
1

EEL 4783: Hardware/Software Co-design
with FPGAs

Lecture 11: Hardwar/Software Partitioning *
*

Prof. Mingjie Lin

* Adopted from G. Khan COE718:

2

Embedded Computing System

•  HW and SW used to be designed separately
•  Co-Design an increasingly important object, because

–  Performance
–  Cost
–  Complexity
–  ?

3

HW/SW Co-Design

•  Functional exploration:
Define a desired
product's requirements
and produce a
specification of the
system behavior.

•  Map this specification
•  Partition the functions

between silicon and
code, and map them

•  Integrate system

4

HW/SW Co-Design

•  Co-Specification: Describe system functionality at the
abstract level

•  System description is converted into a task graph
representation

•  HW-SW Partitioning: Take the task graph and decide
which components are implemented where/how ?
–  i.e. Dedicated hardware Software

5

HW/SW Co-Design

•  Both textual and graphical representation like DAG
are used to describe system.

•  Analyzes task graph to determine each task’s
placement

•  Many partitioning algorithms being developed

•  Major problem involves the computation time of the
algorithm.

6

System Design Patterns

•  Design Pattern: A generalized description of the
design of a certain type of program that can also be
used for system representation and hardware-
software partitioning.

•  State Diagram
Data Flow Graph
Control Data Flow Graph (CDFG)
–  Others

Directed Acyclic Graph (DAG) similar to DFG
Directed Acyclic Data Dependence Graph with Precedence
(DADGP)

7

State Machine: Seat-belt System

8

Data Flow Graph (DFG)

•  DFG does not represent control

•  It models the Basic Block: code or a system block
with one entry and exit

•  Describes the minimal ordering requirements on
operations

9

Data Flow Graph: Software Module

10

Control Data Flow Graph

11

Control Data Flow Graph Example

12

Scheduling and Partitioning

•  The main input to scheduling for partitioning is a
graph representation in the form of DFG.

•  Complex designs contain thousands of both control
and data processing operations ranging from:
–  Complex arithmetic operations or logic-level bit- operations.
–  All the above interleaved operations by multiple control

operations and loops.

•  Such designs contain thousands of data-
dependencies, basic blocks and control paths.

13

DFG-based Scheduling & Partitioning

•  Data-flow based scheduling techniques extract
parallelism from the input description

•  Schedule operations in parallel to satisfy the
constraints.

•  Two most common DF-based scheduling methods.
–  List Scheduling (LS): Minimize the number of control steps

under resource constraints.
–  Force-directed Scheduling (FDS): Minimize the number of

resource constraints under a fixed number of control steps.

14

Data Flow: DF-Scheduling

•  List scheduling algorithm uses a cost function to
select the operation to be scheduled from a list.

•  DF-approach provides flexible cost function and it can
be easily adapted to generate resource-constraint as
well as time-constraint schedules.

•  The cost function can represent any design measure
such as HW area, delay, etc.

•  The result is only as good as the cost function.
•  DF-based algorithms can analyze all the parallelism

in the DFG independently.

15

DF- Scheduling Example

16

Control Flow: CF-Scheduling

•  Analyze the sequences of operations in CFG called
control flow paths and schedule the CFG with
minimum number of control steps in each path.

•  Path-based scheduling is one of the main example of
this scheme.

•  Analyze all the paths in the CFG and schedule each
of them independently.

•  It minimizes the number of control steps in each path
rather than minimizing the number of states.

•  Paths in CFG come from loops and conditional
operations.

17

Partitioning Approaches

•  Simple one CPU and single ASIC architecture is the
most common.

•  Early approaches Initially assume all tasks mapped to
software

•  Move tasks to HW incrementally until system
requirements are met.

•  Other early approaches: Initially all tasks are mapped
to dedicated hardware.

•  Move tasks incrementally to SW until system
requirements are met.

18

Optimal Partitioning

•  Exhaustiveapproachesarecharacterizedbyattempting
all possible combinations there by always selecting
the best option.

•  Exhaustiveapproachesaregenerallycomputationally
intensive, consume huge-time in the range of hours
or even days to find an optimal partition.

•  Limitedtosmallertaskgraphs
–  Large telecom or other embedded systems can have upto

4000 nodes

19

Edge Detection Example

20

SOBEL Edge Detection

21

SOBEL Edge Detection

22

SOBEL Edge Detection

23

Final issues

•  Come by my office hours (right after class)

•  Any questions or concerns?

