
EE178 Lecture
Verilog FSM Examples
Eric Crabill
SJSU / Xilinx
Fall 2007

Finite State Machines
• In Real-time Object-oriented Modeling, Bran Selic

and Garth Gullekson view a state machine as:
– A set of input events
– A set of output events
– A set of states
– A function that maps states and input to output
– A function that maps states and inputs to states
– A description of the initial state

Finite State Machines
• A finite state machine is one that has a limited,

or finite, number of states.
• The machine state is described by a collection

of state variables.
• A finite state machine is an abstract concept,

and may be implemented using a variety of
techniques, including digital logic.

Finite State Machines
• For an edge-triggered, synchronous FSM

implemented in digital logic, consider:
– A set of input events (input signals, including clock)
– A set of output events (output signals)
– A set of states (state variables are flip flops)
– A function that maps states and input to output

(this is the output logic)
– A function that maps states and inputs to states

(this is the next-state logic)
– A description of the initial state (initial flip flop value)

Finite State Machines
• Consider this edge-triggered, synchronous

FSM to be implemented in digital logic:
– A set of states
– A set of input events
– A function that maps

states and inputs to states
– A description of the

initial state

FIRST

SECOND THIRD

restart or pause

!restart and !pause

!restart and pause

restart

!restart and !pause

restart or !pause

!restart and pause

Finite State Machines
• Things that are not shown (yet):

– A set of output events
– A function that maps states

and input to output

• For now, let’s work on
modeling the FSM
without the outputs
and output logic.

FIRST

SECOND THIRD

restart or pause

!restart and !pause

!restart and pause

restart

!restart and !pause

restart or !pause

!restart and pause

Finite State Machines
• The state variables must be able to represent

at least three unique states for this FSM.
– A flip flop has two unique states.
– N flip flops can represent up 2N unique states.
– How many flip flops are required for three states?

• One flip flop is not enough.
• Two flip flops are minimally sufficient.
• More flip flops may be used, if desired.

Finite State Machines
• Select a state encoding method:

– Binary
– Gray
– Johnson
– One Hot
– Custom

• Your encoding selection may require more than
the minimally sufficient number of flip flops.

State Binary Gray Johnson One Hot
0 3'b000 3'b000 4'b0000 8'b00000001
1 3'b001 3'b001 4'b0001 8'b00000010
2 3'b010 3'b011 4'b0011 8'b00000100
3 3'b011 3'b010 4'b0111 8'b00001000
4 3'b100 3'b110 4'b1111 8'b00010000
5 3'b101 3'b111 4'b1110 8'b00100000
6 3'b110 3'b101 4'b1100 8'b01000000
7 3'b111 3'b100 4'b1000 8'b10000000

Finite State Machines
• Describe the state variables in Verilog.
• Provide a mechanism to force an initial state.
• Describe a function that maps inputs and

current state to a new, or next state.
– Literal transcription of excitation equations
– Behavioral description using case, if-else, etc…

• Some additional things to consider:
– Resets, synchronous or asynchronous?
– Unused states (error, or no resets) and recovery

Finite State Machines

NEXT STATE
LOGIC

(COMBINATIONAL)

STATE
VARIABLES

(SEQUENTIAL)

ASYNC RESETSYNC RESET

INPUTS

NEXT

STATE
STATE

• Describe it in Verilog just like the block diagram!
• I have selected a custom state encoding.

Finite State Machines
module fsm (
input wire pause,
input wire restart,
input wire clk,
input wire rst,
output reg [1:0] state
);

reg [1:0] next_state;

parameter [1:0] FIRST = 2'b11;
parameter [1:0] SECOND = 2'b01;
parameter [1:0] THIRD = 2'b10;

always @(posedge clk or posedge rst) // sequential
begin
if (rst) state <= FIRST;
else state <= next_state;

end

always @* // combinational
begin
case(state)
FIRST: if (restart | pause) next_state = FIRST;

else next_state = SECOND;
SECOND: if (restart) next_state = FIRST;

else if (pause) next_state = SECOND;
else next_state = THIRD;

THIRD: if (!restart & pause) next_state = THIRD;
else next_state = FIRST;

default: next_state = FIRST;
endcase

end

endmodule

• Note use of parameters;
easy to change encoding

• Asynchronous reset is
implemented with state

• Synchronous reset is
implemented with logic

• Default clause covers the
one unused state

• Explicit next state signal

Finite State Machines
• You can also describe it in one procedural block.

– No access to “next state” signal (important?)
– More compact...

NEXT STATE
LOGIC

(COMBINATIONAL)

STATE
VARIABLES

(SEQUENTIAL)

ASYNC RESETSYNC RESET

INPUTS

STATE

UNIFIED PROCEDURAL DESCRIPTION

Finite State Machines

module fsm (
input wire pause,
input wire restart,
input wire clk,
input wire rst,
output reg [1:0] state
);

parameter [1:0] FIRST = 2'b11;
parameter [1:0] SECOND = 2'b01;
parameter [1:0] THIRD = 2'b10;

always @(posedge clk or posedge rst) // sequential
begin
if (rst) state <= FIRST;
else
begin
case(state)
FIRST: if (restart | pause) state <= FIRST;

else state <= SECOND;
SECOND: if (restart) state <= FIRST;

else if (pause) state <= SECOND;
else state <= THIRD;

THIRD: if (!restart & pause) state <= THIRD;
else state <= FIRST;

default: state <= FIRST;
endcase

end
end

endmodule

• Note use of parameters;
easy to change encoding

• Asynchronous reset and
synchronous reset both
implemented; distinction
is made by sensitivity list

• Default clause covers the
one unused state

• Implicit next state signal

Finite State Machines
• Now, let’s consider the following:

– A set of output events
– A function that maps states

and input to output

• Suppose there are three
desired outputs:
– odd
– even
– terminal

FIRST
even = 0
odd = 1

SECOND
even = 1
odd = 0

THIRD
even = 0
odd = 1

restart or pause

terminal = 0

!restart and !pause

terminal = 0

!restart and pause

terminal = 0

restart

terminal = 0

!restart and !pause

terminal = 0

restart or !pause

terminal = 1

!restart and pause

terminal = 0

Finite State Machines
• The “odd” output is asserted

in FIRST and THIRD.
• The “even” output is

asserted in SECOND.
• The “terminal” output

is asserted to indicate
the FSM will transition
from THIRD to FIRST.

FIRST
even = 0
odd = 1

SECOND
even = 1
odd = 0

THIRD
even = 0
odd = 1

restart or pause

terminal = 0

!restart and !pause

terminal = 0

!restart and pause

terminal = 0

restart

terminal = 0

!restart and !pause

terminal = 0

restart or !pause

terminal = 1

!restart and pause

terminal = 0

Finite State Machines
• Outputs that require functions of only the

current state are Moore type outputs.
– This includes using state bits directly.
– Outputs “odd” and “even” are Moore outputs.

• Outputs that require functions of the current
state and the inputs are Mealy type outputs.
– Output “terminal” is a Mealy output.

• Consider the latency and cycle time tradeoffs.

Finite State Machines
• Describe the output functions in Verilog,

just as shown in the block diagram...

NEXT STATE
LOGIC

STATE
VARIABLES

ASYNC RESETSYNC RESET

INPUTS

NEXT

STATE STATE OUTPUT
LOGIC

OUTPUTS

EXPLICIT OR IMPLICIT DESCRIPTION

Finite State Machines
module fsm (
input wire pause,
input wire restart,
input wire clk,
input wire rst,
output reg [1:0] state,
output wire odd,
output wire even,
output wire terminal
);

reg [1:0] next_state;

parameter [1:0] FIRST = 2'b11;
parameter [1:0] SECOND = 2'b01;
parameter [1:0] THIRD = 2'b10;

always @(posedge clk or posedge rst) // sequential
begin
if (rst) state <= FIRST;
else state <= next_state;

end

always @* // combinational
begin
case(state)
FIRST: if (restart | pause) next_state = FIRST;

else next_state = SECOND;
SECOND: if (restart) next_state = FIRST;

else if (pause) next_state = SECOND;
else next_state = THIRD;

THIRD: if (!restart & pause) next_state = THIRD;
else next_state = FIRST;

default: next_state = FIRST;
endcase

end

// output logic described using continuous assignment
assign odd = (state == FIRST) | (state == THIRD);
assign even = (state == SECOND);
assign terminal = (state == THIRD) & (restart | !pause);

endmodule

• Started with the FSM
described using explicit
next state logic, but could
have used the other one.

• Added three assignment
statements to create the
output functions.

Finite State Machines
module fsm (
input wire pause,
input wire restart,
input wire clk,
input wire rst,
output reg [1:0] state,
output reg odd,
output reg even,
output reg terminal
);

parameter [1:0] FIRST = 2'b11;
parameter [1:0] SECOND = 2'b01;
parameter [1:0] THIRD = 2'b10;

always @(posedge clk or posedge rst) // sequential
begin
if (rst) state <= FIRST;
else
begin
case(state)
FIRST: if (restart | pause) state <= FIRST;

else state <= SECOND;
SECOND: if (restart) state <= FIRST;

else if (pause) state <= SECOND;
else state <= THIRD;

THIRD: if (!restart & pause) state <= THIRD;
else state <= FIRST;

default: state <= FIRST;
endcase

end
end

// output logic described using procedural assignment
always @* // combinational
begin
odd = (state == FIRST) | (state == THIRD);
even = (state == SECOND);
terminal = (state == THIRD) & (restart | !pause);

end

endmodule

• Started with the FSM
described using implicit
next state logic, but could
have used the other one.

• This describes the same
output logic as before, but
uses a procedural block
to create the outputs.
– Could have used case…
– Could have used if-else...

	EE178 Lecture�Verilog FSM Examples
	Finite State Machines
	Finite State Machines
	Finite State Machines
	Finite State Machines
	Finite State Machines
	Finite State Machines
	Finite State Machines
	Finite State Machines
	Finite State Machines
	Finite State Machines
	Finite State Machines
	Finite State Machines
	Finite State Machines
	Finite State Machines
	Finite State Machines
	Finite State Machines
	Finite State Machines
	Finite State Machines

