Freedom CPU Project
F-CPU Design Team

Draft and Request For Comment

F-CPU MANUAL REV. 0.2.5

I_I

“Design and let design”

Please visit us at http://www.f-cpu.org and send comments to the F-CPU mailing list at
f-cpu@seul.org.

0.1 Copyright and distribution licence :

This manual is distributed under the terms of the GFDL, or ”GNU Free Documentation License”, which
text can be found on the GNU web site (http://www.gnu.org). A copy of this licence is included in this
package (fdl.htm).

Copyright (c) 1999-2002 The F-CPU Group Design Team.
Permission is granted to copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.1 or any later version published by
the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and
no Back-Cover Texts. A copy of the license is included in the section entitled
"GNU Free Documentation License".

0.2 Foreword :

Although the overall specifications are getting slowly more stable, everything in this document is furiously
preliminary and changes often without notice. Please keep in touch with the group on the mailing list
and check the latest updates on the official F-CPU web site.

This document is (C) 1999-2002 The F-CPU Group Design Team and is a work of collaboration.
Anybody can participate to the F-CPU effort and become a team member by subscribing to the mailing
lists and taking part to the discussions. You are welcome to submit your ideas and report errors. We
are conscious that this document always contains errors but we are working on (or around ?) them
constantly.

This manual has been translated to several file formats and may additionally lack some parts or
contain some errors. It is very incomplete even though it’s becoming huge !

0.3 Revision history :

o Created July 8, 1999 by Whygee@f-cpu.org (Yann Guidon) with extracts from Mathias Brossard’s
RFC.

o July 10 : added some more.

o 11th : adapted for converstion to PDF with HTMLDOC.

o 8/2,8/8,8/9, 8/13 : added yet some more.

o 8/25 : reworked a bit (what-why, TTA, endianness, paging, jump station...)

o 11/5: merged with some other non-architectural contents.

o 11/16 : revamped it all for HTML back.

0 2/27: major revision of the instruction encoding. Imm6 disappears and most of the old errors/mistypings
are corrected.

o 3/15 : Adapted the CPP macro processing (at last)

o 12/18/2000 : Olivier Jean finally published his Latex version of manual

o 12/24/2000 : YG patches. very incomplete !

o 12/30/2000 : YG patches again in Berlin.

o 1/*/2001 : beginning of a french translation, redrawing of the illustrations, major update....
o 02/05/2002 : starting new organisation of the manual (Cedric BAIL, bail_c@epita.fr).

o 04/19/2002 : updating the manual with Michael RIEPE recommandation.

o 04/30/2002 : adding index.

A lot of comments are also given by other people, sometimes anonymouns, on the mailing lists.

0.4 Missing :
* alphabetic-ordered instruction set map
* instruction set table, sorted by hex. opcode value
* more examples in the instruction descriptions
* IRQ/traps
* SR map
* parts 8 and 9

* and a lot of other stuffs !!!
0.5 Hyperlink jump station :

HTTP :

* The F-CPU main sites : http://www.f-cpu.org and http://www.f-cpu.de
* The latest update of the F-CPU Manual : http://www.f-cpu.seul.org

* The latest CVS-Snapshots at: http://f-cpu.gaos.org

The mailing lists :

* http://www.seul.org/archives/f-cpu/f-cpu (main list)

* http://lists.april.org/wws/info/f-cpu_france (french list)

* http://www.eGroups.com/list/fcpu-ger (german list, outdated)

Mailing lists ar

Contents

0.1 Copyright and distribution licence : 2

0.2 Foreword : e e e e 2

0.3 Revision history : L 2

0.4 MisSIng : 3

0.5 Hyperlink jump station : Lo 3

I The F-CPU Project, description and philosophy 11

1 Description of the F-CPU project 12

2 Frequently Asked Questions 14

2.1 Introduction e e 14

2.2 Philosophy e 14

2.3 Tools e 16

2.4 Architecture 16

2.5 Performance e 17

2.6 Compatibility L e 17

2.7 Cost/Price/Purchasing L 18

3 The genesis of the F-CPU Project 19
3.1 The Freedom CPU Architecture : A GNU/GPL’ed high-performance 64-bit microprocessor

developed in an open, Web-wide collaborative environment. 19

3.1 History e 19

3.1.2 The Freedom GNU/GPL’ed architecture 20

3.1.3 Developing the Freedom architecture : issues and challenges 20

3.1.4 Tools e e e 21

3.1.5 Conclusion e e e e 21

3.1.6 Appendix A 22

3.1.7 Appendix Bo 23

3.1.8 Appendix C oL e 24

4 A bit of F-CPU history 25

4.1 M2M . . e 25

4.2 TTA © 25

4.3 Traditional RISC o . 28

5 The design constraints 29

6 The project’s roadmap 31

IT General description of the F-CPU 33

2.1 The main characteristics e e e e 34

2.2 The instructions are 32-bit wide Lo 34

2.3 Register #0 L 34

2.4 The F-CPU has 64 registers ot 35

2.5 The F-CPU is a variable-size processor o v v v v i i i e 36

2.6 The F-CPU is SIMD-oriented i 38

2.7 The F-CPU has generalized registers 38

2.8 The F-CPU has special registers 38

2.9 The F-CPU has no stack pointer 39

2.10 The F-CPU has no condition code register
2.11 The F-CPU is "endianless” ittt
2.12 The F-CPU uses paged memory v v v i i ittt i e e e e
2.13 The F-CPU stores the state of a task in Context MemoryBlocks (CMB)
2.14 The F-CPU can use the CMBs to single-step tasks
2.15 The F-CPU uses a simple protection mechanism

III General description of the F-CPU Core #0

1

About the FCO core

1.1 The FCO is superpipelined
1.2 The FCO implements an Out Of Order Completion pipeline
1.3 The FCO uses a scoreboard
1.4 The crossbar e e e

Evolution of the FCO

The FCO Execution Units

3.1 The "logic” unit (ROP2)
3.2 The "bit scrambling” unit ()
3.3 The 7increment” unit Lo
3.4 Theadd/sub unit
3.5 The integer multiply unit Lo L o
3.6 The integer divide unit L L
3.7 The Load/Store unit
3.8 Population count / Single Error Correction (POPC)
3.9 Otherunits e
3.10 Extensions and scalability L oo

IV Advanced topics

1

2

3

4

The exceptions
The Smooth Register backup mechanism
The scheduler

The memory units (Fetcher and L/SU)

V The F-CPU Instruction Set Architecture

1

2

3

Designing an instruction set
Instruction formats

The ISA modularity

The 2rlw format and its extensions

Flags

5.1 Sizeflags e e
5.2 SIMD flAg . . . o o e
53 IEEE Iag . . o o oot e e e
5.4 saturate/carry flag
5.5 Endian flag L.
5.6 Stream Hint flag oL
5.7 other flags / reserved fields L

43

44
44
44
45
46

47

51
51
93
54
55
55
56
56
56
56
o7

58
60
62
65

67

68
69
71

72

VI F-CPU Instruction Set draft

1 Arithmetic Operations
1.1 Core Arithmetic operations

1.2

1.3

14

1.1.1
1.1.2
1.1.3
1.14

1.2.1
1.2.2
1.2.3
1.2.4
1.2.5
1.2.6
1.2.7
1.2.8
1.2.9
1.2.10

add .. e e e

mul .. e

div . s

MNAC v v v v e e e e e e e e e e e e e e e e e e e
addsub . .. L e e
popcount . . o.o. oLl e e e e e e e e e
popcounti . . .o e e e

Optional increment-based operations Lo

1.3.1
1.3.2
1.3.3
1.34
1.3.5
1.3.6
1.3.7
1.3.8
1.3.9
1.3.10
1.3.11
1.3.12
1.3.13
1.3.14

570

Optional Logarithmic Number System operations

1.4.1
1.4.2
1.4.3
144

ladd e
Isub . . . e e
12int . . . e e e e
Int2L . .

2 Bit Shuffling based operations
2.1 Core Shift and Rotate operations

2.2

2.3

2.1.1
2.1.2
2.1.3
214
2.1.5

shift
shiftr e
shiftra e
rotl . e
TOET . . . o e e e e e e e e

Optional Shift and Rotate operations

221
2.2.2
223
2.2.4
2.2.5
2.2.6
2.2.7

shiftll . . . e
shiftri e
shiftrai. e
rotll . . e

bIitopl e e e e

Optional Bit Shuffling operations Lo

2.3.1
2.3.2
2.3.3
234
2.3.5
2.3.6

bitrev e e
bitrevi e e

3 Logic operations

3.1 Core Logic operations e
3.1.1 logic . .. e
3.2 Optional Logic operations e
3.21 logici. . . .
4 Floating Point Operations
4.1 Level 1 Floating Point Operations
4.1.1 fadd . ..o e
4.1.2 fsub ..o e
4.1.3 fmul e e e
4.1.4 f2Int . ..o e
4.1.5 dnt2f .o
4.1.6 faprx
4.1.7 fsqriiaprx e e
4.1.8 femple . . . oL e e
4.1.9 fempl
4.2 Level 2 Floating Point Operations
4.2.1 fdiv ..o e
4.2.2 fSqrt e
4.3 Level 3 Floating Point Operations,
4.3.1 flog . . . e e
4.3.2 fexpo
4.3.3 fmac
4.3.4 faddsub
5 Memory Access operations
5.1 Core Memory Access operations
5.1.1 load oL e e
5.1.2 storeo
5.2 Optional Memory Access operations
5.2.1 load e e
5.2.2 stOTeo
523 loadi oL e e e
0.2.4 storel
5.2.5 loadf, storef, loadif, storeif
5.2.6 cachemm e

6 Data move operations

6.1 Core Data move operations i i e e e e e
6.1.1 mMOVE e e e
6.1.2 loadcoms e
6.1.3 loadconsSx e
6.1.4 geto
6.1.5 pubt. . . . o e

6.2 Optional Data move operations
6.2.1 loadm
6.2.2 SEOTEIM o e e e e e e e
6.2.3 getl . . .o e
6.2.4 puti

7 Instruction Flow Control instructions

7.1 Core Instruction Flow Control instructions
711 Jmpa . .o
7.1.2 loadaddr
7.1.3 loadaddri
7.1.4 loopentry e
715 1oop . . o e e e
7.1.6 syscall L e
T.1.7 halt
T1.8 rfe . . e

7.2 Optional Instruction Flow Control instructions

137
137
137
139
139

140
141
141
142
143
144
145
146
147
148
149
150
150
151
152
152
153
154
155

156
156
156
158
159
159
161
162
164
165
166

168
168
168
170
171
174
175
176
176
177
178
179

7.2.1 srbsave
7.2.2 srbrestore. e e
7.2.3 serialize

VII Programming the F-CPU
1 Introduction
2 call convention

3 Pseudo-superscalar

VIII Index

192
193
194

195

197

List of Figures

1.1

2.1
2.2
2.3
2.4

3.1
3.2
3.3
3.4
3.5

2.1

1.1

2.1
2.2

The pipeline is folded around the Xbar 46
The first F-CPU chip proposal 47
A more precise, first-attempt F-CPU description, 48
A third F-CPU description« . . .o 0 49
The current F-CPU diagram 50
Detail of the ROP2 unit 52
Description of the COMBINE function on top of ROP2 for a byte-wide SIMD packet . . . 53
Overview of the Scrambling unit oL oo 53
Description of one block of the AND tree 54
Overview of the Incrementer Unit (preliminary version) 95
Detail of one bit of the SRB flags and decision mechanism 63
Preliminary overview of the instruction forms 69
Description of the mix instruction Lo oo 132
Description of the expand instruction L oL oL 134

List of Tables

10

Part 1

The F-CPU Project, description and
philosophy

11

Chapter 1

Description of the F-CPU project

There is no exact definition of the F-CPU project. It is not possible because of the amount of history, dis-
cussions, details that forge the specificity of this undertaking. We can however highlight some important
facts and points.

The F-CPU architecture defines a SIMD, superpipelined, 64-bit RISC microprocessor. As of today,
it is the only CPU of this kind which can be completely parameterized : it is not bound to 64-bit
implementations and it is intended to scale up easily. Furthermore, it is the only processor of this class
that is available with all the (VHDL) source code and manuals distributed with the GNU licence (GPL
and GFDL). It is meant to be a totally ununcumbered design targeted at the widest range of technologies
as possible.

The F-CPU project is also formed by a lot of people, discussing on mailing lists about the organ-
isational and technical sides of the design. The mailing lists are public places where the processor is
transparently designed with contradictory discussions. Everybody can come and influence the specifica-
tions if the modification respects the design and the project’s goals.

The F-CPU group is one of the many projects that try to follow the example shown by the GNU /Linux
project, which proved that non-commercial products can surpass expensive and proprietary products. The
F-CPU group tries to apply this "recipe” to the Hardware and Computer Design world, starting with
the ”holy grail” of any computer architect : the microprocessor.

This utopic project was only a dream at the beginning but after two group splits and much efforts,
we have come to a rather stable ground for a really scalable and clean architecture without sacrificing
the performance. Let’s hope that the third attempt is the good one and that a prototype will be created
anytime soon.

The F-CPU project can be split into several (approximative and not exhaustive) parts or layers that
provide compatibility and interoperability throughout the whole project’s lifespan (from HardWare to
SoftWare) :

* F-CPU Peripherals and Interfaces : bus, chipset, bridges...

* F-CPU Core Implementations : individual chips, or revisions (for example, F1, F2, F3...)
* F-CPU Cores generations, or families (for example, FC0, FC1, etc.)

* F-CPU Instruction Set and User-visible ressources

* F-CPU Application Binary Interface

* Operating System (aimed at Linux-likes)

* Drivers

* End-User Applications

Any layer depends directly or indirectly from any other. The most important part is the Instruction
Set Architecture, because it can’t be changed at will and it is not a material part that can evolve when the
technology /cost ratio changes. On the other hand, the hardware must provide binary compatibility but
the constraints are less important. That is why the instructions should run on a wide range of processor
microarchitectures, or "CPU cores” that can be changed or swapped when the budget changes.

Any core family will be binary compatible with each other and execute the same applications, run
under the same operating systems and deliver the same results with different instruction scheduling rules,
special registers, prices and performances. Each core family can be implemented in several ”flavours” like

12

a different number of instructions executed by cycle, different memory sizes, different word sizes, but the
software should directly benefit from these features without (much) changes.

This document is a study and working basis for the definition of the F-CPU architecture, aimed
at prototyping and first commercial chip generation (codenamed "F17). This document explains the
architectural and technical backgrounds that led to the current state of the "FC0” core as to reduce the
amount of basic discussions on the mailing list and introduce the newcomers (or those who come back
from vacations) to the most recent concepts that have been discussed.

This manual describes the F-CPU family through its first implementation and core. The FCO core is
not exclusive to the F-CPU project, which can and will use other cores as the project grows and mutates.
The FCO core can also be used for almost any similar RISC architecture with some adaptations.

The document will (hopefully) evolve rapidly and incorporate more and more advanced discussions
and techniques. This is not a definitive manual, it is open to any modification that the mailing list agrees
to make. It is not exhaustive either, and may lag as the personal free time fluctuates. You are very
encouraged to contribute to the discussion, because nobody will do it for you.

Some development rules :

* This Project is an experiment to prove it’s possible to develop a processor in a bazaar-style envi-
ronment. The decisions are made by discussion and consensus on the mailing list.

* There is no leading or ivory tower (this is not a ”cathedral”). In fact this is a ”Crtistal tower”
because everything is as transparent as possible. Anyone may join the team and contribute - or
even contribute without officially ”joining” in any way. Even those with limited or no knowledge of
CPU development can have something to contribute. A lot of motivation and free time is required,
however ...

* The name of the game is Freedom, so our designs are being developed openly and will be openly
distributed under the GNU Public License, so anyone will be able to (if they have the funding at
least) use our designs, manufacture and sell their own F-CPU or derivative chips, but any changes
will have to be made freely available again. Read the GNU Public Licence and the F-CPU charter
for more details.

* We are aware of the extreme ambitiousness of this Project, but we believe it to be necessary for
the continued existence of free software in a world of increasingly proprietary hardware, so we will
persevere until we are successful.

* We are also fed up of being forced to use proprietary HW because we are not able to influence the
platform. As users, we understand that Free Software can’t blossom without Free Hardware.

* Remember, here at the Freedom CPU Project we are not anti-Intel, anti-Microsoft, or in fact
anti-anything. We are only pro-Freedom!

* Never flame, never respond to flame bait, but please do make and take constructive criticism.

* “Design and let design” could sum up most of the behaviours adopted in the group. Some strong
disagreements have and will appear during the discussions, but whether the subject correspond to
the f-cpu goals or not, everybody has the right to play with his ideas. Do not force others to agree,
but discuss constructively and explore the subject, instead of flaming other’s idea down. A good
architecture can come from a mutual respect, not from flame wars.

13

Chapter 2

Frequently Asked Questions

Collected from different sources. Last modified by Whygee, jan, 14 2000

2.1 Introduction

Q1 : What is the F-CPU ?

A : The F-CPU is a inherently SIMD, 64-bit, superpipelined microprocessor, available with VHDL
source code and distributed under the terms of the GNU Public Licence. It is being developped by
a community of hobbyists, students and professionals on the Internet.

Q2 : Why a 64-bit RISC CPU ? I want to make a x86 clone / a soundcard / a 32-bit embedded

core ...

A : http://www.opencollector.org

The original goal of a high performance 64-bit CPU dates back to the early days of the project when
the founders wanted to counter the Merced (ia64). If you desire something else, there is a great
chance that a project already exists with a goal similar to your requirements. The OpenCollector
is one of the websites that list the “free” projects that you can access on the Internet. If you don’t
find what you want, don’t hesitate to create your own project.

There are already a lot of free CPU projects available on the Internet. If you desire a 32-bit-only
CPU, the MIPS/DLX and the LEON CPUs are good starting points, even though the F-CPU can
be easily scaled down to 32 bits. If you require a 16-bit or 8-bit microcontroller, there are also a
lot of free (in different ways) designs. You just have to pick one from the lists of the OpenCollector
website. If you are sure that you want a F-CPU-like processor, be sure to read and understand this
manual before you go further in your project. The goals of the project are firm and will not change
because of an individual’s whim.

2.2 Philosophy

Q1 : What does the F in F-CPU stand for ?

A : Tt stands for Freedom, which is the original name of the architecture, or Free, in the GNU/GPL
sense.

The F does not stand for free in a monetary sense. ”Free” doesn’t mean ”free as free beer” but
”freely copiable and modifiable”. You will have to pay for the chip, just as you have to pay nowadays
for a copy of a GNU/Linux distribution on CD-ROMs. Of course, you're free to take the design
and masks to your favorite fab and have a few batches manufactured for your own use.

14

Q2 : Why not call it an O-CPU (where O stands for Open) ?

A : There are some fundamental philosophical differences between the Open Source movement and
the original Free Software movement. We abide by the latter, hence the F.

The fact that a piece of code is labeled Open Source doesn’t mean that your freedom to use it,
understand it and improve upon it is guaranteed. Further discussion of these matters can be found
at htpp://www.gnu.org.

We tried to make a licence similar to the GPL (GNU Public Licence from the Free Software Founda-
tion) (see http://www.opencollector.org/hardlicense/) but this effort has been abandonned
because it doesn’t seem necessary or useful. Today it is replaced by an external charter that
strengthens the meaning of the GPL.

Specifically, there are at least three levels of freedom that must be preserved at any cost :
- Freedom to use the Intellectual Property : no restriction must exist to use the work of the

F-CPU project. This means, no fee to access the data and ALL the necessary informations to
recreate a chip.

- Freedom to reverse-engineer, understand and modify the Intellectual Property at will.

- Freedom to redistribute the design files.
This design is NOT public domain. The F-CPU group owns the IP that it produces. It chooses
to make it freely available to anybody by any means. Every file or hardware generated from the

description files and the Intellectual Property of the F-CPU team keeps the copyright of the F-CPU
team. You can read more about it at htpp://www.gnu.org.

Q3 : How is the F-CPU design protected ?

A : The F-CPU Design Team protects his work with the copyright laws. Every file holds the
copyright notice and the GPL notice. Nothing else is required.

Additional measures should ensure that no patent issue will arise in the future. Patents are well
known for their inefficiency and high cost. The F-CPU design team is protected because it only
describes the device, while issues appear when the design is implemented. We must publish proofs
of prior art, during conferences and in the press, to avoid the remaining troubles. In the end, the
design must remain totally unencumbered.

Q4 : And what if I patent a feature of the F-CPU ?

A : You will loose time and money, that’s all.

First, the design is based on common techniques that are heavily studied for thirty years. You’'ll
have a hard time explaining what is new enough to justify a patent.

Second, if the patent is accepted, noone will accept to pay the royalties on something that was
stolen from the F-CPU team. Suing the implementors will lead to nothing and in the end, you will
own a useless patent that gives you only worries.

Q5 : Why would my company use the F-CPU instead of another core 7

A : The technical advantages of the F-CPU are described in this manual : extreme scalability
and orthogonality, ununcumbered and clean design, emphasis on performance, simplicity and re-
targetability to various technologies (FPGA/ASIC...)

However the non-technical side of the project might ring a bell if you want to integrate the F-CPU
core in your design. The design files are available at no charge, but it’s not the only meaning of the
“free” in the F-CPU. It is a transparent design, it is not a “black box” obfuscated by a proprietary
and closed team. If you're in troubles, (for example : the design is deprecated, abandonned by the
company or it runs out of business, in short : you're left alone with the design) you don’t have to
reverse-engineer the “black box” to figure out what goes wrong. You simply read the source code
and patch it. The F-CPU is distributed under the terms of the GPL which gives you all the rights
to understand and modify (customize) the files.

15

Another aspect concerns the legal expenses. Just as the GPL is called a “gentleman agreement”,
the F-CPU is a “gentleman’s CPU”. We promote peaceful collaboration between the teams : more
budget can be dedicated to research and design, less money is spent for the legal departments. In
the end, everybody wins because the teams can be larger and spend all their time on the quality
of the design and the time to market, rather than on expensive endless lawsuits. “Design and let
design” : the only interesting and determining things are the reactiion time and the efficiency (cost,
performance, ease of use) of the product.

Q6: Great but what are the fine lines 7 Are there drawbacks 7

A : They are contained in the GPL and the F-CPU charter. Just as the design was brought to you
free, you have to keep it free and redistribute all the modifications or additions to the core. Because
the F-CPU (like all GPL projects) is based on collaboration/cooperation and not competition, your
enhancements will benefit others but they can also enhance on your enhancements and this will
benefit you in return.

If you want to keep your design secret, don’t integrate the F-CPU in your project. You will not
be able to benefit from other’s work and experience. You will have to reinvent the wheel and loose
time and money.

2.3 Tools

Q1 : Which EDA tools will you use 7

A : There has been a lot of debate on this subject. It’s mainly a war between Verilog and VHDL.
We have started with VHDL’93 for convencience because it is most used in Europe (where most of
the code is written) but it will certainly be translated to other file formats. Currently, the design
exists in VHDL’93 only for convenience and uniformity. The other representations will be derived
from it.

Now that VHDL is the main langage, VHDL tool choices are more limited. We want to promote
GNU EDA SW but this branch is not yet developped or mature enough. A particular software may
be difficult to install, another may be unstable, outdated or not compliant with today’s standards
and requirements.

The use of Alliance (http://www-asim.lip6.fr/alliance/) is considered but it will be useful
only during the layout process. Other free tools and designs can be found from http://www.
opencollector.org.

Today we use Simili (http://www.symphonyeda.com) under the Win32 platform. It is not a GNU
software but has many advantages such as independence, compliance with the IEEE standard, ease
of use, compacity... We expect a Unix port in the future, as well as other good GNU EDA software.

The sources have also been compiled without modification with FreeHDL and Modelsim. Other
IEEE compliant compilers will certainly confirm the high portability and quality of the design.

Cadence has just proposed free licences for some of its tools. Other offers will probably follow and
are welcome, as long as the ”counterparts” are compatible with the F-CPU charter.

We’ll probably use commercial products at one point or another because the chip makers use
proprietary software. In any case, a pen, paper and a brain always help.

2.4 Architecture

Q1 : What’s that memory-to-memory architecture I heard about ? Or this TTA engine ? Why not
a register-to-register architecture like all other RISC processors ?

A : M2M was an idea that was discussed at the beginning of the F-CPU project. It had several
believed advantages over register-to-register architectures, like very low context switching latency
(no registers to save and restore). Today, the SRB mechanism included in the FCO solves this
problem (see the Part IV, chapter 3, ”The Smooth Register Backup mechanism”).

TTA is another architecture that was explored before the current design (FCO) started.

16

The F-CPU architecture might evolve in the future and borrow some new features of other archi-
tectures.

Q2 : You're thinking about an external FPU 7

A : No. Bandwidth and pin count problems. We can easily fit such units on a chip today.

Q3 : Why don’t you support SMP ?

A : Symmetric Multi-Processing like it is implemented on low-end PCs limits the performance and
scalability of the architecture. We're actively investigating other architectures, mainly Non-Uniform
Memory Access through a specific bus called F-BUS. We try to avoid all the complex techniques
needed by multi-CPU processing. No firm decision has been made as of today. The F-CPU core is
independent from the bus interface anyway, almost any type of connexion can be implemented.

2.5 Performance

Q1 : What can we expect in terms of performance from the F1 CPU ?

A : Merced-killer. :-). No seriously, we hope to get some serious performance, though it would be
impossible to make any claim before we can measure the performance of a real chip.

We think we can achieve good performance because we start from scratch (x86 is slower because it
has to be compatible with older models).

LINUX and GCC are not the best garanties for performance in themselves. For example, GCC
doesn’t handle SIMD data. We will certainly create a compiler that is more adapted to the F-CPU
and GCC will be used as a "bootstrap” for the “legacy SW” at the beginning. The ongoing work
on GNL and XML-based interfaces will probably allow developpers to create better code than what
GCC would ever do.

Objectively, the FCO core family is aimed to achieve the best MOPS/MIPS ratio possible, around
1 (and maybe a bit more). The superpipeline garanties that the best clock frequency is reached
for any silicon technology. The memory bandwidth can be virtually increased with different hint
strategies. So we can predict that a 100MHz chip with 1 instruction decoded at each cycle can easily
achieve 100 million operations per second. Which is not bad at all because you can achieve that
with an ”older” (cheap) silicon technology that couldn’t achieve 100MOPS with a x86 architecture.
Add to that the unconstrained SIMD data width, and you get a picture of the peak MOPS it can
reach. If you really want screaming numbers, with a 64-bit version, SIMD operations on bytes leads
to 8 operations per cycle, or S00MOPS peak.

2.6 Compatibility

Q1 : Will the F-CPU be compatible with x86 ?

A : No. Nada. Niet. Nein. Non.

There will be NO binary compatibility between the F-CPU and x86 processors. It could however
run Windows emulators that include x86 CPU emulators such as Twin, as well as Windows itself
under whole-PC emulators such as Bochs. In either case however you will need to run another
operating system, such as GNU/Linux, and emulation will likely be fairly slow. But what would
be the point of using Windblows when you can run GNU-Linux/xBSD instead ? ;-D

Q2 : Will I be able to plug the F-CPU in a standard Socket 7, Super 7, Slot 1, Slot 2, Slot A or
any other existing motherboard ?

A : Great chances are that no version of the F-CPU will ever be available for Socket7 or any x86
mother boards.

17

Reason 1 : the BIOS should be rewritten, the chipsets should be analysed, and there are way
too many chipsets/motherboards combinations around. It is clearly out of the scope of our
project.

Reason 2 : Socket/pins/bandwidth : the x86 chips are really ”memory bound”, the bandwidth
is too low, some pins are not useful for a non-x86 chip, and supporting all the functions of the
x86 interface will make the chip (its design and debugging) too complex, more expensive and
slower.

Reason 3 : we don’t want to pay the fees for the use of proprietary slots.
ALPHA- or MIPS-like slots will probably be supported, we might include an EV-4 interface to

the F-CPU standard. Anyway, a custom socket and interface will avoid any compatibility and
misunderstanding problem. If you want to plug your F-CPU chip on something else, “just do it”.

Q3 : What OS kernels will the F-CPU support?

A : Linux will probably be ported first. Other ports will follow and different kernel types are
possible. But first we must have a working software development tool for the architecture, thus we
must first fully define the F-CPU ...

Q4 : What programs will I be able to run on the F-CPU ?

A : We have a first prototype/preliminary port of gcc/eges for the Freedom architecture. Basically
the F-CPU will run all the software available for a standard GNU /Linux distribution, except the
low-level parts such as assembly, I/O and bootstrap code.

Remember that GCC is not perfectly adapted to fifth generation CPUs. We have adapted it for
the F-CPU but it was very difficult and it supports only a small subset of the capabilities of the
F-CPU ISA. Don’t expect good performance from the generated code, at least for the FCO.

2.7 Cost/Price/Purchasing

Q1 : Will I be able to buy a F-CPU someday ?

A : We hope so. That’s all the point of the project, but be patient and take part of the discussions !
If you think it is not developped fast enough, join the team and help us. Before the F-CPU will exist
in a chip, it will be available in other forms such as software or hardware emulations or simulations.

Q2 : How much will the F-CPU cost ?

A : We don’t know. It depends on how many are made. There was an early slightly optimistic
estimate that an F-CPU would cost approximately $100, if 10000 were made. This also depends
on a lot of factors like the desired performance, the size of the cache memory, the number of pins,
and most of all, the possibility to combine all these factors in the available technology. The latest
estimations for a first limited version gave around $60 each for a batch of 1K ASIC. The FCO chip
looks a bigger and simplified 486, it belongs to the class of 1 million transistors chips. It is more
than the LEON core or the ARM, but it is small compared to other 64 bit chips. Therefore it
shouldn’t be as expensive as a high-end CPU.

18

Chapter 3

The genesis of the F-CPU Project

A lot of things have happened since the following document was written. The motivation has not changed
though, and the method is still the same. The original authors are unreachable now but we have kept
on working more and more seriously on the project. At the time of writing, several questions asked in
the following text have been answered, but now that the group is structuring itself, the other questions
become more important because we really have to face them : it’s not utopy anymore, the fiction slowly
becomes reality.

Don’t forget too that the technical features that are described here are NOT realistic and don’t
correspond to anything real. This was more a dream than a coherent analysis. Please don’t flame us for
other’s dreams.

3.1 The Freedom CPU Architecture : A GNU/GPL’ed high-
performance 64-bit microprocessor developed in an open,
Web-wide collaborative environment.

Authors : Andrew D. Balsa w/ many contributions from Rafael Reilova and Richard Gooch.

5 August 1998

3.1.1 History

The idea of a GNU/GPL’ed CPU design sprang in the middle of some email exchanges between three
long-time GNU/Linux users (also Linux kernel developers in their spare time) with diverse backgrounds.

We were questioning monopolies and how the dominance of an operating system (including the kernel,
the Graphical User Interface and the availability of ”killer-applications” as well as documentation) was
intimately related to the world-wide dominance of a specific, outdated, awkward and inefficient CPU
architecture. I guess we all know what I am referring to.

We also expressed our faith that GNU/Linux is well on its way to provide the basic foundation for a
totally Free software environment (in the GNU/GPL sense; please get a copy of the GNU GPL license if
you are reading this, or check www.gnu.org). However, this Freedom is limited or rather bound by the
proprietary hardware on which it feels most at home to run : the traditional x86-based PC.

Finally, we were worried that Intel’s attitude of not releasing advance information to the Free Software
community about its forthcoming Merced architecture would delay the development of a compatible gcc
compiler, of a custom version of the Linux kernel, and finally of the vast universe of Free Software tools.
It is vaguely rumoured that Linus Torvalds may have received advance information on Merced by signing
an Intel NDA, but this would be an individual exception and wouldn’t really fit with the spirit of Free
Software. On the whole, even though Merced will certainly be more modern that the x86 architecture, it
will be a step backwards in terms of Freedom, since unlike for the x86, there will most likely never be a
Merced clone chip.

In the previous days, we had been discussing the various models for Free Software development,
their advantages and disadvantages. Putting these two discussions together, I quickly drafted an idea
and posted it to Rafael and Richard, warning them that this would be good reading while they were
compiling XFree86 or a similarly large package... and then they liked it ! Here is this crazy, utopic idea,
merged with comments, criticism and further ideas from Rafael and Richard :

19

3.1.2 The Freedom GNU/GPL’ed architecture

We started with some questions :
e Why don’t we develop a 64-bit CPU and put the design under the GNU General Public License?

e Why don’t we make the development process of this new CPU completely open and transparent,
so that the best brains worldwide can contribute with the best ideas (somehow using the same
communication mechanisms traditionally used by the Free Software community) ?

e How can we make the CPU development process entirely democratic and truly open, whereas it is
usually surrounded by paranoia and secrets?

e How can we design something that will improve in *technical* *grounds™ on what will be available
in 2000 from the most advanced CPU architecture team ever put together by any corporation (the
Merced) ?

There are really two distinct incredible challenges here :
a) the performance and feasability of the resulting architecture, and

b) the open development process under a GNU/GPL license and the intellectual property rights
questions raised by this process.

Tackling a) first (performance and feasability), we think the Freedom architecture could be more
efficient under GNU/Linux compared to other architectures by making it :

1. More compatible with the gcc compiler.We have the source code to gce, but most importantly, we
have the gcc developers available to help us figure out what features they would like to see in a
CPU architecture. Why gcc? Because it is the cornerstone of the entire body of Free Software.
Basically, an efficient architecture for gee will see an increase in efficiency across-the-board on *all*
Free Software programs.

2. Faster in the Linux kernel. Right now, if we take for example the PC architecture, we notice that
the Linux kernel has to ”work around” (and some would say ”work against”) various idiosyncrasies
of the x86/PC specifications and hardware. We also have to maintain compatibility with outdated
x86 chips. And obviously, there is no possibility of implementing some of the often used Linux
kernel functions in silicon. A new design, custom fitted to the Linux kernel code, would vastly
improve the performance of any kernel-bound applications.

Further ideas for a possible architecture and implementation can be found in the appendices (as well
as the "economics” of the project). Note that we are calling the architecture ”Freedom” (for obvious
reasons), and its first implementation F1”. Projected end-user cost of an F1 CPU is around $100.
Everything is very utopic, we know. : -)

However, it also seems to us that at this stage, the real challenges for our project are entirely within
b) : the development process and the intellectual property issues.

3.1.3 Developing the Freedom architecture : issues and challenges

The Dilbert cartoon says it all, in fact : our project *is* a whole new paradigm! What we are basically
proposing is to bring together the competences and creative powers of thousands of individuals over the
Web into the design process of an advanced, Free, GNU/GPL’ed 64-bit CPU architecture. And we don’t
even know if it’s possible!

We know two things for sure :

e In the past and present, corporations like Intel, IBM and Motorola are known for having broken
down design teams, so that no close groups could be formed that would be able to recreate the entire
design (and eventually quit and form their own companies). Recently, Andy Grove has given a new
meaning to the word ”paranoia” as a management tool. Our proposed Free, open, transparent,
collaborative environment counters this trend. It is also in a large part related to some new trends
in Human Resources management and Organizational theory. In fact, it is very akin to the concept
of Virtual Corporations, except that in this case we are rather dealing with a Virtual Non-Profit
Organization. In this respect, the Freedom project is also an experiment in Organizational theory,
but it’s not a gratuitous experiment. Many studies indicate that keeping people in small closed
groups, bound by strict NDA and other legal constraints to public silence, and putting a relatively
high amount of pressure on these groups, is not the best method to unleash creative powers. It also
sometimes leads to buggy designs...

20

e The development of the Linux kernel, by a group of highly talented programmers/system developers
is an example that an open, collaborative environment aiming for a GNU/GPL’ed piece of software
with a particularly high intellectual/technological value, is possible. Moreover, it can be shown
that in some areas, the Linux kernel performs better then its commercial counterparts. However,
this list of certainties is rather short compared to the list of questions generated by our proposal :

— How will new ideas be selected or discarded for inclusion in the design, amid the inevitable
"noise” of Bad Ideas (tm) ? Who will be the judge of what’s Good and Bad?

— Also inevitably, mutually exclusive options/features will appear during the course of develop-
ment. Again, who will decide on the direction to be chosen?

— Who will own the final design intellectual property rights? Is the ”copyleft” applicable in the
case of a CPU design? What about the masks for the first silicon?

— Will the GPL be sufficient as a legal instrument to protect the design? What changes, if any,
will have to be made to the GNU/GPL to adapt it to a chip design?

— If the design process uses commercial EDA and other tools, in what measure do these propri-
etary items ”taint” our GNU/GPL’ed design? Is it possible to separate the GPL part from
the commercial /proprietary parts?

— What about existing patents? Will the project need any? Will it be able to ”buy” any, or pay
royalties?

— Contrarily to a piece of software, partial implementations of the Freedom design will not be
possible. The first implementation that will go to silicon *must* be functional and complete.
All "holes” in the design must be plugged before the first mask gets drawn. How do we make
volunteers accept such a rigid schedule ?

There are some questions raised as a consequence of the possible succes of the Freedom implementation :

e There are vast possibilities for a GNU/GPL’ed CPU design in the industrial, medical, aeronautical,
automotive and other domains. In fact, a Free, stable, high-performance design offers possibilities
never before envisioned by hardware designers in various domains. Is this the beginning of a small
revolution in e.g. embedded hardware ?

e Will the design sustain itself over the years as the ideal GNU /Linux processor ?

e Can this experiment in open development have other consequences on the electronics industry? Are
we really proposing a new paradigm for CPU development? Can this paradigm be applied to other
VLSI designs?

3.1.4 Tools

)

We all know the saying : ”If the only tool one has is a hammer...”. We’'ll need ”groupware” tools
for the Freedom project, but the word ”groupware” has a bad reputation nowadays. We prefer to use
”collaborative work tools”. Some of them have only come into existence and widespread use in the last
decade; I am obviously talking about the Web itself, and its assortment of communication technologies :
email, newsgroups, mailing lists, Web sites, SGML/PDF/HTML documentation and editing/translation
software. Much of this infrastructure is/has been used to develop GNU/Linux, and is nowadays based
on GNU/Linux, BTW.

But we’ll also need new tools, that perhaps don’t even exist yet. I think it’s worth mentionning that
perhaps one the greatest steps in this direction is the WELD project, developped at Berkeley. It could
well become the cornerstone of the Freedom project, or conversely, the Freedom project can perhaps be
thought of as the ideal, perfect test case for the WELD project.

3.1.5 Conclusion
The conclusion is simple and obvious :
e if you are a CPU architect/VLSI engineer, or

e if you have a good idea on CPU design that you have been toying with for some time and would
like to test, or

e if you just like challenging intellectual propositions and brainstorming interaction :

21

Please join and help us turn this idea into a reality!

* . Richard is an Australian astrophysicist preparing his Ph.D. on astronomic visualization; Rafael
is a researcher on EDA tools at the University of Cincinatti. I am an ex-Ph.D. student in Management
and an ex-firmware engineer, with a special interest in Ethical problems in multi-cultural environments
(I was born in Brazil and am presently living in France). None of us has any formal education in CPU
architecture. Rafael comes closest, since he is in VLSI design and EDA tools development, and also
developed some new code for CPU recognition in the Linux kernel. Richard developed the Pentium Pro
MTRR support in the Linux 2.1.x kernels (as well as other novel kernel routines), and is also a hardware
developer. I have the honour of having diagnosed the Cyrix 6x86 ” Coma” bug and proposed a workaround
for it under GNU /Linux (both were at first rejected by Cyrix Corp.). I am also a long time hardware and
firmware developer, and have contributed in various ways to GNU/Linux development (e.g. the Linux
Benchmarking HOWTO).

Richard E. Gooch <Richard.Gooch@atnf.csiro.au>

Rafael R. Reilova <rreilova@ececs.uc.edu>

Andrew D. Balsa <andrebalsa@altern.org>
note : today, none of these addresses work. altern.org has even disapeared.

3.1.6 Appendix A

Ideas for a GPL’ed 64-bit high performance processor design
This is just a dream, a utopic idea of a free processor design. It’s also a list of things I would like to see
in a future processor.

e This project will need a sponsor if it ever wants to become a reality. Getting first silicon is not
going to be free, nor easy.

e Choice of a 64-bit datapath, address space : obvious nowadays. Simplifies just about everything.

e Huffman encoded instruction set : improves cache/memory—CPU bandwidth, which is one of
the main bottlenecks nowadays. Should be quite simple to add a Huffman encoder to a compiler
back-end. All instructions lengths are multiple of byte.

e RISC vs. CISC vs. dataflow debate : it’s over! Get the advantages of each, disadvantages of none
as much as feasible.

e 1, 2 or 4 internal 7-stage pipelines.

e Speculative execution : 4 branches, 8 instructions deep each.

e 064-byte instruction prefetch queue.

e 32-byte write buffers.

e Microprogram partly in RAM. Must be able to emulate x86 instruction set (assembler source level).
e 64-bit TSC w/ multiple interrupt capabilities.

e Power saving features.

e MMX and 3DNow! emulation.

e Fully-static design (clock-stoppable).

e F1 implementation : 128 bits external data path, 40 bits external addressing capabilities.
e Performance monitoring registers ”a la” Pentium.

e External FPU, memory mapped (have no idea what it should look like). FPUs can be added to
work in parallel (up to 47). Separate bus. Same bus can handle a graphics coprocessor with its
dual-ported memory.

22

e 8KB 4-ported L1 unified cache, with independent line-locking/line-flushing capabilities. Can be
thought of as a 1 KB register set.

e Separate 64KB each L2 instruction and data caches, running at CPU speed.
e Integrated intelligent DMA controller, 32 channels.

e Integrated interrupt controller : 30 maskable interrupts, 1 System Management interrupt, 1 non-
maskable interrupt.

e 0 internal registers ! Yep, this is a memory-memory machine. Instruction set recognizes 32 pseudo-
registers at any moment.

e Interrupts cause automatic register set switch to vectored register set : 0 (zero) context switch
latency!

e No penalty for instructions that access byte, word, dword data.
e Operation in little or big-endian mode ”a la” MIPS.

e Paging ”a la” Intel, with 4k pages + 4M extension.

e Also VSPM ”a la” Cyrix 6x86, with 1K definable pages.

e ARR registers "a la” Cyrix 6x86 (similar to MTRR on Intel PPro) : allows defining non-cacheable
regions (useful for NUMA, see below).

e Internal PLL with software programmable multiplier; can switch from 1x to 2x to 3x to nx in 0.5
increments, on-the-fly.

e The MMU should also support object protection "a la” Apple Newton.
e Single-bit ECC throughout.

e Direct support of 4 1IMB dual ported memory regions for NUMA-style multiprocessing (also on
FPU bus).

e CPU architecture project name : ”Freedom”. Could also be called ”Merced-killer”, or ” Anti-
Merced”, or ”!Merced”, but in fact we are not anti-anything with this project. We are just pro-
Freedom and open; what we dislike about the Intel Merced is its proprietary design and restrictive
development environment. I guess the challenge here is to determine whether a GPL’ed CPU design
is feasible. Is open, collaborative development possible WRT CPU design? How does one get the
funding to actually put the design on silicon, once it is ready? How can revisions be handled? Are
there patents that would inherently block such a development process?

The idea also is to use gcc as the ideal development compiler for this CPU (unlike Merced). And to be
able to port the Linux kernel with a minimal effort on this new processor.

3.1.7 Appendix B

Freedom-F1 die area / cost / packaging physical characteristics / external bus
Just as a reminder, the F1 CPU does not include an FPU or 3DNow! unit (but SIMD integer instructions
will be included).

Recommended maximum size : 122 sq. mm. This gives us 200 dies/8-inch wafer (see an example of
such a wafer on Hennessy and Patterson, page 11).

Roughly, die yield = 0.5 for our 122 mm?2 5-layer 0.25 micron CPU (H AND P, page 13, updated to
reflect better fabs). This allows more or less 10-11 million transistors, divided as follows : 6-7 million for
the caches, 4-5 million for the rest.

Assume wafer yield = 95, final test yield = 95. Testing costs of $500/hour, 20 seconds/CPU.

Packaging costs = $25-50 (see below).

Roughly, following H and P, this gives us a unit cost of $75-100/good CPU, tested, boxed in anti-
static packaging and shipped to the US, if the Taiwan foundries can keep the wafer processing cost around
$3.500.

Packaging : T am going to propose something surprising, but I think we should use the same packaging
as the Celeron CPU, in terms of physical dimensions and CPU placement. Like that we can also use the
Celeron heatsink/fans already in the market, and the Celeron mounting hardware.

23

PCI set : again I am going to propose a heresy, but I think we could use 100MHz Slot 1 motherboards.
First, Intel is not alone anymore manufacturing Slot 1 chipsets : VIA has just released a Slot 1 chipset
with excellent performance and the latest goodies in terms of technology (we can get timing info from
the VIA chipset datasheets). Second, we don’t have to worry about the motherboard/PCI set issue
anymore. Third, it’s almost impossible to go beyond 100MHz on a standard motherboard, because of
RFT issues; so basically 100-112MHz is as good as it gets. Fourth, there will be many people out there
with Slot 1 motherboards, willing to upgrade their PII/Celeron CPUs (specially the Celeron). Fifth, these
motherboards are nowadays quite cheap, and we get all the benefits of high-volume production. Sixth,
this allows easy upgrades of the Freedom CPU to higher speed grades, larger cache versions, FPU-with
versions, etc.

Now, if we accept the above, we have to put on the Celeron-style Freedom printed circuit a small
EEProm that will contain the Freedom BIOS, the L2 cache and a socket for the FPU. This increases the
cost of the CPU, but decreases overall costs, so I still think it’s a good move.

Please check a photograph of the Celeron and tell me if I am just dreaming.

3.1.8 Appendix C

Legal issues / financial issues

August 5, 1998

We would like to have support from the Free Software Foundation for the Freedom project.

We are not proposing that the Free Software Foundation build a fab. What we are saying is : if we
go to a foundry in the US or Taiwan, give them a mask, and ask them to run a batch of 0.25 micron, 5
layer 8-inch wafers for us, they’ll quote approx. $3K-5K or less even, per wafer, as their price (our cost)
for our batch (in the year 2000).

An approximate cost for a batch of F1 CPUs would theoretically be somewhere between $500k and
$1000K, for 5000-10000 good CPUs.

Not exactly pocket money, but we could sell those CPUs on a subscription basis. Like this : people
who would subscribe would get the Merced-killer for around $100 (compare that to the projected cost of
$5000/unit for the Merced), on a first-come/first served basis, and any left-over CPUs after the cost of
the batch would be covered, could be sold for a slightly higher price to pay for the next batch and further
mask development.

We suggest putting some quotas in the system. Demand is likely to be higher than supply. ;-)

The Free Software Foundation could coordinate all the legal/financial/logistic aspects of the project
(and would be adequately compensated for this work). This, of course, would depend on getting support
from Mr. Stallman for this initiative.

24

Chapter 4

A bit of F-CPU history

(And a reflexion on the evolution of the F-CPU through a description of the different
proposed architectures)

4.1 M2M

The first generation was a "memory to memory” (M2M) architecture that disapeared with the original
F-CPU team members (they have written the previous text). It was believed that context switch time
consumed much time, so they mapped memory regions to the register set, as to switch the registers by
changing the base register. I have not tracked down the reasons why this has been abandonned, I came
later in the group. Anyway, they launched the F-CPU project, with the goals that we now know, and the
dream to create a ”Merced Killer”. Actually, i believe that we should compete with the ALPHA directly

-)

4.2 TTA

The second generation was a ”Transfer Triggered Architecture” (TTA) where the computations are
triggered by transfers between the different execution units. The instructions mainly consist of the
source and destination "register” numbers, which can also be the input or output ports of the execution
units. As soon as the needed input ports are written to, the operation is performed and the result is
readable on the output port. This architecture has been promoted by the anonymous AlphaRISC, now
known as AlphaGhost. He has done a lot of work on it but he has left the list and the group lost track
of the project without him.

Brian Fuhs (bkfuhsl@attglobal.net) explained TTA on the mailing list this way :

TTA stands for Transfer-Triggered Architecture. The basic idea is that you don’t tell
the CPU what to do with your data, you tell it where to put it. Then, by putting your
data in the right places, you magically end up with new data in other places that
consists of some operation performed on your old data. Whereas in a traditional 0TA
(operation-triggered architecture) machine, you might say "ADD R3, R1, R2", in a TTA
you would say "MOV R1, add; MOV R2, add; MOV add, R3". The focus of the instruction set
(if you can call it that, since a TTA would only have one instruction : MOV) is on the
data itself, as opposed to the operations you are performing on that data. You specify
only addresses, then map addresses to functions like ADD or DIV.

That’s the basic idea. I should start by specifying that I’m focusing on general
processing here, and temporarily ignoring things like interrupts. It is possible to
handle real-world cases like that, since people have already done so; for now, I’m
more interested in the theory. Any CPU pipeline can be broken down into three basic
stages : fetch and decode, execute, and store. Garbage in, garbage processing, garbage
out. With OTAs this is all done in hardware. You say "ADD"R3,"R1,7R2", and the hardware
does the rest. It handles internal communication devices to get data from R1 and R2 to
the input of the adder, lets the adder do its thing, then gets the data from the output
of the adder back into the register file, in R3. In most modern architectures, it
checks for hazards, forwards data so the rest of the pipeline can use it earlier, and
might even do more complicated things like reordering instructions. The software only

25

knows 32 bits ; the hardware does everything else.

The IF/ID stage of a TTA is very different. All of the burden is placed on\\

software. The instruction is not specified as ADD (something), but as a series of\\

SRC, DEST address pairs. All the hardware needs to do is control internal busses\\

to get the data where it is supposed to go. All verification of hazards, optimall\
instruction order, etc should be done by the compiler. The key here is that a TTA,\\

to achieve IPC measures comparable to an OTA, must be VLIW : you MUST be able to specify\\
multiple moves in a single cycle, so that you can move all of your source data to the\\
appropriate places, and still move the results back to your register file (or wherever\\
you want them to go). In summary, to do an "ADD"R3,~R1,7R2", the hardware will do the\\
following :

TTA OTA
MOV R1, add ADD R3, R1, R2
Move R1—adder Check for hazards
MOV R2, add Check for available adder
Move R2— adder Select internal busses and move data
(adder now does its thing in both cases)
MOV add, R3 Check for hazards
Move adder—RS3 Schedule instruction for retire

Select internal busses and move data
Retire instruction

TTA stands for Transfer-Triggered Architecture. The basic idea is that you don’t tell

The compiler, of course, becomes much more complicated, because it has to do all of
the scheduling work, at compile time. But the hardware in a TTA doesn’t need to worry
about much of anything... About all it does in the simple cases is fetch instructions
and generate control signals for all of the busses.

Execution is identical between TTA and OTA. Crunch the bits. Period.

Instruction completion is again simplified in a TTA. If you want correct behavior,
make sure your compiler will generate the right sequence of moves. This is compared
to a OTA, where you at least have to figure out what write ports to use, etc.

Basically, a TTA and an OTA are functionally identical. The main differences are that
a TTA pretty much has to be VLIW, and requires more of the compiler. However, if the
"smart compiler and dumb machine" philosophy is really the way to go, TTA should rule.
It exposes more of the pipeline to software, reducing the hardware needed and giving
the compiler more room to optimize. Of course, there are issues, like code bloat and
constant generation, but these can be covered later. The basic ideas have been covered
here (albeit in a somewhat rambling fashion... I had this email all composed in my
head, and had some very clear explanations, right up until I sat down and started
typing) . For more information see http://www.cs.uregina.ca/ bayko/design/design.html
and http://cardit.et.tudelft.nl/MOVE. These two have a lot more information on

the details of TTA; I’m still hopeful that we can pull one of these off, and I think
it would be good for performance, generality, cost, and simplicity. Plus, it’s
revolutionary enough that it might turn some heads - and that might get us more of a
user (and developer) base, and make the project much more stable.

Send me questions, I know there will be plenty ...

Brian

26

If you want to understand further the TTA concept, the difference is in the philosophy, it’s as if
you had instructions to code a dataflow machine on-the-fly. Notice also the fact that less registers are
needed : registers are required to store the temporary results of operations between instructions of a code
sequence. Here, the results are directly stored by the units, there are less ”temporary storage” needed,
less register pressure.

To envision this difference, think about a data dependency graph : in OTA, an instruction is a node,
while in TTA the mov instruction is the branch. Once this is understood, there’s not much work to do
on an existing (yet simple) compiler to generate TTA instructions.

Let’s examine : S = (a+b) * (c — d) for example. a, b, ¢, d are known ”ports”, registers or TTA
addresses.
a bec d
1\ /2 3\ /4
¥ -
5\ /6
\ /
*
|7
S

In OTA, with 3-operands instructions, there is in this case one instruction per "node” (+, -, *). Two
temporary registers are needed to store the result of the addition and the substraction (branches 5 and
6). Let’s assume that the tree-flattening must preserve superscalarism (well, instructions have latencies),
so we code :

ADD r5, a, b
SUB r6, c, d
MUL r7, r5, r6

(for example).

In TTA there is one ”port” in each unit for each incoming branch. This means that ADD, having two
operands, has two ports. There is one result port, which uses the address of one port, but that is used
as read, not write. Another detail is that this read port can be static : it holds the result until another
operation is triggered. We can code

mv ADD1,a

mv SUB1,c

mv ADD2,b (this triggers the a+b operation)
mv SUB2,d (this triggers the c-d operation)
mv MUL1,ADD

mv MUL2,SUB (this triggers the * operation)

TTA is not "better”, it’s not "worse”, it’s just completely different while the problem will always be
the same. If the instructions are 16 bit wide, it takes 96 bits, just as the OTA example would do. In
some cases, it can be better as it was shown long ago on the list. TTA has some interesting properties,
but unfortunately, in the very near future, it’s not probable that a TTA will enter inside a big computer
as RISC or CISC do. A TTA core can be as efficient as the ARM core, for example, it suits well to this
scale of die size, but too few studies have been made, compared to the existing studies on OTA. Because
the solution of its scaling up are not (yet) known, this leads to the discussions that shaked the mailing
list near december 1998 : the problem of where to map the registers, how would the ports be remapped
on the fly, etc. When additional instructions are needed, this jeopardizes the whole balance of the CPU
and evolutivity is more constraining than for RISC or OTA in general.

The physical problem of the busses has also been raised : if we have say 8 buses of 64 bits, this makes
512 wires, it takes around one millimeter of width with a .5u process. Of course, we can use a crossbar
instead.

As discussed a few times long ago, because of its scalability problems (assignation of the ports

and its flexibility), TTA is not the perfect choice for a very long-lasting CPU family, while its per-
formance/complexity ratio is good. So, it would be possible that the F-CPU team makes a RISC —

27

TTA translator in front of a TTA core that would not have most of the scalability problems. This would
be called the "FC1” (FCO is the RISC core). Of course, time will show how the TTA ghosts of the F-CPU
group will change.

But TTA’s problem is probably that it is too specialized, where OTA can change its core and still
use the same binaries. It’s one of the points that ”killed” the previous F-CPU attempt. Each TTA
implementation could not be completely compatible with another, because of the instruction format, of
the assignation of the "port” and other similar details : the notion of ”instruction” is bound to the notion
of "register”.

I am not trying to prove the advantage of one technique over another, i am trying to show the
difference of point of view, that finally treats the same problem. The scalability, that is necessary for
such a project, is more important than we thought, and the group finally showed interest for a more
classical technology when AlphaRISC left.

4.3 Traditional RISC

The third generation rose from the mailing list members who naturally studied a basic RISC architecture,
like the first generation MIPS processors or the DLX (described by Patterson and Hennessy in their “QA”
book), the MMIX (Knuth), the MISC CPUs (such as Chick Moore’s Forth engines or Bernd’s 4Stack),
and other similar, simple projects. These designs are explained and described in well-known books and
taught in universities. From a simple RISC project, the design grew in complexity and won independence
from other existing architectures, mainly because of the lessons learnt from their history and the specific
needs of the group, which led to adapted choices and particular characteristics. This is what we will
discuss in the next parts of this document.

28

Chapter 5

The design constraints

The F-CPU group is rather heterogeneous but each member has the same hope that the project will
come true, because we are convinced that it is not impossible and therefore feasible. Let’s remember the
Freedom CPU project Constitution :

To develop and make freely available an architecture, and all other intellectual
property necessary to fabricate one or more implementations of that architecture, with
the following priorities, in decreasing order of importance :

1) Versatility and usefulness in as wide a range of applications as possible

2) Performance, emphasizing user-level parallelism and derived through intelligent
architecture rather than advanced silicon process

3) Architecture lifespan and forward compatibility

4) Cost, including monetary and thermal considerations

We could also add : 5) be successful !

This text sums up a lot of aspects of the project : this is ”free intellectual property”, meaning that
anybody can make money with it without worrying, as long as the product complies with the general
rules and standards described in the F-CPU charter, and all the characteristics are freely available (under
the GNU Public Licence and respecting the F-CPU charter). Just like the LINUX OS project, the team
members hope that the free availability of this design will benefit everybody by reducing the cost of the
products (since most of the intellectual work is already performed), by providing an open and flexible
standard that anyone can influence at will without signing a NDA. It is also the testbench of new
techniques and the "first CPU” for a lot of "hobbyists” that can build it easily at home. Of course,
the other expected result is that the F-CPU will be used in everybody’s home computer as well as by
the other specialized markets (embedded/real time, portable/wearable computers, parallel machines for
scientific number crunching...).

In this situation, it is clear that one chip does not fit all needs. There are economic constraints that
also influence the technologic decisions, and everybody can’t access the most advanced silicon fabrication
units. The reality of the F-CPU ”for and by everybody” is more in the realm of the reconfigurable
FPGAs, the low-cost sea-of-gates and ASICs that are fabricated in low volumes. Even though the final
goal is to use full-custom technologies, there is a strong limitation for the prototyping and the low-volume
quantities. The complexity is limited for the early generations and FCO0, the estimated transistor count
for the first chips would be 1 Million, including some cache memory. This is rather tight, compared to
the current CPUs but it’s huge if one remembers the ARM core or the early RISC CPUs.

The ”Intellectual Property” is available as VHDL’93 (or VERILOG) files that anyone can read,
compile and modify. A schematic view is also often needed to understand the function of a circuit at the
first sight. The processor will therefore exist more in the form of a software description than a hardware
circuit. This will help the processor families to evolve faster and better than other commercial ones,

29

and this polymorphism will garantee that anyone finds the best core in any situation. And since the
development software will be common to all the chips, freely available through the GPL, porting any
software to any platform will be eased to the maximum.

The interoperability of the software on any member of the family is a very strong contraint, and
probably the most important design rule of the project : "NO RESSOURCE MUST BE BOUND". This led
to create a CPU with an "undetermined” data width. A F-CPU chip can implement a characteristic
datawidth of any size above 32 bits. Portable software will respect some simple rules so that it will run as
fast as the chip can, independently from algorithmic considerations. In fact, the speed of a certain CPU
is determined by the economic constraints, and the designer will build a CPU as wide as the budget and
the technology allow. This way, there is no other roadmap” than the user’s needs, since he is his own
funder. The project is not bound by technology and is flexible enough to last... as long as we want.

30

Chapter 6

The project’s roadmap

Here are the steps that the project intends to follow in the future. There is NO SCHEDULE because
this is a naturally growing project, not a commercially oriented product ; we are more concerned by
the pertinence and efficiency of the chip than time-to-market, and several ”coopetitors” can change the
priorities of the F-CPU team. This roadmap is not definitive, it has already changed and it will change
in the future. It helps understand the orientations of the team’s work. The following milestones are very
important though and show that this is an EVOLUTIVE project rather than a truely ground-breaking

utopia.

Generation Prototype Pre-series Commercial class

Codename ?"POC” : Proof Of Con- | "TOY” need I say | F1, F2, F3 ... other nick-
cept more 7 names wil be found (and

trademarked)

Goal Have a “chip” that can be | Provide the first users | Define a hardware plat-
shown or demonstrated at | with an advanced, yet lim- | form from which other
trade shows / conferences, | ited platform for testing | pin-compatible chips can
make the FCO core work, | the F-CPU for real. Allow | be derived. The “mother-
test it, explore the mem- | people to write real-world | board” and the I/O inter-
ory interface and its per- | software and have experi- | faces should giver as much
formance impact, make | ence with the instruction | free space as possible
a first chip that works, | set and the programming | for further enhancements.
prove the initial architec- | habits, in order to further | “Cooopetitors” will have
tural assumptions, prove | modify the instruction set | a common ground from
that the F-CPU concept | and the architecture for | which to develop efficient
is possible. It is NOT in- | the commercial class. It | chips. The main problem
tended to be a commercial | is not either a design from | being the memory band-
chip because of the wvery | which other architectures | width the memory inter-
limited functions it pro- | should be derived. The | face will be VERY wide
vides. Other scaled-down | goal is to reassign the op- | as to keep the following
F-CPUs should be derived | code map and learn to de- | chips from being memory-
from more advanced de- | sign ASICs, as well as to | starved. At the time, a
signs, starting with the | gain publicity/ press cov- | first stable version of the
“commercial class”. erage / hype. reference architecture will

be officially released. It
will then evolve naturally.

Technology CMP / Europractrice / | ATMEL / HITACHI de- | Depending on anyone’s

ATMEL / HITACHI de-
pending on the sponsors,
opportunities and avail-
able budget. Probably
around 0.35, 5V. It could
be a design contest prize.

pending on the sponsors,
opportunities and avail-
able budget. Probably
0.35 or 0.25, 3.3V

whims

31

Speed

One of the fun stuff to
do is to clock it whith
an an external PLL. Since
the memory will be asyn-
chronous to the core, we
will be able to test the ca-
pacity of the core to stand
very high and low working
frequencies. I have abso-
lutely no idea of the fre-
quencies we can get this
way.

At least, more than the
proto.

As fast as you can...

Number Half a dozen a few hundreds or thou- | A lot more !
sands
Word size 64 64 64 or more (any power of
2, above 32 bits)
Memory logical : 64 bits physical : | logical : 64 bits physi- | logical : 64 bits Physical :
addressing 20 (+5) bits (economic) cal : 32 (+5) bits of- | 64 (45) bits offchip, 4 or
range fchip + 4xSDRAM slots | 8 SDRAM slots (28bits)
(mux[10+12](+5) = 27 | (ready to make big clus-
bits) of private memory | ter)
(comfortable ...)
External 64 bits (private asyn- | 128 bits + 16 ECC for | 256 bits + 32 ECC of
memory bus | chronous SRAM) + 8 bits | private SDRAM, 32 of | external memory bus (
widths (debug port) multiplexed + bursted + | DDR-SDRAM 7) + 64
asynchronous ”I/0” bus (| bits of memory-mapped
memory-mapped) 7107 (multiplexed,
bursted, asynchronous)
JTAG / on- | custom byte-wide inter- | JTAG (or similar) + 1/O | JTAG + I/O port
site debug face bus (used for fast exami-
nation / debug port)
Cache Onchip data 4+ instruc- | Onchip data + instruc- | Onchip data + instuction,
tion, 2KB each. tion, 4 or 8 Kb each. 8 Kb or more each. Ex-
ternal cache : data bus
shared with the SDRAM,
onchip TAG SRAM
Instructions | 1 1 1 or more
per cycle
Core FCo FCo FCO0 and others
Lifespan Short (months) Short (not more than a | Much longer :-)
few years)
Evolutivity / | None (proto) None Yes
Compatibil-
ity
Motherboard | Breadboard or 2-layers | High quality 6-layers PCB | High quality, high volume
(CPU Mod- | PCB, interface with ISA | + home-made (bread- | production-class PCB +
ule) bus or similar board or 1-layer) I/O | I/O + intercom + EEP-
PCB ROM PCB (A PCI, AGP,
IDE/SCSI bridge will be
needed)
Target / | F-CPU team, demonstra- | Programmers / Develop- | Anybody (above 10yo)
users tors and advanced users pers / Advanced Integra-

tors

We hope that this table answers most of your questions. If not, do NOT hesitate to ask.

32

Part 11

General description of the F-CPU

33

2.1 The main characteristics

The CPU described here can be thought as a crossover between a R2000 chip (or early ALPHA) and
a CDC6600 computer. Some constraints are similar : the F-CPU must be as simple and performant
as possible. From the R2000, it inherits from the RISC main characteristics like fixed size instructions,
the register set and the size of the chip that is bound by the current technology. In the CDC6600, FCO
finds the execution scheme, the scoreboard, the multiple parallel execution units and most of all : the
inspiration for smart techniques that ease both design and programming.

Recently, the SH5 (Hitachi/ST) CPU showed some similar looking features, such as the 64 registers or
the jump target buffers. You will remark, however, that the F-CPU is completely different, particularly
from the scheduling point of view.

The following text is a step-by-step description of the currently developped F-CPU. The features
will be more deeply described and get interdependent, so it is recommended to read them from the
beginning :-) We will begin with the most basic F-CPU characteristics before discussing more critical and
hardware-dependent subjects in the next part.

2.2 The instructions are 32-bit wide

This is a heritage of the traditional RISC processors, and the benefits of fixed size instructions are not
discussed anymore, except for certain niche applications. Even the microcontroller market is invaded by
RISC cores with fixed size intructions.

The instruction size can be discussed a bit more anyway. It is clear that a 16-bit word can’t contain
enough space to code 3-operand instructions involving tens of registers and operation codes. There
are some 24- and 48-bit instruction processors, but they are limited to niche markets (like DSP) and
they don’t fit in power-of-two-sized cache lines. If we access memory on a byte basis, this becomes too
complex. Because the F-CPU is mainly a 64-bit processor, 64-bit instructions have been proposed, where
two instructions are packed, but this is similar to 2 32-bit instructions which can be atomic, while 64-bit
pairs can’t be split. There is also the Merced (IA64) that has 128-bit instruction words, each containing 3
opcodes and register dependency informations. Since we use a simple scoreboard, and because TA64-like
() compilers are very tricky to program, we let the CPU core decide wether to block the pipeline or not
when needed, thus allowing a wide range of CPU core types to execute the same simple instructions and
programs.

Since the F-CPU microarchitecture was not defined at the beginning of the project, the instructions
had to execute on a wide range of processor types (pipelined, superscalar, out-of-order, VLIW, whatever
the future will create). A fixed-sized, 32-bit instruction set seems to be the best choice for simplicity and
scalability in the future. Core-dependent optimisations can be made on the binaries by applying specific
scheduling rules, but the application will still run on other family members that have a completely
different core.

2.3 Register #0

It is "read-as-zero/unmodifiable”. This is another classical "RISC” feature that is meant to ease coding
and reduce the opcode count. This was valuable for earlier processors but current technologies need
specific hints about what the instruction does. It is dumb today to code ”SUB R1,R1,R1” to clear R1
because it needs to fetch R1, perform a 64-bit substraction and write the result, while all we wanted to do
is simply clear R1. This latency was hidden on the early MIPS processors but current technologies suffer
from this kind of coding technique, because every step contributing to perform the operation is costly. If
we want to speedup these instructions, the instruction decoder gets more complex. So, while the R0=0
convention is kept, there is more emphasis on specific instructions. For example, ”SUB R3,R1,R2” which
compares R1 and R2, generaly to know if greater or equal, can be replaced in the F-CPU by ”CMP
R3,R1,R2” because CMP can use a special comparison unit which has less latency than a substraction
(after all we don’t care about the numerical result, we simply want its ”property”).

"MOV RI1,R0” clears R1 with no latency because the value of RO is already known (hardwired to
7ero).

34

2.4 The F-CPU has 64 registers

The RISC processors traditionally have 32 registers. More than a religion war, this subject proves that
the design choices are deeply influenced by a lot of parameters (this looks like a thread on comp.arch).
Let’s look at them :

e "It is proved that 8 registers are plain enough for most algorithms.” is a deadbrain argument that
appears sometimes. Let’s see why and how this conclusion has been made :

it is an OLD study,
— it was based on schoolbook algorithm examples,

— memory was less constraining than today (even though magnetic cores were slow) and memory
to memory instructions were common,

— chips had less room than today (tens of thousands vs. tens of million) and a register was an
expensive hardware ressource

— the pipelines were not as deep as today

— we ALWAYS use algorithms that are ”special” because each program is a modification and an
adaptation of common cases to special cases, (we live in a real world, didn’t you know ?7)

— who has ever programmed x86 processors in assembly langage knows how painful it is...

The real reason for having a lot of registers is to reduce the need to store and load from memory. We
all know that even with several cache memory levels, classical architectures are memory-starved, so
keeping more variables close to the execution units reduces the overall execution latency.

e 7If there are too much registers there is no room for coding instructions” : that is where the design
of processors is an art of balance and common sense. And we are artists, aren’t we 7 Through
register renaming, the number of physical registers can be virtually extended to any physical limit.

e "The more there are registers, the longer it takes to switch between tasks or acknowlege interrupts”
is another reason that is discussed a lot.

Then, I wonder why Intel has put 128*2 registers in TA64 777

It is clear anyway that *FAST* context switch is an issue for a lot of obvious reasons. Several
technics exist and are well known, like register windows (a la SPARC), register bank switching (like
in DSPs) or memory-to-memory architectures (not much known), but none of them can be used in
a simple design and a first proto, where transistor count and complexity are real issues.

In the discussions of the mailing lists, it appeared that :

— most of the time is actually spent in the task scheduler’s code (if we're discussing about OS
speed) so the register backup issue is like the tree that hides the forest,

— the number of memory bursts caused by a context switch or an interrupt wastes most of the
time when the memory bandwidth is limited (common sense and performance measurements
on a P2 will do the rest if you’re not convinced)

— a smart programmer will interleave register backup code with IRQ handler code, because
an instruction usually needs one destination and two sources, so if the CPU executes one
instruction per cycle there is NO need to switch all the register set in one cycle. In fewer
words, no need of register banks. These facts led to design the ”Smooth Register Backup”,
a hardware technic which replaces the software at interleaving the backup code with the
computation code.

Let’s consider an IRQ code starting like this :

IRQHANDLER :
clear RI1 ; cycle 1
load R2,[imm] ; cycle 2
load R3,[imm] ;cycle 3
OP R1,R2,R3 ;cycle 4
oP R2,R3,R0 ;cycle b
store R2,[R3] ; cycle 6

35

Whatever the register number is, we only have to save R1 before cycle 1, R2 before cycle 2
and R3 before cycle 3.

This would take 3 instructions that would be interleaved like this :

IRQHANDLER :
store R1,[imm]
clear RI1 ; cycle 1

store R2,[imm

[imm)]
load R2,[imm] ; cycle 2
store R3,[imm]
load R3,[imm] ;cycle 3

OP RIR2R3 ;cycle 4
OoP R2,R3,R0 ; cycle 5
store R2,[R3] ; cycle 6

The ”Smooth Register Backup” is a simple hardware mechanism that automatically saves
registers from the previous thread so no backup code need being interleaved. It is based on a
simple scoreboard technique, a ”find first” algorithm and needs a flag per register (set when
the register has been saved, reset if not). It is completely transparent to the user and the
application programer, so it can be changed in future processor generations with few impact
on the OS. It saves at least 64 backup instructions, or 256 bytes of code, that are not loaded
from memory. This bandwidth is freed for the other operations required by a task switch :
loading the new code, reading the new task’s context, writing the old task’s context... This
technique will be described deeply later in the chapter 4.3.

The conclusion of these discussions is that 64 registers are not too much. The other problem is : is
64 enough 7

Since the IA64 has 128 registers, and superscalar processors need more register ports, having more
registers keeps the register port number from increasing. As a rule of thumb, a processor would need at
least (instructions per cycle) x (pipeline depth) x 3 registers to avoid register stalls on a code sequence
without register dependencies. And since the pipeline depth and the instructions per cycle both increase
to get more performance, the register set’s size increases. 64 registers would allow a 4-issue superscalar
CPU to have 5 pipeline stages, which looks complex enough. Later implementation will probably use
register renaming and out-of-order techniques to get more performance out of common code, but 64
registers are yet enough for a prototype. As to increase the number of instructions executed during each
cycle, the future F-CPUs will need explicit register renaming. This will allow a F-CPU computer to have
tens of execution units without changing the instruction format.

2.5 The F-CPU is a variable-size processor

The F-CPU goals specify forward compatibility. There are mainly two reasons behind this choice :

e As processors and families evolve, the data width becomes too tight. Adapting the data width on
a case-by-case basis led to the complexities of the x86 or the VAX which are considered as good
examples of how awful an architecture can become.

e We often need to process data of different sizes in the same time, such as pointers, characters,
floating point and integer numbers (for example in a floating-point to ASCII function). Treating
every data with the same big size is not an optimal solution because we will spare registers if several
characters or integers can be packed into one register which would be rotated to access each subpart.

We need from the beginning a good way to adapt the size of the data we handle "on the fly”. And
we know that the width of the data to process will increase a lot in the future, because it’s almost the
only way to increase performance. We can’t count on the regular performance increase provided by the
new silicon processes because they are expensive and we don’t know if it will continue. The best example

36

of this data parallelism is SIMD programming, like in the recent MMX, SSE, AlphaPC, PPC Altivec or
SPARC VIS instruction sets where one instruction performs several operations. From 64, it evolves to
128 and 256 bits per instruction, and nothing keeps this width from increasing, while this increase gives
more performance. Of course, we are not building a PGP-breaker CPU, and 512-bit integers are almost
never needed. The performance lies in the parallelism, not the width. For example, it would be very
useful to parallely compare characters, like during substring search : the performance of such a program
would be almost directly proportional to the width of the data that the CPU can handle.

The next question is : how wide ?

Because fixed-size ints and pointers give rise to problems at one time or another, deciding of an
arbitrarily big size is not a good solution. And, as seen in the example of substring search, the wider the
better, so the solution is : not deciding the width of the data we process before execution.

The idea is that software should run as fast as possible on every machine, whatever the family or
generation is. The chip maker decides of the width it can fund, but this choice is independent from the
programming model, because it can also take into account : the price, the technology, the need, the
performance...

So in few words : we don’t know a priori the size of the registers. We have to run the application,
which will recognize the computer configuration with special instructions, and then calibrate the loop
counts or modify the pointer updates. This is almost the same process as loading a dynamic library...

Once the program has recognized the characteristic widths of the data the computer can manage,
the program can run as fast as the computer allows. Of course, if the application uses a size wider than
possible, this generates a trap that the OS can handle as a fault or a feature to emulate.

Then the question is : how ?
The easiest solution is to use a lookup table, which interprets the 2 bits of the size flag in the

instructions, as defined in Part 5 : The F-CPU Instruction Set Architecture. The flags are by default
interpreted this way :

FLAGS SIZE | WIDTH in bytes | WIDTH in bits
00 1 8
01 2 16
10 4 32
11 8 64

Using a lookup table that would be located in the instruction decoding unit, one could modify the
interpretation of this field to any power of two. This way, no limitation exists in the instruction itself.
The lookup table will be changed from the default value through 4 special registers. The instructions
accessing the special registers will ensure that protection and data sizes are coherent, triggering an
exception otherwise. A fifth special register will be hardwired to the highest possible value, which is
dependent only from the processor.

Special Register name | default value in bytes function
SR_SIZE_0 1 meaning of SIZE
SR_SIZE_1 2 meaning of SIZE
SR_SIZE_2 4 meaning of SIZE
SR_SIZE_3 8 meaning of SIZE
SR_MAX_SIZE unknown (hardwired) | Maximum width managed by the CPU

The software, and particularly the compiler will be a bit more complex because of these mechanisms.
The algorithms will be modified (loop counts will be changed for example) and the four special registers
must be saved and restored during each task switch or interrupt. Simple compilers and less-than-128-bit
CPUs could simply use the default four sizes but more sophisticated compilers will be needed to benefit
from the performance of the later, wider chips. The interface must be respected by all family members,
and if the CPU does not support data wider than 64 bit, the code should not attempt to modify the
(hardwired) size special registers (or the CPU will trap). Therefore, in the algorithms, the "widest” size
should be used with SIZEFLAG=11 so it will also benefit to hardired, downsized processors.

37

At least, the scalability problem is known and solved since the beginning, and the coding techniques
won’t change between processor generations. This garantees the stable future of the F-CPU project and
architecture, and the old "RISC” principle of letting the software solve the problems is applied once
again. We can consider that prototype Fls will be hardwired to the default values, and attempting to
modify them will trigger a fault. But later, 4096-bit F-CPUs will be able to run programs designed on
128-bit F-CPUs and vice versa.

2.6 The F-CPU is SIMD-oriented

It’s one easy way to increase the number of operations performed during each cycle without increasing the
control logic. The variable sized registers allow endless scalability and thus endless performance increase,
but each instruction performing operations on data must have a SIMD flag, as to differentiate the type
of operation.

The maximum size for a SIMD element (“chunk”) is defined in an additional Special Register called
SR_MAX_CHUNK_SIZE. It is usually set to 64 on a 64-bit implementation, because it’s the largest integer
that the core can handle. On a 128-bit architecture, SR_MAX_CHUNK SIZE will probably remain equal
to 64 but it could be equal to 32 or 128 as well.

2.7 The F-CPU has generalized registers

This means that integer numbers are mixed with pointers and floating-point numbers. The most common
objection is from the hardware side, because a first effect is that it increases the number of read/write
ports in the register set (this is almost similar to having twice more registers).

The first argument from the F-CPU side is that software gets simpler, and that there are hardware
solutions to that problem. The first problem comes from the algorithms themselves : some are purely
integer-based, while other need a lot of floating point values. Having a split register set for integer and
floating point numbers would handicap both algorithms, because specialized registers would not be used
(the FP register set would be unused for example during programs like a mailer or a bitmap graphics
edition SW, while a lot of FP is needed during ray-tracing or physical simulations). And a lot of them
is needed when it happens. Another software aspect is about compilation, where register allocation
algorithms are critical for performance. Having a simple (single) register "pool” eases the decisions.

The second answer to the hardware problem is in the hardware. The first F-CPU chip, the F1, will
be a single-issue pipelined processor, where only three register read ports are needed, thus there is no
register set problem at the beginning.

Later chips, with more instructions issued per cycle, could use another technique : each register has
attribute (or ”property”) bits that indicate if the register is used as a pointer, a floating point number, etc,
so they can be mapped to different physical register sets while still being unified from the programming
point of view. The attributes are regenerated automaticaly and don’t need to be saved or restored during
context switches.

2.8 The F-CPU has special registers

They store the context of the processor, manage the vital functions and ensure protection.

These special registers can be accessed only through a few special instructions and can trigger a
trap if the register does not exist or is not allowed for access in the current running context. Since
almost everything is managed through these special registers, they are the key for protection in a multi-
user, multi-task operating system. These special registers are very important to recognize the CPU’s
configuration and the ”SR map” will evolve a lot in the future, adding more features without touching
the instruction set. The current SR map can be found in the files F-CPU config.vhdl and SR.h in the
latest package. No standard SR map exists yet, it will be defined at the end of the prototyping phase of
the F1.

The instructions that access the special registers are separated from the others because of their
potentially dangerous influence on the hardware. Managing the SR through the memory (with load/store
instructions) would make pipelining much more complex. For example, the SRs manage the virtual
memory : the L/S units would require special features to recognize the SR addresses and avoid any
unstable processor states (which are potentially dangerous). The problem is similar to the x86 protected
mode switch, where all the pipelines and all the hidden memory descriptors must be changed. The SR are
very similar to the MSR introduced with the Pentium CPU and they help separate ”common operations”
(wich must be pipelined and simple) from the "management operations” (slow, complex and usually

38

microcoded in the CISC CPUs). The GET and PUT instructions (see their description in Part VI) are
atomic and don’t disturb the pipeline scheduler.

2.9 The F-CPU has no stack pointer

Or more exactly, it has no dedicated stack pointer. It has no stack at all, in fact, because any register can
be used to access memory. One single hardwired stack pointer would cause problems that are found in
CISC processors and require special tricks to handle them. For example, several push et pop instructions
cause multiple register uses in a single cycle in a superscalar processor, which requires some special
management HW.

In the RISC world, conventions (the ABI) are used to decide how to communicate between applications
or how to initialize the registers at their beginning. Provided you save the registers between two calls,
nothing keeps you from having 60 stacks at once if your algorithm requires it.

Accessing the stack is performed with the single load/store instruction which has post-increment
(only) capability. Considering an expand-down stack pointed to by R3, we will code for example :

pop: load 8,r8,r2 (r2=[r3]; r3+=8)
push : store -8,r3,r2 (r2=[r3]; r3-=8)

Since the addition and the memory fetch are performed at the same time, the updated pointer is
available after the instruction accesses memory.

The ”Smooth Register Backup” hardware in place could be used by instructions on some implemen-
tations. There may be an instruction that saves or restores parts or all the register set to a specified
location but this is only an optional feature.

2.10 The F-CPU has no condition code register

It is not because we don’t like them but they cause some troubles when the processor scales up in
frequency and instructions per cycle : managing a few bits becomes as complex as the above described
stack.

The solution to this problem is the classical RISC fashion : a register is either zero or not. A branch
or a conditional operation is executed if a register is zero (or not). Therefore, several conditions can be
setup, without the need to manage a fixed set of bits (for example during context switches). We don’t use
predication bits as found on some other architectures : we don’t need them, and their specific instructions
as well. It keeps the ISA, the compiler and the scheduling very simple.

But, as explained later, reading a register is rather ”slow” in the FCO and the latency may slow down
a large number of usual instructions. The solution is not to read them, but a ”cache” copy of the needed
attribute. Like described above for the ”attribute” or ”property” bits of the registers for the floating
point issue, each register has an attribute bit which is regenerated each time the register is written. While
the register is being acccessed, the value that is present on the write bus is checked for 0 and one bit
out of 63, corresponding to the register we write, is set or reset depending on the result. This set of
“transparent latch” gates is situated close to the instruction decoder in order to reduce the latency of
conditional instructions. Since they are regenerated at each write, there is no need to save or restore
them during context switches, and there are no coherency issues.

There is no carry flag either. Addition with carry is performed through a special form of the intruction
that writes the carry to a general purpose register next to the result register. This avoids any coherency
trouble with the context switches and allows to use a carry with SIMD instructions : this is completely
scalable and secure for the pipeline scheduler.

2.11 The F-CPU is ”endianless”

Either only big endian or little endian does not satisfy everybody. To solve this problem, there is an
endian bit in the load/store instructions. The processor itself is not much biased towards one endianness
(well, due to the SIMD nature of the CPU, it is preferred to use little endianness) and the instructions
themselves are not subject to this debate. The choice is up to the end user. For further informations,
read the discussions in the chapter ”5.5.5 Endian flag” or the Endian FAQ at http://www.rdrop/com/
“cary/html/endian_faq.html.

39

2.12 The F-CPU uses paged memory

This provides the user with a large private, linear, virtual memory to all executing tasks. Page-based
protection is also a simple, software way to protect the tasks’ memory spaces from eachother. The VM
system is not completely defined but here are the preliminary characteristics :

e The pages will have several sizes, for example 4KB, 32KB, 256KB and 2048KB, in order to reduce
the number of page descriptors (pressure on the malloc routines !). A few page descriptors of
arbitrary sized blocks (powers of two) would also be necessary to manage pages larger than 2MB (if
you have 128MB of RAM in your computer you will need 64 x 2MB descriptors, more descriptors
than the CPU can hold onchip). Proposed granularity for these large blocks is 128KB (base address
and size, in a "fence” system) and the CPU could store two such page descriptors onchip.

e The pages could be compressed on the fly when flushed to hard disks (especially for the huge pages).
This is an optional feature though because it doesn’t decrease the latency of the hard disk, but can
optimize the bandwidth on the main memory bus. We have to find a good compressor as well as a
good SW/HW compromise for the compression engine.

e One could reserve some space in the cache memory hierarchy to hold the most important pages.
The kernel will be responsible of this choice.

e The cachability flags and the read/write flags of the pages will be used for the early implementations
to ensure cache coherency in multi-CPU systems with the OS functions and traps, instead of using
dedicated hardware. So, not only paged memory is used to protect the tasks and provide more
visible memory, but it also serves as a ”software” replacement of the MESI protocol in a Non-
Uniform Access Memory architecture.

e The internal TLBs are software-controlled through a set of Special Registers. No microcode or
hardware mechanism is foreseen that will help search a page table entry in memory. An OS ex-
ception is triggered whenever a task issues an instruction that access a memory location that is
not in the internal Page Table (TLB). Since there will probably be only four or eight entries of
4KB, 32KB, 256KB or 2048KB each (32 descriptors shared for data and instructions in the first
implementations), the OS PTE miss trap handler must be very carefully coded. Remember this
motto ? ”coding carefully has always paid !”.

Warning : these characteristics are preliminary. Some details will certainly evolve soon.

It appears clearly that the most critical part of the protection mechanism is the TLB. There are some
other annex mechanisms but the TLB is the “gatekeeper” for the most common cases. It must be very
well designed and provide some useful mechanisms that help efficiently manage the memory and the block
allocation. For example, the TLB entries contain additional fields such as the VMID (it is used to reduce
the thrashing) and the usage bits (8 2-bit saturated counters that measure the actual memory usage and
activity within a page). Both fields are 16 bit wide and help the kernel to enhance the memory allocation.

In order to keep a good overall performance, the project counts on an efficient OS. The LINUX-likes
are likely to be the best suited systems because they benefit from all the most recent researches and
advances in kernel technology, smart task schedulers and efficient page replacement algorithms. The
choice of a software page replacement strategy not only keeps the HW complexity low, but also allows
the system to benefit from the future algorithmic advances. If the features are not used, there is no
dangling hardware...

2.13 The F-CPU stores the state of a task in Context Memory-
Blocks (CMB)

These are very important structures for the OS because the SRB mechanism keeps the handlers from
seeing the interrupted tasks for coherency reasons. The OS will deal with these blocks in order to set or
modify the properties and access rights of a task, read its registers, or interpret a system call. A context
memory block must store all the data that are private to a task in order to fully store and restore it. The
endianness of the CMB is not defined.

The CMB holds the state of any task in such a way that it can be stopped and restarted. It is used
for debugging as well as multi-tasking. Every F-CPU instruction is atomic and can’t be split, so we don’t
store any partial result or temporary pipeline state into the CMB.

40

A Context Memory Block is divided into a variable number of ”slots” that are as wide as the CPU
can support (ie, 64 bits for a 64-bit CPU). Each slot contains an individual global or special register.

The first 64 slots hold the contents of the normal ”general” registers. They are stored and restored
by the Smooth Register Backup mechanism. Since R0 is hardwired to 0, the corresponding slot (the first
one) contains the instruction pointer.

The CMB holds the access rights and the most important protection flags. The OS modifies the
access rights of a task in the CMB because it can’t do it directly in the special registers (which at this
time store the OS’s properties...). The most important flags are stored in the Machine Status Register
("MSR”) : the size flags, the VMID, the capability flags...

The CMB holds the pointer to the task’s page table (when paging is enabled). This page table can
be stored at the end of the CMB if the OS decides to do so.

Two last slots are used for multitasking and debugging, in conjunction with the SRB mechanism :
the "next” and ”time slice” slots. The "next” slot is a pointer to another CMB ; the task stored in the
CMB can switch automatically to a new task, whose CMB is pointed to by the "next” field. The ”time
slice” stores the number of clock cycles that the task can execute before automatically switching to the
"next” task.

This description is not exhaustive and the number of CMB slots will increase in the future, as the
needs and the architectures evolve. A certain number of Special Registers are dedicated to the CMB
management.

2.14 The F-CPU can use the CMBs to single-step tasks

To use the CMB when single-stepping a task, no special device is required (except a brain) :

1. Setup the task’s CMB to the following parameters : "next” points to the debugger’s own CMB,
and "time slice” is set to 1 (or any desired number for multiple stepping).

2. Set the "next” special register to the task’s CMB.
3. Execute a RFE instruction (return from exception).

When RFE is executed, the processor will automatically switch to the task whose CMB is pointed
to by the "next” special register. The processor will then load the CMB’s "next” slot into the "next”
special register, execute instructions, and switch (back) to the debugger when this number expired. The
debugger can then analyze the contents of the task’s CMB, its registers and special fields.

A flag in the MSR is also dedicated to single-stepping tasks. The CPU generates a trap after executing
any instruction when this flag is set.

Other than single-stepping, the F-CPU will provide the user with traps on special conditions and
events, as the implementations allow (this is more implementation-dependent and is not defined yet).

2.15 The F-CPU uses a simple protection mechanism

Before a more sophisticated one is developped, a simple user/supervisor scheme is a good way to start
a CPU but a more refined ressource-based protection will enable users to create a more flexible OS, for
example based on a micro-kernel approach.

It is not ”a good thing” to use protection level rings because some pieces of software, for example
in a microkernel OS, are dedicated to a certain task and the rings don’t isolate their function properly.
OTOH, a task that is dedicated to handle page table entry (PTE) misses only needs to access the
associated Special Registers and the hard disk drive : if it fails, there is no consequence on other tasks
that are dedicated to communications or memory management, even though they are ”trusted” : they
are normal tasks but their property flags allow them to access a certain hardware.

Here are some of the ”capability bits” that are associated to any task :

* TLB_.OFF set if the addresses must not be validated by the TLB
* GET_CMB set if the task can read or write its CMB pointer
* GET_VM set if the task can read or write its TLB miss handler pointer
* ete.
Here is how the protection is implemented by the OS :

* Memory protection is ensured by the TLB miss handler on a page per page basis.

* The TLB miss handler is pointed to by the TLB miss SR, which is only accessed by the tasks with
the corresponding capabilities.

41

* These capabilities are stored in the CMB that reside outside of the visible scope of the untrusted
tasks, and the CMB pointer is not accessible to the tasks that don’t possess the corresponding
capability bit.

* other capability bits will appear in the future.

A user task (untrusted) will have all its capability bits cleared, while the kernel will have all the
capability bits set. After a reset, all the bits are set and the kernel allows each task to have more or less
capabilities by clearing or setting the corresponding bits when it creates a task. For example, a trusted
task responsible for the VM management will have the GET_VM bit set only.

42

Part 111

General description of the F-CPU
Core #0

43

Chapter 1

About the FCO core

Here, we speak about characteristics that are specific to the FCO (?”F-CPU Core #0”), and even though
they influence the general definition of the F-CPU, they may be abandonned in the future. This is where
the hardware engineer is getting more involved.

1.1 The FCO is superpipelined

When designing a microprocessor, one of the first question is "what is the granularity of the pipeline ?”.
This is not a critical issue for ”toy processors” or designs that are adapted from existing processors, but
the F1 is not a toy and it must be very performant since the first prototype... For the F1 case, where the
first prototype will probably be a FPGA or a sea-of-gates ASIC but not a full-custon chip, performance
matters more because the process will not be able to compete with existing chips. Performance always
matters anyway, but in our case there is a strong technological handicap. We need a technique that
reaches the same ”speed” with slower technology.

So the equation is : speed = silicon technology x critical datapath length, or speed = speed of one
transistor x number of transistors, so with slow transistors the only way to run fast is to reduce the
critical datapath (as an approximative estimation, because other parameters, such as capacitance and
wire lengths influence this). So now, what is the minimal operation we can perform without overloading
the chip with flip-flops ?

The depth of around ten transistors is a compromise between functionality and atomicity. We can
create circuits that have around six logical gates of depth or add eight-bit numbers. On top of that,
the maximum number of input per gate is set to 4, so it can be easily mapped to existing libraries and
FPGA architectures. Care is taken to have simple and fast ”building blocks”, but the good side is that
with 6 logic gates we can’t make complex things, while longer datapaths usually give birth to complex
problems. With this ”limitation” in mind, we also limit complexity and only neighbour-to-neighbour
connexions between units are possible. Furthermore, as soon as a unit becomes too complex, it becomes
either ”parallelized” (a large lookup table can be used for example) or ”serialized” (in another word,
pipelined) so there is no need to slow down the processor or use asynchronous technology.

The net effect of this bias toward extremely fine grained logic and pipeline stages is that even an
addition becomes ”"slow” because it needs more cycles than usual. This apparent slowness is balanced
by higher performance through overlapping of the operations (pipelining) but requires the use of coding
techniques usually found in superscalar processors (pointer duplication, loop unrolling and interleaving
etc.). Because the stages are shorter, there are more pipeline stages than usual, that’s why the FCO can
be considered as superpipelined. But it is only one aspect of the project and today, several processors
are also superpipelined.

1.2 The FCO implements an Out Of Order Completion pipeline

It is a simple solution if we want to get more performance from a single-issue pipeline. This is NOT a
superscalar or out-of-order execution (or OOO instruction issue) scheme but the ”adaptation” of a simple
pipelined CPU where instructions are issued in order.

The fundamental reason behind this choice is that not all instructions really take the same time to
complete. This fact becomes more important in the F-CPU because it is superpipelined, and one short
instruction will be penalized by longer instructions which would lengthen the pipeline. For example,

44

if we want to calibrate the pipeline length on a 64-bit addition, then longer operations like division,

multiplication or memory access with cache miss will freeze the whole pipeline ; on the other side, simple

register-to-register moves or simply writing an immediate value to a register will be much slower than

actually needed. This can be done on an early MIPS processor but not on a superpipelined processor.
Let’s look at the instructions that need to be completed, after the decoding stage :

approximative cycles 1 2 3 4
write imm to reg write dest
load from memory read address | access data: undetermined | write dest
write to memory read address data access data
logic operation read operands operation write result
arithmetic op read operands operationl operation2 | write result
move reg to reg read source write dest

We can also notice that successive instructions may be independent, not needing the result of the
precedent instructions. The last remark is that they don’t all need the same hardware. We can come
to some conclusions : not all instructions need to read and write registers or compute something, not
all instructions complete at the same speed, and some instructions may be much longer than others (for
example, reading a memory location with a cache miss, compared to a simple logic operation). We need a
variable sized pipeline that allows several instructions to be performed and finish at the same time. One
way to envision this is to consider the pipeline as ”folded”, or ”forked” like in a superscalar processor.
But this all consists to three successive and optional things : reading operands, processing them and
writing the result.

e Reading the operands is not a problem since at most three registers can need to be read in one
cycle. this is limited by the instructions themselves,

e Computing is fully pipelined and independent because specialized units process the data,

e Writing the results is a bit more complex because several operations can complete at the same time.
A one cycle operation (logical operation for example) will complete at the same time as a two cycle
(arithmetic) operation that has been issued during the preceding cycle.

For this last reason, the register set has (at least) two write buses. The FCO emits up to one instruction
per cycle and several instructions can end at the same time. In case more than two values must be written
at the same time, the ”oldest” instruction (earliest issued) has priority.

This kind of processor core has the advantage that long operations don’t slow down or block the whole
program if the result data are not needed before the slow operation is finished. For example, a memory
read can cause cache miss delays but this won’t keep the other execution units to do their job and write
their result to the register set. Of course, this puts some pressure on the compiler but not more than for
other existing processors, and careful coding has always paid anyway.

The difference between OOO completion and OOO execution is that OOO execution CPUs can issue
the operations out of order and need a last unit called ”completion unit” or ”retire unit” that validates
the operations in the program order. This also requires "renamed” registers that hold the temporary
results before they are validated for good by the completion unit. All these ”features” can be avoided by
the techniques described in this document and, unlike OOO execution processors (like PowerPC and P6
cores) the peak performance is not limited by the size of the completion unit’s FIFO (or the "ReOrdering
Buffer”, ROB) but by the number of register ports.

1.3 The FCO uses a scoreboard

It is the simplest way to handle the out-of-order nature of the core. The way it works is very simple : each
register has a flag that is set when the result is currently being computed, and the instructions are delayed
until no flag is set for the registers it uses for read and write. This way, strict coherency is ensured and
no operation can conflict with another at the execution stage : verification of conflicts is done at only
one point.

These flags are not exactly like the ”attribute” bits because they are not directly accessible by the
user but they have the same dynamic behaviour and are not saved or restored. Because they don’t occur
often and are not critical for performance, write-after-write situations are not examined by the scheduler.
The simple rule of blocking an instruction at the decode stage if at least one of the used (read or written)

45

register is not ready is strictly enforced. Of course, the Register 0 which is hardwired to 0 is the only
exception and does not block anything.

The scoreboard interacts with the ”Smooth Register Backup” mechanism to ensure coherency between
the switching tasks.

1.4 The crossbar

The FCO uses a crossbar between the register set and the execution units because :
e [t is the easiest way to ”fold” the pipeline,

e It provides a "one fits all” register bypass bus that shortens the latency between dependent instruc-
tion,

e It reduces the number of register ports.

Because of its role, the crossbar (or ”Xbar” for short) is a central part of the FC0. The register set is
only written or read through this device which virtually provides it with more than ten ports. It allows
the execution units to communicate without the need to write and read registers (in register bypass mode,
when operations are dependent) it provides the hardwired register 'zero’ and the results are checked for
zero with two additional ports.

The Xbar extends the register set’s read and write ports, making ”vertical” buses (see figure 2.1),
and each vertical bus is connected to one of the input and output ports of each execution unit with
"horizontal” buses. It also performs some width formatting (byte, word, etc) for the immediate values
coming from the instruction decoder. Because of the relatively high number of ports, the crossbar uses a
lot of surface and transistors. It requires a cycle of his own to let the data flow through its whole length,
and the goal of ten equivalent transistors is likely to be reached fast, because of both transistor count and
wire lengths. Therefore, accessing a register takes two cycles from the time the register number has been
decoded : one cycle for the register set and another for the Xbar. But when consecutive instructions are
dependent, the result that will be written to a register is present on the Xbar and can be used during
the next cycle for the next operation ("register bypass”).

This can be summarized in the following drawing :

write write
bus 1 bus 2
|
?

F- CPU desi gn t T
FQO ti m‘eilgggni\ aS??m a
(O Yann Guidon 1/5/2001 e—%- 1 c
< 2
© ks
I g o
o c
o—x 1 | ‘D
~ @
Q o
S [3)
~ c
® £

.l-j T
A A A 1
Registers |ROP2| sHL | INc | Asu |Popc|iMuL | DIV | Lsu

H
ERREREEN

Scoreboard 10 » 5
Ischeduler 07 TLB"

readyl Ilatency l l

Imm16
Instruction decode & issue

Figure 1.1: The pipeline is folded around the Xbar

46

Chapter 2

Evolution of the FCO

Discussion after discussion, the FCO has taken a shape that makes it unique. Because it is a gradual
change, and because there is not only one view of the processor structure, there have been several drawings
that show the internal organization of the chip.

F1 microarchitecture proposal

06/23/1999 by Whygee

IHNSTROCTION
CACHE

a1 T T 1
r 1 1 1 1

INSTRUCTION FIFO 1
IRSTRUCTION FIFO 2

alezs [
decode|deeect scorboard
o EizelUT
!'H.Efll'.'ﬁl'fll' E_,
" -
1nie] E I
E add. sub e
g multiply [& $
<1l ROPZ unat [& $ 64 registers
b1t scramber} -
load-store P
£EE3E
load- store FlFl=s|5 5 & &
& recrdering E’ E’ g §‘
e e e B 4 T

DATA CACHE

Figure 2.1: The first F-CPU chip proposal

The figure 2.1 is the first drawing that shows the general shapes of the FCO, from the schematic,
functional and implementation points of view. At that time, the Xbar did not count for a full clock cycle
in the pipeline. The memory hierarchy was not designed and consisted of empty ”units”. The execution
pipeline though was almost determined and did not change much.

47

F1 processor core proposal Rew. 2
B INSTRUCTION CACHE INSTRUCTION CACHE
SET1 SET2
tags LHL addieszz| nsh nzh & nzh 2 nzh 4 hsh & nzh B insh ingh &
tags LEL addiezs] inzk izt & izt 3 iyt 4 izt 5 inzh B izl 7 inzh B
O IETE LHLI addiezz| nzh insh & insh 3 inzh 4 inzh 5 insh b izt 7 ihsh &
Snoop tags LR ¥ addiess] inch ingh 2 inzh 3 ingh 4 ingk 5 ik B ingh 7 inzt B
update Ccompare Multiplexer
DMA & ek INSTRUCTION DECODE UNIT
memaory immediate condiional 4 busy registers TT *i unlock registers
interface wvalue instructions
b A A &
Scoreboard
1-cycle operations |pr0pert|e5|
-ROP2 < FY ++
- SCRAMBLE P -
-INCREMEMNT b
- 8-bit ADD/SLUB - &
’ !
2-cycle operations: " r
= N-bit ADDYSUB
iesatiucd Yom oycie 1 H Xbar 63 x 64-bit Registers
r
MN-cycle operations 1 i
- MULTIFLY b +
-DMVIDE g
= Others
FYE I
Snoop M SPECIAL REGISTERS
Onch|p Zbarbypass —>4 4 4
L2 Address range verification @1 @2 data data LOADISTORE UNIT
n out
cache base addiess Tize praperties @ corpare ['dity’' tags bidirectional data mulbiplexer/shifter
?
Lg
t*_ag DATA CACHE :_ag DATA CACHE
SET# SET#2

Figure 2.2: A more precise, first-attempt F-CPU description

The figure 2.2 shows how the units that access the memory would be architected. These are still at
both extremities of the chip and require very long wires to snoop for data/instruction access conflicts.
The memory units are explicited though, and consist of several cache line buffers. A curious feature is
that the address "fences” (that store the base address and limit size of the blocks that a task is allowed
to access) are inside the memory units, the TLBs are now outside of the units. The Xbar now takes a
full clock cycle and is considered as a full unit, the execution pipeline is refined. Due to the ongoing
discussions, the register set had only two read and two write ports, the third read port was accepted

later.

48

The figure 2.3 shows the current status of the FCO as it is envisionned for the F1. The memory units
have been gathered so the wires that drive the address and data lines outside of the chip have a minimal
length. They are symmetrically positionned so the tags of the cache line buffers can all be compared in
one simple unit that decides and schedules the memory accesses. The data and instruction TLBs are
separated from the memory units because they are parts of the pipeline, and should be placed close to

a -
D Cache o B | Cache
& i
= B
= c
ECC ECC
E =0 128 bits s
o4 Jizd iz hza hzs
E 1=t half a2rrd half Sk 1=t half 2l half
B—1 il'.l = -
- LSU ® |predict| & Fetcher
B o 5 o
- logic
E PC
5 IIIII)ICI]: HEEEE /]\physm/[\ jhi@ _&,32
a
- 2 DTLE | ITLE
5 i Decod
o TIOE @/[\ ecoder
D—'
E ROFZ2 —
irnrn
< o W N
E Inc/cmp/min o? Scoreboard
o—
Shuffler
Add!su‘; Regﬁtﬂfﬁ
A bar &3 % 64 bits
Imul
=Rz
Idiv sInonitors

Figure 2.3: A third F-CPU description

the decoding unit in order to signal an invalid pointer as soon as possible.

49

T L L ST AT T LT LS A ST A T T AT T LT AL

F-CPU Design Team
FCO layout / synoptic diagram
(C) Yann Guidon 1/4/2001

> >
ANEIRENE
' E 3 3
Data 212 @ |2 Instruction
Cache & |3 3»8 Cache
) =) =. @)
3 | |3 3|3
%) A Y Y—a %)
?3 ECC (?) ECC (?) j%
2 —tt 1 | 4 RE
A0l B 1T iz
oy vl vv vy v)
3 @
B L/S U Fetcher N
I I I I I I I I ;instruction
Xbar I/D TLB (4*8 entries) Decoder
i) e Y VI
ROP2 —) Scoreboard
07 b /scheduler
INC P—]
SHL : D Register set
. -« 63 x 64 bits, 3R 2W
ASU —— Xbar
IMU —
» Special Registers,
— > N Monitors,
IDIV < JTAG/Debug,
b Semaphores ...
POPC —

Figure 2.4: The current F-CPU diagram

The figure 2.4 is the latest update : the external data bus has been split into 2 x 64-bit SDRAM buses,
the POPCOUNT unit is added and the memory system (TLB/LUT/cache etc.) is even more precise.
We can see that the overall shape doesn’t change much but is refined.

50

Chapter 3

The FCO Execution Units

For ease of development and scalability, to name a few reasons, the Execution Units (EUs) are like LEGO
bricks that add new computational capabilities to the processor. Like the whole core, they are designed
with a full-custom process in mind but can be implemented with libraries (if they have the corresponding
functions) or in FPGA cells or whatever alien technology falls from the sky ...

Here are described the minimal necessary EUs that have been considered until today. As they come,
several units can provide the same function (like : shifting left by one is like multiplying by two or
adding the number to itself) so the wisest habit is to check which unit does what and in how many
cycles with wich throughput, in order to pick the best opcode for the desired operation in each context.
Transistor count saving has not been a serious consideration, more care has been taken to reduce the
critical datapath to the minimum possible.

Because of their different latencies and particularities, the EUs have not been packed into one ”one-
fits-all ALU”. We can also pick one unit and think about it without caring of the surrounding units. This
way, we see that the hardware being designed provides new unexpected operations that can be used in the
instruction set. When the hardware is in place, only a few additional logic gates provide useful operations
that can spare several instructions in application software, and speedup some critical algorithms with
almost no overhead.

3.1 The ”logic” unit (ROP2)

This is the classical ”logic unit”. Its purpose is to compute bit-to-bit operations. Due to its simplicity, it
has one cycle of latency and is among the fastest units.

Now, what operations will it execute ? With two inputs, there are 22°=16 possible operations, from
which 8 are unique and useful :

Al 0|0 |11

B:| 0 1 0 1
00 | 01 | 10 | 11 | Function
0| 0| 0| 0| CLEAR (set to 0) : equiv. to mov res, reg0
0|0 | 0|1 |AANDB
0l0|1|0|AAND/B
0| 0| 1| 1| A (donothing)
0| 1|0 /| 0] /AANDB (similar to A AND /B above)
0|1 | 0| 1 |B(donothing)
0 1 1 0 | AXORB
0 1 1 1 |AORB
1101|010 |ANORB (equiv. to NOT [A OR B])
110] 0] 1 |NOT(AZXORB)
1 10|10 |NOTB (do almost nothing)
1101]1]1]AOR/B/equiv. to NOT [/A AND B]J)
11 11] 0] 0 |NOTA (do almost nothing)
1] 1]07] 1] /AORB (similar to A OR /B]
1|1 1] 1] 0 | ANAND B (equiv. to NOT [A AND B])
T [111 |SETtol (D)

51

Some opcodes are duplicated (if we include operands commutativity), others are not "real” 2-operands
operations (there are 1-op and 0-op operations). We could include directly 4 function bits in the opcode,
but we need some room for the ”combine” instructions, so we can save one bit with the use of ”condensed”
codes. We select the 8 2-operands operations and create a new table. The decoder can thus avoid to
read unnecessary source registers. For the ROP2 instructions, the 3 function bits are decoded by a tiny
hardwired lookup table in the decoder as follows :

opcode | real code | Function Symbolic name

000 0001 A AND B AND

001 0010 A AND /B | ANDN

010 0110 A XOR B XOR

111 0111 A ORB OR

100 1000 A NOR B NOR

101 1001 A XNOR B | XNOR

110 1011 A OR /B ORN

111 1110 A NAND B | NAND

The necessary hardware for computing this function is rather inexpensive :

F- CPU Design Team
ROP2 unit : detail of one bit SX
(©) Yann Quidon 1/4/2001

OPO
OP1
OoP2
OP3

AX Bx

Figure 3.1: Detail of the ROP2 unit

There are probably a few other technical details to discuss about, but they are too technology depen-
dent (signal "tree” of the operation bus, for example). This is the most straight-forward element of the
processor.

Because the critical datapath of this unit is so short, we can add some (simple) functionality : let’s
call it the ”combine” function. While ROP2 is bit-to-bit, the ”combination” performs the logical AND
or OR of each ROP2 result in every SIMD packet (variable size) of a word. Combined with the ROP2
function, it is possible to perform complex masks and bit moves with few instructions and less need of
shifts. Remark : due to the large number of inputs, only 8-bit combines are currently implemented.

52

F- CPU Desi gn Team
ROP2 unit : COMBINE of a byte
(©) Yann Cuidon 1/4/2001

R s B e s

- T T T T T T T
! 1 1 1 1 1 1 1

gROPZ‘ gROPZ‘ QROPZ‘ gROPZ@ROPi gROPi gROPi QROP#
| | | |]]]]
1 1 1 1 1 1 1 1

Figure 3.2: Description of the COMBINE function on top of ROP2 for a byte-wide SIMD packet

VHDL : see the /vhdl/eu_rop2 directory in the F-CPU package.

3.2 The ”bit scrambling” unit ()

The goal is to have a one-cycle shifting unit that can do other things as well. As opposed to the ROP2
unit, the principal function is not change the value of the input data bits but to changes the position of
the bits. Therefore, shifting and rotating are only examples of the intended purposes of this sometimes
called ”shuffling” unit : bit field extraction and insertion, as well as bit and byte reversing and bit testing
are examples of what this hardware is meant to perform.

There is a problem, though : F-CPU will be a 64-bit processor and a classical barrel shifter is a O
(log2 (n)) unit, which is fairly close to the pipeline granularity. A shifting array (a kind of transistor
array) will be necessary to get to O (1), at the price of more transistors and probably more transistor
load, but it is the only solution if we want to shift 128, 256 or 512 bits in one 10-transistor pipeline
cycle. During prototyping, we can use pre-synthetized hardware but a production-class CPU will require
something looking like an Omega network of small shufflers.

This unit will also perform SIMD specific operations like SIMD word expansion and mixing. A little
logic unit at the end of the critical datapath could perform bit operations (test, set, clear, change) if
enough gates are left in the critical datapath.

Xbar SHL S unie o T
. o ‘ W (C) Yann Quidon 1/4/2001
imm8— ‘
do_| 1 decoder f\ﬁlze
operand 2— ! sign, SI
0x01—
| shifter and
operand 1 1 network or S
operand 1— 1]
(bit reversed) ! andn
operand 3

/destination

Figure 3.3: Overview of the Scrambling unit

VHDL : see the /vhdl/eu_shl directory in the F-CPU package.

53

3.3 The ”increment” unit

This is maybe the most curious unit, because it is not usually found in normal CPUs. The reason for this
dedicated unit is simple : a lot of code adds or substracts one, in loops for example. This is unnecessary
work for an adder, if the second operand is one, so let’s hardwire it and run it faster. That was the first
idea.

The method to increment a binary number is not complex to understand : you scan the number
starting from the LSB, inverting every bit until you find a 0. Then, you turn this 0 into 1. It is in fact a
dedicated carry propagation tree with XOR gates at the output. The tree does the same thing as ”find
the first LSB set”. So, let’s go, let’s have it too in the instruction set. In some cases, it is very valuable,
and there’s no hardware overhead. This makes two instructions : INC and LSBI.

So now, we can increment, we can also decrement : we have to invert each bit at the input and the
output of the unit. This added hardware lets us also find the "LSB cleared”. Four instructions (add DEC
and LSB0). We can also add a bit reverser at the input, as to find the MSB too. Six instructions (add
MSB1 and MSBO to the I7, and a bit reverser on the Xbar).

Let’s go further : let’s put a multiplexer at the end of the incrementer, wich is controlled by the sign
bit of the input value. If the bit sign is set, we set the output to - (n+1) (there is a bit of juggling to
do with inverters but it’s just a "technical detail”). With this unit, we can compute the absolute value
of a 2s-complement binary number. Seven instructions (add ABS). Now that we have these multiplexers
at the input and the output of the ’incrementer’, we can do yet more things. Since the incrementer is
a "find first bit” binary tree, we can use it to compare two numbers. The idea is simple, a (positive)
number is greater than another if at least one of its MSBs is set while the corresponding bits of the other
number is cleared : 0 > 1, 11 > 10 ...

So, just XOR the two input numbers, find the first MSB set, and AND the result with one input
number. If the result is cleared, then this number is lower then the other, and vice versa. This makes eight
instructions. Still better, we can use the ending multiplexer to select one of the input values : we can have
the min and max instructions, as well as the derivated like “if regl > reg2 then regl=reg2” (for graphics,
in coordinates clipping, or saturated arithmetics...). We can have more than ten useful instructions with
this simple single-cycle unit ! Some are very useful because they usually involve conditional branches
(and pipeline stalls or branch mispredictions...).

From a purely abstract point of view, finding the first set bit is done with a ”binary tree”, so the
depth of the unit is O (log2 (n)) with rather simple "nodes”. This is almost a schoolbook case to design.
Anyway, like for the shifter array, there are be some problems to fit it in the pipeline’s stage depth, mainly
for the compare and clip instructions... At least, the INC, DEC, ABS, NEG (and their SIMD variants)
are possible in practice with a strong timing constraint.

In this unit, I have not yet addressed the problem of the SIMD data. Comparing signed numbers is
straight-forward though : we just have to XOR the sign bit of each SIMD chunk.

The current implementation of the INC unit, doing inc, dec, neg and abs, fits in the 6 gates depth of
critical datapath. It is composed of a first line of XORs, a 3-gates deep AND tree, a line of multiplexors
and a last stage of Xors.

o1 02 03 04 05
(aux.)

F- CPU Desi gn Team
13 [I4 INCunit : detail of one block
(O Yann Guidon 1/5/2001

11 |12

Figure 3.4: Description of one block of the AND tree

54

Xbar F- CPU Desi gn Team Overview of the INC unit (O Yann Guidon 1/5/2001 PRELI M NARY (| NCOVPLETE) VERSI ON

muxes muxes muxes muxes muxes muxes r%

D

@

I v 6 v v I

Figure 3.5: Overview of the Incrementer Unit (preliminary version)

The output of the last XOR stage can be fed to another pipeline stage that will perform the remaining
operations (LSBx, MSBx, min, max ...).

You can remark that the Xbar cycle can be used to amplify a single signal to a large number of inputs.
The Xbar gives enough time/gates to compensate such a large fanout.

VHDL : see the /vhdl/eu_inc directory in the F-CPU package.

3.4 The add/sub unit

Using a carry-lookahead adder, it needs around two cycles to complete a 64-bit addition or substraction :
it is a O (log2 (n)) process with some more heavy mechanisms than the incrementer, but it computes
a 8-bit add/sub in one cycle. Therefore, SIMD with 8-bit data is fast (1 cycle instead of 2). For these
reasons, it would is difficult to use standard pre-synthetized elements because of the variable-depth and
SIMD nature of this unit. Saturation (signed and unsigned) is desired, with a possible additional latency
of one cycle.

VHDL : see the /vhdl/eu_asu directory in the F-CPU package.

3.5 The integer multiply unit

Here, same remarks as for the adder. There are SIMD constraints and a variable-depth, fine-grained
pipeline (depending on the width of the input data). It will be difficult to find this kind of unit in
pre-synthetized libraries. Today’s unit does a 64-bit MAC in 6 cycles.

VHDL : see the /vhdl/eu_imu directory in the F-CPU package.

55

3.6 The integer divide unit

Same as the multiplier. Notice, though, that a divide by zero can be caught at decode time with the
"zero” property flags. We can trigger a trap without issuing the instruction. An old substract-shift unit
can be enough because it is not used often. If faster divisions are required, the Newton-Raphson method
can be used.

VHDL : see the /vhdl/eu_idu directory in the F-CPU package.

3.7 The Load/Store unit

This is a very special case because no actual computation is performed. The latency is completely
unknown at compile time, and there is the problem of the memory protection. If the memory protection
is ensured by other mechanisms, the L/SU is simply a big cache buffer with a crossbar to perform the
word/endian selection. Notice that its structure is similar to the instruction fetcher unit : it is mirored
with a different granularity.

When there is no cache miss or buffer to flush, the data can be directly sent or read from the buffer
through the L /S crossbar then sent to the main Xbar. In the ideal case, there is no latency for memory
writes and 1 cycle for memory reads. The memory fetch logic tries to keep the buffers full when contiguous
accesses are performed. A double-buffer (with a pair of line buffers) can hide the memory latency to a
certain extent.

The memory buffer can ”cache” eight cache lines (the number of lines may vary with implementations).
It communicates with the external memory data bus, the data cache memory and the main Xbar. This
reduces the latency when recovering from cache misses, and simplifies the cache memory organisation
because the L1 cache does not communicate directly with the external memory : the memory buffer
(L/SU) is used to split the large cache line into smaller chuncks that can be sent to the memory interface.
Not only the LSU stores data but it plays a major role in the memory hierarchy, in the cache replacement
cycles and the cache coherency in a multi-bus interface with a limited set of buffers that are used for
several functions.

VHDL : see the /vhdl/eulsu directory in the F-CPU package.

3.8 Population count / Single Error Correction (POPC)

This is an optional special multicycle unit wich performs SEC and POPC functions.

The POPC instruction also performs saturated substraction with the 6-bit result (see the popc in-
struction description in part 6).

The SIMD chuncks are basicly 64-bit wide, but nothing keeps the designer to support other granular-
ities.

VHDL : see the /vhdl/eu_popc directory in the F-CPU package.

3.9 Other units

The floating point numbers have not been discussed, because we better have something that works
correctly in the integer domain first, we’ll add FP hardware and instructions later. The case of the math
exceptions will be probably managed with the same kind of mechanism as the ”zero” property flag, so
no error will break the execution pipeline flow.

One ”cheap” way to avoid the use of floating point numbers is by using the logarithmic number base
(LNS). Recent works succeeded in making a 32-bit logarithmic adder with descent speed and die space use.
Any other operation (SQRT, SQR, multiply, divide...) can be performed by existing hardware (maybe
slightly modified for the MSB). The conversion between integers and log numbers will be a rather heavy
software task, as long as no hardware exists. A cooperation with other research teams is encouraged.

When FP hardware will become available, only add/sub and multiply units will be implemented at
first. Any other mathematical operation (including division) will be computed with a Newton-Raphson
approximation algorithm in software. A third unit will provide the ”seed” from hardwired ROM tables.

56

3.10 Extensions and scalability

If you want to add your own custom Execution Unit to the F-CPU, it is rather simple : you first have to
prepare the Instruction Set map and the decoder, so the necesary instructions are easy to decode and they
don’t conflict with other instructions. Then, you have to ensure that the scheduling and the exceptions
don’t jeopardize the decoder unit’s structure (see the discussions in the following parts). Finally, you
“plug” your unit on a newly created port of the Xbar.

Depending on your target technology, you can add an undetermined number of new units : the FCO
architecture does not limit the number of physical execution units. The physical limits are however
important and the Xbar can’t be extended endlessly : the design goal (6-gate critical datapath with 4
input max. per gate) must also be respected.

The widths of the data are also the parameters that play in favor of the FCO and the F-CPU in general
: the extension of the register width or the chunk width allow the engineer to scale the design up easily.
Again, the design goals must be respected but this is another simple way to extend the architecture
without redesigning everything from scratch. For example, the register width and the chunk width are
decoupled, so they can be changed independently.

57

Part 1V

Advanced topics

58

A superpipelined CPU core does not only implies the use of variable length pipelines. Some charac-
teristics of the FCO and the F-CPU in general will be discussed here, they are not only ”features” but
design philosophies that are lead by the choices as discussed in the first part of the document.

59

Chapter 1

The exceptions

A processor of any kind (CISC, RISC or any other architecture) generates a lot of exceptions, interrupts,
traps and system calls (here, context switches are not the point). Each pipeline stage can generate
several errors that the OS must handle, which requires that the application must ”restart” the trapped
instruction or continue after the trap. This implies that the whole context must be saved, but which ?

Control can be transfered to the OS, an interrupt handler or a trap handler at anytime, at any stage
of the pipeline. A classic RISC pipeline comprises (and generates) for example :

e IF (Instruction Fetch) : page fault
e ID (Instruction Decode) : invalid instruction, trap instruction, privileged instruction.
e EX (EXecute) : divide by zero, overflow, any IEEE FP math error...

e MEM (MEMory access) : page fault, protection error

Not only should the processor trigger the correct handler (because several errors can occur in the same
cycle) but it must also preserve or flush the correct stages of the pipeline. And since FCO completees
the operations OOQ, it is too complex to do without a lot of buffers everywhere as well as sophisticated
bookkeeping, which we can’t afford for obvious reasons. We need to keep precise exception anyway,
and the ability to stop the pipeline at any time without losing data that would require some code to
be reexecuted. We need a simple and predicatable yet efficient pipeline that is not influenced in its
architecture by faults.

The simplest alternative to this problem is dictated by good sense : make all the exception occur at
one place, before the potentially faultive instructions enter the pipeline and require additional hardware.
This means : NO INSTRUCTION IS ISSUED IF IT CAN TRIGGER AN EXCEPTION or, in other
words, ALL EXCEPTIONS MUST BE CHECKED AT DECODE TIME AS TO PREVENT THEM
FROM OCCURING IN THE EXECUTION PIPELINE. Remember this clearly, meditate about this,
since it influences how the instruction set is designed too.

The good side of this choice is that there is no ”trap source” register as in the MIPS CPUs. All ex-
ceptions are caught at the same place and are disambiguified and ordered implicitely. Another important
good consequence is that there is no temporary buffer or "renamed registers” as called in the PowerPC.
The previously described OOOC pipeline is not changed at all and the critical datapath does not suffer
from additional buffers. There is no register allocation bookkeeping, nor added control logic.

The other side, which is about the constraints, is discussed here. Most obvious limitations have simple
turnarounds. The first problem is : can we detect all the exceptions at decode time and how ?

First cause : page fault at instruction fetch time.

First, we are not absolutely sure that we will even decode the next coming instruction, since the last
instruction of a page could be a jump, or any similar instruction. So why trigger the trap now ? The
easy turnaround to this problem is to "tag” the instruction as faultive or, better, replace it with a trap
instruction (which requires less hardware). So, if the instruction is executed, it will trap. Simple, isn’t
it 7 Of course, if a page fault is triggered by the instruction prefetch unit, it is a good practice to directly
prefetch the necessary code before it is needed. Just by precaution.

60

Second cause : invalid instruction, privileged instruction...

Why bother ? It traps. Depending on the type of trap, we will advance the instruction pointer or not,
fetch the needed code to execute it, and begin to backup of the registers with the SRB mechanism. The
precedent instructions don’t need to be flushed from the pipeline, because the SRB will communicate
with the scoreboard to backup the registers in a correct order. When the pipeline will be "naturally”
flushed from the old application’s instructions, the registers will be saved and the faultive application
will restart later without any loss or reexecution.

Third cause : math fault.

The saturation (or overflow) exception (a la MIPS) is not implemented. The IEEE Floating Point
instructions have a ”compliance” flag that stops the instruction issue until the result is "safe”, otherwise
the result will sturate and not trigger any trap. The ”division by zero” condition is easily detected at
decode stage with the ZERO property bit of the dividing register. At the same time, we can detect if the
result will be zero and issue a ”clear” operation instead of the divide operation.

Fourth cause : page fault, invalid address fault.

We can consider that the memory is protected on a page granularity basis, so the page fault will
trigger a protection checking code before loading the page. But detecting a page fault is very simple : we
have to check the address with the values contained in a page table. If the address does not correspond
to the available pages, it is a page fault : we trap.

Now, the problem is to have the status (page present or not ?) at decode time. Let’s be smart,
because memory accesses are almost half of the executed instructions !

The alternative is to use a similar mechanism to the ZERO ”property” bits of each registers. This
means that when a value is written to the register set through the Xbar, some ports of the Xbar com-
municate the value to the page table. In one cycle or two, the data is ready for the ID stage, this is a
speculative check that is transparent to the instruction set architecture. In this page check time, we can
also check for the address range, verify if the value is in L1 cache , and if yes, indicate in which bank it
is and prefetch the cache line, etc...

An obvious problem though is that we can’t seriously check all the values flowing through the Xbar
to the reg set. Not only this is not always useful but it also consumes power. The simplest way (for the
prototype) is to check the result of the pointer updates since they are most likely to be reused soon as
pointer.

For more sophisticated architectures, another ”transparent tag”, saying that the register is used as a
pointer, can be very useful. We can allow for example only a few registers to hold this tag, something
like 16 (64/4 sounds reasonable) and this flag would be set each time a memory access is performed with
this register. The flags would be allocated with a LRU mechanism using a 4 bit down counter. This way,
when the ID recognizes a memory read/write instruction, it checks the pointer flag and if set, sends the
associated informations to the L/S unit (informations like : in which L1 bank the data is, or in which
buffer, etc.) or it traps if the page table lookup returned a negative value. If the pointer flag is not set,
the ID pauses for a page table lookup and sets the pointer flag. Of course, like all transparent flags,
their value is not saved during context switches and is regenerated automatically as soon as they are
used. In the absence of explicit flags in the instructions, this is a rather simple way to reduce the table
lookup overhead, and the address can be checked BEFORE it is needed. The L/S unit is only in charge
of buffering the data that flows to/from memory and caches. This last detail invalidates the drawing of
the figure 2.2 where the page table was stored in the L/S Unit.

There, almost all exception causes are covered and the turnarounds have been explained. There is no
visible impact to the ISA but coding rules are getting tighter, like in a superscalar processor. Anyway
the turnarounds of the problems caused by the ”exception-less” execution pipeline of the FC0 are known
and explained. Other new exceptions will probably use the same idea of the existing exceptions : using
a dynamic flag. This way, programming the FCO looks almost like programming a normal RISC CPU
with some additional coding rules.

61

Chapter 2

The Smooth Register backup
mechanism

As described in the first section of the document, in the 764 registers” discussion, one alternative to
register windowing, banked register sets or memory-to-memory architectures is to implement a ”Smooth
Register Backup” (SRB for short) for automatic register saving. It is not an usual feature in a micropro-
cessor, because it is characterized by the communication with the scoreboard and the use of a ”find first
flag” algorithm. The whole mechanism is rather simple, as we will describe it here (even though i seem
to rant too much, thus : read slowly then reread more slowly). Note : Depending on its actual use and
usefulness, the SRB mechanism may be removed from the F-CPU with minimal impact on the overall
architecture, instruction set and application software. Some drivers and kernels may need the additional,
manual register backup code. Other similar techniques can also be used instead.

How and when is the SRB used ? Well, it is used for what it does :

Flush the register set to memory and/or load a new context.

It could be used at any time, since it does not interfere with other hardware except the L/S unit.

It is mainly used for context switch (the SRB can be triggered by an interrupt and the rest is done
automatically), to save a context when an interrupt is triggered, and to restore the registers after the
TRQ routine has completed. In these cases, there are two threads : the ”old” thread and the "new”
thread. The flushing or reading of registers to/from memory by a load-many or store-many instruction
is an exception, though.

The "new” thread is defined to start as soon as the SRB signal is triggered, and the SRB must save
these registers before the new thread uses them as to ensure data coherency.

Not only does the SRB remove the need to manually save and restore registers, but it does it faster
than software (while the application still runs) and adapts itself to the circumstances by reordering the
backup sequence on the fly. It uses a few simple additional hardware, data from the scoreboard (the
”register’s value is being computed” flag), it steals unused clock cycles from the memory L/S unit to load
and store the registers, it has a few flags, some pointer registers and some logic. To know how to use
this, let’s define some behaviour rules :

e We can’t save a register as long as its value is being computed. The scoreboard tells us what register
not to backup (yet). This status changes at every cycle, so knowing the state of the scoreboard
quickly is very important.

e There’s no need to save a register that has not been modified since the last backup. There is a
”dirty” flag for this purpose, that is set whenever the register is written to.

e We have a special "not yet saved” flag that says that the physical register must be saved before
it is ready for use by the new thread. In the same time, this flag blocks the scoreboard so that it
can query an “express” request. This flag is loaded from the ”dirty bit” when the SRB signal is
detected, and the dirty bit is cleared for the new thread.

e When the new thread needs to use (read and write) a register that has not been saved yet, it instructs
the SRB sequencer to modify the order and waits for the register to be free. The scoreboard, that
is queried by the instruction decoding unit, ”blocks” the instruction until the value is ready, and
the ”save in priority” flag is set until the data is ready.

e The SRB sequence is atomic, it can’t be stopped unless there’s a memory fault. A new SRB signal
must wait for the previous SRB signal issued to be completely processed. Turning off the IRQs while

62

SRB is running avoids lost cycles (waiting for the previous SRB to complete, while the previous
handler is being executed). If an exception occurs during the SRB sequence, good news : we had
already begun to save the registers : -) We need to wait for the (old) sequence to complete, before
triggering a "new” SRB and executing the handler.

Of course, this high number of flag bits can be condensed, using a Finite State Machine (this imple-
mentation detail is left to the designer). But the following algorithm doesn’t need one : ”for each cycle,
write to memory the first register that 1) asks for express backup 2) is not yet saved (in decreasing pri-
ority), starting from register #1”. The algorithm stops when no more register needs to be saved. When
a context switch occurs, there are two memory accesses, one for saving the old register value and one for
fetching the new thread’s value. If one half of the thread’s operations are loads or stores, this would use
about onehundred cycles to save a context. With a single-issue pipeline and not much bandwidth, it can
take about 200 cycles to perform a full context switch. SRB is bandwidth-hungry, but software backup
would be too. At least, the SRB uses the whole available hardware, while a SW solution requires yet
more bandwidth (because of the explicit backup code).

The SRB algorithm is a sequence that can be reordered with 63 register load and/or stores, starting
from register #1 : we need a way to extract this sequence from a line of flags. A ”find first” unit, similar
(but simpler) than the binary tree used in the increment unit, can do this easily. At the input, it selects
the ”express requests” if any, or the normal request from the registers that need to be saved. The express
flag is set by the scoreboard, and the "not yet saved” flags belong to the SRB mechanism. The output of
the binary tree directly selects one register (out of 63) for reading and/or writing and resets the register’s
flags. Maybe a simple drawing speaks more : -)

SCOREBOARD Srm%t%PLlj?eDeiSsitger} Tlgaa::mku "fi i "
_ i) St P reg #1 find-first tree
SRB signal (c) Yann Guidon 1/4/ 2001 (progressive
selection)
"don’t enable
Register if not ready"” (1)
is not readyf
"dirty" "must
Register flag(2) write" (3)
is being|—Set Q D Q
written
(== |
Lock the '
scoreboard
"express
request”
express)
request |—1Set Q
signal
Reset
reg #63
63
express result (register has been saved)
request OR
endin
P J IRQ onif =0

Figure 2.1: Detail of one bit of the SRB flags and decision mechanism

When no ”express” request is made, the application has priority over the SRB for accessing the
L/S unit. Otherwise, the "express” flag means that the instruction is blocked at ID stage and that no
memory access is performed (unless a cache miss had just been resolved...). So, in any case, the SRB has
never priority (which simplifies things). The SRB principle can be extended for multiple-issue processors
without modification. A four-way superscalar F-CPU would be able to reuse this part a priori with no
worries.

As noted before, there are only two tasks that the CPU considers : the "0ld” and the "new” task.
No assumption is made about where the data is transferred, about the address of the context buffers,
therefore there is no limitation in the number of tasks. The caches will perform their roles of keeping
data with time and space locality close to the core, so multithreaded programs will run normally. But

63

the user can’t always specify the address of these context buffers. The SRB mechanism has two pointers
: SRB_old and SRB_new, that are used during SRB operation. After context switches completion, the
SRB_new pointer is copied into SRB_old so that during the next context switch, only the new task need
to be provided to the CPU. It’s up to the user to setup the desired list. This "new” pointer could also
be stored in the ”o0ld”’s context buffer, as to perform round-robin operation automatically at each task
switch TRQ. Cache control hardware will probably allow to "map” a certain memory area directly to the
cache, so that no LRU operation will flush the data from cache. This is where important tasks such as
the kernel and real-time tasks should store their context buffers for better performance. Furthermore, if
automatic context switch is implemented, it would first prefetch the whole context buffers (old and new)
into L1 cache before triggering the SRB mechanism. This prefetch would occur in background as to not
penalize the foreground tasks.

Note that in the case where the FCO core has 2 independent private memory ports, the register bank
switch process can be eased if the banks are mapped to different memory regions. For example, if the
register bank is flushed to one port, the new register bank benefits from being read from the second port.
There will be much less bus turnaround cycles and the switch latency will decrease.

64

Chapter 3

The scheduler

Managing several superpipelined units which can issue their result at the same time looks tricky at first.
The following behavioural rules will help understand what to do and when :

e The Xbar "gates” of the 2 write ports must be commanded during every cycle, so the 2 read ports
of the register set have the correct data coming from the correct unit.

e One instruction can not be issued if more than two write ports are used during the cycle when the
instruction will complete.

e If the instruction can be issued, it must use a ”free” write port.

Let’s remember too that the scoreboard rules apply. More specifically, it is not possible to issue an
instruction if the operands are not ready, in the register set or on the Xbar (during a register bypass
cycle, for back-to-back dependent instruction pairs). The scheduler must also recognize this situation.

Two solutions are possible and were investigated :

o The first possibility is to associate a Finite State Machine to every register. It is a countdown
machine that triggers the apropriate signals as it elapses.

The advantage is that this is completely independent from the actual number of operations that can
be issued during every clock cycle, it is preferred for this reason.

Unfortunately, it creates very large internal buses and the detection of the hazards is too slow, par-
ticularly when the Register Bank’s write bus must be allocated.

o The second solution is less scalable with the number of instructions issued per cycle, but is a simple
and deterministic algorithm that consumes much less ressources when only one or two instructions are
issued at a time. It is a FIFO that is as deep as the pipeline, and each line contains the number of the
register which will be written to the register set. Since there are two write ports, the FIFO contains
2 x 6-bits fields. If the “slot” is empty, two additional bit flags are used to indicate this state. The empty
lines are zeroed (the bits are cleared when they shift down the FIFO) but ORing the bits takes too much
time (yes, a 6-bit OR takes more time and room than a 7th bit per field).

In fact, the scoreboard uses the first representation : the 63 bits that represent if a register is being
used are spread along the register set, they are cleared when the corresponding line gets written. This uses
long wires and large buses, but it is rather simple. On the other hand, the second mode of representation
for the scoreboard (a lot of registers containing the numbers of the currently used registers) takes too
much ressources and it doesn’t scale well when more instructions are decoded at the same time.

The scheduling and scoreboarding informations for the FCO can use any suitable representation for
the informations, but they can be both used in parallel (as it is the case). Having both representation
helps get the wanted information with the least latency. If a bit vector is needed, it will be read in the
scoreboard, and if a number is required, it is read from the scheduler’s FIFO.

Now, there is a very important characteristic associated to the scheduling FIFO : the “slot” can
be allocated at several levels, because the instructions can have different latencies. This means that a
multiply instruction will “reserve” (if it is free) a “slot” in the FIFO at the 6th level, while an addition
will reserve a slot at the second level.

The instruction decoder must therefore provide the scheduler with a precise information about the
latency of the instruction it will issue. This information is stored in a Lookup Table that takes the opcode

65

and the flag fields as inputs, it outputs the number of cycles of latency for the instruction. This LUT
is hardwired but if the implementation supports 128+ bit registers, a certain part will be reconfigurable
on-the-fly to support the programmable size field (see chapter 2.5 about the variable sizes).

When the instruction set is designed, the instructions must be garanteed to be fixed-latency so the
LUT can be as compact and fast as possible. This puts some pressure for the scheduling of two types
of instructions : Load/Store and division. The Get/Put instructions are also “undetermined-latency
instructions” but they block (stall) the pipeline.

The Integer Division Unit of the FCO (a first “cheap” implementation) is a slow shift-substract machine
like it is found on older microprocessor : the latency is proportional to the number of bits to divide. It
is not pipelined and the throughput is also proportional to this data width. The scheduling is therefore
simplified because it is not pipelined : the FIFO doesn’t have to contain 64 slots for the case where a
64-bit number is divided ; a simple downcounter is enough. Furthermore, this latency is either 8, 16, 32
or 64 cycles, and 8-cycles is more than the latency of the multiplier : the counter does not interfer with
the FIFO, it sits on top of it and it is initialised very easily with the size flag of the instruction word.

The case of the Load/Store instructions is more difficult because it is not deterministic. The situation
is simple when the data is already contained in the L/SU buffer, otherwise it’s a real stinking can of
Worms.

When the data is contained in the L/S buffer, the latency is deterministic : it takes one cycle in the
buffer, one cycle in the byte shuffler (that selects and orders the bytes in a word), one cycle in the Xbar
and one cycle in the Register Set. This is the situation that must be privileged whenever possible. This
is promoted with the early issue of the address (the pointer must be known as soon as possible so the
loaded data can be fetched from memory in advance) and the wise use of the stream and cache hint bits.

When the data is not present in the L/S buffer, the scheduler must prepare for an asynchronous event
and there is no garantee that a free slot will be available. On average, it is probable that the 2 write ports
of the register set are used 70the data is actually available. There is no such problem, though, when the
loaded data is needed during the cycle following the load instruction : the pipeline will stall and leave
some room for the L/S U to feed the Xbar with the desired data.

drawing : I must insert a diagram of the scheduler FIFO and the scoreboard

66

Chapter 4

The memory units (Fetcher and

L/SU)

to be written soon

drawing : I must insert a diagram of the register LUT, the decoder, the Fetcher and the LSU

67

Part V

The F-CPU Instruction Set
Architecture

68

Chapter 1

Designing an instruction set

Once the most fundamental features and characteristics of the CPU have been agreed upon, it is then
necessary to define the instruction set.

For the F-CPUU, it is not completely straight-forward, even though the architecture is rather simple
and it does not include big innovations. The real problem lies in the iterative way things are decided and
integrated in the CPU. The Instruction Set Architecture (ISA) faces a lot of constraints, and evolitivity
is the greatest. The ISA determines a lot of characteristics for the future because one can’t change it
like a CPU on a socket. Since so many characteristics determine the lifespan of the whole architecure
and project, all the informations disclosed here must be considered as temporary and they will change
without notice. Actually, the ISA will be defined slowly, after each simulation cycle where one can draw
conclusions on the usefulness and necessity of a particular opcode or flag.

So, the instruction set will change often and evolve a lot before it is completely defined by the group.
Some changes may even take place after the first prototypes or chips are built. Therefore, the current
ISA is not completely defined at this time of writing and several tricks are used to ease its development.

First, the instruction word itself, which is 32 bit wide, must be flexibly used. The instructions that
the F-CPU will execute require a variable number of operands and flags. They are gathered in the middle
of the world so the bit field allocation is easier. The opcode (a 8-bit field that defines which instruction
it is) is situated at one end of the word (in the LSB) and the destination register is at the other end
(the MSB). The immediate data width can be 8 or 16 bits and we can include one or two other register
operands. The remaining room is filled by the flags which can be merged with the instruction’s opcode
when there is not enough room, or the immediate data field can be narrowed. When there is still some
room, we can extend the immediate data field (even though the flags usually try to use as much space as
possible).

F-CPU Design Team
Instruction forms overdiew
Whygee 11/10/1359

Operand 2 Operand 1 Destination

Opcode Flags Immediate Data

Figure 1.1: Preliminary overview of the instruction forms

We design the instruction set with a census of all the necessary instructions and the forms they use.
The width of the immediate field is not defined but it is left to the final synthesis. When we have summed
up all the necessary instruction forms, we will allocate the fields. They will be placed accordingly to their

69

functions and all the similar functions will be grouped. This is very simple for the register fields but it is
less easy when we allocate the flags. The size of the immediate data fields will be determined when all
the other fields will be allocated.

The second trick optimizes the opcode map. Of course, there will be a lot of room in it for future
opcodes. But if the opcode count will be known at a time, their value can be redefined until the
final prototype is made. This means that before F1 comes out, binary compatibility is uncertain but
the opcodes will be defined with include files in the simulators and the emulators. This leaves all the
necessary room to "allocate” the opcode values at the last moment and optimize them to simplify the
instruction decoding logic. But at any time, the compatibility is kept at the source level in the assembly
langage files. Only their encoding can change during the development.

This methodology allows the group to work with early implementations of the chip and synthesise the
instruction set before it comes out. No arbitrary decision is made because every feature will be analyzed
and discussed by the group.

70

Chapter 2

Instruction formats

The F-CPU is a RISC-like processor with 32-bit wide instructions. The opcode field is 8-bit wide, each
register requires a 6-bit field and the remaining space is used for immediate values and flags. The following
(preliminary) tables show how they are organized.

Notice that the opcode field is in the Least Significant Bits but the most used register operand is in the
Most Significant Bits. Therefore, by convention, the assembly langage syntax (for consistency reasons)
follows the instruction’s structures and writes the operands in this order : first the opcode, eventually
followed by the flags, the immediate values and the source operands, and finally the destination register.
For example :

add.b r1,r2,r3 ; adds the bytes in the lower part of r1 and r2, result put in r3.

The instructions formats are :

size 8 6 6 6 6
bits 0o 7 8 13 14 19 20 25(26 31
function | Opcode Flags Reg 3 Reg 2 Reg 1
size 8 12 6 6

bits 0 7|8 19 20 25 26 31

function | Opcode Flags Reg 2 Reg 1

size 8 4 8 6 6
bits 0o 7 8 11 12 19 20 25|26 31
function | Opcode Flags Imm§ Reg 2 Reg 1
size 8 2 16 6

bits 0o 7 8 9 10 25|26 31

function | Opcode Flags Imm16 Reg 1

It is very tempting to use a 2-bit opcode prefix to identify the instruction formats but this idea should
be left for a later opcode compilation.

71

Chapter 3

The ISA modularity

The F-CPU instruction set is modular and contains a “core” and several “optional” instruction groups
that would require several core instructions to complete the operation otherwise. The presence of these
optional instruction can be detected at run time with the indications contained in a set of hardwired
Special Registers.

It must be understood that the “core” instruction set is meant to provide a minimal binary com-
patiblity accross different implementations. Any chip can hardwire one or more “optional” instructions
independently from other considerations. This depends on the needed performance, the aimed applica-
tion, the available technology and the algorithms.

What is core and what is optional 7 As a rule of thumb, the optional instructions include ”features”
that are usually possible through more hardware or more complex circuits. For example, the SIMD
capability is recommended but not mandatory because a SIMD arithmetic unit is more complex than a
scalar unit. The increment-based instructions, the floating-point instructions, the logarithmic instructions
and SRB management instructions are enabled when the corresponding Execution Unit or functionality
is implemented. It is possible to implement a truely minimal F-CPU and extend it by adding the desired
instructions and Execution Units, leaving unused opcodes when there is not enough transistors.

On the other hand, it is recommended that most of the integer instructions and the SIMD functions
are implemented because they provide the most important features for the future.

72

Chapter 4

The 2r1w format and its extensions

The F-CPU increases the MOPS/MIPS ratio of its architecture by breaking the golden rule of the
2 register reads and 1 register write instruction limitation of the classic RISC architectures. Several
instructions of the F-CPU need more than one register to be written back to the register set, some others
need three register operands to be read. Those "non-RISC” instructions are marked as 3rlw or 2r2w
in this document, as they might influence the coding rules of future F-CPU implementations. They
probably require a special bit in the opcode to simplify decoding. Their support is optional (non-core)
yet necessary for the load and store instructions with pointer update.

73

Chapter 5
Flags

The instructions share a certain number of properties, which are put in “flags” outside of the opcode field.
While their position can change in the future, their meaning will roughly remain the same throughout
all the processor generations.

The flags do not alter much the syntax of the instructions. They add one letter per flag to the existing
mnemonic so one can always recognize the instruction. This avoids the proliferation of obscure mnemonics
and the necessity to remember them all. On the other hand, the size of the mnemonics is variable and
can range from two (or) to nine (sshiftrai) letters and the mnemonics will probably be reorganized later
to reduce the size of the longest ones. Usually, the flag letters are added in the order in which they appear
in the instruction word.

5.1 Size flags

In some opcodes the flags can contain a “size” parameter that define the size of the operand on which
the operation should take place. This flag is by default decoded according to the following table :

Flags | Size (byte) | Suffix | Name

0 |1 B Byte

01 2 Double-Byte

10 4 Q Quad-Byte

11 8 (none) | Octa-Byte (Word)

In the F-CPU assembly langage, the size flag is noted by a postfix on the opcode, either “.b”, “.d”,
“.q” or a plain number when the current settings don’t provide the needed size. In the absence of a size
postfix, the flag is set to “11”. If the CPU is a 32-bit version only, the “11” code is mapped to “10” (32
bits) so this is always the largest word supported by the machine.

When the data width of the CPU increases, the processor can change the interpretation of this flag
with a set of special registers. This allows the F-CPU platform to handle any data width that is a power
of two, above 32 bits. The SIMD words and algorithms will scale up in a straight-forward fashion to
128-bit, 256-bit, 512-bit, 1024-bit etc.

5.2 SIMD flag

The F-CPU is a SIMD-oriented processor. Most instructions operating on data can specify if these data
are treated as a whole or in individual chunks. The SIMD flag, along with size the flag, specifies how the
data are treated.

When the SIMD flag is not set, the CPU behaves like a normal processor, treating each register
depending on the size flag. The whole register, or only the lower part, is treated.

When the SIMD flag is set, the CPU treats the whole register in its full width and the size flag defines
the size of the individual chunks inside this large word.

Syntactically, in the F-CPU assembly langage, the SIMD flag is noted by a “s” prefix on the opcode,
in a similar fashion to the leading “f” for the floating-point operations.

74

5.3 IEEE flag

For the floating-point instructions, the F-CPU defines a “IEEE754 compliance flag”. This flag alters the
IEEE standard for floating point operations in two ways : when an error condition is detected, it does not
trap the processor and the result values are saturated or biased. This flag is meant to ease the pipeline
design of the FCO core family where no potentially faultive instruction must enter the pipeline. On other
core families, this behaviour must be preserved. This flag is used when speed is more important than
accuracy, so this can also, depending on the implementation, disable the use of IEEE denormal numbers
for example.

5.4 saturate/carry flag

This field is used by the integer addition, substraction and multipy instructions where the result does not
completely fit in one register. There are three possibilities :

e ignore the high part (and “wrap around”),
e saturate (“clip”), or
e write the high part to another register, which number is destination+1 (next neighbour).

Triggering an exception on carry is out of question because it would slow down the CPU in critical
loops. Writing the carry to a special carry register would create some architectural problems and writing
the carry to one of the source operands would cancel the benefits of the three-operands instruction format.

Note that when carrying is performed with register #63 as destination, the carry does not get written
anywhere because the "next” register is register #0 which is hardwired to 0.

This flag requires two bits, which can be zeroed (default : wrap around), or one of them is set (either
clip or write to the neighbour of the result register). Depending on the kind of operation, the flag pair is
called “floor” or “saturate”.

The carry or saturation behaviours are written in assembly langage with a “c” and “s” postfix respec-
tively. The default behaviour (wrap) is noted by the absence of postfix.

The forbidden combination (both ¢ and s set) could be used later for a “signed” saturation where the
floor and ceiling values are 0x8000 and 0x7FFF instead of 0x0000 and OxFFFF.

In order to merge the result and the carry, the mixhi and mixlo instructions are provided. For example,
the 16-bit SIMD values of a 8-bit substraction can be generated in three instructions :

e ssubb.b r1,r2,r3 ; r3=result, rd=borrow
e mixlo.b r3,r4,r5 ; takes the two lower halves from r3 and r4 and mix them into rb

e mixhi.b r3,r4,r6 ; takes the two higher halves from r3 and r4 and mix them into r6

Note that the carry (or ”"borrow” [sub], or "high” [mul], or modulo” [div] flag) might influence the
instruction decoding rules in future F-CPU implementation. This is not a problem for FC0 but it should
change with superscalar designs, due to register set size limitations.

5.5 Endian flag

The Load/Store instructions and the dedicated unit (s) can specify in which endianness the memory access
operations are performed. This is optional for minimal and embedded systems because the necessary
hardware may not be justified, in which case the endianness is recommended to be little. For general
purpose applications, the dual endianness support is recommended because the OS may be written for
one, and the application for another.

5.6 Stream Hint flag

The Load/Store instructions can specify which of the seven ”streams” the pointer belongs to. In the
F-CPU, a ”"stream” is similar in meaning as in a CRAY T3E but with a different mechanism. This can
be implemented as several L/S Units (the stream number references an individual LSU), as support of
different user-visible DRAM banks, strides, channels or cache sets, or as any combination. As the name
indicates, this should help the CPU separate independent data streams, avoid datapath congestion and
cache thrashing, to finally increase the effective bandwidth with no additional complex hardware.

This field can be silently ignored by the CPU if the implementation can’t suppport this feature.

75

5.7 other flags / reserved fields

At the moment, all the bits have not been allocated. There are bit fields that are not yet used and
should be cleared (0), as to preserve the forward compatibility of the architecture. This is valable for
any field marked as reserved, ignored, unused or empty. These bits may be used for any purpose at any
time without notice. The group will maybe implement a F-CPU with support for logarithmic and/or
fractional number system and the bit #11 which is reserved in most instructions will be very useful.

76

Part VI

F-CPU Instruction Set draft

7

Chapter 1

Arithmetic Operations

1.1 Core Arithmetic operations

1.1.1 add

ADDition

add[c/s] r3, r2, rl
adds r3, r2, rl
addc r3, r2, rl
sadd|c/s] r3, r2, r1
sadds r3, r2, rl
saddc r3, r2, rl

Computes rl =12 + 13

add performs an integer addition of the two source operands (r3 + r2) and puts the result in the
destination operand (rl).

e The size flag indicates that add performs the addition on the whole operands or only on a part of
the operands.

e The SIMD flag indicates that add performs multiple addition on parts of the operand (the size of
these parts is defined by the size flags).

e The saturate flag indicates that add does not wrap” if the result is bigger than the size of the
operands.

e The carry flag indicates that the eventual carry value is written to register number (r1+1). If no
carry has been generated, the neighbour register is cleared (0x00), otherwise the LSB has been set

(0x01).
size : 8 6 6 6 6
bits : 0 718 13 | 14 19 | 20 25 | 26 31
function : OP_ADD Flags Reg 3 Reg 2 Reg 1

Flags Syntax Values Function
8-9 .q, .d or .b postfix * Defines the size parameter
10 s- prefix 1 if set | Defines if the operation is SIMD
11 (none yet) 0 Reserved
12 -s postfix 1 if set Saturation flag
13 -c postfix 1 if set Carry flag (2r2w)

Examples :

78

Scalar :

R1 contains 0xF8 (we only consider the lower byte in the registers)

R2 contains 0xOF

add.b r1,r2,r3 : r3 = 0x07 (default behaviour)

adds.b r1,r2,r3 : r3
addc.b r1,r2,r3 : r3

SIMD :

OxFF (saturation)
0x07, r4= 0x01 (carry)

R1 contains 0x000000F800000001 (in a 64-bit system)
R2 contains 0x0000000F'00000002

sadd.b r1,r2,r3 : r3 = 0x0000000700000003 (default behaviour)

sadds.b r1,r2,r3 :
saddc.b r1,r2,r3 :

r3
r3

0x000000FF00000003 (saturation)

0x0000000700000003 , r4= 0x0000000100000000 (carry)

Performance (FCO only) :

Ezecution Unit : Add/Sub Unit

Latency : 1 cycle for 8-bit data, 2 cycles for 16-bit to 64-bit data
Throughput : 1 operation per cycle per ASU.

Scheduling :
byte chunks :
Cycle 1 2 3 5 6
Stage Fetch | Decode/ Xbar | ASU(1) | Xbar | Register
Register Read write
word chunks :
Cycle 1 2 3 4 5 6 7
Stage Fetch | Decode/ Xbar | ASU(1) | ASU(2) | Xbar | Register
Register Read write

79

1.1.2 sub

SUBstraction

sub[b/f] r3, r2, r1
subb r3, r2, rl
subf r3, r2, rl
ssub[b/f] r3, r2, rl
ssubb r3, r2, rl
ssubf r3, r2, rl

Computes rl =12 - r3

sub performs an integer substraction of the two source operands (r3 - r2) and puts the result in
destination operand (rl).

e The size flag indicates that sub performs the substraction on the whole operands or only on a part
of the operands.

e The SIMD flag indicates that sub performs multiple substraction on parts of the operand (the
size of these parts is defined by the size flags).

e The floor flag indicates that sub does not wrap” if the second operand is bigger than the first one.

e The borrow flag (same as carry) indicates that the borrow value is written to register num-
ber(rl+1). If no borrow has been generated, the neighbour register is cleared, otherwise the neigh-
bour register is set to -1.

size : 8 6 6 6 6
bits : | 0 7 18 13 | 14 19 | 20 25 | 26 31
function : OP_SUB Flags Reg 3 Reg 2 Reg 1
Flags Syntax Values | Function
8-9 .q, .d or .b postfix | * Defines the size parameter
10 s- prefix 1 if set | Defines if the operation is SIMD
11 (none yet) 0 Reserved
12 -f postfix 1 if set | Floor flag
13 -b postfix 1if set | Borrow flag (2r2w)
Examples :

Scalar :

R1 contains 0x05 (we only consider the lower byte in the registers)
R2 contains 0x07

sub.b r1,r2,r3 : r3 = OxFE (default behaviour)
subf.b r1,r2,r3 : r3 = 0x00 (floor)
subb.b r1,r2,r3 : r3 = OxFE, r4= OxFF (borrow)

SIMD :

R1 contains 0x0000000500000003 (in a 64-bit system)
R2 contains 0x0000000700000001

ssub.b r1,r2,r3 : r3 = 0x0000000700000003 (default behaviour)

ssubf.b r1,r2,r3 : r3 = 0x0000000000000002 (floor)
ssubb.b r1,r2,r3 : r3 = 0x000000FE00000002, r4= 0x000000FF00000000 (borrow)

80

Performance (FCO only) :

Ezecution Unit : Add/Sub Unit
Latency : 1 cycle for 8-bit data, 2 cycles for 16-bit to 64-bit data
Throughput : 1 operation per cycle per ASU.

Scheduling :
byte chunks :
Cycle 1 2 3 4 5 6
Stage Fetch Decode/ Xbar | ASU(1) | Xbar | Register
Register Read write
word chunks :
Cycle 1 2 3 4 5 6 7
Stage Fetch Decode/ Xbar | ASU(1) | ASU(2) | Xbar | Register
Register Read write

81

1.1.3 mul

MULtiplication

mulh][s] r3, r2, rl
mulh r3, r2, rl
muls r3, r2, rl
mulhs r3, r2, rl
smul[h][s] r3, r2, rl
smulh r3, r2, r1
smuls r3, r2, rl
smulhs r3, r2, rl

Computes rl = 12 x r3

mul performs an integer multiplication of the two source operands (r3 x r2) and puts the result in
the destination operand (rl). The size flags indicate the size of the source operands.

e The size flag indicates that mul performs the multiplication on the whole operands or only on a
part of the operands. It only puts the lower part of the result in the destination.

e The SIMD flag indicates that mul performs multiple multiplications on parts of the operand (the
size of these parts is defined by the size flags).

e The sign flag indicates that mul will consider the operands as signed by extending the MSB.

e The high flag indicates that mul will also stores the higher part of the result in r1+1. It works in
a similar fashion to the carry flag of the addition.

Remark : the multiplication computation is slow and heavy, try to use powers-of-two multipliers as
to simply shift the source operand, which takes only a cycle to perform in the FCO.

size : 8 6 6 6 6
bits : | 0 718 13 | 14 19 |20 25 | 26 31
function : OP_MUL Flags Reg 3 Reg 2 Reg 1
Flags Syntax Values | Function
8-9 .q, .d or .b postfix | * Defines the size parameter
10 s- prefix 1 if set | Defines if the operation is SIMD
11 (none yet) 0 Reserved
12 -s postfix 1 if set | Sign flag
13 -h postfix 1if set | High flag (2r2w)
Examples :

Scalar :

R1 contains 0x23 (we only consider the lower byte in the registers)
R2 contains 0x36

mul.b r1,r2,r3 : r3 = 0x62 (default)
mulh.b r1,r2,r3 : r3 = 0x62 , r4 = 0x07 (High flag)
SIMD :

R1 contains 0x00 00 00 00 00 00 00 00 (in a 64-bit system)
R2 contains 0x00 00 00 00 00 00 00 00

82

smul.b r1,r2,r3 : r3 = 0x00 00 00 00 00 00 00 00
smulh.b r1,r2,r3 : r3 = 0x00 00 00 00 00 00 00 00 , r4 = 0x00 00 00 00 00 00 00 00
[Completed later, when all the errors will be corrected]

Performance (FCO only) :

Ezecution Unit : Integer Multiply Unit

Latency : unknown ATM, depends on the size of the operands.

Throughput : unknown ATM, probably 1 operation per cycle per IMU (pipelined multiplier).
Scheduling :

Cycle 1 2 3 ? +1 +2
Stage Fetch Decode/ Xbar | IMU(?) | Xbar | Register
Register Read write

83

1.1.4 div

DIVision

div[m][s] r3, r2, r1
divs r3, r2, rl
divm r3, r2, rl
divms r3, r2, rl
sdiv[m][s] r3, r2, rl
sdivs r3, r2, rl
sdivm r3, r2, rl
sdivms r3, r2, rl

Computes r1 =13 / 12

div performs an integer division of the two source operands (r3 / r2) and puts the result in destination
operand (rl). The size defined by the size flags corresponds to the size of the source operands.

e The size flag indicates that div performs the division on the whole operands or only on a part of
the operands.

e The SIMD flag indicates that div performs multiple division on parts of the operand (the size of
these parts is defined by the size flags).

e The Sign flag determines if the operands should be treated as unsigned or signed values.

e The Modulo flag specifies that the remainder of the division is written to the register (r1+1).

This instruction triggers a math fault if the Reg2 operand is cleared (=0). This behaviour could be
avoided with saturated arithmetics.

Remark : the division computation is slow and heavy, try to use powers-of-two divisors as to simply
shift the source operand, which takes only a cycle to perform in the FCO.

size : 8 6 6 6 6
bits : | 0 718 13 | 14 19 |20 25 | 26 31
function : OP_DIV Flags Reg 3 Reg 2 Reg 1
Flags Syntax Values | Function
8-9 .q, .d or .b postfix | * Defines the size parameter
10 s- prefix 1 if set | Defines if the operation is SIMD
11 (none yet) 0 Reserved
12 -s postfix 1if set | Sign flag
13 -m postfix 1if set | Modulo flag (2r2w)

Examples :

Scalar :

R1 contains 0x10 (we only consider the lower byte in the registers)
R2 contains 0x05

div.b r1,r2,r3 : r3 = 0x03
divm.b r1,r2,r3 : r3 = 0x03 , r4 = 0x01

Performance (FCO only) :

84

Ezecution Unit : Integer Divide Unit
Latency : unknown ATM, depends on the size of the operands.
Throughput : unknown ATM, probably equal to the latency (not pipelined).

Scheduling :

Cycle 1 2 3 ? +1 +2
Stage Fetch Decode/ Xbar | IDU(?) | Xbar | Register
Register Read write

85

1.2 Optional Arithmetic operations

1.2.1 addi

ADDition Immediate

addi Imm8, r2, rl
saddi ImmS8, r2, rl

Computes rl = r2 + ImmS8.

This instruction is similar to the add” instruction but it takes one of the source operands from the
opcode (without sign extension). It has less room for the options and flags, so the usage of the reserved

bit is still being discussed.

Remark : with wide operands, the latency may be higher than expected because the adder would use
the full pipeline. In order to add or substract 1 from a large number (more than 8 bits) it is recommended
to use the inc/dec instructions (when available) because they use the increment unit which has a lower

latency.
size : 8 4 8 6 6
bits: | 0 7 |8 11 12 19 | 20 25 26 31
function : OP_ADDI Flags Imm8 Reg 2 Reg 1
Flags Syntax Values | Function

8-9 .q, .d or .b postfix | * Defines the size parameter
10 s- prefix 1 if set | Defines if the operation is SIMD
11 (none yet) 0 Reserved

Examples :

R2 contains 0x00F80F00F045FF82 (in a 64-bit system)

addi.b 0x87,r2,r3 : r3 0x00F80FO0OF045FF09
addi.d 0x87,r2,r3 : r3 = 0x00F80F00F0450009
saddi.b 0x87,r2,r3 : r3 = 0x877F968777CC8609
saddi.d 0x87,r2,r3 : r3 = 0x017FOF87F0CC0009

Performance (FCO only) :

Ezecution Unit : Add/Sub Unit
Latency : 1 cycle for 8-bit data, 2 cycles for 16-bit to 64-bit data
Throughput : 1 operation per cycle per ASU.

86

1.2.2 subi

SUBstraction Immediate

subi Imm8 , r2, rl
ssubi ImmS8, r2, r1

Computes r2 = rl - ImmS8.

This instruction is similar to the sub” instruction but it takes one of the source operands from the
opcode (Imm8) (without sign extension, use addi instead). It has less room for the options and flags, so

the usage of the reserved bit is still being discussed.

Remark : with wide operands, the latency may be higher than expected because the adder would use
the full pipeline. In order to add or substract 1 from a large number (more than 8 bits) it is recommended
to use the inc/dec instructions (when available) because they use the increment unit which has a lower

latency.
size : 8 4 8 6 6
bits: | 0 7 |8 11 12 19 | 20 25 | 26 31
function : OP_SUBI Flags ImmS8 Reg 2 Reg 1
Flags Syntax Values | Function

8-9 .q, .d or .b postfix | * Defines the size parameter
10 s- prefix 1 if set | Defines if the operation is SIMD
11 (none yet) 0 Reserved

Performance (FCO only) :

Ezecution Unit : Add/Sub Unit
Latency : 1 cycle for 8-bit data, 2 cycles for 16-bit to 64-bit data

Throughput : 1 operation per cycle per ASU.

87

1.2.3 muli

MULtiplication Immediate

muli imm8, r2, rl
smuli Imm8, r2, rl

Computes rl = r2 x imm8.
This instruction is similar to the mul” instruction but it takes one of the source operands from
the opcode (Imm8) and sign-extends it. It has less room for the options and flags, so the usage of the

reserved bit is still being discussed.

Remark : the multiply computation is slow and heavy, try to use powers-of-two multipliers as to
simply shift the source operand, which takes only a cycle to perform in the FCO.

size : 8 4 8 6 6
bits : | 0 7 |8 11 12 19 | 20 25 | 26 31
function : OP_MULI Flags Imms8 Reg 2 Reg 1
Flags Syntax Values | Function
8-9 .q, .d or .b postfix | * Defines the size parameter
10 s- prefix 1 if set | Defines if the operation is SIMD
11 (none yet) 0 Reserved

Performance (FCO only) :

Ezecution Unit : Integer Multiply Unit
Latency : unknown ATM, depends on the size of the operands.
Throughput : unknown ATM, probably 1 operation per cycle per IMU (pipelined multiplier).

88

1.2.4 divi

DIVision Immediate

divi imm8, r2, rl
sdivi Imms8, r2, rl

Computes rl = r2 / Imm8.

This instruction is similar to div” but the second operand is the sign-extended value of imm8. This
will trigger a math trap if Imm8 is cleared (=0).

Remark : the division computation is slow and heavy, try to use powers-of-two divisors as to simply
shift the source operand, which takes only a cycle to perform in the FCO.

size : 8 4 8 6 6
bits : | 0 7 18 11 | 12 19 | 20 25 | 26 31
function : OP_DIVI Flags Imm8 Reg 2 Reg 1
Flags Syntax Values | Function
8-9 .q, .d or .b postfix | * Defines the size parameter
10 s- prefix 1 if set | Defines if the operation is SIMD
11 (none yet) 0 Reserved

Performance (FCO only) :

Ezxecution Unit : Integer Divide Unit
Latency : unknown ATM, depends on the size of the operands.
Throughput : unknown ATM, probably equal to the latency (not pipelined).

89

1.2.5 mod

MODulo

mod[s] r3, r2, rl
mods r3, r2, rl
smod(s] r3, r2, rl
smods r3, r2, rl

Computes 11 = 13 % 12

mod performs an integer modulo of the two source operands (r3 % r2) and puts the result in
destination operand (rl).

e The size flag indicates that mod performs the modulo on the whole operands or only on a part of
the operands.

e The SIMD flag indicates that mod performs multiple modulo on parts of the operand (the size of
these parts is defined by the size flags).

e The Sign flag determines if the operands should be treated as unsigned or signed values.

This instruction triggers a math fault if the Reg2 operand is cleared (=0). This behaviour could be
avoided with saturated arithmetics.

Remark : the modulo computation is slow and heavy, try to use powers-of-two modulos as to simply
mask the MSB of the source operand, which takes only a cycle to perform in the FCO.

size : 8 6 6 6 6
bits : | 0 7 18 13 | 14 19 | 20 25 | 26 31
function : OP_MOD Flags Reg 3 Reg 2 Reg 1
Flags Syntax Values | Function
8-9 .q, .d or .b postfix | * Defines the size parameter
10 s- prefix 1 if set | Defines if the operation is SIMD
11 (none yet) 0 Reserved
12 -s postfix 1 if set | Signed flag
13 (none yet) 0 Reserved

Performance (FCO only) :

Execution Unit : Integer Divide Unit
Latency : unknown ATM, depends on the size of the operands.
Throughput : unknown ATM, probably equal to the latency (not pipelined).

90

1.2.6 modi

MODulo Immediate

modi ImmS8, r2, r1

smodi Imms8, r2, rl

Computes r1 = r2 % Imm§

modi performs an integer modulo of the two source operands (r2 % Imm8) and puts the result in
destination operand (rl). Imms8 is sign extended (7).

e The size flag indicates that mod performs the division on the whole operands or only on a part of

the operands.

e The SIMD flag indicates that mod performs multiple modulo on parts of the operand (the size of
these parts is defined by the size flags).

This instruction triggers a math fault if the Imm8 operand is cleared (=0). This behaviour could

be avoided with saturated arithmetics.

Remark : the modulo computation is slow and heavy, try to use powers-of-two modulos as to simply

mask the MSB of the source operand, which takes only a cycle to perform in the FCO.

Performance (FCO only) :

Ezecution Unit : Integer Divide Unit
Latency : unknown ATM, depends on the size of the operands.
Throughput : unknown ATM, probably equal to the latency (not pipelined).

91

size : 8 4 8 6 6
bits: | 0 7 |8 11 12 19 | 20 25 | 26 31
function : OP_MODI Flags ImmS8 Reg 2 Reg 1
Flags Syntax Values | Function
8-9 .q, .d or .b postfix | * Defines the size parameter
10 s- prefix 1 if set | Defines if the operation is SIMD
11 (none yet) 0 Reserved

1.2.7 mac

Multiply and ACcumulate

mac[l/h][s] r3, r2, rl

macs r3, r2, rl
mach r3, r2, rl1

machs r3, r2, rl
smac[l/h][s] r3, r2, r1

smacs r3, r2, rl

smach r3, r2, rl
smachs r3, r2, rl

Computes rl =11 4+ (12x713)

mac performs an integer multiplication of the two source operands (r3 x r2) and adds the result to
the destination operand (rl). The size flags indicate the size of the source operands, the granularity” of
the destination operand is twice this size if the hardware can do it.

e The size flag indicates that mac performs the operation on the whole operands or only on a part

of the operands.

e The SIMD flag indicates that mac performs multiple operations on parts of the operand (the size
of these parts is defined by the size flags).

e The sign flag indicates that mac will consider the operands as signed by extending the MSB.

e The high flag indicates that mac will only operate on the high halfes of the operands (in SIMD

mode).

Remark : This instruction is mostly used in computation kernels that involve some kind of
convolution or frequency analysis. It will be extended later as the needs get clearer. The behaviour of the
accumulation when the data overflow is still undefined so calibrate the input values so that the dynamic

range is not exceeded in the computation loop. There is no sticky saturation” either.

Remark 2 : this instruction reads three operands and therefore is a 3rlw operation that is not in
the core. Its implementation depends on architectural parameters.

size : 8 6 6 6 6
bits : | 0 7 18 13 | 14 19 | 20 25 | 26 31
function : OP_MAC Flags Reg 3 Reg 2 Reg 1
Flags Syntax Values | Function
8-9 .q, .d or .b postfix | * Defines the size parameter
10 s- prefix 1 if set | Defines if the operation is SIMD
11 (none yet) 0 Reserved
12 -s postfix 1if set | Sign flag
13 -h postfix 1 if set | High flag

Scalar :

Example :

R1 contains 0x23 (we only consider the lower byte in the registers)

R2 contains 0x36
R3 contains 0x0136

mac.b r1,r2,r3 :

r3 = 0x0868

[To be completed later, when all the other errors will be corrected]

92

Performance (FCO only) :

Ezecution Unit : Integer Multiply Unit then Add/Sub Unit
Latency : unknown ATM, depends on the size of the operands.
Throughput : unknown ATM, probably 1 operation per cycle per IMU+ASU (pipelined multiplier and

adder).

93

1.2.8 addsub

ADDition and SUBstraction

addsub r3, r2, rl

addsubs r3, r2, rl
saddsub r3, r2, rl
saddsubs r3, r2, rl

Computes rl =12 + r3 and r14+1 =12 - 13

e The size flag indicates that it performs the operation on the whole operands or only on a part of
the operands.

e The SIMD flag indicates that it performs multiple operations on parts of the operand (the size of
these parts is defined by the size flags).

Remark : This instruction is mostly used in computation kernels like FFT. It is included in
the F-CPU because it allows the 2r2w operation forms. Its implementation depends on architectural
parameters, like the possibility to perform both addition and substraction at the same time.

size : 8 6 6 6 6
bits : | 0 718 13 | 14 19 | 20 25 | 26 31
function : | OP_ADDSUB Flags Reg 3 Reg 2 Reg 1
Flags Syntax Values | Function
8-9 .q, .d or .b postfix | * Defines the size parameter
10 s- prefix 1 if set | Defines if the operation is SIMD
11-13 (none yet) 0 Reserved
Example :

R1 contains 0x23 (we only consider the lower byte in the registers)
R2 contains 0x36

addsub.b r1,r2,r3 : r3 = 0x59 , r4 = OxED

Performance (FCO only) :

Ezecution Unit : Add/Sub Unit
Latency : 1 cycle for 8-bit data, 2 cycles for 16-bit to 64-bit data
Throughput : 1 operation per cycle per ASU.

94

1.2.9 popcount

POPulation COUNT

popcount (r3,)r2, rl
spopcount (r3,)r2, rl

Computes r1 = nb_bits(r2)-r3 (with saturation)

popcount counts the number of set bits in r2. When the r3 field is not zeroed, the contents of the
register r3 is substracted to the sum with saturation (the result doesn’t wrap around if R3 is above the
bit sum). The result is written to the destination operand (rl). The size flags indicate the size of the
source operands.

e The size flag indicates that popcount performs the operation on the whole operands or only on
a part of the operands.

e The SIMD flag indicates that popcount performs multiple operations on parts of the operand
(the size of these parts is defined by the size flags).

Remark : This instruction is not going to be supported by the first F-CPU chips because it requires
a specialized unit that is not yet designed and integrated in the FCO. It requires a separate Execution
Unit that is a crossover between the Inc Unit and the Add/Sub Unit, but it does not provide enough
useful instructions (as the Inc Unit does) to justify the high transistor count in FC0. Anyway, it is going
to be implemented at one time or another and a lot of algorithms benefit from this instruction so the
opcode is reserved for the future.

size : 8 6 6 6 6
bits: | 0 7 18 13 | 14 19 | 20 25 | 26 31
function : OP_POPC Flags Reg 3 Reg 2 Reg 1
Flags Syntax Values | Function
8-9 .q, .d or .b postfix | * Defines the size parameter
10 s- prefix 1 if set | Defines if the operation is SIMD
11-13 (none yet) 0 Reserved
Example :

R1 contains 0x0123456789 ABCDEF

popcount rl,r2 : r2 = 0x0000000000000020

Performance (FCO only) :

Ezxecution Unit : Unknown
Latency : unknown, but it’s O(log2(size)) if you wanted to know (just in case you’re not a spook).
Throughput : unknown.

95

1.2.10 popcounti

POPulation COUNT with Immediate substract

popcounti (Imm8,)r2, rl
spopcount (Imm§8,)r2, rl

Computes r1 = nb_bits(r2)-Imm8 (with saturation)

popcounti counts the number of set bits in r2. When the ImmS8 field is not zeroed, the value
is substracted to the sum with saturation (the result doesn’t wrap around if Imm8 is above the bit
sum). The result is written to the destination operand (rl). The size flags indicate the size of the source
operands.

e The size flag indicates that popcount performs the operation on the whole operands or only on
a part of the operands.

e The SIMD flag indicates that popcount performs multiple operations on parts of the operand
(the size of these parts is defined by the size flags).

Remark : This instruction is not going to be supported by the first F-CPU chips because it requires
a specialized unit that is not yet designed and integrated in the FCO. It requires a separate Execution
Unit that is a crossover between the Inc Unit and the Add/Sub Unit, but it does not provide enough
useful instructions (as the Inc Unit does) to justify the high transistor count in FC0. Anyway, it is going
to be implemented at one time or another and a lot of algorithms benefit from this instruction so the
opcode is reserved for the future.

size : 8 4 8 6 6
bits: | 0 718 11 | 12 19 | 20 25 | 26 31
function : OP_POPCI Flags Imm8 Reg 2 Reg 1
Flags Syntax Values | Function

8-9 .q, .d or .b postfix | * Defines the size parameter

10 s- prefix 1 if set | Defines if the operation is SIMD

11 (none yet) 0 Reserved

Example :

R1 contains 0x0123456789 ABCDEF

popcounti O,r1,r2 : r2 = 0x0000000000000020

Performance (FCO only) :

Ezxecution Unit : Unknown
Latency : unknown, but it’s O(log2(size)) if you wanted to know (just in case you’re not a spook).
Throughput : unknown.

96

1.3 Optional increment-based operations

These instructions are only performed when the Increment Unit is implemented, which is optional
but recommanded when performance is critical in the FCO for example. The INC unit has recently been
extended to support signed operations, so the instructions can be used on signed numbers as well as
floating point numbers.

1.3.1 inc

INCrement

inc r2, rl
sinc r2, rl

Computes rl =12 + 1

This instruction increments the source operand in a special unit that is designed for low latency
when large data are processed. The value wraps around when reaching the maximum value.

size : 8 6 6 6 6
bits : | 0 7 18 13 | 14 19 | 20 25 | 26 31
function : OP_INC Flags 0 Reg 2 Reg 1
Flags Syntax Values | Function
8-9 .q, .d or .b postfix | * Defines the size parameter
10 s- prefix 1 if set | Defines if the operation is SIMD
11-13 (none yet) 0 Reserved
Example :

R1 contains 0xFF05891213450100 (in a 64-bit system)

sinc.b r1,r2 : r2 = 0x00068A1314460201

Performance (FCO only) :

Ezxecution Unit : Increment Unit
Latency : 1 cycle
Throughput : 1 per cycle per TU.

97

1.3.2 dec

DECrement

dec r2, rl
sdec r2, rl

Computes rl =12 -1

This instruction decrements the source operand in a special unit that is designed for low latency
when large data are processed. The value wraps around when reaching the minimum value.

size : 8 6 6 6 6
bits : | 0 718 13 | 14 19 |20 25 | 26 31
function : OP_DEC Flags 0 Reg 2 Reg 1
Flags Syntax Values | Function
8-9 .q, .d or .b postfix | * Defines the size parameter
10 s- prefix 1 if set | Defines if the operation is SIMD
11-13 (none yet) 0 Reserved

Example :

R1 contains 0xFF05891213450100 (in a 64-bit system)

sinc.b r1,r2 : r2 = 0xFE048811124400FF

Performance (FCO only) :

Ezecution Unit : Increment Unit
Latency : 1 cycle
Throughput : 1 per cycle per TU.

98

1.3.3 neg

NEGation

neg r2, rl
sneg r2, rl

Computes rl = not(r2) + 1

This instruction negates the source operand in a special unit that is designed for low latency when
large data are processed.

This instruction is designed to work in the 2s-complement numbering sytem (signed integer
numbers) and is not subject to saturation/overflow problems. Notice though that negating -128” (if
bytes are treated) will nicely fail to give you +128, without trapping. You’ve been warned.

size : 8 6 6 6 6
bits : | 0 7 18 13 | 14 19 | 20 25 | 26 31
function : OP_NEG Flags 0 Reg 2 Reg 1
Flags Syntax Values | Function
8-9 .q, .d or .b postfix | * Defines the size parameter
10 s- prefix 1 if set | Defines if the operation is SIMD
11-13 (none yet) 0 Reserved
Example :

R1 contains 0xFF05891213450100 (in a 64-bit system)

sneg.b r1,r2 : r2 = 0x01FB77EEEDBBFFO00

Performance (FCO only) :

FEzxecution Unit : Increment Unit
Latency : 1 cycle
Throughput : 1 per cycle per IU.

99

1.3.4 scan

SCAN

scan[n][r] r2, rl
Isbl r2, r1

Isb0 r2, r1
msbl r2, rl
msbO0 r2, rl
slsb1 r2, rl
slsb0 r2, rl
smsbl r2, rl
smsbO0 r2, rl

Computes r1 = scan_for Isb(r2)

This instruction scans the source operand (r2) for the first set bit, starting from the LSB, and
writes the position of this bit to the destination register (rl). If the source is cleared, the result is zero,
otherwise the bit #0 is counted as position 1.

This instruction has options that bit reverse the source and/or complement the bits, so it can search
for the last bit reset for example.

Isb1l is an alias for scan

IsbO is an alias for scann

This instruction scans the source operand (r2) for the first reset bit, starting from the LSB, and writes
the position of this bit to the destination register (rl). If the source is set (all ones), the result is zero,
otherwise the bit #0 is counted as position 1.

msb1 is an alias for scanr

This instruction scans the source operand (r2) for the first set bit, starting from the MSB, and writes the
position of this bit to the destination register (rl). If the source is cleared, the result is zero, otherwise
the bit #0 is counted as position 1.

msb0 is an alias for scannr

This instruction scans the source operand (r2) for the first reset bit, starting from the MSB, and writes
the position of this bit to the destination register (rl). If the source is set (all ones), the result is zero,
otherwise the bit #0 is counted as position 1.

size : 8 6 6 6 6
bits : | 0 718 13 | 14 19 | 20 25 | 26 31
function : OP_SCAN Flags 0 Reg 2 Reg 1
Flags Syntax Values | Function
8-9 .q, .d or .b postfix | * Defines the size parameter
10 s- prefix 1 if set | Defines if the operation is SIMD
11 (none yet) 0 Reserved
12 -n postfix 1 if set | Negate the input
13 -1 postfix 1 if set | Bit-Reverse the input

Examples :

R1 contains 0xFF05891213450100 (in a 64-bit system)

Isbl r1,r2 : r2 = 0x9
IsbO r1,r2 : r2 = Ox1
msbl r1,r2 : r2 = 0x40
msb0 r1,r2 : r2 = 0x38

100

Performance (FCO only) :

Ezecution Unit : Increment Unit
Latency : 1 cycle
Throughput : 1 per cycle per TU.

101

1.3.5 cmpl

CoMPare for Lower

cmpl r3, r2, rl
scmpl r3, r2, rl

Compare the two source operands and sets or clear the destination register according to the result.
This operation is performed in the Increment unit so no substraction is required and it is performed faster
for large data. In order to compare for greater, simply swap the source operands or negate the result of
CMPLE. The comparison is valid only for unsigned values (yet)

Remark : this instruction can’t be used for IEEE floating point data (the comparison is not signed).

size : 8 6 6 6 6
bits : | 0 7 18 13 | 14 19 | 20 25 | 26 31
function : OP_CMPL Flags Reg 3 Reg 2 Reg 1
Flags Syntax Values | Function
8-9 .q, .d or .b postfix | * Defines the size parameter
10 s- prefix 1 if set | Defines if the operation is SIMD
11-13 (none yet) 0 Reserved
Examples :

R1 contains 0x0000000500000003 (in a 64-bit system)
R2 contains 0x0000000700000001

scmpl.b r1,r2,r3 : r3 = 0x00000000000000FF
scmpl.b r2,r1,r3 : r3 = 0x000000FF00000000
cmpl r1,r2,r3 : 3 = 0x0000000000000000

Performance (FCO only) :
FExecution Unit : Increment Unit

Latency : 1 cycle
Throughput : 1 per cycle per TU.

102

1.3.6 cmple

CoMPare for Lower or Equal

cmple r3, r2, rl
scmple r3, r2, rl

Compare the two source operands and sets or clear the destination register according to the result.
This operation is performed in the Increment unit so no substraction is required and it is performed faster
for large data. In order to compare for greater or equal, simply swap the source operands or negate the
result of CMPL. The comparison is valid only for unsigned values (yet)

Remark : this instruction can’t be used for IEEE floating point data (the comparison is not signed).

size : 8 6 6 6 6
bits : | 0 718 13 | 14 19 | 20 25 | 26 31
function : OP_CMPLE Flags Reg 3 Reg 2 Reg 1
Flags Syntax Values | Function
8-9 .q, .d or .b postfix | * Defines the size parameter
10 s- prefix 1 if set | Defines if the operation is SIMD
11-13 (none yet) 0 Reserved
Examples :

R1 contains 0x0000000500000003 (in a 64-bit system)
R2 contains 0x0000000700000001

scmpl.b r1,r2,r3 : r3 = OxFFFFFFOOFFFFFFFF
scmpl.b r2,r1,r3 : r3 = OxFFFFFFFFFFFFFFOO0
cmpl r1,r2,r3 : r3 = 0x0000000000000000

Performance (FCO only) :
FExecution Unit : Increment Unit

Latency : 1 cycle
Throughput : 1 per cycle per TU.

103

1.3.7 cmpli

CoMPare for Lower with Immediate

cmpli Imm8, r2, r1
scmpli r3, r2, rl

Similarly to CMPL, with an immediate operand (that is not sign-extended), compare the two source
operands and sets or clear the destination register according to the result. The comparison is valid only
for unsigned values (yet)

Remark : this instruction can’t be used for IEEE floating point data (the comparison is not signed).

size : 8 4 8 6 6
bits: | 0 7 |8 11 12 19 | 20 25 | 26 31
function : OP_CMPLI Flags ImmS8 Reg 2 Reg 1
Flags Syntax Values | Function
8-9 .q, .d or .b postfix | * Defines the size parameter
10 s- prefix 1 if set | Defines if the operation is SIMD
11 (none yet) 0 Reserved

Examples :

R1 contains 0x0000000500000003 (in a 64-bit system)

scmpli.b 0x04,r1,r2 : r2 = 0x00000000000000FF
cmpli 0x04,r1,r2 : r2 = 0x0000000000000000

Performance (FCO only) :
FExecution Unit : Increment Unit

Latency : 1 cycle
Throughput : 1 per cycle per TU.

104

1.3.8 cmplei

CoMPare for Lower or Equal with Immediate

cmplei Imms8, r2, rl
scmplei r3, r2, rl

Similarly to CMPLE, with an immediate operand (that is not sign-extended), compare the two
source operands and sets or clear the destination register according to the result. The comparison is valid
only for unsigned values (yet)

Remark : this instruction can’t be used for IEEE floating point data (the comparison is not signed).

size : 8 4 8 6 6
bits : | 0 7 |8 11 12 19 | 20 25 | 26 31
function : OP_CMPLEI Flags Imms8 Reg 2 Reg 1
Flags Syntax Values | Function
8-9 .q, .d or .b postfix | * Defines the size parameter
10 s- prefix 1 if set | Defines if the operation is SIMD
11 (none yet) 0 Reserved

Examples :

R1 contains 0x0000000500000003 (in a 64-bit system)

scmplei.b 0x04,r1,r2 : r2 = OxFFFFFFOOFFFFFFFF
cmplei 0x04,r1,r2 : r2 = 0x0000000000000000

Performance (FCO only) :
FExecution Unit : Increment Unit

Latency : 1 cycle
Throughput : 1 per cycle per TU.

105

1.3.9 abs

ABSolute value

abs r2, rl
sabs r2, rl

Computes r1 = (not(r2) + 1) if MSB(r2) ==

This instruction negates the source operand in a special unit that is designed for low latency when
large data are processed. If the sign bit (MSB) of the source is set (the number is negative) then the
value is written back to the register set, or else (it is already positive) the result is cancelled (that’s how
it works in scalar mode, not in SIMD mode...).

This instruction is designed to work in the 2s-complement number sytem (signed integer numbers)
and is not subject to saturation/overflow problems. Notice though that negating -128” (if bytes are
treated) will nicely fail to give you +128, without trapping. You’ve been warned.

size : 8 6 6 6 6
bits : | 0 718 13 | 14 19 |20 25 | 26 31
function : OP_ABS Flags 0 Reg 2 Reg 1
Flags Syntax Values | Function
8-9 .q, .d or .b postfix | * Defines the size parameter
10 s- prefix 1 if set | Defines if the operation is SIMD
11-13 (none yet) 0 Reserved

Example :

R1 contains 0xFF05891213450100 (in a 64-bit system)

sabs.b r1,r2 :

r2 = 0x0105771213450100

Performance (FCO only) :

FExecution Unit : Increment Unit

Latency : 1 cycle

Throughput : 1 per cycle per TU.

106

1.3.10 max

MAXimum

max r3, r2, rl
smax r3, r2, rl

Computes r1 =13 if (12 <13) else rl = r2

Compare the two source operands and writes the maximum of the two values to the destination
register. The comparison is valid only for unsigned values (yet) so this instruction can’t be used for IEEE
floating point data.

size : 8 6 6 6 6
bits : | 0 718 13 | 14 19 | 20 25 | 26 31
function : OP_MAX Flags Reg 3 Reg 2 Reg 1
Flags Syntax Values | Function
8-9 .q, .d or .b postfix | * Defines the size parameter
10 s- prefix 1 if set | Defines if the operation is SIMD
11-13 (none yet) 0 Reserved
Examples :

R1 contains 0x0000000500000003 (in a 64-bit system)
R2 contains 0x0000000700000001

smax.b r1,r2,r3 : r3 = 0x0000000700000003
max rl,r2,r3 : r3 = 0x0000000700000003

Performance (FCO only) :
Ezecution Unit : Increment Unit

Latency : 1 cycle
Throughput : 1 per cycle per TU.

107

1.3.11 min

MINimum

min r3, r2, rl
smin r3, r2, rl

Computes r1 = r3 if (12 > r3) else rl = r2

Compare the two source operands and writes the minimum of the two values to the destination
register. The comparison is valid only for unsigned values (yet) so this instruction can’t be used for IEEE
floating point data.

size : 8 6 6 6 6
bits : | 0 718 13 | 14 19 | 20 25 | 26 31
function : OP_MIN Flags Reg 3 Reg 2 Reg 1
Flags Syntax Values | Function
8-9 .q, .d or .b postfix | * Defines the size parameter
10 s- prefix 1 if set | Defines if the operation is SIMD
11-13 (none yet) 0 Reserved
Examples :

R1 contains 0x0000000500000003 (in a 64-bit system)
R2 contains 0x0000000700000001

smin.b r1,r2,r3 : r3 = 0x0000000500000001
min r1,r2,r3 : r3 = 0x0000000500000003

Performance (FCO only) :
Ezecution Unit : Increment Unit

Latency : 1 cycle
Throughput : 1 per cycle per IU.

108

1.3.12 maxi

MAXimum Immediate

maxi Imms8, r2, rl
smaxi Imm8, r2, rl

Computes rl = Imm8 if (r2 < Imm8) else r1 = r2
Compare the two source operands and writes the maximum of the two values to the destination

register. The comparison is valid only for unsigned values (yet) so this instruction can’t be used for IEEE
floating point data.

size : 8 4 8 6 6
bits : | 0 718 11 | 12 19 | 20 25 | 26 31
function : OP_MAXI Flags Imm8 Reg 2 Reg 1
Flags Syntax Values | Function

8-9 .q, .d or .b postfix | * Defines the size parameter

10 s- prefix 1 if set | Defines if the operation is SIMD

11 (none yet) 0 Reserved

Examples :

R2 contains 0x0000000500000003 (in a 64-bit system)
smaxi.b 0x04,r2,r3 : r3 = 0x0000000500000004
maxi 0x04,r2,r3 : r3 = 0x0000000500000003

Performance (FCO only) :
FExecution Unit : Increment Unit

Latency : 1 cycle
Throughput : 1 per cycle per TU.

109

1.3.13 mini

MINimum Immediate

mini r3, r2, rl
smini Imms8, r2, r1

Computes rl = Imm8 if (r2 > Imm8) else r1 = r2
Compare the two source operands and writes the minimum of the two values to the destination

register. The comparison is valid only for unsigned values (yet) so this instruction can’t be used for IEEE
floating point data.

size : 8 4 8 6 6
bits : | 0 718 11 | 12 19 | 20 25 | 26 31
function : OP_MINI Flags Imm8 Reg 2 Reg 1
Flags Syntax Values | Function

8-9 .q, .d or .b postfix | * Defines the size parameter

10 s- prefix 1 if set | Defines if the operation is SIMD

11 (none yet) 0 Reserved

Examples :

R2 contains 0x0000000500000003 (in a 64-bit system)
smini.b 0x04,r2,r3 : r3 = 0x0000000400000003
mini 0x04,r2,r3 : r3 = 0x0000000000000004

Performance (FCO only) :
FExecution Unit : Increment Unit

Latency : 1 cycle
Throughput : 1 per cycle per TU.

110

1.3.14 sort

SORT

sort r3, r2, rl
ssort r3, r2, rl

Computes { r1 =13 ,r1+1 =12 } if (12 >1r3)else { rl =12 ,r1+1 =13 }
Compare the two source operands and writes the minimum of the two values to the destination

register and the maximum to destination register+1. The comparison is valid only for unsigned values
(yet) so this instruction can’t be used for IEEE floating point data. This instruction is of the 2r2w form.

size : 8 6 6 6 6
bits : | 0 718 13 | 14 19 |20 25 | 26 31
function : OP_SORT Flags Reg 3 Reg 2 Reg 1
Flags Syntax Values | Function
8-9 .q, .d or .b postfix | * Defines the size parameter
10 s- prefix 1 if set | Defines if the operation is SIMD
11-13 (none yet) 0 Reserved
Examples :

R1 contains 0x0000000500000003 (in a 64-bit system)
R2 contains 0x0000000700000001

ssort.b r1,r2,r3 : r3 = 0x0000000500000001 , r4 = 0x0000000700000003
sort r1,r2,r3 : r3 = 0x0000000500000003 , r4 = 0x0000000700000001

Performance (FCO only) :
FExecution Unit : Increment Unit

Latency : 1 cycle
Throughput : 1 per cycle per TU.

111

1.4 Optional Logarithmic Number System operations

These opcodes are reserved for an eventual support of the Logarithmic Number System (LNS) in
F-CPU versions that are too small to support Floating Point operations. Note that the LNS numbers
can currently not exceed 32 bits but this can change in the future. The bit #11 that is reserved in most
integer instructions can be used to specify that the data is in the LNS or fractional format but this is
not yet decided.

1.4.1 ladd

Lns ADDition

ladd r3, r2, rl
sladd r3, r2, r1

Computes r1 = r2 + r3 in the LNS format.

size : 8 6 6 6 6
bits : | 0 7 18 13 | 14 19 | 20 25 | 26 31
function : OP_LADD Flags Reg 3 Reg 2 Reg 1
Flags Syntax Values | Function
8-9 .q, .d or .b postfix | * Defines the size parameter
10 s- prefix 1 if set | Defines if the operation is SIMD
11-13 (none yet) 0 Reserved

Performance (FCO only) :

Ezecution Unit : LNS Unit (not implemented)
Latency : unknown
Throughput : unknown.

112

1.4.2 1sub

Lns SUBstract

Isub r3, r2, rl
slsub r3, r2, rl

Computes rl = r2 - r3 in the LNS format.

Ezecution Unit : LNS Unit (not implemented)

Latency : unknown
Throughput : unknown.

Performance (FCO only) :

113

size : 8 6 6 6 6
bits : | 0 7 18 14 19 | 20 25 | 26 31
function : OP_LSUB Flags Reg 3 Reg 2 Reg 1
Flags Syntax Values | Function
8-9 .q, .d or .b postfix | * Defines the size parameter
10 s- prefix 1 if set | Defines if the operation is SIMD
11-13 (none yet) 0 Reserved

1.4.3 12int

Lns to INT conversion

12int r2, r1
sl2int r2, rl

Computes the equivalence of r2 in the LNS format to the integer format.

Performance (FCO only) :

Ezecution Unit : LNS Unit (not implemented)

Latency : unknown

Throughput : unknown.

114

size : 6 6 6 6
bits : | 0 7 18 13 | 14 19 | 20 25 | 26 31
function : OP_L2INT Flags 0 Reg 2 Reg 1
Flags Syntax Values Function
8-9 .q, .d or .b postfix | * Defines the size parameter
10 s- prefix 1 if set Defines if the operation is SIMD
11-12 see below | rounding mode
13 (none yet) 0 reserved
Rounding modes:
Value | Syntax | Rounding mode
00 |-r Nearest (default)
01 -t Towards 0
10 -f Towards -infinity
11 -C Towards +infinity

1.4.4 int2]

INT to Lns conversion

int2l r2, r1
sint2l r2, rl

Computes the equivalence of r2 in the integer format to the LNS format.

Performance (FCO only) :

Ezecution Unit : LNS Unit (not implemented)

Latency : unknown

Throughput : unknown.

115

size : 6 6 6
bits : | 0 7 18 13 | 14 19 | 20 25 | 26 31
function : OP_INT2L Flags 0 Reg 2 Reg 1
Flags Syntax Values Function
8-9 .q, .d or .b postfix | * Defines the size parameter
10 s- prefix 1 if set Defines if the operation is SIMD
11-12 see below | rounding mode
13 (none yet) 0 reserved
Rounding modes:
Value | Syntax | Rounding mode
00 |-r Nearest (default)
01 -t Towards 0
10 -f Towards -infinity
11 -C Towards +infinity

Chapter 2

Bit Shuffling based operations

2.1 Core Shift and Rotate operations

2.1.1 shift

SHIFT Left logical

shiftl r3, r2, r1
sshiftl r3, r2, r1

Computes rl = r2 << r3.

The value of r3 is truncated to the number of bits needed by the bit shuffler unit.

Performance (FCO only) :

Execution Unit : Bit Shuffling Unit

Latency : 1 cycle

Throughput : 1 per cycle per BSU.

116

size : 8 6 6 6 6
bits: | 0 718 13 | 14 19 | 20 25 | 26 31
function : OP_SHIFTL Flags Reg 3 Reg 2 Reg 1
Flags Syntax Values | Function
8-9 .q, .d or .b postfix | * Defines the size parameter
10 s- prefix 1 if set | Defines if the operation is SIMD
11-13 (none yet) 0 Reserved

2.1.2 shiftr

SHIFT Right logical

shiftr r3, r2, rl

sshiftr r3, r2, rl

Computes rl =12 >> r3

The value of r3 is truncated to the number of bits needed by the bit shuffler unit.

Performance (FCO only) :

Execution Unit : Bit Shuffling Unit

Latency : 1 cycle

Throughput : 1 per cycle per BSU.

117

size : 6 6 6 6
bits : | 0 7 |8 13 | 14 19 | 20 25 | 26 31
function : OP_SHIFTR Flags Reg 3 Reg 2 Reg 1
Flags Syntax Values | Function
8-9 .q, .d or .b postfix | * Defines the size parameter
10 s- prefix 1 if set | Defines if the operation is SIMD
11-13 (none yet) 0 Reserved

2.1.3 shiftra

SHIFT Right Arithmetic

shiftra r3, r2, rl
sshiftra r3, r2, rl

Computes rl = r2 >> r3 and preserve the sign.

The value of r3 is truncated to the number of bits needed by the bit shuffler unit.

Performance (FCO only) :

Execution Unit : Bit Shuffling Unit

Latency : 1 cycle

Throughput : 1 per cycle per BSU.

118

size : 8 6 6 6 6
bits : | 0 718 13 | 14 19 | 20 25 | 26 31
function : | OP_SHIFTRA Flags Reg 3 Reg 2 Reg 1
Flags Syntax Values | Function
8-9 .q, .d or .b postfix | * Defines the size parameter
10 s- prefix 1 if set | Defines if the operation is SIMD
11-13 (none yet) 0 Reserved

2.1.4 rotl

ROTation Left

rotl r3, r2, rl
srotl r3, r2, rl

Computes rl = r2 <@ r3

The value of r3 is truncated to the number of bits needed by the bit shuffler unit.

Performance (FCO only) :

Execution Unit : Bit Shuffling Unit

Latency : 1 cycle

Throughput : 1 per cycle per BSU.

119

size : 6 6 6 6
bits : | 0 7 18 13 | 14 19 | 20 25 | 26 31
function : OP_ROTL Flags Reg 3 Reg 2 Reg 1
Flags Syntax Values | Function
8-9 .q, .d or .b postfix | * Defines the size parameter
10 s- prefix 1 if set | Defines if the operation is SIMD
11-13 (none yet) 0 Reserved

2.1.5 rotr

ROTation Right

rotr r3, r2, rl
srotr r3, r2, rl

Computes rl = r2 @> r3

The value of r3 is truncated to the number of bits needed by the bit shuffler unit.

Performance (FCO only) :

Execution Unit : Bit Shuffling Unit

Latency : 1 cycle

Throughput : 1 per cycle per BSU.

120

size : 8 6 6 6 6
bits : | 0 718 13 | 14 19 | 20 25 | 26 31
function : OP_ROTR Flags Reg 3 Reg 2 Reg 1
Flags Syntax Values | Function
8-9 .q, .d or .b postfix | * Defines the size parameter
10 s- prefix 1 if set | Defines if the operation is SIMD
11-13 (none yet) 0 Reserved

2.2 Optional Shift and Rotate operations

2.2.1 shiftli

SHIFT Left Immediate

shiftli Imm8, r2, r1
sshiftli Imms8, r2, rl

Computes rl = r2 << Imm8

The value of Imm8 is truncated to the number of bits needed by the bit shuffler unit.

size : 8 4 8 6 6
bits : | 0 718 11 | 12 19 |20 25 | 26
function : OP_SHIFTLI Flags Imm8 Reg 2 Reg 1
Flags Syntax Values | Function
8-9 .q, .d or .b postfix | * Defines the size parameter
10 s- prefix 1 if set | Defines if the operation is SIMD
11 (none yet) 0 Reserved

Performance (FCO only) :

Execution Unit : Bit Shuffling Unit
Latency : 1 cycle
Throughput : 1 per cycle per BSU.

121

2.2.2 shiftri

SHIFT Right Immediate logic

shiftri ImmS8, r2, rl
sshiftri Imm8, r2, r1

Computes rl = r2 >> Imm8

The value of Imm8 is truncated to the number of bits needed by the bit shuffler unit.

Performance (FCO only) :

Execution Unit : Bit Shuffling Unit

Latency : 1 cycle

Throughput : 1 per cycle per BSU.

122

size : 8 4 8 6 6
bits: | 0 7 |8 11 | 12 19 | 20 25 | 26 31
function : OP_SHIFTRI Flags Imm8 Reg 2 Reg 1
Flags Syntax Values | Function
8-9 .q, .d or .b postfix | * Defines the size parameter
10 s- prefix 1 if set | Defines if the operation is SIMD
11 (none yet) 0 Reserved

2.2.3 shiftrai

SHIFT Right Arithmetic Immediate

shiftrai ImmS8, r2, rl
sshiftrai Imms8, r2, rl

Computes rl = r2 >> Imm8 and preserve the sign

The value of Imm8 is truncated to the number of bits needed by the bit shuffler unit.

Performance (FCO only) :

Execution Unit : Bit Shuffling Unit

Latency : 1 cycle

Throughput : 1 per cycle per BSU.

123

size : 8 4 8 6 6
bits : | 0 718 11 | 12 19 | 20 25 | 26 31
function : | OP_SHIFTRAI Flags Imm8 Reg 2 Reg 1
Flags Syntax Values | Function
8-9 .q, .d or .b postfix | * Defines the size parameter
10 s- prefix 1 if set | Defines if the operation is SIMD
11 (none yet) 0 Reserved

2.2.4 rothi

ROTate Left Immediate

rotli Imm8, r2, r1
srotli Imm8, r2, rl

Computes rl = r2 <@ Imm8

The value of Imm8 is truncated to the number of bits needed by the bit shuffler unit.

Performance (FCO only) :

Execution Unit :Bit Shuffling Unit

Latency : 1 cycle

Throughput : 1 per cycle per BSU.

124

size : 8 4 8 6 6
bits : | 0 7 18 11 | 12 19 | 20 25 | 26 31
function : OP_ROTLI Flags Imm8 Reg 2 Reg 1
Flags Syntax Values | Function
8-9 .q, .d or .b postfix | * Defines the size parameter
10 s- prefix 1 if set | Defines if the operation is SIMD
11 (none yet) 0 Reserved

2.2.5 rotri

ROTate Right Immediate

rotri Imm8, r2, rl
srotri Imms8, r2, rl

Computes rl = r2 @> Imm8

The value of Imm8 is truncated to the number of bits needed by the bit shuffler unit.

size : 8 4 8 6 6
bits : | 0 718 11 | 12 19 | 20 25 | 26
function : OP_ROTRI Flags Imm8 Reg 2 Reg 1
Flags Syntax Values | Function
8-9 .q, .d or .b postfix | * Defines the size parameter
10 s- prefix 1 if set | Defines if the operation is SIMD
11 (none yet) 0 Reserved

Performance (FCO only) :

Execution Unit : Bit Shuffling Unit
Latency : 1 cycle
Throughput : 1 per cycle per BSU.

125

2.2.6 bitop

single BIT OPeration

bitop[x/s/c/t] 3, r2, rl
sbitop[x/s/c/t] r3, r2, rl
bchg r3, r2, r1

bset r3, r2, rl

bclr r3, r2, rl

btst r3, r2, rl

sbchg r3, r2, rl

sbset r3, r2, rl

sbclr r3, r2, rl

sbtst r3, r2, rl

Computes r1 = F(function, r2, 1)

In the shifter, a 1 is shifted left r3 times and combined with the second operand (r2) according to
the function F defined below :

Function number : | Logical function : | Operation : Opcode :
00 AND Bit Mask btst or bitopt
01 ANDN Bit Clear belr or bitope
10 XOR Bit Change | bchg or bitopx
11 OR Bit Set bset or bitops

The value of r3 is truncated to the number of bits needed by the bit shuffler unit.

size : 8 6 6 6 6
bits: | 0 7 |8 13 14 19 | 20 25 | 26 31
function : OP_BITOP Flags Reg 3 Reg 2 Reg 1
Flags Syntax Values | Function
8-9 .q, .d or .b postfix | * Defines the size parameter
10 s- prefix 1 if set | Defines if the operation is SIMD
11 (none yet) 0 Reserved
12-13 X, ¢, tors 00-11 F

Example :

R1 contains 0x08
R2 contains 0xFF05891213450100 (in a 64-bit system)

bchg r1,r2,r3 : r3 = 0xFF05891213450000

bset r1,r2,r3 : r3 = 0xFF05891213450100
bclr r1,r2,r3 : r3 = 0xFF05891213450000
btst r1,r2,r3 : r3 = 0x0000000000000100

Performance (FCO only) :

Execution Unit : Bit Shuffling Unit
Latency : 1 cycle
Throughput : 1 per cycle per BSU.

126

2.2.7 bitopi

single BIT OPeration Immediate

bitopi[x/s/c/t] Imm6, r2, rl
sbitopi[x/s/c/t] Imm6, r2, rl
bchgi Imm6, r2, rl

bseti Imm6, r2, rl

bclri Immé6, r2, rl

btsti Imm6, r2, rl

sbchgi Imm6, r2, rl

sbseti Immé6, r2, rl

sbclri Immé6, r2, rl

sbtsti Immé6, r2, rl

Computes r1 = F(function, r2, 1)

In the shifter, a 1 is shifted left Imm6 times and combined with the second operand (r2) according

to the function F defined below :

F : | Logical function : | Operation : Opcode :

00 AND Bit Mask btsti or bitopti
01 ANDN Bit Clear belri or bitopci
10 XOR Bit Change | bchgi or bitopxi
11 OR Bit Set bseti or bitopsi

The value of Imm6 is truncated to the number of bits needed by the bit shuffler unit.

R2 contains 0xFF05891213450100 (in a 64-bit system)

bchgi 0x08,r2,r3 :

r3 = 0xFF05891213450000

bseti 0x08,r2,r3 : r3 = 0xFF05891213450100
bclri 0x08,r2,r3 : r3 = 0xFF05891213450000
btsti 0x08,r2,r3 : r3 = 0x0000000000000100

Execution Unit : Bit Shuffling Unit
Latency : 1 cycle
Throughput : 1 per cycle per BSU.

Performance (FCO only) :

127

size : 8 4 2 6 6 6
bits : | 0 7|8 11 | 1213 | 14 19 |20 25 | 26 31
function : OP_BITOPI Flags F Imm6 Reg 2 Reg 1
Flags Syntax Values | Function
8-9 .q, .d or .b postfix | * Defines the size parameter
10 s- prefix 1 if set | Defines if the operation is SIMD
11 (none yet) 0 Reserved
12-13 X, ¢, tors 00-11 F
Example :

2.3 Optional Bit Shuffling operations

The Bit Shuffling Unit of the F-CPU can also perform other operations than simply rotating or
shifting bits. Its purpose is to change the position of the bits, which also includes bit and byte reversing
and SIMD packing operations.

2.3.1 Dbitrev

BIT REVerse

bitrev r3, r2, rl
bitrevo r3, r2, rl
bitrev r2, rl1
bitrevo r2, rl

Computes r1 = bit_reverse(r2) >> r3
or r14+1 =rl | (bit_reverse(r2) >> r3)

by default r3 == r0

R2 is first bit-reversed then shifted right size - r3 times.

If the -o flag is set, the result is combined by a OR with the content of r1 before it is written back
to r1+1. This instruction is used to compute pointer updates in butterfly data structures, where r3 is
the log2 of the size of the structure, r2 is the current index in the structure (always inferior to 2°r3) and
rl is the base pointer. It is a 3rlw instruction form and therefore optional.

The value of r3 is truncated to the number of bits needed by the bit shuffler unit. Because it is
aimed at pointer manipulation, the SIMD flag is not used. When a base address is used in conjunction
with the -o flag, take care to align the base address to a boundray at least equivalent to the size of the
data structure (just in case you weren’t aware). In case the butterfly buffer is not aligned, an addition
must be performed and the bitrev instruction must be used instead. The alignment of the final data is
ensured by limiting the index : for example, a 256-byte buffer with 32-bit words requires that the index
is between 0 and 63, so the final 2 LSB are always cleared.

size : 8 6 6 6 6
bits : | 0 718 13 | 14 19 |20 25 | 26 31
function : OP_BITREV Flags Reg 3 Reg 2 Reg 1
Flags Syntax Values | Function
8-9 .q, .d or .b postfix | * Defines the size parameter
10 -0 postfix 1if set | OR the result with the destination
11-13 (none yet) 0 Reserved
Example :

R1 contains 0x08 (a 256-byte buffer)
R2 contains 0x48 (the current index)
R3 contains 0xFF05891213450100 (the buffer base address)

r3 = 0x0C
r4 = 0xFF0589121345010C

bitrev r1,r2,r3 :
bitrevo r1,r2,r3 :

Performance (FCO only) :

128

Ezxecution Unit : Bit Shuffling Unit
Latency : 1 cycle
Throughput : 1 per cycle per BSU.

129

2.3.2 Dbitrevi

BIT REVerse Immediate

bitrevi Imms8, r2, rl
bitrevio Imm8, r2, rl

Computes r1 = bit_reverse(r2) >> (size-Imm8)
or r14+1 = rl | (bit_reverse(r2) >> (size-Imm8))

The value of Imm8 is truncated to the number of bits needed by the bit shuffler unit.

size : 8 4 8 6 6
bits : | 0 7 18 1 | 14 19 | 20 25 | 26
function : | OP_BITREVI Flags Imm8 Reg 2 Reg 1
Flags Syntax Values | Function
8-9 .q, .d or .b postfix | * Defines the size parameter
10 -0 postfix 1 if set | OR the result with the destination
11 (none yet) 0 Reserved

Example :

R2 contains 0x48 (the current index)
R3 contains 0xFF05891213450100 (the buffer base address)

bitrevi 0x08,r2,r3 : r3 = 0x0C
bitrevio 0x08,r2,r3 : r4 = 0xFF0589121345010C

Performance (FCO only) :

Execution Unit : Bit Shuffling Unit
Latency : 1 cycle
Throughput : 1 per cycle per BSU.

130

2.3.3 byterev

BYTe REVerse

byterev r2, rl
sbyterev r2, rl

Changes the endianness of r2 and puts the result into rl.

All the versions of the F-CPU may not support dual-endianness in the Load/Store unit, or simply
the software may require internal operations of this kind. This is optional for the minimal systems, but
yet useful in communication software. Remark, byterev.b has no use :-)

size : 8 3 9 6 6
bits : | 0 7 | 810 |11 19 | 20 25 | 26 31
function : | OP_BYTEREV | Flags 0 Reg 2 Reg 1
Flags Syntax Values | Function
8-9 .q, .d or .b postfix Size flag
10 s- prefix 1 if set | Defines if the operation is SIMD
Examples :

R2 contains 0xFF05891213450100 (in a 64-bit system)
byterev.d r2,r3 : r3 = 0xFF05891213450001
byterev.q r2,r4 : r4 = 0xFF05891200014513
sbyterev.d r2,r3 : r3 = 0x05FF128945130001
sbyterev.q r2,r4 : r4 = 0x128905FF00014513

Performance (FCO only) :

Execution Unit : Bit Shuffling Unit
Latency : 1 cycle
Throughput : 1 per cycle per BSU.

131

2.3.4 mix

MIX

mixl r3, r2, rl
mixh r3, r2, rl

Mix two halves of r3 and r2 and puts the result into rl.

jfa——— —
o] o
1 | 1 |
e
2 | 2 |
- ™
3 | 3 |
iy
4 | 4 |
[=
5 | 5 |
6] {6 o
) Sy
7 [o S [

Reg Reg mix| Result Reg Reg mixh Result
source BOUrGE soUrce source F-CPUl Dewign Team
2 # 3 Rl inztruction

by ges 11461999

Figure 2.1: Description of the mix instruction

Depending on the h flag, the lower or higher part of r3 and r2 are interleaved. The size of the
source chunks is determined by the size flags. This instruction is useful to interleave words in a butterfly”
fashion or reverse a little matrix. Or simply it can be used to create an extended form of the result of an
addition with carry.

size : 8 6 6 6 6
bits : | 0 718 13 | 14 19 |20 25 | 26 31
function : OP_MIX Flags Reg 3 Reg 2 Reg 1
Flags Syntax Values Function
8-9 .q, .d or .b postfix Size flag
10-11 (none yet) 0 Reserved
12 -1 or -h postfix 0 for -1 High flag
1 for -h
13 (none yet) 0 Reserved
Examples :

132

R1 contains 0x0001020304050607 (in a 64-bit system)
R2 contains 0x08090A0BOCODOEOF

mixl.d r1,r2,r3 : r3 = 0x04050C0D06070EQF
mixh.d r1,r2,r4 : r4 = 0x0001080902030A0B

Performance (FCO only) :

Ezecution Unit : Bit Shuffling Unit
Latency : 1 cycle
Throughput : 1 per cycle per BSU.

133

2.3.5 expand

EXPAND

expandl r3, r2, rl
expandh r3, r2, rl

Mix chunks of r3 and r2 and puts the result into two halves of rl.

expand| expandh
(1] (1] 0 (1] (1]
-_*___ iy
1 1 1 1 1 1
" enull B ™
12 l2_ 2| [l2_ 2
b S Wy L
3 3 3 3 3 3
- B
| | q | | q
b - e L
o] o]] o] o]]
Iﬁ_—/.l;i_ b |6 |6 b
b - e L
Fi Fi Fi Fi Fi Fi
SRC1 BRC2 RESULT SRC1 SRC2 REZLLT
F-CPL Design Team
EXPOMND inztruction
Ny gee 1146999

Figure 2.2: Description of the expand instruction

This is the reverse operation of the mix instruction. Depending on the h flag, the lower or higher
part of r3 and r2 are interleaved. The size of the source chunks is determined by the size flags.

size : 8 6 6 6 6
bits: | 0 7 |8 13 14 19 | 20 25 | 26 31
function : | OP_EXPAND Flags Reg 3 Reg 2 Reg 1
Flags Syntax Values Function
8-9 .q, -d or .b postfix Size flag
10-11 (none yet) 0 Reserved
12 -1 or -h postfix 0 for -1 High flag
1 for -h
13 (none yet) 0 Reserved

134

Examples :

R1 contains 0x0001020304050607 (in a 64-bit system)
R2 contains 0x08090A0BOCODOEOF

expandl.b r1,r2,r3 : r3 = 0x09010B0O30D050F07
expandh.b r1,r2,r4 : r4 = 0x08000A020C040E06

Performance (FCO only) :

Execution Unit : Bit Shuffling Unit
Latency : 1 cycle
Throughput : 1 per cycle per BSU.

135

2.3.6 sdup

Simd DUPlication

sdup r2, rl

Duplicates the lower part of r2 and put the result in rl. The size of the destination SIMD chunks

is determined by the size flags.

R1 contains 0x0001020304050607 (in a 64-bit system)

sdup.b r1,r2 :
sdup.d rl,r3 :
sdup.q r1,r4 :

Execution Unit : Bit Shuffling Unit

Latency : 1 cycle

r2 = 0x0707070707070707
r3 = 0x0607060706070607
r4 = 0x0405060704050607

Throughput : 1 per cycle per BSU.

136

Performance (FCO only) :

size : 8 6 6 6
bits: | 0 718 13 | 14 19 | 20 25 | 26 31
function : OP_SDUP Flags Reg 2 Reg 1
Flags Syntax Values | Function
8-9 .q, .d or .b postfix Size flag
10-13 (none yet) 0 Reserved
Examples :

Chapter 3

Logic operations

3.1 Core Logic operations

3.1.1 logic

bitwise LOGIC

logic.xxxx rl, r2, r3
orrl, r2, r3

ornrl, r2, r3

and rl, r2, r3

andn rl, r2, r3

xor rl, r2, r3

nxor rl, r2, r3

not rl, r2, r3

nor rl, r2, r3

nand rl, r2, r3

Computes r3 = f(r1,r2) where f is a logic function whose truth table is defined in the flags.

Remark : XOR should be used to compare two numbers for equality, instead of sub.

or is an alias for logic.0111
and is an alias for logic.0001
xor is an alias for logic.0110
not is an alias for logic.1010
nor is an alias for logic.1000
nand is an alias for logic.1110

137

size : 8 6 6 6 6
bits : | 0 718 13 | 14 19 |20 25 | 26 31
function : OP_LOGIC Flags Reg 3 Reg 2 Reg 1
Flags | Values | Function
8-9 qdb] | Size flags
10 01 £(0,0)
11 01 £(1,0)
12 01 £(0,1)
13 01 f(1,1)

Performance (FCO only) :

Execution Unit : ROP2 Unit
Latency : 1 cycle
Throughput : 1 result per cycle per ROP2.

138

3.2 Optional Logic operations

3.2.1 logici

bitwise LOGIC Immediate

logici.xxxx Imm8, r2, r3i
andi ImmS8, r2, r3

andni ImmS8, r2, r3

ori Imm8, r2, r3

xori ImmS8, r2, r3

Computes r1 = f(Imm8,r2) where f is a logic function whose truth table is defined in the flags.
Because there is less room than in the register form of the instruction, the logic functions are reduced

to 4. I have chosen to use the same logic functions as in the bitop instructions. Yet, the SIMD flag is
cruelly missing. The function could maybe be included in the opcode.

size : 8 4 8 6 6
bits : | 0 7 18 11 | 12 19 | 20 25 | 26 31
function : OP_LOGICI Flags Imm8 Reg 2 Reg 1

Flags | Values | Function
8-9 qdb)] Size flags
10-11 | [xtes] | logic function

ori is an alias for logici.s
andi is an alias for logici.t
xori is an alias for logici.x
andni is an alias for logici.c

Performance (FCO only) :

Execution Unit : ROP2 Unit
Latency : 1 cycle
Throughput : 1 result per cycle per ROP2.

139

Chapter 4

Floating Point Operations

One can implement a F-CPU with different degrees of floating point operation support or “levels”,
as the needs and the technologies dictate. The FP level 0 is the absence of Floating Point hardware, and
the level increases as the hardware offers more features.

Instruction \ Level |0 | 1] 2|3
fadd O

fsub L

fmul Ol O

int2f/f2int O O
fiaprx, fsqrtiaprx O O
fcmple, fempl O O
fdiv, fsqrt K

flog *

fexp *

fmac *

faddsub *

The FP level of a CPU should be read in the associated Special Register before attempting to
execute FP instructions.

140

4.1 Level 1 Floating Point Operations

4.1.1 fadd

Floating point ADDition

fadd r3, r2, r1
sfadd r3, r2, r1
faddx r3, r2, r1
sfaddx r3, r2, rl

Computes rl = r2 + r3 in IEEE-754 compliant format.

fadd performs a floating addition of the two source operands (rl + r2) and puts the result in
destination operand (r3). The operation should be compliant with the IEEE-754 format.

e The size flag indicates that fadd performs the addition on the whole operands or only on a part
of the operands. This size flags is different from the integer size flag: only two values are currently
assigned (01) for 64 bits and (00) for 32 bits.

e The SIMD flag indicates that fadd performs multiple addition on parts of the operand (the size
of these parts is defined by the size flags).

e The Exception flag indicates if fadd should generate exceptions (when needed) in accordance to
the IEEE-754 standard. When this flag is set, no exception is generated and the result is biased
in an implementation-dependent way. The absence of this flag (by default) stops the pipeline until
the FP execution unit confirms that an exception should be triggered, because the F-CPU doesn’t
implement imprecise exceptions.

size : 8 6 6 6 6
bits : | 0 718 13 | 14 19 |20 25 | 26 31
function : OP_FADD Flags Reg 3 Reg 2 Reg 1
Flags Syntax Values Function
8-9 .[77] postfix | 00 : 32-bit FP Defines the size parameter
01 : 64-bit FP
10 s- prefix 1 if set Defines if the operation is SIMD
11 -X postfix 1 to skip the tests | IEEE compliance flag
12-13 (none yet) 0 Reserved

141

4.1.2 fsub

Floating point SUBstraction

fsub r3, r2, r1
sfsub r3, r2, rl
fsubx r3, r2, rl
sfsubx r3, r2, rl

Computes rl = r2 - r3 in IEEE-754 compliant format.

fsub performs a floating substraction of the two source operands (rl - r2) and puts the result in
destination operand (r3). The operation should be compliant with the IEEE-754 format.

e The size flag indicates that fsub performs the operation on the whole operands or only on a part
of the operands. This size flags is different from the integer size flag: only two values are currently
assigned (01) for 64 bits and (00) for 32 bits.

e The SIMD flag indicates that fsub performs multiple substraction on parts of the operand (the
size of these parts is defined by the size flags).

e The Exception flag indicates if fsub should generate exceptions (when needed) in accordance to
the IEEE-754 standard. When this flag is set, no exception is generated and the result is biased
in an implementation-dependent way. The absence of this flag (by default) stops the pipeline until
the FP execution unit confirms that an exception should be triggered, because the F-CPU doesn’t
implement imprecise exceptions.

size : 8 6 6 6 6
bits : | 0 7 18 13 | 14 19 |20 25 | 26 31
function : OP_FSUB Flags Reg 3 Reg 2 Reg 1
Flags Syntax Values Function
8-9 [?7] postfix | 00 : 32-bit FP Defines the size parameter
01 : 64-bit FP
10 s- prefix 1 if set Defines if the operation is SIMD
11 -X postfix 1 to skip the tests | IEEE compliance flag
12-13 (none yet) 0 Reserved

142

4.1.3 fmul

Floating point MULtiplication

fmul r3, r2, rl
sfmul r3, r2, rl
fmulx r3, r2, rl
sfmulx r3, r2, rl

Computes rl = r2 x r3 in IEEE-754 compliant format.

fmul performs a floating multiplication of the two source operands (rl x r2) and puts the result in
destination operand (r3). The operation should be compliant with the IEEE-754 format.

e The size flag indicates that fmul performs the operation on the whole operands or only on a part
of the operands. This size flags is different from the integer size flag: only two values are currently
assigned (01) for 64 bits and (00) for 32 bits.

e The SIMD flag indicates that fmul performs multiple multiplication on parts of the operand (the
size of these parts is defined by the size flags).

e The Exception flag indicates if fmul should generate exceptions (when needed) in accordance to
the IEEE-754 standard. When this flag is set, no exception is generated and the result is biased
in an implementation-dependent way. The absence of this flag (by default) stops the pipeline until
the FP execution unit confirms that an exception should be triggered, because the F-CPU doesn’t
implement imprecise exceptions.

size : 8 6 6 6 6
bits : | 0 7 18 13 | 14 19 |20 25 | 26 31
function : OP_FMUL Flags Reg 3 Reg 2 Reg 1
Flags Syntax Values Function
8-9 [?7] postfix | 00 : 32-bit FP Defines the size parameter
01 : 64-bit FP
10 s- prefix 1 if set Defines if the operation is SIMD
11 -X postfix 1 to skip the tests | IEEE compliance flag
12-13 (none yet) 0 Reserved

143

4.1.4 f2int

Floating point to INTeger conversion

f2int r2, rl
sf2int r2, rl1
f2intx r2, rl
sf2intx r2, rl

f2int” converts a floating point number in register r2 into an integer number, according to the mode
flags, and put it in register rl.

size : 8 6 6 6 6
bits: | 0 718 13 | 14 19 | 20 25 | 26 31
function : OP_F2INT Flags 0 Reg 2 Reg 1
Flags Syntax Values Function
8-9 [?7] postfix | 00 : 32-bit FP Defines the size parameter
01 : 64-bit FP
10 s- prefix 1 if set Defines if the operation is SIMD
11 -x postfix 1 to skip the tests | IEEE compliance flag
12-13 see below Rounding modes

Rounding modes:

Value | Syntax | Rounding mode
00 |-r Nearest (default)
01 -t Towards 0
10 -f Towards -infinity
11 -C Towards +infinity

144

4.1.5 int2f

INTeger to Floating point conversion

int2f r2, rl
sint2f r2, r1
int2fx r2, rl
sint2fx r2, rl

int2f” converts an integer number in register r2 into a floating point number and put it in register

rl.
size : 8 4 8 6 6
bits : | 0 718 13 | 14 19 | 20 25 | 26 31
function : OP_INT2F Flags 0 Reg 2 Reg 1
Flags Syntax Values Function
8-9 [?7] postfix | 00 : 32-bit FP Defines the size parameter
01 : 64-bit FP
10 s- prefix 1 if set Defines if the operation is SIMD
11 -X postfix 1 to skip the tests | IEEE compliance flag
12-13 see below rounding mode

Rounding modes:

Value | Syntax | Rounding mode
00 |-r Nearest (default)
01 -t Towards 0
10 -f Towards -infinity
11 -C Towards +infinity

145

4.1.6 fiaprx

Floating point Inverse APpRoXimation

fiaprx r2, rl
fiaprxx r2, rl
sfiaprx r2, rl
sfiaprxx r2, rl

fiaprx approximates the inverse of r2 (1/r2) with the help of a hardwired lookup table and puts
the result into rl. This operation is used at the beginning of a Newton-Raphson algorithm to compute a
division. The accuracy of the lookup table depends on the application, and the number of NR iteration
also depends on the desired accuracy and the size of the FP number.

size : 8 4 8 6 6
bits : | 0 718 11 | 12 19 | 20 25 | 26 31
function : OP_FIAPRX Flags 0 Reg 2 Reg 1
Flags Syntax Values Function
8-9 [?7] postfix | 00 : 32-bit FP Defines the size parameter
01 : 64-bit FP
10 s- prefix 1 if set Defines if the operation is SIMD
11 -X postfix 1 to skip the tests | IEEE compliance flag

146

4.1.7 fsqrtiaprx

Floating point SQuare RooT Inverse APpRoXimation

fsqrtiaprx r2, rl

fiaprxx r2, rl

sfsqrtiaprx r2, rl
sfsqrtiaprxx r2, rl

fsqrtiaprx approximates the inverse of the square root of r2 (1/r2) with the help of a hardwired
lookup table and puts the result into rl. This operation is used at the beginning of a Newton-Raphson
algorithm to compute a square root. The accuracy of the lookup table depends on the application, and
the number of NR iteration also depends on the desired accuracy and the size of the FP number.

size : 8 4 6 6
bits : | 0 7 8 11 | 12 19 | 20 25 | 26 31
function : | OP_FSQRTIAPRX Flags Reg 2 Reg 1
Flags Syntax Values Function
89 [7?] postfix | 00 : 32-bit FP Defines the size parameter
01 : 64-bit FP
10 s- prefix 1 if set Defines if the operation is SIMD
11 -X postfix 1 to skip the tests | IEEE compliance flag

147

4.1.8 fcmple

Float CoMPare for Lower or Equal

fcmple r3, r2, r1
sfcmple r3, r2, rl

Compare the two source operands and sets or clear the destination register according to the result.
This operation is performed in the Increment unit so no substraction is required and it is performed faster
for large data. In order to compare for greater or equal, simply swap the source operands or negate the
result of FCMPL.

Remark : this instruction must be used for IEEE floating point data.

148

size : 8 6 6 6 6
bits : | 0 7|8 13 | 14 19 | 20 25 | 26 31
function : | OP_FCMPLE Flags Reg 3 Reg 2 Reg 1
Flags Syntax Values Function
8-9 [?7] postfix | 00 : 32-bit FP | Defines the size parameter
01 : 64-bit FP
10 s- prefix 1 if set Defines if the operation is SIMD
11-13 (none yet) 0 Reserved

4.1.9 fcmpl

Float CoMPare for Lower

fcmpl r3, r2, rl
sfcmpl r3, r2, rl

Compare the two source operands and sets or clear the destination register according to the result.
This operation is performed in the Increment unit so no substraction is required and it is performed faster
for large data. In order to compare for greater, simply swap the source operands or negate the result of
CMPLE. The comparison is valid only for unsigned values (yet)

Remark : this instruction must be used for IEEE floating point data (the comparison is not signed).

149

size : 8 6 6 6 6
bits : | 0 718 13 | 14 19 | 20 25 | 26 31
function : OP_CMPL Flags Reg 3 Reg 2 Reg 1
Flags Syntax Values Function
8-9 [?7] postfix | 00 : 32-bit FP | Defines the size parameter
01 : 64-bit FP
10 s- prefix 1 if set Defines if the operation is SIMD
11-13 (none yet) 0 Reserved

4.2 Level 2 Floating Point Operations

4.2.1 fdiv

Floating point Division

fdiv r3, r2, rl
fdivx r3, r2, rl
sfdiv r3, r2, r1
sfdivx r3, r2, rl

fdiv performs a floating division of the two source operands (r3 / r2) and puts the result in
destination operand (r1). The operation should be IEEE-754 compliant.

size : 8 6 6 6 6
bits : | 0 718 13 | 14 19 |20 25 | 26 31
function : OP_FDIV Flags Reg 3 Reg 2 Reg 1
Flags Syntax Values Function
8-9 .[?7] postfix | 00 : 32-bit FP Defines the size parameter
01 : 64-bit FP
10 s- prefix 1 if set Defines if the operation is SIMD
11 -X postfix 1 to skip the tests | IEEE compliance flag
12-13 (none yet) 0 Reserved

150

4.2.2 fsqrt

Floating point SQuare RooT

fsqrt r3, r2, rl

fsqrtx r3, r2, rl

ssqrt r3, r2, rl

ssqrtx r3, r2, rl

fsqrt performs a floating point square root of the source operand (r2) and puts the result i

destination operand (r1). The operation should be IEEE-754 compliant.

size : 8 4 8 6 6
bits : | 0 718 11 | 12 19 |20 25 | 26 31
function : OP_FSQRT Flags 0 Reg 2 Reg 1
Flags Syntax Values Function
8-9 .[77] postfix | 00 : 32-bit FP Defines the size parameter
01 : 64-bit FP
10 s- prefix 1 if set Defines if the operation is SIMD
11 -X postfix 1 to skip the tests | IEEE compliance flag

151

4.3 Level 3 Floating Point Operations

4.3.1 flog

Floating point LOGarithm

flog r3, r2, rl
flogx r3, r2, r1
sflog r3, r2, rl

sflogx r3, r2, rl

Computes rl = log;3(r2)

152

size : 8 6 6 6
bits : | 0 718 13 | 14 19 |20 25 | 26 31
function : OP_FLOG Flags Reg 3 Reg 2 Reg 1
Flags Syntax Values Function
8-9 [?7] postfix | 00 : 32-bit FP Defines the size parameter
01 : 64-bit FP
10 s- prefix 1 if set Defines if the operation is SIMD
11 -x postfix 1 to skip the tests | IEEE compliance flag
12-13 (none yet) 0 Reserved

4.3.2 fexp

Floating point EXPonential

fexp r3, r2, rl

fexpx r3, r2, rl
sfexp r3, r2, rl
sfexpx r3, r2, rl

Computes rl = expy3(r2)

153

size : 8 6 6 6
bits : | 0 718 13 | 14 19 |20 25 | 26 31
function : OP_FEXP Flags Reg 3 Reg 2 Reg 1
Flags Syntax Values Function
8-9 [?7] postfix | 00 : 32-bit FP Defines the size parameter
01 : 64-bit FP
10 s- prefix 1 if set Defines if the operation is SIMD
11 -x postfix 1 to skip the tests | IEEE compliance flag
12-13 (none yet) 0 Reserved

4.3.3 fmac

Floating point Multiply and ACcumulate

fmac r3, r2, r1
fmacx r3, r2, rl
smac r3, r2, rl
smacx r3, r2, rl

Computes rl =11 + (12x713)

fmac performs a floating multiplication of the two source operands (r2 x r3) and adds the result to
destination operand (r3). The operation should be IEEE-754 compliant.

size : 8 6 6 6 6
bits : | 0 718 13 | 14 19 |20 25 | 26 31
function : OP_FMAC Flags Reg 3 Reg 2 Reg 1
Flags Syntax Values Function
8-9 [?7] postfix | 00 : 32-bit FP Defines the size parameter
01 : 64-bit FP
10 s- prefix 1 if set Defines if the operation is SIMD
11 -X postfix 1 to skip the tests | IEEE compliance flag
12-13 (none yet) 0 Reserved

154

4.3.4 faddsub

Floating point ADDition and SUBstraction

faddsub r3, r2, r1
faddsubx r3, r2, r1
sfaddsub r3, r2, r1
sfaddsubx r3, r2, rl

Computes rl = r3 + r2 and r14+1 = r3 - r2

faddsub is a 2r2w instruction that performs both floating point addition and substraction of the
two operands in IEEE-754 format.

size : 8 6 6 6 6
bits: | 0 7 |8 13 | 14 19 |20 25 | 26 31
function : | OP_FADDSUB Flags Reg 3 Reg 2 Reg 1
Flags Syntax Values Function
8-9 [?7] postfix | 00 : 32-bit FP Defines the size parameter
01 : 64-bit FP
10 s- prefix 1 if set Defines if the operation is SIMD
11 -x postfix 1 to skip the tests | IEEE compliance flag
12-13 (none yet) 0 Reserved

155

Chapter 5

Memory Access operations

5.1 Core Memory Access operations

5.1.1 load

LOAD a memory item into a register and adjust the Endianness

load r2, r1
loade r2, r1

Performs r1 = endian(e,mem|r2]).

LOAD fetches the memory item pointed to by r2, changes the endianness according to the endian
flag, and puts the result of the specified size into rl.

This instruction can trigger two exceptions (in order of decreasing priority) :

e Alignment fault : One or more LSB of the pointer are set. The number of significant LSB varies
with the size flag. The F-CPU does not allow unaligned memory accesses.

e Page fault : The location referenced by r2 is not mapped in the internal TLB, and the OS kernel
must update it, after checking for address range validity and access rights.

Prefetch :

In the case where the destination register is r0 (the NULL register), none of these exceptions are raised.
This instruction form serves as a prefetch instruction that is issued several cycles before the actual
reference is performed. The prefetch form prepares the memory hierarchy, the protection mechanisms
and all the internal hidden flags for an eventual exception. The CPU can use the time between the
prefetch and the actual fetch to prepare the page fault handler and the memory hierarchy so that the
actual fetch will have almost no latency, whenever there is a fault or not.

size : 8 6 6 6 6
bits : | 0 718 13 | 14 19 |20 25 | 26 31
function : OP_LOAD Flags 0 Reg 2 Reg 1
Flags Syntax Values Function
8-9 .q, .d or .b postfix Size Flag
10 -e postfix 0 : little endian | Endian Flag
1 : big endian
11-13 -0 .. -7 postfix 000 .. 111 Reserved for the Stream Hint bits

Performance (FCO only) :

156

Ezecution Unit : Load/Store Unit
Latency : 2 cycles if the item is already in the memory buffer, undetermined (but more) otherwise.
Throughput : 1 operation per cycle per LSU (peak).

157

5.1.2 store

adjust the Endianness and STORE the result in memory

store r2, rl
storee r2, rl

Performs mem|r2] = endian(e,rl).

STORE adjusts the endianness of r1 according to the Endian flag and stores the item of the defined

size to memory, at the location pointed to by r2.

This instruction can trigger two exceptions (in order of decreasing priority) :

e Alignment fault : One or more LSB of the pointer are set. The number of significant LSB varies
with the size flag. The F-CPU does not allow unaligned memory accesses.

e Page fault : The location referenced by r2 is not mapped in the internal TLB, and the OS kernel
must update it, after checking for address range validity and access rights.

The L/S Unit of the FCO can perform the store operation with no latency for the entire pipeline
when there is a free line in the memory bufer. If there are too much pending memory access requests,

the pipeline must wait at the decoding stage for a memory buffer line to be freed.

Performance (FCO only) :

Ezecution Unit : Load/Store Unit
Latency : none if the memory buffer has a free slot, undetermined (but more) otherwise.
Throughput : 1 operation per cycle per LSU (peak).

158

size : 8 6 6 6
bits : | 0 718 13 | 14 19 |20 25 | 26 31
function : OP_STORE Flags 0 Reg 2 Reg 1
Flags Syntax Values Function
8-9 .q, -d or .b postfix Size Flag
10 -e postfix 0 : little endian | Endian Flag
1 : big endian
11-13 -0 .. -7 postfix 000 .. 111 Reserved for the Stream Hint bits

5.2 Optional Memory Access operations

5.2.1 load

LOAD a memory item into a register, adjust the Endianness and update the pointer

load r3, r2, r1
loade r3, r2, rl

Performs : rl = endian(e,mem|r2])
12 =12 413

LOAD fetches the memory item pointed to by r2, changes the endianness according to the endian
flag, puts the result of the specified size into rl. This version uses the same opcode as the core version
but differs by the r3 parameter which makes it a 2r2w instruction. In addition to the core version, the r3
parameter is used to update the r2 pointer by adding them in parallel with the memory operation. Note
that if r3 contains 0, the core version is executed : the CPU checks the zero flags, instead of checking the
register number.

This instruction can trigger two exceptions (in order of decreasing priority):

e Alignment fault : One or more LSB of the pointer are set. The number of significant LSB varies
with the size flag. The F-CPU does not allow unaligned memory accesses.

e Page fault : The location referenced by r2 is not mapped in the internal TLB, and the OS kernel
must update it, after checking for address range validity and access rights.

Prefetch :

In the case where the destination register is r0 (the NULL register), none of these exceptions are raised.
This instruction form serves as a prefetch instruction that is issued several cycles before the actual
reference is performed. The prefetch form prepares the memory hierarchy, the protection mechanisms
and all the internal hidden flags for an eventual exception. The CPU can use the time between the
prefetch and the actual fetch to prepare the page fault handler and the memory hierarchy so that the
actual fetch will have almost no latency, whenever there is a fault or not.

The behaviour of the pointer update obeys to the simplest arithmetics rules. No saturation is
performed and the pointer will wrap around in memory.

After the addition is performed, the result will be submitted to the DTLB (Data virtual address
Translation Lookaside Buffer) to check for the pointer validity in advance. As soon as the physical address
is known, the processor can also prefetch the data if necessary, issuing a fetch command to the cache
or the external memory. In the same time, the processor can check the sign of r3 in order to predict in
which direction the pointer advances and prepare the memory buffer.

size : 8 6 6 6 6
bits: | 0 718 13 | 14 19 | 20 25 | 26 31
function : OP_LOAD Flags Reg 3 Reg 2 Reg 1
Flags Syntax Values Function
8-9 .q, .d or .b postfix Size Flag
10 -e postfix 0 : little endian | Endian Flag
1 : big endian
11-13 -0 .. -7 postfix 000 .. 111 Reserved for the Stream Hint bits

Performance (FCO only) :

159

Ezecution Unit : Load/Store Unit and Add/Sub Unit.
Latency : 2 cycles if the item is already in the memory buffer, undetermined (but more) otherwise. The

pointer update takes three cycles (2 ASU + 1 DTLB).
Throughput : 1 operation per cycle per LSU (peak).

160

5.2.2 store

adjust the Endianness, STORE the result in memory and update the pointer

store r3, r2, rl
storee r3, r2, rl

Performs mem|r2] = endian(e,rl)
r2 =12 + 3.

STORE adjusts the endianness of rl according to the Endian flag and stores the item of the defined
size to memory, at the location pointed to by r2. This version uses the same opcode as the core version
but differs by the r3 parameter which makes it a 3rlw instruction. In addition to the core version, the r3
parameter is used to update the r2 pointer by adding them in parallel with the memory operation. Note
that if r3 contains 0, the core version is executed : the CPU checks the zero flags, instead of checking the
register number.

This instruction can trigger two exceptions (in order of decreasing priority) :

e Alignment fault : One or more LSB of the pointer are set. The number of significant LSB varies
with the size flag. The F-CPU does not allow unaligned memory accesses.

e Page fault : The location referenced by r2 is not mapped in the internal TLB, and the OS kernel
must update it, after checking for address range validity and access rights.

The L/S Unit of the FCO can perform the store operation with no latency for the entire pipeline
when there is a free line in the memory bufer. If there are too much pending memory access requests,
the pipeline must wait at the decoding stage for a memory buffer line to be freed.

The behaviour of the pointer update obeys to the simplest arithmetics rules. No saturation is
performed and the pointer will wrap around in memory.

After the addition is performed, the result will be submitted to the DTLB (Data virtual address
Translation Lookaside Buffer) to check for the pointer validity in advance. In the same time, the processor
can check the sign of r3 in order to predict in which direction the pointer advances and prepare the memory
buffer.

size : 8 6 6 6 6
bits: | 0 718 13 | 14 19 | 20 25 | 26 31
function : OP_STORE Flags 0 Reg 2 Reg 1
Flags Syntax Values Function
8-9 .q, .d or .b postfix Size Flag
10 -e postfix 0 : little endian | Endian Flag
1 : big endian
11-13 -0 .. -7 postfix 000 .. 111 Reserved for the Stream Hint bits

Performance (FCO only) :

Ezecution Unit : Load/Store Unit and Add/Sub Unit.

Latency : 2 cycles if the item is already in the memory buffer, undetermined (but more) otherwise. The
pointer update takes three cycles (2 ASU + 1 DTLB).

Throughput : 1 operation per cycle per LSU (peak).

161

5.2.3 loadi

LOAD a memory item into a register, adjust the Endianness and update the pointer with an Immediate
number

loadi Imm8, r2, r1
loadie r3, r2, rl

Performs rl = endian(e,mem[r2])
r2 = r2 4+ Imm8

LOAD fetches the memory item pointed to by r2, changes the endianness according to the endian
flag, puts the result of the specified size into rl. Curiously, this is a 1r2w instruction. The Imm8 data
is sign-extended with a ninth bit in the instruction word which also serves to predict in which direction
the pointer moves.

This instruction can trigger two exceptions (in order of decreasing priority) :

e Alignment fault : One or more LSB of the pointer are set. The number of significant LSB varies
with the size flag. The F-CPU does not allow unaligned memory accesses.

e Page fault : The location referenced by r2 is not mapped in the internal TLB, and the OS kernel
must update it, after checking for address range validity and access rights.

Prefetch :

In the case where the destination register is r0 (the NULL register), none of these exceptions are raised.
This instruction form serves as a prefetch instruction that is issued several cycles before the actual
reference is performed. The prefetch form prepares the memory hierarchy, the protection mechanisms
and all the internal hidden flags for an eventual exception. The CPU can use the time between the
prefetch and the actual fetch to prepare the page fault handler and the memory hierarchy so that the
actual fetch will have almost no latency, whenever there is a fault or not.

The behaviour of the pointer update obeys to the simplest arithmetics rules. No saturation is
performed and the pointer will wrap around in memory.

After the addition is performed, the result will be submitted to the DTLB (Data virtual address
Translation Lookaside Buffer) to check for the pointer validity in advance. As soon as the physical address
is known, the processor can also prefetch the data if necessary, issuing a fetch command to the cache or
the external memory. In the same time, the processor uses the sign bit of Imm8 in order to predict in
which direction the pointer advances and prepare the memory buffer.

Because of the width of the immediate data, there is no room to specify the stream hint bits. It is
therefore assumed that the processor will associate” the stream number with the pointer register thanks
to a hidden status flag.

size : 8 4 8 6 6
bits : | 0 7 |8 11 12 19 | 20 25 | 26 31
function : OP_LOADI Flags Imm8 Reg 2 Reg 1
Flags Syntax Values Function
8-9 .q, .d or .b postfix Size Flag
10 -e postfix 0 : little endian | Endian Flag
1 : big endian
11 Sign bit of Imm8

Performance (FCO only) :

162

Ezecution Unit : Load/Store Unit and Add/Sub Unit.
Latency : 2 cycles if the item is already in the memory buffer, undetermined (but more) otherwise. The

pointer update takes three cycles (2 ASU + 1 DTLB).
Throughput : 1 operation per cycle per LSU (peak).

163

5.2.4 storei

adjust the Endianness, STORE the result in memory and update the pointer with an Immediate number

storei Imm8, r2, rl
storeie Imms8, r2, rl

Performs mem|r2] = endian(e,rl)
r2 = r2 4+ Imm8.

STORE adjusts the endianness of rl according to the Endian flag and stores the item of the
defined size to memory, at the location pointed to by r2 then adds Imm8 to the pointer. This is a 2rlw
instruction. The Imm8 data is sign-extended with a ninth bit in the instruction word which also serves
to predict in which direction the pointer moves.

This instruction can trigger two exceptions (in order of decreasing priority) :

e Alignment fault : One or more LSB of the pointer are set. The number of significant LSB varies
with the size flag. The F-CPU does not allow unaligned memory accesses.

e Page fault : The location referenced by r2 is not mapped in the internal TLB, and the OS kernel
must update it, after checking for address range validity and access rights.

The L/S Unit of the FCO can perform the store operation with no latency for the entire pipeline
when there is a free line in the memory bufer. If there are too much pending memory access requests,
the pipeline must wait at the decoding stage for a memory buffer line to be freed.

The behaviour of the pointer update obeys to the simplest arithmetics rules. No saturation is
performed and the pointer will wrap around in memory.

After the addition is performed, the result will be submitted to the DTLB (Data virtual address
Translation Lookaside Buffer) to check for the pointer validity in advance. In the same time, the processor
can check the sign bit of Imm8 in order to predict in which direction the pointer advances and prepare
the memory buffer.

size : 8 4 8 6 6
bits : | 0 7 |8 11 12 19 | 20 25 | 26 31
function : OP_STOREI Flags ImmS8 Reg 2 Reg 1
Flags Syntax Values Function
8-9 .q, .d or .b postfix Size Flag
10 -e postfix 0 : little endian | Endian Flag
1 : big endian
11 Sign bit of Imm8

Performance (FCO only) :

Ezecution Unit : Load/Store Unit and Add/Sub Unit.

Latency : 2 cycles if the item is already in the memory buffer, undetermined (but more) otherwise. The
pointer update takes three cycles (2 ASU + 1 DTLB).

Throughput : 1 operation per cycle per LSU (peak).

164

5.2.5 loadf, storef, loadif, storeif

loadf r3, r2, rl
loadfe r3, r2, rl
storef r3, r2, rl
storefe r3, r2, rl
loadif r3, r2, rl
loadife r3, r2, r1
storeif r3, r2, rl
storeife r3, r2, rl

These instructions only differ from the normal opcodes by one flag which does not fit in the flag field
(not enough room). This F flag is a hint for the onchip memory system, it influences the caching strategy.
F means Flush, the data that is currently being processed (read or written) is not needed anymore, the
CPU doesn’t need to keep a copy onchip. This flag is meant to reduce the cache line thrashing whenever
possible and increase the effective memory bandwidth.

More precisely, the semantic behind this flag is : the data is needed once”. This is achieved inside
the CPU by modifying the caching strategy with a cache line granularity. By default, when the F flag
is omitted, the strategy is :

- keep the current line in the memory buffer
- when the line expires, flush it to the internal cache
- when the line expires in cache, flush it to the external memory

When the F flag is used in a load operation, the whole cache line is retrieved from external memory to
the memory buffer. If possible, the succeeding memory location (it can be the precedent or next memory
locations, depending on the sign of the pointer update) is retrieved. When the content of this second
fetch begins to be used, this frees the first line, which is then used to fetch the third location. The two
memory buffer lines continue this ping-pong as long as the stream goes on. The cache line is clearly
flushed” but is not written back in memory because it is not modified.

With the store instruction, the operation doesn’t necessarily need to begin with a fetch from memory.
The F flag says that the line is flushed directly to the external memory instead of going to the internal
cache memory.

The behaviour when loading to r0 with the F flag set is undetermined. The semantics don’t go

together, it would be prefetch something that will not be used after”... That’s what i’d call waste time”.
So stay tunned.

Performance (FCO only) :

Ezecution Unit : Load/Store Unit
Latency : undetermined
Throughput : 1 operation per cycle per LSU (peak).

165

5.2.6 cachemm

CACHE Memory Management
cachemm r2, rl

Controls where a block of data or instructions is cached in the memory hierarchy. The block begins
at the location pointed to by r2 and the size of the block is determined by rl.

This instruction should provide an universal way to control the caching mechanism of the FCPU
accross all the variants that may appear. The instruction may operate on a page or cache line granularity,
in an implementation dependent way. This instruction is purely a hint for the CPU that may or may not
transfer data between different memory levels (that physically exist or not).

The instruction can act in either of these two directions :
- Flush : all the data present in the levels between the CPU and the parameter are flushed to at most
this level. No data in the defined block is left in the above levels.
- Prefetch : loads the data belonging to the block in at least the level defined as parameter.

In addition, the L flag is used to influence the LRU tags in order to define the importance and the
use of the block. L. means Lock” and its absence unlocks the data from the level.

The C flag, when supported, tries to compress the block when it is flushed, or decompress it when
it is loaded, with a dedicated hardware.

The status of this instruction could be read from a Special Register. This instruction is very
important for memory management, and should be used when performing SMC or DMA for memory
coherency. The OS can also lock the main TLB tables and the critical codes so that TLB replacement
doesn’t thrash the cache.

size : 8 8 4 6 6
bits : | 0 7 |8 15 | 16 19 |20 25 | 26 31
function : | OP_CACHEMM Flags 0 Reg 2 Reg 1
Flags Syntax Values Function
8-9 .q, .d or .b postfix Size Flag
10 -f postfix 0 : Flush Direction flag
-p postfix 1 : Prefetch
11 1] Lock. The data will be used a lot
12 c| De/Compress data on the fly
13-15 [0-7] Memory level (see table below)
D | 000 | onchip Data L1 cache
I | 001 | onchip Instructions L1 cache
C | 010 | onchip unified Cache

011 | [unused]

100 | offchip Unified cache

101 | offchip Local memory

110 | offchip Global memory

111 | Virtual memory (hard disk)

<| Qe

Examples :

cachemmfg ra,rb flushes rb bytes starting at address ra from every memory level until global
memory. Any cache (L1, L2, local...) containing data that belong to the block is updated in main memory
and the corresponding cache spaces are freed (available for future use). this should be executed everytime
the programer knows that he won’t use a block of data until a certain moment, and the cache level is a
hint for performance.

166

cachemmpu ra,rb copies the data block at address ra and size rb that is present in lower memory
levels (virtual, global, local) to the unified offchip memory (at least”, which means that some parts may
be present closer to the processor).

Performance (FCO only) :

Ezecution Unit : Load/Store Unit (7).
Latency : unknown, context dependent.
Throughput : one instruction at a time. And it’s slow.

167

Chapter 6

Data move operations

These instructions typically do not use any Execution Unit.

6.1 Core Data move operations

6.1.1 move

conditionally MOVE a register into another

moves[z/m/1/nz/nm/nl] r3, r2, rl
move r2, rl

IF (condition(r3)) then rl = r2
The value of r3 is checked with the specified condition. If the condition is right, r2 is copied to r3
according to the size parameter. The condition is tested on the full register, and only the move uses the

size flag.

Notice that move r0, r0 is an alias for nop and is encoded as 0x00000000. Moving to r0 has no
effect.

size : 8 6 6 6 6
bits : | 0 718 13 | 14 19 | 20 25 | 26 31
function : OP_MOVE Flags Reg 3 Reg 2 Reg 1
Flags Syntax Values Function
8-9 .q, .d or .b postfix * Defines the size parameter
10 -n 1 if negated Negation of the condition
11-12 -z, -m, -1, -nz, -nm, -nl postfix | (see below) Condition
13 -s 1 if sign-extended | Sign-extension flag
Value | Syntax Meaning
000 | -z Z€ero
001 unassigned
010 | -m msb == 1
011 -1 Isb == 0
100 | -nz not zero
101 unassigned
110 | -nm msb == 0
111 -nl Isb==1

168

Examples :

rl contains 0x0124356789ABCDEF
r2 contains 0xFEDCBA9876543210

move.b rl,r2 ; r2 = 0xFEDCBA98765432FE

if LSB r1 move.b r1,r2 ; r2 = O0xFEDCBA98765432FE

if MSB rl1 move.b r1l,r2 ; r2 = 0xFEDCBA9876543210 (do nothing)
if r1==0 move.b rl,r2 ; r2 = 0xFEDCBA9876543210 (do nothing)

Performance (FCO only) :

Ezecution Unit : none
Latency : 1 cycle (Xbar)
Throughput : 1 per cycle per instruction.

Scheduling :
Cycle 1 2 3 4
Stage Fetch Decode/ [Xbar] [Register
Register Read write]

169

6.1.2 loadcons

LOAD a CONSTant into a register
loadcons.n Imm16, rl loadcons Immé64, rl
rl(n) = Imm16

This instruction virtually shifts Imm16 by n multiples of 16 before writing the value to rl, leaving
the other parts unchanged. In the FCO, Imm16 is duplicated on the Xbar on 16-bit boundaries and only
the selected part (n) of r1 is written. The constant is not sign-exended (see loadconsx). This instruction
is used in groups as to create a large constant in a register.

If the developper didn’t specify the multiples n, the assembler will divide the Imm64 in 4 equivalents
parts for loadcons.n. It means that loadcons is an alias for 4 loadcons.n.

The architecture should ensure that a burst of LOADCONS does not stall the CPU. It is pipelinable
in the FCO so that a 64-bit constant only takes four cycles to complete.

As to increase the range of the constants, the 8th bit of the opcode serves as a third bit for n so a
128-bit CPU can directly load a 128-bit constant without using a shift operation.

size : 8 2 16 6
bits : | 0 7 8 9 |10 25 | 26 31
function : | OP_LOADCONS N Imm16 Reg 1
Examples :

rl contains 0x0124356789ABCDEF, the following instructions load 0xFEDCBA9876543210

loadcons.0 0x3210, r1 ; rl = 0x0123456789AB3210
loadcons.1 0x7654, r1 ; rl = 0x0123456776543210
loadcons.2 0xBA98, r1 ; rl1 = 0x0123BA9876543210
loadcons.3 OXFEDC, r1 ; r1 = 0xFEDCBA9876543210

Performance (FCO only) :

Ezecution Unit : none
Latency : 1 cycle (Xbar)
Throughput : 1 per cycle per instruction.

Scheduling :
Cycle 1 2 3 4
Stage Fetch Decode/Register Read Xbar Register write

170

6.1.3 loadconsx

LOAD a CONSTant into a register with sign eXtension
loadconsx.n Imm16, r1 loadconsx Imm64, rl

Loads the imm16 constant into the register rl at the specified location (shifts of 16 bits). The higher
part of the register is assigned the value of the most significant bit of the constant. The lower part of the
register remains unmodified.

If the developper didn’t specify the multiples n, the assembler will divide the Imm64 in 4 equivalents
parts for loadconsx.n. It means that loadcons is an alias for 4 loadconsx.n.

This instruction is similar to loadcons but it sign-extends Imm16 before shifting it by n x 16. The
result is written in the higher parts of rl, leaving the lower parts unchanged. This instruction is used at
the end of a group of loadcons instructions when the higher part is filled by the bit sign. It is also used
alone when the constant is below 2°15.

The architecture should ensure that a burst of LOADCONSX does not stall the CPU. It is pipelinable
in the FCO so that a 64-bit constant only takes four cycles to complete.

As to increase the range of the constants, the 8th bit of the opcode serves as a third bit for n so a
128-bit CPU can directly load a 128-bit constant without using a shift operation.

size : 8 2 16 6
bits : | 0 7 8 9 |10 25 | 26 31
function : | OP_LOADCONSX N Imm16 Reg 1
Examples :

rl contains 0x0124356789ABCDEF

loadconsx.1 0x7777, r1 ; r1 = 0x0000000077773210

Performance (FCO only) :

Ezecution Unit : none
Latency : 1 cycle (Xbar)
Throughput : 1 per cycle per instruction.

Scheduling :
Cycle 1 2 3 4 ‘
Stage Fetch Decode/Register Read Xbar Register write ‘

The following code is an example of how a combination of loadcons/loadconsx instructions can
be automatically generated in a compiler or an assembler.

/*
LOADCONST.C by WHYGEE 14 septembre 1999
rev. 1.1 Nov. 29 (updated HTML stuff + new syntax)

171

to be included in a compiler or an assembler, after some
interface fixing : it currently outputs to stderr, it will
output to a file the same way.
Placed under GPL.
*/
#include "stdlib.h"
#include "stdio.h"
#define MAXSIZE (sizeof(long long int))
/* should be ideally 8 */
/* this is the function that is called by the main program */
void emit_constant(unsigned long long int c, unsigned char reg)
{
unsigned short int data[MAXSIZE>>1]; /* temporary space for MAXSIZE bytes */
signed long long int t,u;
signed int s=0;
if (reg==0) {
fprintf (stderr,"\n Error : can’t write to register 0 \n");
exit(-1); /* should be performed by an error routine that does this cleanly */
}
if (c==0) {
fprintf (stderr,"move r0,r%d\n",reg); /* Clear */
}

else if (c==-1) {
fprintf (stderr,"logic.1111 r0,r0,r%d\n",reg); /* Set */
}

else if ((c>65535)&((c & -c)==c)) {
/* a power of two, but the latency of bitset is higher */
do { s++; c>>=1; } while (c!=0); /* find the LSB
(could be replaced by a bit scan instruction)*/
if (s>63) { /* power of two too large to fit in the constant field (a 256-bit value
?7) */
fprintf (stderr,"loadcons 0x%04X,r%d\n",s,reg);
fprintf (stderr,"bset r%d,r0,r)%d\n",reg,reg);
}
else { /* the constant field is large enough */
fprintf (stderr,"bseti %d,r0,r%d\n",s,reg);
}

else { /* any kind of number */

u=c;
do { /* put the number into data[] and cares for the sign */
t=u;
data[s]=t & OxFFFF;
u=t>>16;
s++;
} while ((t!'=u) & (s>1)));
s--;

/* handle the case where the MSB of the highest data is not the sign */
if ((datal[s]~datals-1]1)& 0x8000) { /* sign check */
fprintf (stderr,"loadconsx.%d 0x%04X,r%d\n", s,datals],reg);

s
fprintf (stderr,"loadcons.%d 0x%04X,r%d\n", s,datals],reg);
5=

}

else { /* i think there’s a simplification to do here... */
s--;
fprintf (stderr,"loadcons.%d 0x%04X,r%d\n", s,datals],reg);
s--;

}
while (s>=0) { /* finish */
fprintf (stderr,"loadcons.%d 0x%04X,r%d\n", s,datals],reg);

172

173

6.1.4 get

GET the value of a special register and write it to a register.
get r2, rl
rl = SPR(r2)

Get the Special Register at index r2 and put its content in register r1. The whole register gets
dumped, there is no size flag.

Since protection is enforced through this kind of instruction, it may raise different exceptions if the
access rights are not respected or if the SR number is not valid (supervisor or unimplemented). This is
highly implementation dependent but a common and flexible definition will appear soon. Please refer to
the manual.

Get and Put are atomic serializing” instructions that block the pipeline at the decoding stage
until it is finished or the completion is safe. They are used to configure the CPU and the programming
environment during the program start for example. The values of r2 are not yet defined and symbolic
names are used instead (like the opcodes).

size : 8 12 6 6
bits : | 0 718 19 | 20 25 | 26 31
function : OP_GET 0 Reg 2 Reg 1

Performance (FCO only) :

Ezxecution Unit : none
Latency : unknown
Throughput : unknown (usually several cycles)

174

6.1.5 put

PUT the value of a register into a special register.
put r2, rl

SPR(r2) =rl

Read rl and puts its value in the Special Register defined by r2. The whole register is used, there

is no size flag.

Since protection is enforced through this kind of instruction, it may raise different exceptions if the
access rights are not respected, if the SR number is not valid (supervisor or unimplemented) or if the
put value does not correspond to the required format. This is highly implementation dependent but a
common and flexible definition will appear soon. Please refer to the manual.

Get and Put are atomic serializing” instructions that block the pipeline at the decoding stage
until it is finished or the completion is safe. They are used to configure the CPU and the programming
environment during the program start for example. The values of r2 are not yet defined and symbolic

names are used instead (like the opcodes).

size : 8 12 6 6
bits : | 0 718 19 | 20 25 | 26 31
function : OP_PUT 0 Reg 2 Reg 1

Performance (FCO only) :

Ezxecution Unit : none
Latency : unknown
Throughput : unknown (usually several cycles)

175

6.2 Optional Data move operations

6.2.1

loadm

LOAD Multiple registers from memory

loadm r3, r2, rl

load registers starting from r3 to r2 from the location in memory pointed by rl.

This instruction uses the SRB mechanism to load multiple contiguous registers from memory. This

can be used during function epilogs where the classical RISC approach loads one register at a time.

The endianness of the operation is the endianness of the machine and the registers are full-length
because it uses the SRB machinery verbatim. It benefits from the SRB reordering mechanism so when
a value is needed but is not yet loaded, the SRB modifies the loading order.
performed in the background with few overhead for the application. Unlike the natural use of the SRB,

this instruction can raise exceptions like all load operation.

The operation is also

size : 8 6 6 6 6
bits: | 0 7 13 | 14 19 | 20 25 | 26 31
function : OP_LOADM 0 Reg 3 Reg 2 Reg 1

Ezecution Unit : L/S Unit
Latency : unknown
Throughput : unknown

Performance (FCO only) :

176

6.2.2

storem

STORE Multiple registers to memory

storem r3, r2, rl

store registers starting from r3 to r2 from the location pointed in memory by rl.

This instruction uses the SRB mechanism to store multiple contiguous registers to memory. This

can be used during function prologs where the classical RISC approach stores one register at a time.

The endianness of the operation is the endianness of the machine and the registers are full-length
because it uses the SRB machinery verbatim. It benefits from the SRB reordering mechanism so when
a value is needed but is not yet loaded, the SRB modifies the loading order.
performed in the background with few overhead for the application. Unlike the natural use of the SRB,

this instruction can raise exceptions like all load operation.

The operation is also

size : 8 6 6 6 6
bits: | 0 7 13 14 19 | 20 25 | 26 31
function : | OP_STOREM 0 Reg 3 Reg 2 Reg 1

Ezecution Unit : L/S Unit
Latency : unknown
Throughput : unknown

Performance (FCO only) :

177

6.2.3 geti

GET the value of a special register defined by an Immediate value and write it to a register.
geti Imm16, rl1
rl = SPR(Imm16)

Get the Special Register at index Imm16 and put its content in register r1. The whole register gets
dumped, there is no size flag.

Since protection is enforced through this kind of instruction, it may raise different exceptions if the
access rights are not respected or if the SR number is not valid (supervisor or unimplemented). This is
highly implementation dependent but a common and flexible definition will appear soon. Please refer to
the manual.

Get(i) and Put(i) are atomic serializing” instructions that block the pipeline at the decoding stage
until it is finished or the completion is safe. They are used to configure the CPU and the programming
environment during the program start for example. The values of Imm16 are not yet defined and symbolic
names are used instead (like the opcodes).

This version of GET is a shorthand for the instruction that limits the addressable range to the first
65536 Special Registers. The Core version (get) can address virtually ANY number of Special Registers
through the use of a general register.

size : 8 2 16 6
bits : | 0 718 9 |10 25 | 26 31
function : OP_GETI 0 Imm16 Reg 1

Performance (FCO only) :

Ezecution Unit : none
Latency : unknown
Throughput : unknown (usually several cycles)

178

6.2.4 puti

PUT the value of a register to the special register Imm16.
puti Imm16, rl
SPR(Imm16) = rl

read rl and puts its value in the Special Register defined by Imm16. The whole register is read,
there is no size flag.

Since protection is enforced through this kind of instruction, it may raise different exceptions if the
access rights are not respected or if the SR number is not valid (supervisor or unimplemented). This is
highly implementation dependent but a common and flexible definition will appear soon. Please refer to
the manual.

Get (i) and Put(i) are atomic serializing” instructions that block the pipeline at the decoding stage
until it is finished or the completion is safe. They are used to configure the CPU and the programming
environment during the program start for example. The values of Imm16 are not yet defined and symbolic
names are used instead (like the opcodes).

This version of PUT is a shorthand for the instruction that limits the addressable range to the first
65536 Special Registers. The Core version (put) can address virtually ANY number of Special Registers
through the use of a general register.

size : 8 2 16 6
bits : | 0 718 9 |10 25 | 26 31
function : OP_PUTI 0 Imm16 Reg 1

Performance (FCO only) :

Ezecution Unit : none
Latency : unknown
Throughput : unknown (usually several cycles)

179

Chapter 7

Instruction Flow Control
instructions

7.1 Core Instruction Flow Control instructions

7.1.1 jmpa

JuMP absolute

jmp[z/m/1/nz/nm/nl] r3, r2 [, rl]
jmp r2[, rl]

IF (condition(r3)) THEN rl = PC
PC =12

If no condition are specified, the jump will always be done. If the condition is verified for r3, the
content of the Program Counter is saved

If the condition is verified for r3, the content of the Program Counter is saved to rl and branches
to the address pointed by r2. This instruction works like a mix between MOVE and LOAD.

If rl is not cleared (written to register #0 which is hardwired to 0) the instruction is assimilated
to a function call. The user is responsible of the stack frame”. Otherwise (r1=0) the value of PC is lost
and the instruction is a normal jump.

For several reasons, it is highly recommended that the destination of the jump is already associated
to the register that contains the address, for example through a loadaddr instruction or by preserving rl
(overwriting it would cancel the association, for example when the stack” in the register set is flushed
then loaded from memory). When association” is not certain or too early, it is recommended to prefetch
the destination location a few tens of cycles in advance, otherwise it will result in a processor stall.

The Size flag is not used, all registers are used in full length.

This instruction can trigger two exceptions (in order of decreasing priority) :

e Alignment fault : One or 2 LSB of r2 are set, the address is not 4-byte aligned. The F-CPU does
not allow unaligned memory instructions.

e Page fault : The location referenced by r2 is not mapped in the internal ITLB, and the OS kernel
must update it, after checking for address range validity and access rights.

180

size : 8 6 6 6 6
bits : | 0 718 13 | 14 19 | 20 25 | 26 31
function : OP_JMPA Flags Reg 3 Reg 2 Reg 1
Flags Syntax Values Function
8-9 0 [undefined] branch probability hint
10 -n postfix 1 if negated | Negation of the condition
11-12 -z, -m, -1, -nz, -nm, -nl postfix | (see below) | Condition
13 0 (reserved)
Value | Syntax Meaning
000 -7 Z€ero
001 unassigned
010 | -m msh == 1
011 | -1 Isb ==
100 -nz not zero
101 unassigned
110 | -nm msh ==
111 | -nl Isb ==

Performance (FCO only) :

Ezecution Unit : none

Latency : 1 or 2 cycles if the destination is already in the memory buffer, undetermined (but much more)
otherwise.

Throughput : unknown ATM.

181

7.1.2

LOAD a relative ADDRess to a register

loadaddr r2, r1
loadaddrd r2, r1

loadaddr

rl = PC + 4 + 12, check the result in the D/I TLB and eventually prefetch the data.

If the Data flag is set (1), the Data TLB is used instead of the Instruction TLB to check the pointer
validity and the register is associated” to either the L /S Unit or the Fetcher unit on success. Eventually,

the CPU can prefetch the pointed data or prefetch the TLB miss code.

The Size flag is not used, all registers are used in full length.

size : 8 1 11 6 6
bits: | 0 7 8 19 | 20 25 | 26 31
function : | OP_LOADADDR | D 0 Reg 2 Reg 1

Ezecution Unit : Add/Sub Unit

Latency : 2 cycles if r2 1= 0.

Throughput : 1 per cycle.

Performance (FCO only) :

182

7.1.3 loadaddri

LOAD a relative ADDRess to a register with an Immediate offset

loadaddri Imm16, rl
loadaddrid Imm16, rl

rl = PC + 4 4+ Imml6, check the result in the D/T TLB and eventually prefetch the data.

If the Data flag is set (1), the Data TLB is used instead of the Instruction TLB to check the pointer
validity and the register is associated” to either the L /S Unit or the Fetcher unit on success. Eventually,

the CPU can prefetch the pointed data or prefetch the TLB miss code.

This instruction is similar to loadaddr but uses an immediate offset. The S flag sign-extends the

Imm16 data.

The Size flag is not used, all registers are used in full length.

size : 8 111 16 6
bits: | 0 7 8 19 |10 25 | 26 31
function : | OP_.LOADADDRI | D | S Imm16 Reg 1

Ezecution Unit : Add/Sub Unit
Latency : 2 cycles.
Throughput : 1 per cycle.

Performance (FCO only) :

183

7.1.4 loopentry

LOOP ENTRY point
loopentry rl
rl = PC + 4 then check the result in the ITLB.

This instruction copies the address of the next instruction in rl as to mark the entry point of a
loop. A jmpa instruction will then use rl instead of recalculating a relative offset at each loop iteration.

This instruction is a special case of the LOADADDR instruction with no D flag and no offset (r2
=0).

The Size flag is not used, all registers are used in full length.

size : 8 18 6
bits: | 0 7 8 25 | 26 31
function : | OP_.LOADADDR 0 Reg 1

Performance (FCO only) :

Ezecution Unit : none (theoretically)
Latency : none.
Throughput : 1 per cycle.

184

7.1.5 loop

LOOP to r2 if rl1 has not expired.

loop r2, rl

rl=rl-1

// IF r1 != 0 THEN PC = 12

LOOP parallelly decrements rl1 and checks the old value for nullity. If this old value was not zero,
the CPU branches to [r2]. This is the simplest and fastest way to loop, the latency is typically 1 cycle
and the operations overlap.

The couple LOOPENTRY /LOOP can code a WHILE or DO/WHILE loop where the loop count is
known in advance. An initial value of rl yields r141 iteration in a DO/WHILE loop, and the final value

is -1.

The Size flag is not used, all registers are used in full length.

size : 8 12 6 6
bits : 7 18 19 | 20 25 | 26 31
function : OP_LOOP 0 Reg 2 Reg 1

Ezecution Unit : Inc Unit (or Add/Sub Unit when unavailable)
Latency : 1 cycle

Throughput : 1 per cycle.

Performance (FCO only) :

185

7.1.6 syscall

operating SYStem CALL

syscall Imm16, rl
trap Imm16, r1

jump in supervisor mode and execute the service # Imm16.

If the Trap flag is set, the user-mode application gives up his current time slice and requests a
critical service (the SRB mechanism is triggered).

The r1 operand is not (yet) used, it is cleared. The argument is ignored by the hardware and may
be used to encode information for system software. To retrieve the argument system software must load
the instruction word from memory.

Typically, the service’s entry point address is computed with the immediate value (shifted left by 6,
as it appears in the instruction, as to have 16-instruction entry points) and added to a supervisor-mode
Special Register. In the same time, the immediate value is compared with another Special Register which
specifies the maximum number of implemented services, and a trap is triggered if there is an overflow.

size : 8 111 16 6
bits: | 0 718 19 |10 25 | 26 31
function : | OP.SYSCALL | T | 0 Imm16 Reg 1

Performance (FCO only) :

Ezecution Unit : none
Latency : unknown.
Throughput : unknown.

186

7.1.7 halt

HALT the CPU
halt
Goes idle until an exception occurs.

If in user mode, the application gives up his current time slice and the SRB mechanism is triggered
to switch to the next task.

size : 8 24
bits: | 0 7 |8 31
function : OP_HALT 0

187

7.1.8 rfe

Return From Exception
rfe
Restore the precedent task.

At the end of an Interrupt Service Routine, an exception handler or a Supervisor service, this
instruction flushes the current task and restores the precedent one with the SRB mechanism.

size : 8 24
bits: | 0 7 |8 31
function : OP_RFE 0

188

7.2 Optional Instruction Flow Control instructions

7.2.1 srb_save

use the SRB to SAVE the current task’s context.
srb_save
Begins to save the current task in its dedicated CMB.

In prevision of a system call or in real-time sensitive conditions where the CPU is about to trigger
the SRB and switch to another routine, it is recommended to execute srb_save in advance to speed the
switch up.

size : 8 24
bits: | 0 718 31
function : | OP_SRB_SAVE 0

189

7.2.2 srb_restore

use the SRB to RESTORE the last task’s context.
srb_restore
Begins to restore the last task from its dedicated CMB.
In prevision of a return from exception or in prevision of a task switch involving SRB use, it is

recommended to execute this instruction in advance so the CPU can prefetch the necessary data and
reduce the switch latency.

size : 8 24
bits: | 0 7 8 31
function : | OP_SRB_RESTORE 0

Performance (FCO only) :

Ezecution Unit : none
Latency : Unknow
Throughput : none

190

7.2.3 serialize

stop the CPU while it is not flushed.

serialize[m][s][x]

Don’t execute the next instruction before the internal state of the CPU has not reached the specified

condition.

This instruction ensures that the specified units have completed processing any previously issued
instruction. The current flags consider three conditions :
- Memory operations (all transactions are finished and there are free LSU lines)
- Executions units (there is no operation pending, the scoreboard is clear)
- SRB ready (the scoreboard has no SRB, or smooth context switch pending, so a loadm or storem

instruction can be issued).

The condition is the logical product” (AND) of all the individual conditions : execution continues
when all individual conditions are met.

size : 8 24
bits : | 0 7 |8 31
function : | OP_SERIALIZE condition
Flags Syntax Values Function
8 -m postfix | 1 if used | Memory operations pending
9 -X postfix 1 if used | Execution Units busy
10 -S 1 if used | SRB pending
13-31 0 (reserved)

Performance (FCO only) :

FEzxecution Unit : none
Latency : depend on the pipeline state
Throughput : none

191

Part VII

Programming the F-CPU

192

Chapter 1

Introduction

As written before, programming the F-CPU has a different "taste” or "feeling” because of the partic-
ular processor structure and the design philosophy. Not only scheduling the individual instructions is
important, but scheduling the use of each unit and the memory accesses is yet more important than
ever before. Here, the key to performance, architectural simplicity and security in the FCO is the use
of many ”speculative flags” that are not accessible to the user, but that influence the behaviour of the
whole CPU. The F-CPU goes even further by allowing the user to explicitely indicate some ”hints” like
the ”stream flags”. An individual F-CPU can ignore these flags but their use will dramatically enhance
the performance of the application if a few simple rules are respected, whatever the CPU type or core is
used.

193

Chapter 2

call convention

Because of the large register bank (63 registers), we must use a call convention to use them correctly.
This call convention must be used by all the F-CPU librairies and program.

R1-R13 : First parameters (copy from the list) R14 : Pointer to parameter list (from the first parameter
to the last) R15 : Number of parameter in list R16-R31 : Temporaries registers (unsaved) R32-R59 :
Restored registers (saved by the called function) R60 : Return address R61 : Global pointer R62 : Frame
pointer R63 : Stack pointer

R1 also holds the return value.

194

Chapter 3

Pseudo-superscalar

The FCO uses a crossbar (”Xbar”) in order to reduce the register port number and provide a fast and
universal register bypass mechanism. This central part of the FCO is not complex but spans on a large
part of the CPU. Each port has a relative high fanout and drives long wires, which justifies by itself the
fact that the Xbar has its own cycle in the pipeline, when the operands are brought to the Execution
Units and when the results are written back to the register set. This last part is used when ”bypassing”
the register, with the help of the scoreboard that keeps trace of the use of the different Xbar channels.

In practice, the Xbar adds a 1-cycle latency to any normal computation instruction. This means that
at least another independent instruction must be interleaved between two dependent instructions. From
this point of view, programming a single-issue FCO is similar to programming a 2- or 3-way superscalar
processor, because of the very short pipeline stages. While this applies for the computational instructions,
this doesn’t apply to other data movement instructions that typically use the Xbar only once : they can
be pipelined and don’t suffer from instruction pairing restrictions as in superscalar CPUs.

The scoreboard checks the data dependencies and prevents multiple-cycle-latency instructions from giving
wrong results. It is therefore very interesting to unroll loops at least twice, and if possible ”dephase” the
different copies, as to get the most of the FCO architecture. On the other hand, this reduces the number
of available registers and a loop unrolling might not yield a good win with more than 4 copies.

Curiously, loop unrolling also applies to the pointers. Each new address value must be valid before entering
the execution pipeline. One must duplicate the pointer registers because the [register+immediate offset)
addressing mode is potentially dangerous. The ” pointer duplication ” technique must be used when a
high memory bandwidth must be sustained because it benefits from the fully pipelined pointer update
and checking mechanism. Again, at least 4 pointers are necessary to achieve the peak instant bandwidth.
The problem is that only two registers can point to the same cache line at a time, the four register must
reference two different streams.

Because of the previously explained mechanisms (speculative and background checking of the pointers in
order to catch faultive instructions at decode stage) only post-increment addressing and direct register
jump [/call] are supported, because the address is known before the instruction is executed. One must
prefetch the locations from memory before use, by ”associating” a pointer register to a memory location.
When this prefetch is scheduled enough in advance, this give the CPU time to check the pointer in the
TLB, prefetch the necessary data from the memory hierarchy or prefetch the TLB replacement code if
the pointer is invalid.

In ”vector loops” where linear arrays of data are processed, the prefetch mechanism is helped by the ”
stream hint ” which help the CPU determine (following the architecture) which L/S Unit contains the
data and/or which memory stride (or SDRAM bank) must be used. The ”cache hint”ed L/S instructions
further reduce the cache memory thrashing by specifying which data should reside on-chip, which data
can be flushed after use and which data must bypass the cache and go to the main memory.

It is also recommended to use the L/S post-incremented instructions in order to prefetch data that are

not accessed linearly. For example, a program that reads non-contiguous operands in memory with only
one pointer register (r2) can do the following :

195

loadi (operand2-operandl) ,r2,r3 .. (several instructions here) ..

loadi (operand3-operand2) ,r2,r3 .. (several instructions here) ..

loadi (operand4-operand3) ,r2,r3 .. (several instructions here) ..

loadi (operand5-operand4) ,r2,r3

Of course, several conditions must be present : the difference between the addresses must be known and
fit in the immediate field. If the difference is below 216, one can use a loadconsx inside a stall cycle.

Ultimately, the data addresses or the access order can be changed.

[to be continued ! yg.]

196

Part VIII

Index

197

Index

64 registers, 35
64-bit RISC microprocessor, 12
64-bit processor, 34

abs, 106

absolute value, 106
add, 78

add/sub unit, 55
addi, 86

addition, 78

addition and substraction, 94

addition immediate, 86

addsub, 94

adjust the endianess, store the result in memory
and update the pointer, 161

adjust the endianess, store the result in memory
and update the pointer with an imme-
diate number, 164

adjust the endianness and store the result in mem-
ory, 158

alien technology, 51

ALPHA, 18, 34

ARM, 18, 29

bit reverse, 128

bit reverse immediate, 130
bit scrambling unit, 53
bitop, 126

bitopi, 127

bitrev, 128

bitrevi, 130

bitwise logic, 137

bitwise logic immediate, 139
byte reverse, 131

byterev, 131

cache, 50

cache memory management, 166

cachemm, 166

call convention, 194

carry flag, 39

CDC6600, 34

CMB, 40

cmpl, 102

cmple, 103

cmplei, 105

cmpli, 104

compare for lower, 102

compare for lower or equal, 103

compare for lower or equal with immediate, 105
compare for lower with immediate, 104
conditional jump absolute, 180

conditionnally move a register into another, 168

198

Context MemoryBlocks, 40
Cost, 18
crossbar, 46

dec, 98

decrement, 98

div, 84

divi, 89

division, 84

division immediate, 89

endianless, 39
EV-4, 18

evolution, 47
Execution Units, 51
expand, 134

F-CPU, 1, 47

F-CPU project, 12

F1, 49

f2int, 144

fadd, 141

faddsub, 155

FCo0, 13, 31, 44, 47, 49, 193, 195

fempl, 149

fcmple, 148

fdiv, 150

fexp, 153

fiaprx, 146

Flags Size, 37

float compare for lower, 149

float compare for lower or equal, 148

Floating Point, 140

floating point addition, 141

floating point addition and substraction, 155

floating point division, 150

floating point exponential, 153

floating point inverse approximation, 146

floating point logarithm, 152

floating point multiplication, 143

floating point multiply and accumulate, 154

floating point square root, 151

floating point square root inverse approximation,
147

floating point substraction, 142

floating point to integer conversion, 144

flog, 152

fmac, 154

fmul, 143

FPU, 17

frame pointer, 194

Free Software, 15

Freedom, 14

Freedom CPU, 1

Freedom CPU Project Constitution, 29
fsqrt, 151

fsqrtiaprx, 147

fsub, 142

generalized registers, 38

get, 174

get the value of a special register and write it to
a register, 174

get the value of a special register defined by an
immediate value and write it to a reg-

ister, 178
geti, 178
global pointer, 194
halt, 187
halt the cpu, 187
T1A64, 36
inc, 97

increment, 97

increment unit, 54

int to Ins conversion, 115

int2f, 145

int2l, 115

integer divide unit, 56

integer multiply unit, 55

integer to floating point conversion, 145
1RQ, 35

TRQHANDLER, 35

jmpa, 180
jump absolute, 180

12int, 114

ladd, 112

LEON, 14, 18

Linux, 18

Ins addition, 112

Ins substract, 113

Ins to int conversion, 114

load, 156, 159

load a constant into a register, 170

load a constant into a register with sign exten-
tion, 171

load a memory item into a register and adjust
the endianness, 156

load a memory item into a register, adjust the
endianess and update the pointer with
an immediate number, 162

load a memory item into a register, adjust the
endianness and update the pointer, 159

load a relative address to a register, 182

load a relative address to a register with an im-
mediate offset, 183

load and store without caching, 165

load multiple registers from memory, 176

Load/Store unit, 56

loadaddr, 182

loadaddri, 183

loadcons, 170

199

loadconsx, 171

loadf, 165

loadi, 162

loadif, 165

loadm, 176

logic, 137

logici, 139

loop, 185

loop entry point, 184
loop to r2 if rl1 has not expired, 185
loopentry, 184

lsub, 113

LUT, 50

M2M, 16

mac, 92

max, 107

maxi, 109

maximum, 107

maximum immediate, 109
Merced, 17

Merced (IA64), 34

min, 108

mini, 110

minimum, 108

minimum immediate, 110
MIPS, 18, 34

mix, 132

mod, 90

modi, 91

modulo, 90

modulo immediate, 91
move, 168

mul, 82

muli, 88

multiplication, 82
multiplication immediate, 88
multiply and accumulate, 92

neg, 99
negation, 99
no condition code register, 39

000, 44

Open Source, 15

operating system call, 186
08, 18

Out Of Order Completion, 44

P6, 45

PGP-breaker CPU, 37
POPC, 56

POPCOUNT, 50
popcount, 95

popcounti, 96

population count, 95
population count unit, 56
population count with immediate substract, 96
PowerPC, 45

Price, 18

protection mechanism, 41
Purchasing, 18

put, 175

put the value of a register into a special register,
175

put the value of a register to the special imm16,
179

puti, 179

R2000, 34

Register #0, 34

return address, 194

return from exception, 188
rfe, 188

RISC, 34

roadmap, 31

ROP2, 51

rotate left, 119

rotate left immediate, 124

rotate right, 120

rotate right immediate, 125
rotl, 119

rotli, 124

rotr, 120

rotri, 125

scan, 100

scoreboard, 45

SDRAM, 50

sdup, 136

SEC, 56

serialize, 191

SH5, 34

shift, 116

shift left immediate, 121

shift left logical, 116

shift right arithmetic, 118

shift right arithmetic immediate, 123
shift right immediate logic, 122
shift right logical, 117

shiftli, 121

shiftr, 117

shiftra, 118

shiftrai, 123

shiftri, 122

SHL, 53

SIMD, 12, 38

simd duplication, 136

single bit operation, 126

single bit operation immediate, 127
Single Error Correction Unit, 56
Smooth Register Backup, 36, 39
SMP, 17

sort, 111

Special registers, 38

SR, 38

SRB, 39

srb_restore, 190

srb_save, 189

stack pointer, 194

stop the CPU while it is not flushed, 191
store, 158, 161

store multiple registers to memory, 177
storef, 165

200

storei, 164

storeif, 165

storem, 177

sub, 80

subi, 87

substraction, 80
substraction immediate, 87
superpipelined, 12, 44
syscall, 186

TLB, 50, 195
TTA, 16

use the srb to restore the last task’s context, 190
use the srb to save the current task’s context,
189

VHDL, 12
VLIW, 34

x86, 17

