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Finite State Machines
• In Real-time Object-oriented Modeling, Bran Selic

and Garth Gullekson view a state machine as: 
– A set of input events
– A set of output events
– A set of states
– A function that maps states and input to output
– A function that maps states and inputs to states
– A description of the initial state



Finite State Machines
• A finite state machine is one that has a limited,

or finite, number of states.
• The machine state is described by a collection

of state variables.
• A finite state machine is an abstract concept,

and may be implemented using a variety of
techniques, including digital logic.



Finite State Machines
• For an edge-triggered, synchronous FSM

implemented in digital logic, consider: 
– A set of input events (input signals, including clock)
– A set of output events (output signals)
– A set of states (state variables are flip flops)
– A function that maps states and input to output

(this is the output logic)
– A function that maps states and inputs to states

(this is the next-state logic)
– A description of the initial state (initial flip flop value)



Finite State Machines
• Consider this edge-triggered, synchronous

FSM to be implemented in digital logic:
– A set of states
– A set of input events
– A function that maps

states and inputs to states
– A description of the

initial state
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Finite State Machines
• Things that are not shown (yet):

– A set of output events
– A function that maps states

and input to output

• For now, let’s work on
modeling the FSM
without the outputs
and output logic.
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Finite State Machines
• The state variables must be able to represent

at least three unique states for this FSM.
– A flip flop has two unique states.
– N flip flops can represent up 2N unique states.
– How many flip flops are required for three states?

• One flip flop is not enough.
• Two flip flops are minimally sufficient.
• More flip flops may be used, if desired.



Finite State Machines
• Select a state encoding method:

– Binary
– Gray
– Johnson
– One Hot
– Custom

• Your encoding selection may require more than
the minimally sufficient number of flip flops.

State Binary Gray Johnson One Hot
0 3'b000 3'b000 4'b0000 8'b00000001
1 3'b001 3'b001 4'b0001 8'b00000010
2 3'b010 3'b011 4'b0011 8'b00000100
3 3'b011 3'b010 4'b0111 8'b00001000
4 3'b100 3'b110 4'b1111 8'b00010000
5 3'b101 3'b111 4'b1110 8'b00100000
6 3'b110 3'b101 4'b1100 8'b01000000
7 3'b111 3'b100 4'b1000 8'b10000000



Finite State Machines
• Describe the state variables in Verilog.
• Provide a mechanism to force an initial state.
• Describe a function that maps inputs and

current state to a new, or next state.
– Literal transcription of excitation equations
– Behavioral description using case, if-else, etc…

• Some additional things to consider:
– Resets, synchronous or asynchronous?
– Unused states (error, or no resets) and recovery



Finite State Machines
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• Describe it in Verilog just like the block diagram!
• I have selected a custom state encoding.



Finite State Machines
module fsm (
input wire pause,
input wire restart,
input wire clk,
input wire rst,
output reg [1:0] state
);

reg [1:0] next_state;

parameter [1:0] FIRST  = 2'b11;
parameter [1:0] SECOND = 2'b01;
parameter [1:0] THIRD  = 2'b10;

always @(posedge clk or posedge rst) // sequential
begin
if (rst) state <= FIRST;
else state <= next_state;

end

always @* // combinational
begin
case(state)
FIRST:   if (restart | pause) next_state = FIRST;

else next_state = SECOND;
SECOND:  if (restart) next_state = FIRST;

else if (pause) next_state = SECOND;
else next_state = THIRD;

THIRD:   if (!restart & pause) next_state = THIRD;
else next_state = FIRST;

default: next_state = FIRST;
endcase

end

endmodule

• Note use of parameters;
easy to change encoding

• Asynchronous reset is
implemented with state

• Synchronous reset is
implemented with logic

• Default clause covers the
one unused state

• Explicit next state signal



Finite State Machines
• You can also describe it in one procedural block.

– No access to “next state” signal (important?)
– More compact...
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Finite State Machines

module fsm (
input wire pause,
input wire restart,
input wire clk,
input wire rst,
output reg [1:0] state
);

parameter [1:0] FIRST  = 2'b11;
parameter [1:0] SECOND = 2'b01;
parameter [1:0] THIRD  = 2'b10;

always @(posedge clk or posedge rst) // sequential
begin
if (rst) state <= FIRST;
else
begin
case(state)
FIRST:   if (restart | pause) state <= FIRST;

else state <= SECOND;
SECOND:  if (restart) state <= FIRST;

else if (pause) state <= SECOND;
else state <= THIRD;

THIRD:   if (!restart & pause) state <= THIRD;
else state <= FIRST;

default: state <= FIRST;
endcase

end
end

endmodule

• Note use of parameters;
easy to change encoding

• Asynchronous reset and
synchronous reset both
implemented; distinction
is made by sensitivity list

• Default clause covers the
one unused state

• Implicit next state signal



Finite State Machines
• Now, let’s consider the following:

– A set of output events
– A function that maps states

and input to output

• Suppose there are three
desired outputs:
– odd
– even
– terminal
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Finite State Machines
• The “odd” output is asserted

in FIRST and THIRD.
• The “even” output is

asserted in SECOND.
• The “terminal” output

is asserted to indicate
the FSM will transition
from THIRD to FIRST.
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Finite State Machines
• Outputs that require functions of only the

current state are Moore type outputs.
– This includes using state bits directly.
– Outputs “odd” and “even” are Moore outputs.

• Outputs that require functions of the current
state and the inputs are Mealy type outputs.
– Output “terminal” is a Mealy output.

• Consider the latency and cycle time tradeoffs.



Finite State Machines
• Describe the output functions in Verilog,

just as shown in the block diagram...
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Finite State Machines
module fsm (
input wire pause,
input wire restart,
input wire clk,
input wire rst,
output reg [1:0] state,
output wire odd,
output wire even,
output wire terminal
);

reg [1:0] next_state;

parameter [1:0] FIRST  = 2'b11;
parameter [1:0] SECOND = 2'b01;
parameter [1:0] THIRD  = 2'b10;

always @(posedge clk or posedge rst) // sequential
begin
if (rst) state <= FIRST;
else state <= next_state;

end

always @* // combinational
begin
case(state)
FIRST:   if (restart | pause) next_state = FIRST;

else next_state = SECOND;
SECOND:  if (restart) next_state = FIRST;

else if (pause) next_state = SECOND;
else next_state = THIRD;

THIRD:   if (!restart & pause) next_state = THIRD;
else next_state = FIRST;

default: next_state = FIRST;
endcase

end

// output logic described using continuous assignment
assign odd = (state == FIRST) | (state == THIRD);
assign even = (state == SECOND);
assign terminal = (state == THIRD) & (restart | !pause);

endmodule

• Started with the FSM
described using explicit
next state logic, but could
have used the other one.

• Added three assignment
statements to create the
output functions.



Finite State Machines
module fsm (
input wire pause,
input wire restart,
input wire clk,
input wire rst,
output reg [1:0] state,
output reg odd,
output reg even,
output reg terminal
);

parameter [1:0] FIRST  = 2'b11;
parameter [1:0] SECOND = 2'b01;
parameter [1:0] THIRD  = 2'b10;

always @(posedge clk or posedge rst) // sequential
begin
if (rst) state <= FIRST;
else
begin
case(state)
FIRST:   if (restart | pause) state <= FIRST;

else state <= SECOND;
SECOND:  if (restart) state <= FIRST;

else if (pause) state <= SECOND;
else state <= THIRD;

THIRD:   if (!restart & pause) state <= THIRD;
else state <= FIRST;

default: state <= FIRST;
endcase

end
end

// output logic described using procedural assignment
always @* // combinational
begin
odd = (state == FIRST) | (state == THIRD);
even = (state == SECOND);
terminal = (state == THIRD) & (restart | !pause);

end

endmodule

• Started with the FSM
described using implicit
next state logic, but could
have used the other one.

• This describes the same
output logic as before, but
uses a procedural block
to create the outputs.
– Could have used case…
– Could have used if-else...
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