[1] & q[2])ˆ(y[0] & q[3])

ˆ((q[0]|q[2]) & q[1] & y[1] & y[0]);
assign r[4] = (y[1] & q[3])ˆ((q[2]|(q[3]

& q[0])) & q[1] & y[1] & y[0]);
endmodule

Figure 1. Bit-le vel Verilog description for a
word-level cir cuit

representsany word-level linear arithmeticfunction on its
inputwords.If any suchfunctionexists,thenthealgorithm
findsit. Thealgorithmworksin two phases:

Phase1: HypothesisCreation:: In the first phase, we
constructa *BMD representationfor theoutputword
of the componentandcreatea word-level hypothesis
from it. Intuitively, ahypothesisis aguessof theword-
level function. We shall show that if the outputword
representsaword-level function,thenthehypothesisis
thesamefunction(that is, theguessis correct).How-
ever, if the outputword doesnot representany word-
level function,wemaystill getahypothesis,andhence
werequirethesecondphaseof thealgorithm.

Phase2: HypothesisVerification:: In the secondphase,
we verify whetherthe hypothesisis correct. To do
this, we createthe *BMD for the hypothesisandtest
its equivalencewith the*BMD of thecomponent.

Themostimportantpartof thealgorithmis thecreationof
thehypothesis,whichwenow detail.

3.1 Creating the hypothesis

Let f be a function on a setof n words. Let x be any
oneof thesen words.Themomentdecompositionof f with
respectto x � i � (thatis, the ith bit of x) is:

f � fx � i ��� x � i ��� � fx � i ��� fx � i � � � fx � i ��� x � i ��� fẋ � i �
fẋ � i � is called the linear momentof f with respectto x � i � .
Basedon the momentdecomposition,it is possibleto ex-
pand f into a canonicalsum-of-prductsform, which is

5

y[1]

2y[0]

z[1]

x[1]

z[0]

x[0]

0 41 2

xy + 2yz

xy + 2yz

x+2z

x+2z

x+2z

x

Figure 2. *BMD for module shad d

known as the momentexpansionof the function. For ex-
ample,themomentexpansionof the function r � xy � 2yz
from Example1 is asfollows:

r � x � 0� y � 0� � 2z� 0� y � 0� � 2x � 1� y � 0� � 4z� 1� y � 0� �
2x � 0� y � 1� � 4z� 0� y � 1� � 4x � 1� y � 1� � 8z� 1� y � 1�

It is easyto seethatthemomentexpansionof a linearfunc-
tion will never containany term involving two bits of the
sameword. Also, eachterm of the momentexpansionis
unique.

Thehypothesiscreationschemeis derivedoutof thefol-
lowing resultsaboutbinarymomentdecompositionsof lin-
eararithmeticfunctions.

Lemma 1 f is a word-level linear arithmeticfunctiononly
if the linear moment,fẋ � i � , of f with respectto x � i � , is inde-
pendentof x.
Proof: Obviously, fẋ � i � is independentof x
 i � . Supposefẋ � i � is de-
pendenton x
 j � , for somej , j �� i. Thismeansthatin themoment
expansionof function, f , we have oneor moretermswhich have
theconjunctionof x
 i � andx
 j � . Clearly, this is not possibleif f is
linear. �
Definition 1 [Word-levelabstractof term:]
Wedefinetheword-level abstractfor atermof themomentexpan-
sionasfollows. Replaceeachbit of thetermby thecorresponding
wordnamedividedby thepositionalweightof thebit in theword.
For example,anoccuranceof x
 i � will bereplacedby x � 2� i . �
Theword-levelabstractof sometermsareasfollows:

2x � 1� y � 0�! 2 " x
2 # y $ xy

40z� 2� q � 1� p 40 " z
4 # " q

2 # p $ 5zqp

10x � 0� x � 1� y � 0�% 10x " x
2 # y $ 10x2y

Definition 2 [Word-level inconsistentterms:]
Two termsof the momentexpansionof a function, f , areincon-
sistentat theword level if f theirword-level abstractsdiffer only at
thecoefficients. �
Thustwo termswith word-level abstracts4xyzand2xzyre-
spectively are inconsistent,but thosewith word-level ab-
stracts4xyzand2xzarenot.

Definition 3 [Word-levelhypothesis:]
If the momentexpansionof a function, f , containsword-level
inconsistentterms,or termswhoseword-level abstractsarenon-
linear(suchas5x2y), thenit’ s word-level hypothesisis null. Oth-
erwise,theword-level functionobtainedby replacingeachsetof
termshaving the sameword-level abstractby the word-level ab-
stract,is calledtheword-level hypothesisof f . �
It is easyto seethat the momentexpansionfor r shown
earlierhastheword-level hypothesis:r � xy � 2yz.

Theorem1 If f is a word-level linear arithmeticfunction,
then it’ s momentexpansionhas a word-level hypothesis
which is identicalto f .
Proof: If f is a word-level arithmeticfunction, then it can be
written in a canonicalsum-of-productsform at the word level,
where no term is higher order and no two terms differ only
at the coefficient. Eachof theseword-level termscontribute a
uniqueset of termsin the momentexpansionof f . For exam-
ple, a word-level term 10xyz will contribute termsof the form
10& 2ix
 i �('�& 2 jy
 j �('�& 2kz
 k�(' . Clearly, the word-level abstractsof
eachof thesetermswill be 10xyz. Thus,eachterm at the word-
level contributesa setof distinct termsin themomentexpansion,
whoseword-level abstractsare identical to the word-level term.
Theresultfollows. �
Theorem1 hasanimportantcorollary.

Corollary 1 Two distinct word-level linear arithmetic
functionscannothavethesameword-levelhypothesis.)

The reverseof Theorem1, however, is not true in gen-
eral. Even if a function hasa word-level hypothesis,it is
not necessarilya word-level lineararithmeticfunction. For
example,considerthefunction,r * , definedasfollows:

r * � x � 0� y � 0� � 2z� 0� y � 0� � 2x � 1� y � 0� � 4z� 1� y � 0�
� 2x � 0� y � 1� � 4z� 0� y � 1� � 8z� 1� y � 1�

This function differs from the function, r, whosemoment
expansionwasshown earlier, thoughr * hasthesameword-
level hypothesisas that of r. By Corollary 1, r * is not a
word-level lineararithmeticfunction.

A *BMD representationof thefunctionallowsusto find
theword-level hypothesis(if it exists)withoutactuallycon-
structingthe momentexpansionof the function. Fig 3 is

6

Algorithm Hypothesize(node:n)
Let x
 i � bethevariablewhich labelsnoden. Let l andr
denotetheleft andright childrenof n. Letwl andwr be
theweightsof theleft andright edgesrespectively. fn
denotestheword-level hypothesisat n. visited
 n� is a
flag which is setwhenthenoden is first visited
1. If visited
 n� is true,return fn.
2. Determinefr , theword-level hypothesisat r:

2.1 If r is a terminalnode,then
fr is theconstantlabelingr.

2.2Otherwise,determinefr usingHypothesize(r)
3. If fr containsany terminvolving x, thenreport

thatno word-level hypothesisexistsandExit.
4. Createaword-level function, f +r , from fr by

multiplying eachtermof fr by 2� ixwr .
5. Determinefl , theword-level hypothesisat l :

5.1 If l is a terminalnode,then
fl is theconstantlabelingl .

5.2Otherwise,determinefl usingHypothesize(l)
6. Createaword-level function, f +l , from fl by

multiplying eachtermof fl by wl .
7. If any termof f +r is inconsistentwith any termof f +l ,

reportthatno word-level hypothesisexistsandExit.
8. Createfn asthesumof eachdistinctproductterm

from thesetof termsof f +r and f +l
9. Setvisited
 n� to TrueandReturn fn.

End.

Figure 3. Algorithm Hypothesiz e

an outline of the algorithm for creatingthe hypothesisat
a node,n, of a *BMD. The word-level hypothesisat each
nodeof the*BMD of Fig 2 is shown besidethenodes.We
assumethattheleft edgeleadsto thenegativeco-factorand
theright edgeleadsto thelinearmoment.

3.2 Outline of the abstraction algorithm

Algorithm Word-Level-Abstract(component:C)
For eachoutputword v of C:
1. Createa *BMD for v
2. UseAlgorithm Hypothesizeto createa

word-level hypothesisfor v
3. If suchahypothesis,f , existsfor v, then

3.1Createa *BMD for f .
3.2Verify whetherthe*BMD for f is identical

to the*BMD for v. If they areidenticalthen
returntheword-level hypothesis,f

4. Otherwise,reportthatv is not word-level linear.
End

Theorem2 AlgorithmWord-Level-Abstract is correct and
complete. It returnsa word-level function, f , for an output
word, v, of a givencomponent,C, iff thereexistsanysuch f
which is a word-level linear arithmeticrepresentationof v.

Proof: Correctnessis guaranteedby Step3 of the algorithm,
wherewe verify the equivalencebetweenf andv beforereturn-
ing f . Completenessfollows from Theorem1. �
4 Implementation

We have developeda packagecalledCDDPfor *BMDs
andotherdecisiondiagrams.The interfaceof thepackage
is similar to thatof thekbddandboolepackagesdeveloped
at the Carnegie Mellon University, USA. CDDP supports
bit-level logical operationssuchas& (AND), | (OR), and
ˆ (EXOR),aswell asword-levelarithmeticoperationssuch
as � and , . Booleanvariablesaretreatedasone-bitwords.

Using the CDDP packagewe canconstructthe *BMD
for an outputword, v, of a given component.In order to
determinethe word-level hypothesisof v, onecanusethe
command:hypothesize v .

Table 1. Results for 16-bit and 32-bit functions

16-bitwords 32-bitwords-
#reg, BMD Cons. Hyp. BMD Cons. Hyp.

order . size time time size time time
(KB) (ms) (ms) (KB) (ms) (ms)-

1,1 . 2 2 1 5 2 1-
2,1 . 6 2 1 13 4 1-
2,2 . 6 2 2 12 3 6-
3,1 . 11 3 2 22 5 2-
3,2 . 14 3 6 28 8 12-
3,3 . 11 6 22 22 16 173-
4,1 . 15 3 1 31 7 1-
4,2 . 20 6 9 42 11 21-
4,3 . 31 17 84 64 69 511-
4,4 . 17 40 359 34 312 5557-
5,1 . 19 3 1 43 10 3-
5,2 . 24 6 8 49 14 33-
5,3 . 32 15 96 64 44 495-
5,4 . 17 43 357 69 661 11095-
5,5 . 24 641 5651 49 10344 184914

Table1 shows theresultsof usingCDDPfor word-level
functionsof differenttypes.Thefirst columndescribesthe
natureof thelinearfunction. In thetuple / #reg � order 0 , the
first entryspecifiesthenumberof registersin thefunction.
The secondentry (that is, order) specifiesthe maximum
numberof registersin a productterm(in theSOPform of
the function). We studiedthe memoryusage,BMD con-
structiontime,andtimerequiredby Hypothesize.Sincethe
setof variablesis thesame,the secondstepof abstraction
(namelyequivalencechecking)requiresconstanttime(neg-
ligible). The second,third and fourth columnsreport the
figuresfor 16-bit word-level functionsand the fifth, sixth
and seventh columnsreport the figures for 32-bit word-
level functions. The resultswere taken on a Digital Al-
pha500/333workstationwith 333MHz clock and128MB

7

RAM.
The resultsshow that Hypothesizecan efficiently ab-

stractword-level functions from bit-level componentde-
scriptions. Incorporatinghypothesizeand abstractionin
moresophisticatedBMD packagesis likely to further im-
provethespaceandtimerequirements.

5 Componentmatching

In this section,we first show thatthecomponentmatch-
ing problemfor word-level linear arithmetic functions is
NP-hardin general. We then show that even in the spe-
cial casewherewerequireaone-to-onecorrespondencebe-
tweenthewordsof thefunctionandthewordsof thecom-
ponent,the problemis not easy, sincethe graphisomor-
phismproblemreducesto thisspecialcase2.

Theorem3 The componentmatching problem for word-
level linear arithmeticfunctionsis NP-hard.
Proof: We reducethe integersetpartitionproblemto this prob-
lem. The integersetpartitionproblemrequiresus to find a parti-
tion P of a given setA �21 a1 3 a2 354645453 am 7 of m positive integers,
suchthat∑i 8 Pai � ∑i 98 Pai . In otherwords,if Sdenotesthesum
of all the integersin A, then the task is to identify a partition P
whosesumis S: 2. The integersetpartitionproblemis known to
beNP-complete[4].

Givenaninstance,A �;1 a1 3 a2 364545453 am 7 , of theintegersetpar-
tition problem,we createtwo lineararithmeticfunctions,namely
f � a1x1 	 a2x2 	<�5�6�=	 amxm andg �>& S: 2' y1 	?& S: 2' y2, where
S is the sumof all integersin A. Clearly, a valid partitionexists
iff we candefinea many-to-onemappingfrom the setof words
x1 354645453 xm of f to thepair of wordsy1 3 y2 of g, suchthat thesum
of thecoefficientsof thexi whicharemappedto y1 is S: 2, andthe
sumof theremainingcoefficients(correspondingto theremaining
wordsof f) alsoaddup to S: 2.

It is easyto write a component,C, implementingf in polyno-
mial time by consideringsomeconstantdimensionfor thewords
x1 354645453 xm. Thenasolutionto theintegersetpartitionproblemex-
istsiff asolutionto theproblemof matchingthefunctiong with C
exists.Theresultfollows. �
Theorem4 GRAPH ISOMORPHISM ∝ COMPONENT
MATCHING
Proof: Consideraninstanceof thegraphisomorphismproblem,
whereGa �@& Va 3 Ea ' andGb �@& Vb 3 Eb ' arethegivengraphs.Obvi-
ously, AVa AB�>AVb A and AEa AB�CAEb A , otherwisethegraphsareclearly
not isomorphic.

We constructa word-level linear arithmeticfunction, fa from
Ga asfollows. For eachedge & vi 3 v j 'ED Ea, we constructa word-
level term viv j . fa is definedas the sum of theseterms. For
example,if Ea �@1F& v1 3 v3 ' 3 & v1 3 v4 ' 3 & v3 3 v4 ' 3 & v2 3 v3 ' 3 & v2 3 v4 ' 7 , then
fa � v1v3 	 v1v4 	 v3v4 	 v2v3 	 v2v4. Clearly, we canconstruct
fa in O &BAEa A ' time. Weconstructfb from Gb in asimilarway.

2Curiously, thegraphisomorphismproblemisneitherknown to bein P,
norknown to beNP-Complete,evenafterseveraldecadesof research[4, 6]

If thegraphsareisomorphic,thentherewill exist a bijection,G
from Va to Vb, such that for each i and j , & vi 3 v j 'HD Ea if f& G & vi ' 3 G & v j '5'ID Eb. It is easyto seethat by replacingeachvi

in fa by
G & vi ' , weget fb. Thusif thegraphsareisomorphic,then

fb matchesfa.
It is easyto seethat fa and fb arein canonicalsum-of-products

form. Thus, fb matchesfa only if thereis a bijection from the
words in fa to the words in fb which unifies the two functions.
Clearly, suchabijectionshows thatGa andGb areisomorphic.

Thus,Ga andGb areisomorphicif andonly if fb matchesfa.
Next we constructan equivalentcomponentdescription,C, from
fb. This is possiblein time polynomialin the lengthof fb, if we
considersomeconstantdimensionfor eachword in fb.

Clearly, Ga and Gb are isomorphic iff the componentC
matchesfa. �

Theorem4 showsthatnoknown polytimealgorithmcan
beusedfor thecomponentmatchingproblemevenwhena
one-to-onecorrespondenceis sought. However, the num-
ber of wordsin a typical componentis small comparedto
thenumberof bit-level variablestakentogether. Therefore
thebetteroptionappearsto beto do word-level abstraction
followedby componentmatchingat theword-level, rather
thanattemptingcomponentmatchingat thebit-level.

Acknowledgements

TheauthorsacknowledgeSynopsys(India) for partialsupport
of this work. P. P. Chakrabartiacknowledgesthe Dept. of Sci
& Tech,Govt. of India for partial supportof this work. Pallab
DasguptaacknowledgestheIndianNationalScienceAcademyfor
partialsupportof thiswork.

References

[1] Bryant,R.E.,SymbolicBooleanmanipulationwith ordered
binary decisiondiagrams,ACM ComputingSurveys, 24, 3,
293-318,1992.

[2] Bryant,R.E.,andChen,Y.A., Verificationof arithmeticcir-
cuitswith binarymomentdiagrams,In Proceedingsof 32th
DAC, 535-541,1995.

[3] Chen,Y.A., andBryant,R.,ACV: An ArithmeticCircuit Ver-
ifier, In Proceedingsof ICCAD’96, 361-365,1996.

[4] Garey, M.R., andJohnson,D.S.,Computers andIntractabil-
ity: A guide to the theoryof NP-Completeness, New York
Press,1979.

[5] Malik, S., Wang,A.R., Brayton,R., andS-Vincentelli,A.,
Logic Verification using Binary Decision Diagramsin a
Logic SynthesisEnvironment.In Proceedingsof ICCAD, 6-
9, 1988.

[6] Papadimitriou,C.H., ComputationalComplexity, Addison-
Wesley, 1994.

[7] Smith,J.,andMicheli, G.D.,PolynomialMethodsfor Com-
ponentMatching and Verification. In Proceedingsof IC-
CAD’98, 1998.

8

