Abstraction of Word-level Linear Arithmetic
Functions from Bit-level Component Descriptions

Pallab Dasgupta P.P. Chakrabarti Amit Nandi Sekar Krishna
Arindam Chakrabarti
Department of Computer Science & Engineering,
Indian Institute of Technology, Kharagpur, INDIA 721302
pallab,ppchak@cse.iitkgp.ernet.in

Abstract tion, fi, such that; = fi(vi,V2,...,Vn). We consider com-
ponents which are solely combinational.

RTL descriptions for word-level arithmetic components The abstraction problem is closely related to the verifica-
typically specify the architecture at the bit-level of the reg- tion problem [2, 3], but presents an important difference. In
isters. The problem studied in this paper is to abstract the verification problem, we are given the word-level func-
the word-level functionality of a component from its bit- tion, f, and are required to verify whether the component

level specification. This is particularly useful in simulation implementsf. In the abstraction problem, we are required
since word-level descriptions can be simulated much fasterto determinef.

than bit-level descriptions. Word-level abstractions are also

useful for reducing the complexity of component matching, erg) reasons. Firstly, simulating word-level operations is
since the number of words is significantly smaller than the ;g hificantly faster than simulating its bit-level description.
number of bits. This paper presents an algorithm for ab- A"\yord-level abstraction allows us to rewrite the compo-
straction of word-level linear functions from bit-level com- .nt in terms of word-level operations prior to simulation.

ponent descriptions. We also present complexity results forthis is an important gain, since simulators spend most of

component matching which justifies the advantage of per-yhe time in simulating combinational logic between cycles,
forming abstraction prior to component matching. and many instances of a component can be present.

Secondly, a word-level representation has fewer vari-

ables, and is therefore better suited for component match-
1. Introduction ing and verification. Most of the literature on verification
[2, 3, 5, 7] assumes that the functioh, and the compo-
nent are specified in terms of the same set of input vari-
ables. Thus by using the same variable ordering, we are able
to convert both the component and the given function into
canonical forms such as ROBDDs [1] or BMDs [2] and test
their equivalence. Component matching is a more difficult
problem, since the names of the variables used in a compo-
nent may be different from the names of the inputs of the
function, and the mapping from the inputs of the function
to the inputs of the component is not given.

Word-level abstraction of components is useful for sev-

The RTL description of a word-level arithmetic function
is typically specified at the bit-level of the registers. For
example, the RTL descriptions of a ripple-carry adder and
a carry-save adder differ at the bit-level, where as, at the
word level they both have the same functionality, namely
addition. The bit-level RTL description of an arithmetic
function is significantly more complex than its behavioral
word-level description.

The abstraction problem studied in this paper is as fol-) i o
lows. We are given a component description which has a !N this paper, we present an algorithm for determining
set ofn words,vi, Va, ..., Vi, as inputs and a set &fwords, Word—Ieve_I abstractlops for linear arlthmetlc_ components.
Y1,¥2,...,Vk, as outputs The logic implemented by the The algorithm works in two phas_es. In the first phase, we
component can be specified at the bit level. We are to deter-Create & *BMD [2, 3] representation of the component and
mine whether the function represented by each owtman hypothesize a word-level function from it. In the second

be abstracted into some word-level linear arithmetic func- Phase, we verify the hypothesis. We show that if the hy-
pothesis fails, then the component does not have a word-

1Boolean variables are treated as single hit words. level functionality, otherwise the hypothesis yields the cor-

0-7695-0993-2/2001/$10.00 © 2001 |[EEE

rectabstraction.

As a relatedresult,we showv thatthe componenmatch-
ing problemis NP-hardfor word-level linear arithmetic
functions. We further shawv that even whenthe numberof
inputsof the components identicalto the numberof vari-
ablesof thegivenfunction,componenmatchings unlikely
to be possiblein polytime, since the graph-isomorphism
problem(which is not known to be in P) reducesto this
versionof thecomponentmatchingproblem.

2 Abstraction, verification, and matching

The word-level abstractionproblemis definedas fol-
lows. We aregivena componentescription,C, which has
a setof inputwords,vi,vs,...,Vy, andoneor moreoutput
words, wy,Wo,...,Wk. The componenidefinesthe output
wordsasfunctionsof theinputwords,which maybeatthe
bit level or atthewordlevel. We needto determinavhether
an outputword, wi, modelsa word-level linear arithmetic
function on the setof input words. The following exam-
ple compareghe componentabstraction,verification and
matchingproblems.

Example 1 The Verilog moduleshawn in Fig 1 describes cir-
cuit at the bit-level. We are to determinewhetherthe module
implementsary word-level linear arithmetic function. In this
case,the answeris yes, andthe functionis r = xy+ 2yz If we
nov modify the circuit slightly, say by assigningoutput r[0]
asy[1]&q[0] insteadof y[0]&q[0] , thentheoutputword,r,
canno longerbe describedy alineararithmeticfunctionof x, y,
andz.

The verificationproblemis simplerthanthe abstractiorprob-
lem, sincewe aregiventhe function,r = xy+ 2yz, areareasled
to verify whetherthe componentmplementsthe function. Since
the*BMD representationf alineararithmeticfunctionis canon-
ical for a givenvariableordering,we canperformthe verification
by constructinghe *BMD representatiofor the componentand
checkingwhetherit is identicalto the*BMD representationf the
functionwith the samevariableordering.Fig 2 shawvs the *BMD
representatioffor the circuit of Fig 1 with the variableordering:
y[1] < y[0] < Z[1] < X[1] < Z[0] < X[0].

In the componenmatchingproblemwe aregiven a function,
say f = 3pg, andarerequiredto determinewhetherthe given
componentnatcheghefunction. In this casejt doesmatch,if p
is assignedo y, andq is assignedo bothx andz. Thusfor com-
ponentmatchingwe have to determinethe matchingbetweerthe
parametersf the givenfunctionandtheinputsof thecomponent,
providedsucha correspondencexistsattheword-level. O

3 The abstraction algorithm

In this section,we presentan algorithm which deter
mineswhethera given outputword of a given component

module shadd (r, x, y, 2z);
output [4:0] r1;
input [1:0] x;
input [1:0] v;
input [1:0] z
wire [3:0] q;
assign g[0] = x[0];
assign q[1] = x[1]z[0];
assign q[2] = z[1]"(x[1] & z[0));
assign q[3] = x[1] & z[0] & z[1];
assign r[0] = y[0] & q[O];
assign r[1] = (y[0] & q[1])(y[1] & q[Q]);
assign 2] = (y[1] & q[1])(y[0] & q[2])
_ "WO0] & y[l] & q[0] & q[l]);
assign 3] = (y[1] & q[2])(y[0] & q[3))
_ “((a[O]|al2]) & q[1] & y[1] & y[O]);
assign r[4] = (y[1] & ql3])((al2]l(q[3]
& q0])) & ql] & y[1] & y[O]);
endmodule

Figure 1. Bit-level Verilog description for a

word-level circuit

representgary word-level linear arithmeticfunction on its
inputwords.If ary suchfunctionexists,thenthe algorithm
findsit. Thealgorithmworksin two phases:

Phasel: HypothesisCreation:: In the first phase, we
constructa *BMD representatioffior the outputword
of the componentnd createa word-level hypothesis
fromit. Intuitively, ahypothesiss aguessf theword-
level function. We shall shav thatif the outputword
representaword-level function,thenthehypothesiss
the samefunction (thatis, the guesss correct). How-
ever, if the outputword doesnot representiny word-
level function,we maystill getahypothesisandhence
we requirethe seconphaseof thealgorithm.

Phase2: HypothesisVerification:: In the secondphase,
we verify whetherthe hypothesisis correct. To do
this, we createthe *BMD for the hypothesisandtest
its equivalencewith the*BMD of thecomponent.

Themostimportantpartof the algorithmis the creationof
thehypothesiswhichwe now detail.

3.1 Creatingthe hypothesis

Let f be a functionon a setof n words. Let x be ary
oneof thesen words. Themomentdecompositiomf f with
respecto X[i] (thatis, theit" bit of x) is:

fo= fa+xil- (i —)

fyi) is calledthe linear momentof f with respectto x[i].
Basedon the momentdecompositionit is possibleto ex-
pand f into a canonicalsum-of-prductsform, which is

Xy + 2yz

Figure 2. *BMD for module shadd

known asthe momentexpansionof the function. For ex-
ample,the momentexpansionof the functionr = xy+ 2yz
from Examplel is asfollows:

X[O)[0] +27{0]y[0] + 2x[1]y[0] + 47 1]y[0] +
2X[0]y[1] + 4Z{0)y[1] + 4x1]y[1] + 87 1]y[1]

r =

It is easyto seethatthe momentexpansionof alinearfunc-
tion will never containary term involving two bits of the
sameword. Also, eachterm of the momentexpansionis
unique.

Thehypothesigreationschemes derivedoutof thefol-
lowing resultsaboutbinary momentdecompositionsf lin-
eararithmeticfunctions.

Lemmal f isaword-levellinear arithmeticfunctiononly
if thelinear moment.fy;;, of f with respecto x[i], is inde-
pendenbf x.

Proof: Olviously, fyi) is independenof x[i]. Supposefy;) is de-
pendenbnx[j], for somej, j #i. Thismeanshatin themoment
expansionof function, f, we have oneor moretermswhich have
the conjunctionof X[i] andx[j]. Clearly, thisis not possibleif f is
linear O

Definition 1 [Word-level abstiact of term:]

We definetheword-level abstractor atermof themomentexpan-
sionasfollows. Replacesachbit of thetermby the corresponding
word namedividedby the positionalweightof thebit in theword.
For example,anoccurancef x[i] will bereplacedy x- 2o

Theword-level abstiact of sometermsareasfollows:

20 = 2(3)y = x
a0g2eyp = 40(3)(3)p = Szp
104Opq1y[0] = 10)(()—2<)y - 10¢y

Definition 2 [Word-levelinconsistenterms:]

Two termsof the momentexpansionof a function, f, areincon-
sistentattheword level iff theirword-level abstractsliffer only at
thecoeficients.O

Thustwo termswith word-level abstractgixyzand2xzyre-
spectvely are inconsistentput thosewith word-level ab-
stractsdxyzand2xzarenot.

Definition 3 [Word-level hypothesis:]

If the momentexpansionof a function, f, containsword-level
inconsistenterms,or termswhoseword-level abstractsare non-
linear (suchas5x2y), thenit’s word-level hypothesiss null. Oth-
erwise,the word-level function obtainedby replacingeachsetof
termshaving the sameword-level abstracty the word-level ab-
stract,is calledtheword-level hypothesiof f. O

It is easyto seethat the momentexpansionfor r shovn
earlierhastheword-level hypothesisr = xy+ 2yz

Theorem1 If f is a word-levellinear arithmeticfunction,

then it's momentexpansionhas a word-level hypothesis
which is identicalto f.

Proof: If f is a word-level arithmeticfunction, thenit canbe

written in a canonicalsum-of-productdorm at the word level,

where no term is higher order and no two terms differ only

at the coeficient. Eachof theseword-level termscontritute a

uniqueset of termsin the momentexpansionof f. For exam-

ple, a word-level term 10xyz will contritute terms of the form

10(2'x[i])(21y]j])(2*zK]). Clearly, the word-level abstractsof

eachof thesetermswill be 10xyz Thus,eachterm at the word-

level contributesa setof distincttermsin the momentexpansion,
whoseword-level abstractsare identical to the word-level term.

Theresultfollows. O

Theoreml hasanimportantcorollary.

Corollary 1 Two distinct word-level linear arithmetic
functionscannothavethe sameword-level hypothesisO

The reverseof Theoreml, however, is not truein gen-
eral. Evenif a function hasa word-level hypothesisijt is
not necessarilya word-level linear arithmeticfunction. For
example,considerthe function,r’, definedasfollows:

r' = xX0}y[0] +240]y[0] + 2x{1]y[0] + 4Z[1}y[0]
+2x[0]y[1] + 470)y[1] + 82[1)y[1]

This function differs from the function, r, whosemoment
expansiorwasshown earlier thoughr’ hasthe sameword-
level hypothesisasthat of r. By Corollary 1, r’ is not a
word-level lineararithmeticfunction.

A *BMD representationf thefunctionallows usto find
theword-level hypothesigif it exists)withoutactuallycon-
structingthe momentexpansionof the function. Fig 3 is

Algorithm Hypothesize(noden)
Letx[i] bethevariablewhich labelsnoden. Let! andr
denotetheleft andright childrenof n. Letw; andw; be
theweightsof theleft andright edgesrespectivelyf,
denotesheword-level hypothesist n. visited[n] is a
flag which is setwhenthenoden is first visited
1. If visited[n] is true,return fy,.
2. Determinef;, theword-level hypothesistr:
2.11If r is aterminalnode then
f; is theconstantabelingr.
2.2 Otherwisedeterminef; usingHypothesize(r)
3. If f; containsary terminvolving x, thenreport
thatno word-level hypothesisxistsandExit.
4. Createaword-level function, f/, from f; by
multiplying eachtermof f, by 2~ xw.
5. Determinef|, theword-level hypothesistl|:
5.11f | is aterminalnode then
f| is the constantabelingl.
5.2 Otherwisedeterminef; usingHypothesize(l)
6. Createaword-level function, f/, from f; by
multiplying eachtermof f| by w;.
7.If ary termof f! isinconsistentvith ary termof f/,
reportthatno word-level hypothesiexistsandExit.
8. Createfy, asthe sumof eachdistinctproductterm
from the setof termsof f/ and f/
9. Setvisited|n] to TrueandReturnfy.
End.

Figure 3. Algorithm Hypothesiz e

an outline of the algorithmfor creatingthe hypothesisat
anode,n, of a*BMD. Theword-level hypothesisat each
nodeof the*BMD of Fig 2 is shawvn besidethe nodes.We
assumehattheleft edgeleadsto the negative co-factorand
theright edgeleadsto thelinearmoment.

3.2 Outline of the abstraction algorithm

Algorithm Word-Level-Abstract(componen€)
For eachoutputword v of C:
1. Createa*BMD for v
2. UseAlgorithm Hypothesizéo createa
word-level hypothesidor v
3. If suchahypothesisf, existsfor v, then

3.1Createa*BMD for f.

3.2 Verify whetherthe*BMD for f isidentical
tothe*BMD for v. If they areidenticalthen
returntheword-level hypothesis f

4. Otherwisereportthatv is not word-level linear
End

Theorem 2 AlgorithmWbrd-Level-Abstactis correctand
complete It returnsa word-level function, f, for an output
word, v, of a givencomponentC, iff there existsanysud f
whicdh is a word-levellinear arithmeticrepresentatiorof v.

Proof. Correctnesss guaranteedy Step3 of the algorithm,
wherewe verify the equivalencebetweenf andv beforereturn-
ing f. Completenes®llows from Theoreml. O

4 Implementation

We have developeda packagecalledCDDPfor *BMDs
andotherdecisiondiagrams.The interfaceof the package
is similar to thatof the kbddandboolepackagesieveloped
at the Carngjie Mellon University, USA. CDDP supports
bit-level logical operationssuchas& (AND), | (OR), and
" (EXOR),aswell asword-level arithmeticoperationsuch
as+ andx. Booleanvariablesaretreatedasone-bitwords.

Using the CDDP packagewe canconstructthe *BMD
for an outputword, v, of a given component.In orderto
determinethe word-level hypothesisf v, one canusethe
commandhypothesize v.

Table 1. Results for 16-bit and 32-bit functions

16-bitwords 32-bitwords

(#reg, | BMD | Cons. | Hyp. | BMD | Cons. Hyp.
order) size | time | time size time time

(KB) | (ms) | (ms)| (KB) | (ms) (ms)
(1.1) 2 2 1 5 2 1
{(2,1) 6 2 1 13 4 1
(2,2) 6 2 2 12 3 6
(3,1) 11 3 2 22 5 2
(3,2) 14 3 6 28 8 12
(3,3) 11 6 22 22 16 173
(4,1) 15 3 1 31 7 1
(4,2) 20 6 9 42 11 21
(4,3) 31 17 84 64 69 511
(4,4) 17 40 359 34 312 5557
{5,1) 19 3 1 43 10 3
(5,2) 24 6 8 49 14 33
(5,3) 32 15 96 64 44 495
{5,4) 17 43 | 357 69 661 | 11095
(5,5) 24 641 | 5651 49 | 10344 | 184914

Table 1 shawstheresultsof usingCDDP for word-level
functionsof differenttypes. Thefirst columndescribeshe
natureof thelinearfunction. In thetuple (#reg, order), the
first entry specifieshe numberof registersin the function.
The secondentry (that is, order) specifiesthe maximum
numberof registersin a productterm (in the SOPform of
the function). We studiedthe memoryusage,BMD con-
structiontime, andtime requiredby HypothesizeSincethe
setof variablesis the same the secondstepof abstraction
(namelyequivalencechecking)equiresconstantime (neg-
ligible). The secondthird andfourth columnsreportthe
figuresfor 16-bit word-level functionsand the fifth, sixth
and seventh columnsreport the figures for 32-bit word-
level functions. The resultswere taken on a Digital Al-
pha500/333workstationwith 333 MHz clock and128MB

RAM.

The resultsshav that Hypothesizecan efficiently ab-
stractword-level functionsfrom bit-level componentde-
scriptions. Incorporatinghypothesizeand abstractionin
more sophisticateMD packagess likely to furtherim-
provethespaceandtime requirements.

5 Componentmatching

In this sectionwe first shav thatthe componenmatch-
ing problemfor word-level linear arithmetic functionsis
NP-hardin general. We then showv that evenin the spe-
cial casewherewe requirea one-to-onecorrespondendae-
tweenthe wordsof the functionandthe wordsof the com-
ponent,the problemis not easy since the graphisomor
phismproblemreducedo this specialcasé.

Theorem3 The componenimatding problem for word-
levellinear arithmeticfunctionsis NP-had.

Proof: We reducethe integer setpartition problemto this prob-
lem. Theinteger setpartition problemrequiresusto find a parti-
tion P of agivensetA= {aj,a,...,am} of m positve integers,
suchthatyicpai = Yigpa. In otherwords,if Sdenoteghesum
of all the integersin A, thenthe taskis to identify a partition P
whosesumis S/2. Theinteger setpartition problemis known to
be NP-completd4].

GivenaninstanceA = {aj,ay,...,am}, of theintegersetpar
tition problem,we createtwo linear arithmeticfunctions,namely
f =aixg +apxo+ -+ amxm andg = (S/2) y1 + (S/2) y», where
Sis the sumof all integersin A. Clearly a valid partition exists
iff we candefinea mary-to-onemappingfrom the setof words
X1,-..,Xm Of f to the pair of wordsy1,y» of g, suchthatthe sum
of thecoeficientsof thex; whicharemappedo y; is S/2, andthe
sumof theremainingcoeficients(correspondingo theremaining
wordsof f) alsoaddupto S/2.

It is easyto write acomponentC, implementingf in polyno-
mial time by consideringsomeconstandimensionfor the words
X1,--.,Xm. Thenasolutionto theintegersetpartitionproblemex-
istsiff a solutionto the problemof matchingthefunctiong with C
exists. Theresultfollows. O
Theorem4 GRAPH ISOMORPHISM [1 COMPONENT
MATCHING
Proof: Consideraninstanceof the graphisomorphisnproblem,
whereG; = (Va, Ea) andGp = (W, Ep) arethegivengraphs Obvi-
ously |Va| = |Vp| and|E;| = |Ep|, otherwisethegraphsareclearly
notisomorphic.

We constructa word-level linear arithmeticfunction, f5 from
G, asfollows. For eachedge(vi,vj) € Ea, we constructa word-
level termvjvj. f5 is definedas the sum of theseterms. For
example|if Ea = {(v1,V3), (V1,Va), (V3,Va), (V2,V3), (V2,Va) }, then
fa = Viv3 + V1V + Vav4 + Vov3 + Vovy. Clearly we canconstruct
fa in O(|Ea|) time. We constructfy, from G in a similarway.

2Curiously thegraphisomorphisnproblemis neitherknown to bein P,
norknown to beNP-Completegvenafterseveraldecadesf research[46]

If the graphsareisomorphic,thentherewill exist a bijection,
F from V; to Vy, suchthat for eachi and j, (vi,vj) € Eq iff
(F(vi), F(vj)) € Ep. It is easyto seethat by replacingeachy;
in fa by #(v;), we get f,,. Thusif thegraphsareisomorphicthen
fp, matchesf,.

It is easyto seethat f5 and fy, arein canonicasum-of-products
form. Thus, f, matchesf; only if thereis a bijection from the
wordsin f; to thewordsin fy, which unifiesthe two functions.
Clearly, suchabijectionshawvs thatG,; and Gy, areisomorphic.

Thus,G; and Gy, areisomorphicif andonly if f, matchesfs.
Next we constructan equivalentcomponentdescriptionC, from
fp. Thisis possiblein time polynomialin the lengthof fy, if we
considersomeconstantdimensiorfor eachwordin fy,.

Clearly Gz and G, are isomorphic iff the componentC
matchesfy. O

Theorem4 shawvsthatno known polytimealgorithmcan
be usedfor the componentnatchingproblemevenwhena
one-to-onecorrespondencis sought. However, the num-
ber of wordsin a typical componenis small comparedo
the numberof bit-level variablestakentogether Therefore
the betteroptionappeargo beto do word-level abstraction
followed by componentnatchingat the word-level, rather
thanattemptingcomponentnatchingat the bit-level.

Acknowledgements

The authorsacknavledge SynopsygIndia) for partial support
of this work. P. P. Chakrabartiacknavledgesthe Dept. of Sci
& Tech,Govt. of India for partial supportof this work. Pallab
DasguptacknavledgeshelndianNationalScienceAcademyfor
partialsupportof this work.

References

[1] Bryant,R.E., SymbolicBooleanmanipulationwith ordered
binary decisiondiagrams ACM ComputingSurvgs 24, 3,
293-318,1992.

[2] Bryant,R.E.,andChen,Y.A., Verificationof arithmeticcir-
cuitswith binary momentdiagramsn Proceeding®f 32th
DAC, 535-541,1995.

[3] Chen,Y.A.,andBryant,R.,ACV: An ArithmeticCircuit Ver-
ifier, In Proceedingsf ICCAD'96, 361-365,1996.

[4] Garegy, M.R.,andJohnsonD.S.,Computes andIntractabil-
ity: A guideto the theory of NP-CompletenesdNew York
Press1979.

[5] Malik, S., Wang,A.R., Brayton, R., and S-Vincentelli, A.,
Logic Verification using Binary Decision Diagramsin a
Logic Synthesi€Environment.In Proceeding®f ICCAD, 6-
9,1988.

[6] Papadimitriou,C.H., ComputationalCompleity, Addison-
Wesley, 1994.

[7]1 Smith,J.,andMicheli, G.D., PolynomialMethodsfor Com-
ponentMatching and Verification. In Proceedingsof IC-
CAD’98, 1998.

