EEL 4783: Hardware/Software Co-design
with FPGAs

Lecture 11: Hardwar/Software Partitioning *

*

Prof. Mingjie Lin

UCF

Stands For Opportunity

* Adopted from G. Khan COE718: !

Embedded Computing System

« HW and SW used to be designed separately

« Co-Design an increasingly important object, because
— Performance
— Cost
— Complexity
— ?

HW/SW Co-Design

System (Embedded)
Functional Exploration

1!

Architectural Mapping

1l

Hardware-Software
Partitioning

U

!

Hardware
Implementation

Software
Implementation

Il

!

System Integration

Functional exploration:
Define a desired
product's requirements
and produce a
specification of the
system behavior.

Map this specification
Partition the functions

between silicon and
code, and map them

Integrate system

HW/SW Co-Design

« Co-Specification: Describe system functionality at the
abstract level

« System description is converted into a task graph
representation

« HW-SW Partitioning: Take the task graph and decide
which components are implemented where/how ?
— i.e. Dedicated hardware Software

HW/SW Co-Design

Both textual and graphical representation like DAG
are used to describe system.

Analyzes task graph to determine each task’s
placement

Many partitioning algorithms being developed

Major problem involves the computation time of the
algorithm.

System Design Patterns

« Design Pattern: A generalized description of the
design of a certain type of program that can also be
used for system representation and hardware-
software partitioning.

« State Diagram
Data Flow Graph
Control Data Flow Graph (CDFG)
— Others
Directed Acyclic Graph (DAG) similar to DFG

Directed Acyclic Data Dependence Graph with Precedence
(DADGP)

State Machine: Seat-belt System

no seat/-
no seat/ idle
buzzer off seat/timer on
no seat/- no belt
[buzzer } Belt/buzzer on L sea@ a.nd no
timer/-

belt/
belt/
buzzer off belted no belt/timer on

switch (state) {
case IDLE: if (seat) { state = SEATED); timer on = TRUE; } break;
case SEATED: if (belt) state = BELTED;
else if (timer) state = BUZZER,; break;

Data Flow Graph (DFG)

DFG does not represent control

It models the Basic Block: code or a system block
with one entry and exit

Describes the minimal ordering requirements on
operations

Data Flow Graph: Software Module

Xx=a+tb;

y=c-d; \
z=x*y;

yl=b+d; \\

DFG

Control Data Flow Graph

CDFG: represents control and data.
» Uses data flow graphs as components.
* Two types of nodes:

= Data Flow Node encapsulate a DFG x=a+b;

y=c+d

= Decision Nodes

Equivalent Forms

10

Control Data Flow Graph Example

if (condl) bb1();
else bb2();
bb3();
switch (testl) {
case cl: bb4(); break;
case c2: bb5(); break;
case c3: bb6(); break;

}

cl

c2

c3

11

Scheduling and Partitioning

« The main input to scheduling for partitioning is a
graph representation in the form of DFG.

« Complex designs contain thousands of both control
and data processing operations ranging from:
— Complex arithmetic operations or logic-level bit- operations.

— All the above interleaved operations by multiple control
operations and loops.

« Such designs contain thousands of data-
dependencies, basic blocks and control paths.

12

DFG-based Scheduling & Partitioning

« Data-flow based scheduling techniques extract
parallelism from the input description

« Schedule operations in parallel to satisfy the
constraints.

« Two most common DF-based scheduling methods.
— List Scheduling (LS): Minimize the number of control steps
under resource constraints.

— Force-directed Scheduling (FDS): Minimize the number of
resource constraints under a fixed number of control steps.

13

Data Flow: DF-Scheduling

List scheduling algorithm uses a cost function to
select the operation to be scheduled from a list.

DF-approach provides flexible cost function and it can
be easily adapted to generate resource-constraint as
well as time-constraint schedules.

The cost function can represent any design measure
such as HW area, delay, etc.

The result is only as good as the cost function.

DF-based algorithms can analyze all the parallelism
in the DFG independently.

14

DF- Scheduling Example

CFG DFG

DFG-Schedule

a| |b

S:=r+cC * * (l: 8 Q
u r

e t:=s-d O

15

Control Flow: CF-Scheduling

Analyze the sequences of operations in CFG called
control flow paths and schedule the CFG with
minimum number of control steps in each path.

Path-based scheduling is one of the main example of
this scheme.

Analyze all the paths in the CFG and schedule each
of them independently.

It minimizes the number of control steps in each path
rather than minimizing the number of states.

Paths in CFG come from loops and conditional
operations.

16

Partitioning Approaches

Simple one CPU and single ASIC architecture is the
most common.

Early approaches Initially assume all tasks mapped to
software

Move tasks to HW incrementally until system
requirements are met.

Other early approaches: Initially all tasks are mapped
to dedicated hardware.

Move tasks incrementally to SW until system
requirements are met.

17

Optimal Partitioning

« Exhaustiveapproachesarecharacterizedbyattempting
all possible combinations there by always selecting
the best option.

« Exhaustiveapproachesaregenerallycomputationally
intensive, consume huge-time in the range of hours
or even days to find an optimal partition.

* Limitedtosmallertaskgraphs

— Large telecom or other embedded systems can have upto
4000 nodes

18

Edge Detection

Pair of masks are convolved to estimate

gradients, Gx and Gy
Overall G? = (G4* + G,?)

HW-SW Library

Operation SW HW HW Area
EXE EXE (gates)
(ms) (ms)
Gradient 9.4 1.4 1200
(Gx or Gy)
Square 5.2 0.9 500
Add 3.88 0.3 100

Precedence
dependency

P — Data

dependency

SOBEL Edge Detection

110 +1 +1| +2 | +1
SOBEL masks
20 +2 00 0
110 | +1 1|2 | -1
Gx Gy
Input Image Mask Output Image
m;, m,, m; by, |bi by
my, my; mys i

bZ] b22 b"i

my, My my; b, bs, by

by,=(a, *m,) +(a,,*m;,)+H(a,;*m ;) +H(a,,*m,,)+(ay;*m,))+ (a,3*my3) (a5, *my) +H(az, *my,) H(a; *ms,)

20

SOBEL Edge Detection

main() {
unsigned char image_ in[ROWS] [COLS] ;
unsigned char image out[ROWS] [COLS];
int r, ¢; /* row and column array counters */
int pixel; /* temporary value of pixel */
/*£filter the image and store result in output array */
for (r=1; r<ROWS-1; r++)
for (c=1; c<COLS-1; c++) { /* Apply Sobel operator. */
pixel = image in[r-1] [c+l]-image in[r-1] [c-1]
+ 2*image in[r][c+l] - 2*image in[r] [c-1]
+ image_in[r+l] [c+l] - image in[r+l] [c-1];
/* Normalize and take absolute value */
pixel = abs(pixel/4);
/* Check magnitude */
if (pixel > Threshold)
pixel= 255; /*EDGE VALUE;*/
/* Store in output array */
image out[r][c] = (unsigned char) pixel;

21

SOBEL Edge Detection

Seconds

0

1200 2400 2900 3400
HW area

3500

22

Final issues

« Come by my office hours (right after class)

* Any questions or concerns?

23

