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Abstract

The addition of two binary numbers is the fundamental and most often used
arithmetic operation on microprocessors, digital signal processors (DSP), and
data-processing application-specific integrated circuits (ASIC). Therefore, bi-
nary adders are crucial building blocks in very large-scale integrated (VLSI)
circuits. Their efficient implementation is not trivial because a costly carry-
propagation operation involving all operand bits has to be performed.

Many different circuit architectures for binary addition have been proposed
over the last decades, covering a wide range of performance characteristics.
Also, their realization at the transistor level for full-custom circuit implemen-
tations has been addressed intensively. However, the suitability of adder archi-
tectures for cell-based design and hardware synthesis — both prerequisites for
the ever increasing productivity in ASIC design — was hardly investigated.

Based on the various speed-up schemes for binary addition, a compre-
hensive overview and a qualitative evaluation of the different existing adder
architectures are given in this thesis. In addition, a new multilevel carry-
increment adder architecture is proposed. It is found that the ripple-carry,
the carry-lookahead, and the proposed carry-increment adders show the best
overall performance characteristics for cell-based design.

These three adder architectures, which together cover the entire range of
possible area vs. delay trade-offs, are comprised in the more general prefix
adder architecture reported in the literature. It is shown that this universal and
flexible prefix adder structure also allows the realization of various customized
adders and of adders fulfilling arbitrary timing and area constraints.

A non-heuristic algorithm for the synthesis and optimization of prefix
adders is proposed. It allows the runtime-efficient generation of area-optimal
adders for given timing constraints.

xi



Zusammenfassung

Die Addition zweier binärer Zahlen ist die grundlegende und am meisten ver-
wendete arithmetische Operation in Mikroprozessoren,digitalen Signalprozes-
soren (DSP) und datenverarbeitenden anwendungsspezifischen integrierten
Schaltungen (ASIC). Deshalb stellen binäre Addierer kritische Komponenten
in hochintegrierten Schaltungen (VLSI) dar. Deren effiziente Realisierung ist
nicht trivial, da eine teure carry-propagation Operation ausgeführt werden
muss.

Eine Vielzahl verschiedener Schaltungsarchitekturen für die binäre Ad-
dition wurden in den letzten Jahrzehnten vorgeschlagen, welche sehr unter-
schiedliche Eigenschaften aufweisen. Zudem wurde deren Schaltungsreali-
sierung auf Transistorniveau bereits eingehend behandelt. Andererseits wurde
die Eignung von Addiererarchitekturen für zellbasierte Entwicklungstechniken
und für die automatische Schaltungssynthese — beides Grundvoraussetzun-
gen für die hohe Produktivitätssteigerung in der ASIC Entwicklung — bisher
kaum untersucht.

Basierend auf den mannigfaltigen Beschleunigungstechniken für die binäre
Addition wird in dieser Arbeit eine umfassende Übersicht und ein qualitativer
Vergleich der verschiedenen existierenden Addiererarchitekturen gegeben.
Zudem wird eine neue multilevel carry-increment Addiererarchitektur vorge-
schlagen. Es wird gezeigt, dass der ripple-carry, der carry-lookahead und
der vorgeschlagene carry-increment Addierer die besten Eigenschaften für die
zellbasierte Schaltungsentwicklung aufweisen.

Diese drei Addiererarchitekturen, welche zusammen den gesamten Bere-
ich möglicher Kompromisse zwischen Schaltungsflächeund Verzögerungszeit
abdecken, sind in der allgemeineren Prefix-Addiererarchitektur enthalten, die
in der Literatur beschrieben ist. Es wird gezeigt, dass diese universelle und
flexible Prefix-Addiererstruktur die Realisierung von verschiedensten spezial-
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xiv Zusammenfassung

isierten Addierern mit beliebigen Zeit- und Flächenanforderungen ermöglicht.

Ein nicht-heuristischer Algorithmus für die Synthese und die Zeitopti-
mierung von Prefix-Addierern wird vorgeschlagen. Dieser erlaubt die rechen-
effiziente Generierung flächenoptimaler Addierer unter gegebenen Anforderun-
gen and die Verzögerungszeit.

1
Introduction

1.1 Motivation

The core of every microprocessor, digital signal processor (DSP), and data-
processing application-specific integrated circuit (ASIC) is its data path. It
is often the crucial circuit component if die area, power dissipation, and
especially operation speed are of concern. At the heart of data-path and
addressing units in turn are arithmetic units, such as comparators, adders, and
multipliers. Finally, the basic operation found in most arithmetic components
is the binary addition. Besides of the simple addition of two numbers, adders
are also used in more complex operations like multiplication and division. But
also simpler operations like incrementation and magnitude comparison base
on binary addition.

Therefore, binary addition is the most important arithmetic operation. It
is also a very critical one if implemented in hardware because it involves an
expensive carry-propagation step, the evaluation time of which is dependent
on the operand word length. The efficient implementation of the addition
operation in an integrated circuit is a key problem in VLSI design.

Productivity in ASIC design is constantly improved by the use of cell-
based design techniques — such as standard cells, gate arrays, and field-
programmable gate arrays (FPGA) — and by low- and high-level hardware
synthesis. This asks for adder architectures which result in efficient cell-based

1



2 1 Introduction

circuit realizations which can easily be synthesized. Furthermore, they should
provide enough flexibility in order to accommodate custom timing and area
constraints as well as to allow the implementation of customized adders.

1.2 Related Work

Much work has been done and many publications have been written on circuit
architectures for binary addition. Different well-known adder architectures
are widely used and can be found in any book on computer arithmetic [Kor93,
Cav84, Spa81, Hwa79, Zim97]. Many adder circuit implementations at the
transistor level are reported in the literature which use a variety of different
adder architectures and combinations thereof [D

�

92, G

�

94, M

�

94, OV95,
O

�

95, M

�

91].

On the other hand, a systematic overview of the basic addition speed-
up techniques with their underlying concepts and relationships can hardly be
found. This, however, is a prerequisite for optimal adder implementations and
versatile synthesis algorithms. Furthermore, optimality of adder architectures
for cell-based designs was not investigated intensively and comprehensive
performance comparisons were carried out only marginally [Tya93].

Most work so far has focused on the standard two-operand addition. The
efficient realization of customized adders — such as adders with flag gen-
eration, non-uniform signal arrival times [Okl94], fast carry-in processing,
modulo [ENK94] and dual-size adders — were not considered widely.

Finally, the synthesis of adder circuits was addressed only marginally
up to now. This is because the generation of fixed adder architectures is
rather straightforward and becauseno efficient synthesis algorithms for flexible
adder architectures were known. Exceptions are some publications on the
computation of optimal block sizes e.g. for carry-skip adders [Tur89] and
on heuristic algorithms for the optimization of parallel-prefix adders [Fis90,
GBB94].

1.3 Goals of this Work

As a consequence, the following goals have been formulated for this work:

1.4 Structure of the Thesis 3

� Establish an overview of the basic addition speed-up schemes, their
characteristics, and their relationships.

� Derive all possible adder architectures from the above speed-up schemes
and compare them qualitatively and quantitatively with focus on cell-
based circuit implementation, suitability for synthesis, and realization
of customized adders.

� Try to unify the different adder architectures as much as possible in order
to come up with more generic adder structures. The ideal solution would
be a flexible adder architecture covering the entire range of possible
area-delay trade-offs with minor structural changes.

� Elaborate efficient and versatile synthesis algorithms for the best per-
forming adder architectures found in the above comparisons. The ideal
solution would consist of one universal algorithm for a generic adder ar-
chitecture, which takes automatically into account arbitrary timing and
area constraints.

� Incorporate the realization and generation of customized adders into the
above adder architectures and synthesis algorithms.

� Address other important VLSI aspects — such as circuit verification,
layout topologies, and pipelining — for the chosen adder architectures.

1.4 Structure of the Thesis

As a starting point, the basic conditions and their implications are summarized
in Chapter 2. It is substantiated why cell-based combinational carry-propagate
adders and their synthesis are important in VLSI design and thus worthwhile
to be covered by this thesis.

Chapter 3 introduces the basic addition principles and structures. This
includes 1-bit and multi-operand adders as well as the formulation of carry-
propagation as a prefix problem and its basic speed-up principles.

The different existing adder architectures are described in Chapter 4. In
addition, a new carry-increment adder architecture is introduced. Qualitative
and quantitative comparisons are carried out and documented on the basis of
a unit-gate model and of standard-cell implementations. It is shown that the
best-performing adders are all prefix adders.



4 1 Introduction

The implementation of special adders using the prefix adder architecture
is treated in Chapter 5.

In Chapter 6, synthesis algorithms are given for the best-performing adder
architectures. Also, an efficient non-heuristic algorithm is presented for the
synthesis and optimization of arbitrary prefix graphs used in parallel-prefix
adders. An algorithm for the verification of prefix graphs is also elaborated.

Various important VLSI aspects relating to the design of adders are sum-
marized in Chapter 7. These include verification, transistor-level design, and
layout of adder circuits, library aspects for cell-based adders, pipelining of
adders, and the realization of adder circuits on FPGAs.

Finally, the main results of the thesis are summarized and conclusions are
drawn in Chapter 8.

2
Basic Conditions and Implications

This chapter formulates the motivation and goals as well as the basic conditions
for the work presented in this thesis by answering the following questions:
Why is the efficient implementation of combinational carry-propagate adders
important? What will be the key layout design technologies in the future, and
why do cell-based design techniques — such as standard cells — get more
and more importance? How does submicron VLSI challenge the design of
efficient combinational cell-based circuits? What is the current status of high-
and low-level hardware synthesis with respect to arithmetic operations and
adders in particular? Why is hardware synthesis — including the synthesis
of efficient arithmetic units — becoming a key issue in VLSI design? How
can area, delay, and power measures of combinational circuits be estimated
early in the design cycle? How can the performance and complexity of adder
circuits be modeled by taking into account architectural, circuit, layout, and
technology aspects?

Although some of the following aspects can be stated for VLSI design in
general, the emphasis will be on the design of arithmetic circuits.

2.1 Arithmetic Operations and Units

The tasks of a VLSI chip — whether as application-specific integrated circuit
(ASIC) or as general-purpose microprocessor — are the processing of data and

5



6 2 Basic Conditions and Implications

the control of internal or external system components. This is typically done
by algorithms which base on logic and arithmetic operations on data items.

2.1.1 Applications

Applications of arithmetic operations in integrated circuits are manifold. Mi-
croprocessors and digital signal processors (DSPs) typically contain adders and
multipliers in their data path, forming dedicated integer and/or floating-point
units and multiply-accumulate (MAC) structures. Special circuit units for fast
division and square-root operations are sometimes included as well. Adders,
incrementers/decrementers, and comparators are arithmetic units often used
for address calculation and flag generation purposes in controllers.

Application-specific ICs use arithmetic units for the same purposes. De-
pending on their application, they even may require dedicated circuit compo-
nents for special arithmetic operators, such as for finite field arithmetic used
in cryptography, error correction coding, and signal processing.

2.1.2 Basic arithmetic operations

The arithmetic operations that can be computed in electronic equipment are
(ordered by increasing complexity, see Fig. 2.1) [Zim97]:

� shift / extension operations

� equality and magnitude comparison

� incrementation / decrementation

� complementation (negation)

� addition / subtraction

� multiplication

� division

� square root

� exponentiation

� logarithmic functions

� trigonometric and inverse trigonometric functions
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Figure 2.1: Dependencies of arithmetic operations.
� hyperbolic functions

For trigonometric and logarithmic functions as well as exponentiation, var-
ious iterative algorithms exist which make use of simpler arithmetic operations.
Multiplication, division and square root extraction can be performed using se-
rial or parallel methods. In both methods, the computation is reduced to a
sequence of conditional additions/subtractions and shift operations. Existing
speed-up techniques try to reduce the number of required addition/subtraction
operations and to improve their speed. Subtraction corresponds to the addition
of a negated operand.

The addition of two n-bit numbers itself can be regarded as an elementary
operation. In fact, decomposition into a series of increments and shifts is
possible but of no relevance. The algorithm for complementation (negation)
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of a number depends on the chosen number representation, but is usually
accomplished by bit inversion and incrementation. Incrementation and decre-
mentation are simplified additions with one input operand being constantly 1
or -1. Equality and magnitude comparison operations can also be regarded
as simplified additions, where only some the respective addition flags, but no
sum bits are used as outputs. Finally, shift by a constant number of bits and
extension operations, as used in some of the above more complex arithmetic
functions, can be accomplished by appropriate wiring and thus require no
additional hardware.

This short overview shows that the addition is the key arithmetic operation,
which most other operations are based on. Its implementation in hardware
is therefore crucial for the efficient realization of almost every arithmetic
unit in VLSI. This is in terms of circuit size, computation delay, and power
consumption.

2.1.3 Number representation schemes

The representation of numbers and the hardware implementation of arithmetic
units are strongly dependent on each other. On one hand, each number rep-
resentation requires dedicated computation algorithms. On the other hand,
efficient circuit realizations may ask for adequate number representations.

Only fixed-point number representations are considered in this thesis. This
is justified since arithmetic operations on floating-point numbers are accom-
plished by applying various fixed-point operations on mantissa and exponent.
Moreover, fixed-point numbers are reduced to integers herein, since every
integer can be considered as a fraction multiplied by a constant factor.

Binary number systems

The radix-2 or binary number system is the most widely used number represen-
tation, which is due to its implementation efficiency and simplicity in digital cir-
cuit design. An n-bit number is represented as

� � �� � �1 � � � �2 � � � � � � 1 � � 0

�

,
where � � � �

0 � 1

�

. The following representations for unsigned and signed
fixed-point numbers are used:
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Unsigned numbers are used for the representation of positive integers (i.e.,
natural numbers).

Value:

� � 	 � �1�
 0

� � � 2

�

,

Range:

�

0 � 2

�

� 1




.

Two’s complement is the standard representation of signed numbers.

Value:

� � � � � �1 � 2

� �1 � 	 � �2�
 0

� � � 2

�

,

Range:

�
�2

� �1 � 2

� �1 � 1




,

Complement: �

� � 2

�

�

� � � �

1,
where

� � �� � �1 � � � �2 � � � � � � 1 � � 0

�

,

Sign: � � �1,

Properties: asymmetric range (i.e., 2

� �1 negative numbers,

�

2

� �1 � 1

�

positive numbers), compatible with unsigned numbers in most
arithmetic operations.

One’s complement is a similar representation as the two’s complement.

Value:
� � � � � �1 � �

2

� �1 �

1

� � 	 � �2�
 0

� � � 2

�

,

Range:
�
�

�

2

� �1 � 1

�
� 2

� �1 � 1




,

Complement: �

� � 2

�

�

�
� 1 � �

,

Sign: � � �1,

Properties: double representation of zero, symmetric range, modulo

�

2

�

� 1

�

number system.

Sign magnitude is an alternative representation of signed numbers. Here, the
bits � � �2 � � � �3 � � � � � � 0 are the true magnitude.

Value:

� � � � � �1 � 	 � �2�
 0

� � � 2

�

,

Range:

�
�

�

2

� �1 � 1

�
� 2

� �1 � 1




,

Complement: �

� � � � � �1 � � � �2 � � � � � � 1 � � 0

�

,

Sign: � � �1,

Properties: double representation of zero, symmetric range.

Due to their advantages and wide-spread use, the unsigned and two’s
complement signed number representations will be considered throughout the
thesis.
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Redundant number systems

Some redundant number systems1 exist, which e.g. allow for speeding-up
arithmetic operations [Kor93].

Carry-save is the redundant representation of the result when adding up three
numbers without carry propagation (i.e., the individual carry bits are
saved for later carry propagation). A carry-save number consists of two
numbers, one containing all carry bits and the other all sum bits.

Delayed-carry or half-adder form [LJ96] is the corresponding representation
when adding up only two numbers.

Signed-digit is a redundant number system, which makes use of the digit set�
�1 � 0 � 1

�

.

The carry-save number representation plays an important role in multi-
operand adders (see Sec. 3.4). Otherwise, redundant number systems are of
no concern in carry-propagate adders, since they are used precisely to avoid
carry propagation.

Residue number systems

Residue number system (RNS) do not use a fixed radix for all digits, but are
constructed from a set of different residues, so that each digit has a different
radix [Kor93]. Arithmetic operations in RNS can be computed on each digit
independently and in parallel. The resulting speed-up is considerable, but
conversion from and to conventional number systems is very expensive. The
individual operations performed on each single digit are done using normal
or modular integer arithmetic, and again mainly additions. The investigations
on efficient integer addition in this thesis thus also become important for RNS
systems.

1In redundant number systems, the number of representable digits is larger than the radix, thus
allowing for multiple representations of the same number.
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2.1.4 Sequential and combinational circuits

Many arithmetic operations can be realized as combinational or sequential
circuits. Bit-serial or pipelined adders are examples for sequential adder
circuits. However, since adder architectures deal with speeding up carry-
propagation logic, only combinational adder implementations are covered in
this thesis.

2.1.5 Synchronous and self-timed circuits

The realization of a synchronous circuit can be done in a synchronous or a
self-timed asynchronous fashion, which also influences the implementation
of the combinational circuits. In particular, self-timed combinational circuits
have to provide completion signals, which are not trivial to generate. As a
matter of fact, synchronous circuit techniques are standard in the VLSI design
community.

However, adders are very appealing for self-timed realization since they
have a short average carry-propagation length (i.e.,

� �

log � � ) [GO96]. Be-
cause the simplest adder architecture — namely the ripple-carry adder —
takes most advantage of self-timed implementation, a further study of adder
architectures for self-timed circuit realization makes no sense.

2.1.6 Carry-propagate and carry-save adders

Addition is a prefix problem (see Sec. 3.5), which means that each result bit is
dependent on all input bits of equal or lower magnitude. Propagation of a carry
signal from each bit position to all higher bit positions is necessary. Carry-
propagate adders perform this operation immediately. The required carry
propagation from the least to the most significant bit results in a considerable
circuit delay, which is a function of the word length of the input operands.

The most efficient way to speed-up addition is to avoid carry propagation,
thus saving the carries for later processing. This allows the addition of two or
more numbers in a very short time, but yields results in a redundant (carry-save)
number representation.

Carry-save adders — as the most commonly used redundant arithmetic
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adders — play an important role in the efficient implementation of multi-
operand addition circuits. They are very fast due to the absence of any
carry-propagation paths, their structure is very simple, but the potential for
further optimization is minimal. The same holds for signed-digit adders,
which use a slightly different redundant number representation. The addition
results, however, usually have to be converted into an irredundant integer
representation in order to be processed further. This operation is done using a
carry-propagate adder.

2.1.7 Implications

As we have seen so far, the combinational, binary carry-propagate adder is
one of the most often used and most crucial building block in digital VLSI
design. Various well-known methods exist for speeding-up carry-propagation
in adders, offering very different performance characteristics, advantages,
and disadvantages. Some lack of understanding of the basic concepts and
relationships often lead to suboptimal adder implementations. One goal of
this thesis is the systematic investigation and performance comparison of all
existing adder architectures as well as their optimization with respect to cell-
based design technologies.

2.2 Circuit and Layout Design Techniques

IC fabrication technologies can be classified into full-custom, semi-custom,
and programmable ICs, as summarized in Table 2.1 (taken from [Kae97]).
Further distinctions are made with respect to circuit design techniques and
layout design techniques, which are strongly related.

2.2.1 Layout-based design techniques

In layout-based design techniques, dedicated full-custom layout is drawn man-
ually for circuits designed at the transistor-level. The initial design effort is
very high, but maximum circuit performance and layout efficiency is achieved.
Full-custom cells are entirely designed by hand for dedicated high-performance
units, e.g., arithmetic units. The tiled-layout technique can be used to simplify,
automate, and parameterize the layout task. For reuse purposes, the circuits

2.2 Circuit and Layout Design Techniques 13

Table 2.1: IC classification scheme based on fabrication depth and design
level.

Fabrication Programming Semi-custom Full-custom
depth only fabrication fabrication

Design Cell-based, as obtained from Hand
level schematic entry and/or synthesis layout

Type of Programm- Gate-array or Standard cell IC Full-
integrated able IC sea-of-gates IC (possibly also custom IC

circuit (PLD, FPGA, with macrocells
CPLD, etc.) and megacells)

and layouts are often collected in libraries together with automatic genera-
tors. Mega-cells are full-custom cells for universal functions which need no
parameterization, e.g., microprocessor cores and peripherals. Macro-cells are
used for large circuit components with regular structure and need for word-
length parameterization, e.g., multipliers, ROMs, and RAMs. Data paths are
usually realized in a bit-sliced layout style, which allows parameterization of
word length (first dimension) and concatenation of arbitrary data-path elements
(second dimension) for logic, arithmetic, and storage functions. Since adders
are too small to be implemented as macro-cells, they are usually realized as
data-path elements.

2.2.2 Cell-based design techniques

At a higher level of abstraction, arbitrary circuits can be composed from ele-
mentary logic gates and storage elements contained in a library of pre-designed
cells. The layout is automatically composed from corresponding layout cells
using dedicated layout strategies, depending on the used IC technology. Cell-
based design techniques are used in standard-cell, gate-array, sea-of-gates, and
field-programmable gate-array (FPGA) technologies. The design of logic cir-
cuits does not differ considerably among the different cell-based IC technolo-
gies. Circuits are obtained from either schematic entry, behavioral synthesis,
or circuit generators (i.e., structural synthesis). Due to the required generic
properties of the cells, more conventional logic styles have to be used for their
circuit implementation.
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The advantages of cell-based design techniques lie in their universal usage,
automated synthesis and layout generation for arbitrary circuits, portability
between tools and libraries, high design productivity, high reliability, and
high flexibility in floorplanning. This comes at the price of lower circuit
performance with respect to speed and area. Cell-based design techniques are
mainly used for the implementation of random logic (e.g., controllers) and
custom circuits for which no appropriate library components are available and
custom implementation would be too costly. Cell-based design techniques are
widely used in the ASIC design community.

Standard cells

Standard cells represent the highest performance cell-based technology. The
layout of the cells is full-custom, which mandates for full-custom fabrication of
the wavers. This in turn enables the combination of standard cells with custom-
layout components on the same die. For layout generation, the standard cells
are placed in rows and connected through intermediate routing channels. With
the increasing number of routing layers and over-the-cell routing capabilities
in modern process technologies, the layout density of standard cells gets close
to the density obtained from full-custom layout. The remaining drawback is
the restricted use of high-performance (transistor-level) circuit techniques.

Gate-arrays and sea-of-gates

On gate-arrays and sea-of-gates, preprocessed wafers with unconnected cir-
cuit elements are used. Thus, only metalization used for the interconnect is
customized, resulting in lower production costs and faster turnaround times.
Circuit performance and layout flexibility is lower than for standard cells,
which in particular decreases implementation efficiency of regular structures
such as macro-cells.

FPGAs

Field-programmable gate-arrays (FPGA) are electrically programmable generic
ICs. They are organized as an array of logic blocks and routing channels, and
the configuration is stored in a static memory or programmed e.g. using anti-
fuses. Again, a library of logic cells and macros allows flexible and efficient
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design of arbitrary circuits. Turnaround times are very fast making FPGAs
the ideal solution for rapid prototyping. On the other hand, low circuit perfor-
mance, limited circuit complexity, and high die costs severely limit their area
of application.

2.2.3 Implications

In the field of high-performance IC design, where layout-based and transistor-
level design techniques are applied, much research effort has been invested in
the realization of efficient adder circuits, and many different implementations
have been proposed.

Efficient adder implementations for cell-based design, however, have
hardly been addressed so far. Here, the issues to be investigated are the
technology mapping, cell library properties, routing, synthesis, and portabil-
ity aspects. The widespread use of cell-based design techniques justifies a
closer inspection of the efficient circuit implementation of addition and related
arithmetic operations.

2.3 Submicron VLSI Design

With evolving process technologies, feature sizes of 0.5 �m, 0.35 �m, and
less become standard. These submicron technologies offer smaller and faster
circuit structures at lower supply voltages, resulting in considerably faster and
more complex ICs with a lower power dissipation per gate. Changing physical
characteristics, however, strongly influence circuit design. Increasing gate
densities and clocking frequencies lead to higher power densities, making low
power an important issue in order to be able to dissipate the high energy of
large chips.

2.3.1 Multilevel metal routing

As processes with three and more metalization levels become available,routing
densities increase massively. Over-the-cell routing eliminates the drawback of
area-consuming routing channels in cell-based technologies, yielding layout
densities comparable to custom-layout. This also results in a larger amount
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of local interconnects (circuit locality), higher layout flexibility, and more
efficient automated routers. Especially standard-cell technologies benefit from
these advantages, providing both high design productivity as well as good
circuit and layout performance.

2.3.2 Interconnect delay

The delay of interconnections becomes dominant over switching delays in
submicron VLSI. This is because RC delays increase (higher wire resistances
at roughly constant capacitances) and wire lengths typically scale with chip
size but not with feature size. Therefore, circuit connectivity, locality, and
fan-out are becoming important performance optimization criteria.

2.3.3 Implications

Cell-based design techniques take advantage from emerging submicron VLSI
technologies, partly approaching densities and performance of full-custom
techniques. Interconnect aspects have to be accounted for, also with respect
to the optimality of circuit architectures.

2.4 Automated Circuit Synthesis and Optimization

Circuit synthesis denotes the automated generation of logic networks from
behavioral descriptions at an arbitrary level. Synthesis is becoming a key
issue in VLSI design for many reasons. Increasing circuit complexities, shorter
development times, as well as efficient and flexible usage of cell and component
libraries can only be handled with the aid of powerful design automation tools.
Arithmetic synthesis addresses the efficient mapping of arithmetic functions
onto existing arithmetic components and logic gates.

2.4.1 High-level synthesis

High-level synthesis, or behavioral/architectural synthesis, allows the transla-
tion of algorithmic or behavioral descriptions of high abstraction level (e.g.,
by way of data dependency graphs) down to RTL (register-transfer level)
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representation, which can be processed further by low-level synthesis tools.
The involved architectural synthesis, including resource allocation, resource
binding, and scheduling tasks, is far from being trivial and is currently re-
searched intensively. High-level arithmetic synthesis makes use of arithmetic
transformations in order to optimize hardware usage under given performance
criteria. Thereby, arithmetic library components are regarded as the resources
for implementing the basic arithmetic operations.

2.4.2 Low-level synthesis

Low-level synthesis, or logic synthesis, translates an RTL specification into a
generic logic network. For random logic, synthesis is achieved by establishing
the logic equations for all outputs and implementing them in a logic network.

2.4.3 Data-path synthesis

Efficient arithmetic circuits contain very specific structures of large logic depth
and high factorization degree. Their direct synthesis from logic equations is
not feasible. Therefore, parameterized netlist generators using dedicated al-
gorithms are used instead. Most synthesis tools include generators for the
basic arithmetic functions, such as comparators, incrementers, adders, and
multipliers. For other important operations (e.g., squaring, division) and spe-
cialized functions (e.g., addition with flag generation, multiplication without
final addition) usually no generators are provided and thus synthesis of efficient
circuitry is not available. Also, the performance of the commonly used circuit
architectures varies considerably, which often leads to suboptimal cell-based
circuit implementations.

2.4.4 Optimization of combinational circuits

The optimization of combinational circuits connotes the automated minimiza-
tion of a logic netlist with respect to area,delay, and power dissipation measures
of the resulting circuit, and the technology mapping (i.e., mapping of the logic
network onto the set of logic cells provided by the used technology/library).
The applied algorithms are very powerful for optimization of random logic
by performing steps like flattening, logic minimization, timing-driven factor-
ization, and technology mapping. However, the potential for optimization



18 2 Basic Conditions and Implications

is rather limited for networks with large logic depth and high factorization
degree, especially arithmetic circuits. There, only local logic minimization is
possible, leaving the global circuit architecture basically unchanged. Thus,
the realization of well-performing arithmetic circuits relies more on efficient
data-path synthesis than on simple logic optimization.

2.4.5 Hardware description languages

Hardware description languages allow the specification of hardware at different
levels of abstraction, serving as entry points to hardware synthesis. VHDL,
as one of the most widely used and most powerful languages, enables the
description of circuits at the behavioral and structural level. In particular,
parameterized netlist generators can be written in structural VHDL.

Synthesis of arithmetic units is initiated by using the standard arithmetic
operator symbols in the VHDL code, for which the corresponding built-in
netlist generators are called by the synthesis tool. Basically, the advantages
of VHDL over schematic entry lie in the possibility of behavioral hardware
description, the parameterizability of circuits, and portability of code thanks
to language standardization.

2.4.6 Implications

Due to their manyfold occurrences and flexible usage, arithmetic units form
an integral part in automated hardware synthesis for high-productivity VLSI
design. The used circuit architectures must be highly flexible and easily
parameterizable and must result in simple netlist generators and efficient circuit
implementations. Thus, this thesis also focuses on algorithms for the synthesis
of adder circuits and investigates the suitability of various adder architectures
with respect to netlist synthesis and optimization.

2.5 Circuit Complexity and Performance Modeling

One important aspect in design automation is the complexity and performance
estimation of a circuit early in the design cycle, i.e., prior to the time-consuming
logic synthesis and physical layout phases. At a higher design level, this is
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achieved by using characterization information of the high-level components
to be used and by complexity estimation of the interconnect. At gate level,
however, estimation is more difficult and less accurate because circuit size and
performance strongly depend on the gate-level synthesis results and on the
physical cell arrangement and routing.

For a rough preliminary characterization of adder architectures, we are
interested in simple complexity and performance models for gate-level circuits.
Given a circuit specified by logic formulae or a generic netlist (i.e., a netlist
built from basic logic gates), we need estimations of the expected area, speed,
and power dissipation for a compiled cell-based circuit as a function of the
operand word length.

2.5.1 Area modeling

Silicon area on a VLSI chip is taken up by the active circuit elements and their
interconnections. In cell-based design techniques, the following criteria for
area modeling can be formulated:

� Total circuit complexity (

� � � � � � �) can be measured by the number of
gate equivalents (1

� � � 1 2-input NAND-gate � 4 MOSFETs).

� Circuit area (

�� �� � 	 � �) is occupied by logic cells and inter-cell wiring.
In technologies with three and more metal layers, over-the-cell routing
capabilities allow the overlap of cell and wiring areas, as opposed to
2-metal technologies. This means that most of the cell area can also be
used for wiring, resulting in very low routing area factors. (

�
� �� � 	 � � �

�
� 
 � �� � �
� �� � � 
)

� Total cell area (

� � 
 � �� ) is roughly proportional to the number of transis-
tors or gate equivalents (

� � � � � � �) contained in a circuit. This number
is influenced by technology mapping, but not by physical layout. Thus,
cell area can be roughly estimated from a generic circuit description
(e.g. logic equations or netlist with simple gates) and can be precisely
determined from a synthesized netlist. (

�
� 
 � �� � � � � � � � �)

� Wiring area (

�
� �� � � 
) is proportional to the total wire length. The

exact wire lengths, however, are not known prior to physical layout.
(

�� �� � � 
 � � � � � � �)
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� Total wire length (

� � � � � �) can be estimated from the number of nodes
and the average wire length of a node [Feu82, KP89] or, more accurate,
from the sum of cell fan-out and the average wire length of cell-to-
cell connections (i.e. accounts for the longer wire length of nodes with
higher fan-out). The wire lengths also depend on circuit size, circuit
connectivity (i.e., locality of connections), and layout topology, which
are not known prior to circuit partitioning and physical layout [RK92].
(

� � � � � � � � � � � � � �)

� Cell fan-out (

� �

) is the number of cell inputs a cell output is driving.
Fan-in is the number of inputs to a cell [WE93], which for many com-
binational gates is proportional to the size of the cell. Since the sum of
cell fan-out (

� � � � � � �) of a circuit is equivalent to the sum of cell fan-in,
it is also proportional to circuit size. (

� � � � � � � � � � � � � � �)

� Therefore, in a first approximation, cell area as well as wiring area are
proportional to the number of gate equivalents. More accurate area
estimations before performing actual technology mapping and circuit
partitioning are hardly possible. For circuit comparison purposes, the
proportionality factor is of no concern. (

�
� �� � 	 � � � � � � � � � � � � � � � � � �)

Our area estimation model we are interested in must be simple to compute
while being as accurate as possible, and it should anticipate from logic equa-
tions or generic netlists (i.e. netlists composed of simple logic gates) alone.
By considering the above observations, possible candidates are:

Unit-gate area model This is the simplest and most abstract circuit area
model, which is often used in the literature [Tya93]. A unit gate is a
basic, monotonic 2-input gate (or logic operation, if logic equations are
concerned), such as AND, OR, NAND, and NOR. Basic, non-monotonic
2-input gates like XOR and XNOR are counted as two unit gates, re-
flecting their higher circuit complexities. Complex gates as well as
multi-input basic gates are built from 2-input basic gates and their gate
count equals the sum of gate counts of the composing cells.

Fan-in area model In the fan-in model, the size of 2- and multi-input basic
cells is measured by counting the number of inputs (i.e., fan-in). Com-
plex cells are again composed of basic cells with their fan-in numbers
summed up, while the XOR/XNOR-gates are treated individually. The
obtained numbers basically differ from the unit-gate numbers only by
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an offset of 1 (e.g., the AND-gate counts as one unit gate but has a fan-in
of two).

Other area models The two previous models do not account for transistor-
level optimization possibilities in complex gates, e.g., in multiplexers
and full-adders. More accurate area models need individual gate count
numbers for such complex gates. However, some degree of abstraction
is sacrificed and application on arbitrary logic equations is not possible
anymore. The same holds true for models which take wiring aspects
into consideration. One example of a more accurate area model is the
gate-equivalents model (

� �

) mentioned above, which bases on gate
transistor counts and therefore is only applicable after synthesis and
technology mapping.

Inverters and buffers are not accounted for in the above area models,
which makes sense for pre-synthesis circuit descriptions. Note that the biggest
differences in buffering costs are found between low fan-out and high fan-out
circuits. With respect to area occupation however, these effects are partly
compensated because high fan-out circuits need additional buffering while
low fan-out circuits usually have more wiring.

Investigations showed that the unit-gate model approach for the area es-
timation of complex gates, such as multiplexers and full-adders, does not
introduce more inaccuracies than e.g. the neglection of circuit connectivity
for wiring area estimation. With the XOR/XNOR being treated separately,
the unit-gate model yields acceptable accuracy at the given abstraction level.
Also, it perfectly reflects the structure of logic equations by modeling the basic
logic operators individually and by regarding complex logic functions as com-
posed from basic ones. Investigations showed comparable performance for the
fan-in and the unit-gate models due to their similarity. After all, the unit-gate
model is very commonly used in the literature. Therefore, it is used in this
work for area estimations and comparisons from logic circuit specifications.
Comparison results of placed and routed standard-cell solutions will follow in
Section 4.2.

2.5.2 Delay modeling

Propagation delay in a circuit is determined by the cell and interconnection
delays on the critical path (i.e. longest signal propagation path in a combina-



22 2 Basic Conditions and Implications

tional circuit). As opposed to area estimation, not average and total numbers
are of interest, but individual cell and node values are relevant for path de-
lays. Critical path evaluation is done by static timing analysis which involves
graph-based search algorithms. Of course, timings are also dependent on tem-
perature, voltage, and process parameters which, however, are not of concern
for our comparison purposes.

� Maximum delay (

�� � � � � � � �) of a circuit is equal to the sum of cell
inertial delays, cell output ramp delays, and wire delays on the critical
path. (

�� � � � � � � � � 	
� � � � � � � � �

� � �� 
 � � � �� � � �
� � 	

� � � � � � � � �
�� �� 
)

� Cell delay (

�� 
 � �) depends on the transistor-level circuit implementa-
tion and the complexity of a cell. All simple gates have comparable
delays. Complex gates usually contain tree-like circuit and transis-
tor arrangements, resulting in logarithmic delay-to-area dependencies.
(

�� 
 � � � log

� �
� 
 � �

�

)

� Ramp delay (

�� � � �) is the time it takes for a cell output to drive the
attached capacitive load, which is made up of interconnect and cell
input loads. The ramp delay depends linearly on the capacitive load
attached, which in turn depends linearly on the fan-out of the cell.
(

�� � � � � � �
� 
 � �)

� Wire delay or interconnection delay (

�� �� 
 ) is the RC-delay of a wire,
which depends on the wire length. RC-delays, however, are negligible
compared to cell and ramp delays for small circuits such as the adders
investigated in this work. (

�� �� 
 � 0).

� Thus, a rough delay estimation is possible by considering sizes and,
with a smaller weighting factor, fan-out of the cells on the critical path.
(

�� � � � � � � � � 	
� � � � � � � � �

�

log

� �
� 
 � �

� � � � �
� 
 � �

�

)

Possible delay estimation models are:

Unit-gate delay model The unit-gate delay model is similar to the unit-gate
area model. Again, the basic 2-input gates (AND, OR, NAND, NOR)
count as one gate delay with the exception of the XOR/XNOR-gates
which count as two gate delays [Tya93]. Complex cells are composed
of basic cells using the fastest possible arrangement (i.e., tree structures
wherever possible) with the total gate delay determined accordingly.
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Fan-in delay model As for area modeling, fan-in numbers can be taken in-
stead of unit-gate numbers. Again, no advantages over the unit-gate
model are observed.

Fan-out delay model The fan-out delay model bases on the unit-gate model
but incorporates fan-out numbers, thus accounting for gate fan-out num-
bers and interconnection delays [WT90]. Individual fan-out numbers
can be obtained from a generic circuit description. A proportionality
factor has to be determined for appropriate weighting of fan-out with
respect to unit-gate delay numbers.

Other delay models Various delay models exist at other abstraction levels.
At the transistor level, transistors can be modeled to contribute one unit
delay each ( �-model [CSTO91]). At a higher level, complex gates like
full-adders and multiplexers can again be modeled separately for higher
accuracy [Kan91, CSTO91].

The impact of large fan-out on circuit delay is higher than on area re-
quirements. This is because high fan-out nodes lead to long wires and high
capacitive loads and require additional buffering, resulting in larger delays.
Therefore, the fan-out delay model is more accurate than the unit-gate model.
However, due to the much simpler calculation of the unit-gate delay model
and its widespread use, as well as for compatibility reasons with the chosen
unit-gate area model, this model will be used for the circuit comparisons in
this work.

As already mentioned, delay calculation for a circuit requires static timing
analysis, which corresponds to the search for the longest path in a weighted
directed acyclic graph. In our case, false path2 detection [MB89] is not of
importance since false paths do not occur in adder circuits with one exception,
which will be discussed later.

2.5.3 Power measures and modeling

An increasingly important performance parameter for VLSI circuits is power
dissipation. Peak power is a problem with respect to circuit reliability (e.g.
voltage drop on power buses, ground bounce) which, however, can be dealt
with by careful design. On the other hand, average power dissipation is

2A false path is a signal path in a combinational circuit which cannot be sensitized.
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becoming a crucial design constraint in many modern applications, such as
high-performance microprocessors and portable applications, due to heat re-
moval problems and power budget limitations.

The following principles hold for average power dissipation in synchronous
CMOS circuits [ZF97]:

� Total power (

� � � � � �) in CMOS circuits is dominated by the dynamic
switching of circuit elements (i.e., charging and discharging of capaci-
tances), whereas dynamic short-circuit (or overlap) currents and static
leakage are of less importance. Thus, power dissipation can be assumed
proportional to the total capacitance to be switched, the square of the
supply voltage, the clock frequency, and the switching activity � in a
circuit [CB95]. (

� � � � � � � 1
2

� � � � � � � � �2� � � �� � � � �)

� Total capacitance (

� � � � � �) in a CMOS circuit is the sum of the capaci-
tances from transistor gates, sources, and drains and from wiring. Thus,
total capacitance is proportional to the number of transistors and the
amount of wiring, both of which are roughly proportional to circuit size.
(

� � � � � � � � � � � � � �)

� Supply voltage (

� � �) and clock frequency (

�� � � ) can be regarded as
constant within a circuit and therefore are not relevant in our circuit
comparisons. (

� � � �
�� � � � const.)

� The switching activity factor ( �) gives a measure for the number of
transient nodes per clock cycle and depends on input patterns and cir-
cuit characteristics. In many cases, input patterns to data paths and
arithmetic units are assumed to be random, which results in a constant
average transition activity of 50% on all inputs (i.e., each input toggles
each second clock cycle). Signal propagation through several levels
of combinational logic may decrease or increase transition activities,
depending on the circuit structure. Such effects, however, are of minor
relevance in adder circuits and will be discussed later in the thesis. ( � �

const.)

� Therefore, for arithmetic units having constant input switching activ-
ities, power dissipation is approximately proportional to circuit size.
(

� � � � � � � � � � � � � �)

If average power dissipation of a circuit can be regarded as proportional
to its size, the presented area models can also be used for power estimation.
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Thus, the unit-gate model is chosen for the power comparisons of generic
circuit descriptions.

2.5.4 Combined circuit performance measures

Depending on the constraints imposed by the design specifications, the perfor-
mance of combinational circuits is measured by means of either circuit size,
propagation delay, or power dissipation, or by a combination of those. Fre-
quently used combined performance measures are the area-time or area-delay
product (AT-product) and the power-time or power-delay product (PT-product).
The PT-product can also be regarded as the amount of energy used per com-
putation. The unit-gate models presented above for area, delay, and power
estimation can also be used for AT- and PT-product comparisons.

Additionally, circuits and circuit architectures can be characterized with
respect to simplicity (for implementation and understanding) and regularity
(for synthesis and layout) of structure.

2.5.5 Implications

Influences on the performance of cell-based circuits are manifold thus making
accurate modeling a difficult task. At the level of generic netlists or specifi-
cations by logic equations, however, accurate performance estimation is not
possible due to the lack of detailed circuit and layout information. There, the
simplified unit-gate model fits well and will be used in the following text for
abstract comparisons and classifications of adder circuit architectures.

2.6 Summary

Arithmetic units belong to the basic and most crucial building blocks in many
integrated circuits, and their performance depends on the efficient hardware
implementation of the underlying arithmetic operations. Changing physical
properties of submicron VLSI require circuit architectures and styles to be
reconsidered. Advances in computer-aided design as well as the ever grow-
ing design productivity demands tend to prefer cell-based design techniques
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and hardware synthesis, also for arithmetic components. Complexity and per-
formance modeling allows architecture and circuit evaluations and decisions
early in the design cycle. In this thesis, these aspects are covered for binary
carry-propagate addition and related arithmetic operations.

3
Basic Addition Principles and Structures

This chapter introduces the basic principles and circuit structures used for the
addition of single bits and of two or multiple binary numbers. Binary carry-
propagate addition is formulated as a prefix problem, and the fundamental
algorithms and speed-up techniques for the efficient solution of this problem
are described.

Figure 3.1 gives an overview of the basic adder structures and their rela-
tionships. The individual components will be described in detail in this and
the following chapter.

3.1 1-Bit Adders, (m,k)-Counters

As the basic combinational addition structure, a 1-bit adder computes the sum
of � input bits of the same magnitude (i.e., 1-bit numbers). It is also called
(m,k)-counter (Fig. 3.2) because it counts the number of 1’s at the � inputs
(� � �1 � � � �2 � � � � � � 0) and outputs a

�

-bit sum ( � � �1 � � � �2 � � � � � �

0), where

� � �

log

� � �

1

� �

.

Arithmetic equation:

� �1�
�
 0

2

�� � �

� �1�
�
 0

� � (3.1)

27
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Figure 3.1: Overview of adder structures.

3.1.1 Half-Adder, (2,2)-Counter

The half-adder (HA) is a (2,2)-counter. The more significant sum bit is
called carry-out ( � � 	 � ) because it carries an overflow to the next higher bit
position. Figure 3.3 depicts the logic symbol and two circuit implementations
of a half-adder. The corresponding arithmetic and logic equations are given
below, together with the area (

�

) and time (

�

) complexity measures under the
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Figure 3.2: (m,k)-counter symbol.

unit-gate models described in Section 2.5.

Arithmetic equations:

2 � � 	 � � � � � � �

(3.2)� � �� � � �

mod 2

� � 	 � � �� � � �

div 2 � 1
2

�� � �
� � � (3.3)

Logic equations:

� � � � �

(3.4)

� � 	 � � � �

(3.5)

Complexity:

�

HA

�� �
� � � � 	 �
� � 1

�

HA

�� �
� � � � � 2

�

HA

� 3

3.1.2 Full-Adder, (3,2)-Counter

The full-adder (FA) is a (3,2)-counter. The third input bit is called carry-
in ( � � � ) because it often receives a carry signal from a lower bit position.
Important internal signals of the full-adder are the generate ( �) and propagate
( �) signals. The generate signal indicates whether a carry signal — 0 or 1 — is
generated within the full-adder. The propagate signal indicates whether a carry
at the input is propagated unchanged through the full-adder to the carry-out.
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Figure 3.3: (a) Logic symbol, and (b, c) schematics of a half-adder.

Alternatively, two intermediate carry signals �0 and �1 can be calculated, one
for � � � � 0 and one for � � � � 1. Thus, the carry-out can be expressed by the

� � � � � or the

� �0 � �1 �

signal pairs and the carry-in signal and be realized using
an AND-OR or a multiplexer structure. Note that for the computation of � � 	 �

using the AND-OR structure, the propagate signal can also be formulated as

� � � � �

. The propagate signal for the sum bit calculation, however, must be
implemented as � � � � �

.

Arithmetic equations:

2 � � 	 � � � � � � � � � � � (3.6)� � �� � � � � � �
�

mod 2

� � 	 � � �� � � � � � �
�

div 2 � 1
2

�� � � � � � � � � � (3.7)

Logic equations:

� � � �

(3.8)

� � � � �

(3.9)

�0 � � �

�1 � � � �

(3.10)� � � � � � � � �

� � � � � � (3.11)

� � 	 � � � � � � � � �

� � � � �

� � � � �� � � � � � � � � � � �� � � � � � �
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� � � � � � �

� � � � � � � � � �� � � � � �

� � � � �0 � � � � �1 (3.12)

Complexity:

�

FA

�� �
� � � � 	 �
� � 4

�

2

�

�

FA

�� �
� � � � � 4

�

FA

� � � � � � � 	 �
� � 2

�

FA

� � � � � � � � 2

�

4

�

�

FA

� 7

�

9

�

A full-adder can basically be constructed using half-adders, 2-input gates,
multiplexers, or complex gates (Figs. 3.4b–f). The solutions (b) and (d) (and
to some extent also (e)) make use of the generate � and propagate � signals
(generate-propagate scheme). Circuit (f) bases on generating both possible
carry-out signals �0 and �1 and selecting the correct one by the carry-in � � �

(carry-select scheme). Solution (c) generates � by a 3-input XOR and � � 	 �

by a majority gate directly. This complex-gate solution has a faster carry
generation but is larger, as becomes clear from the complexity numbers given
in parenthesis. Because the majority gate can be implemented very efficiently
at the transistor level, it is given a gate count of 5 and a gate delay of only 2.
The multiplexer counts 3 gates and 2 gate delays.

3.1.3 (m,k)-Counters

Larger counters can be constructed from smaller ones, i.e., basically from
full-adders. Due to the associativity of the addition operator, the � input bits
can be added in any order, thereby allowing for faster tree arrangements of the
full-adders (see Fig. 3.5).

Complexity:

�
�

m �k

� � � � � � �
�

m �k

� � � �

log � �

An (m,2)-compressor is a 1-bit adder with a different sum representation.
It is used for the realization of multi-operand adders and will be discussed in
Section 3.4.
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Figure 3.4: (a) Logic symbol, and (b, c, d, e, f) schematics of a full-adder.

3.2 Carry-Propagate Adders (CPA)

A carry-propagate adder (CPA) adds two �-bit operands

� � �� � �1 � � � �2 � � � � �

�

0) and

� � � �
� �1 �

�
� �2 � � � � �

�

0

�

and an optional carry-in � � � by performing
carry-propagation. The result is an irredundant

� � �

1

�

-bit number consisting
of the �-bit sum

� � � � � �1 � � � �2 � � � � � �

0

�

and a carry-out � � 	 � .

Equation 3.16 describes the logic for bit-sequential addition of two �-bit
numbers. It can be implemented as a combinational circuit using � full-adders
connected in series (Fig. 3.6) and is called ripple-carry adder (RCA).
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Figure 3.5: (7,3)-counter with (a) linear and (b) tree structure.

Arithmetic equations:

2
� � � 	 � � � � � � � � � � � (3.13)

2

� � � 	 � �
� �1�

�
 0

2

� � � �

� �1�
�
 0

2

� � � �
� �1�

�
 0

2

� � � � � � �

�

� �1�
�
 0

2

� �� � � � � � � � � � (3.14)

2 � � �

1

� � � � � � � � � � � � ;

� � 0 � 1 � � � � � � � 1 (3.15)

where �

0

� � � � and � � 	 � � � �

Logic equations:

� � � � � � �

� � � � � � � �� � � � � � � �

� � �

1

� � � � � � � � ;

� � 0 � 1 � � � � � � � 1 (3.16)

where �

0

� � � � and � � 	 � � � �
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Complexity:

�

CPA

�� �
� � � � 	 � � � � � 2 � �

2

�

CPA

� � � � � � � 	 � � � � � 2 �

�

CPA

� 7 �
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Figure 3.6: (a) Symbol and (b) ripple-carry implementation of carry-
propagate adder (CPA).

Note that the computation time of this adder grows linearly with the operand
word length � due to the serial carry-propagation.

3.3 Carry-Save Adders (CSA)

The carry-save adder (CSA) avoids carry propagation by treating the inter-
mediate carries as outputs instead of advancing them to the next higher bit
position, thus saving the carries for later propagation. The sum is a (re-
dundant) �-digit carry-save number, consisting of the two binary numbers

�

(sum bits) and

�

(carry bits). A Carry-save adder accepts three binary input
operands or, alternatively, one binary and one carry-save operand. It is realized
by a linear arrangement of full-adders (Fig. 3.7) and has a constant delay (i.e.,
independent of �).

Arithmetic equations:

2

� � � � �

0

� �

1

� �

2 (3.17)

� �
�
 1

2

�
� � �

� �1�
�
 0

2

� � � �

2 �
�
 0

� �1�
�
 0

2

� � �
�

� (3.18)

2 � � �

1

� � � �

2 �
�
 0

� �
�

� ;

� � 0 � 1 � � � � � � � 1 (3.19)
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Figure 3.7: (a) Symbol and (b) schematic of carry-save adder (CSA).

3.4 Multi-Operand Adders

Multi-operand adders are used for the summation of � �-bit operands

�

0 � � � � �

�
� �1 ( � � 2) yielding a result

�

in irredundant number representation with

� � � �
log � � � bits.

Arithmetic equation:

� �

� �1�
�
 0

� � (3.20)

3.4.1 Array Adders

An �-operand adder can be realized either by serial concatenation of

� � � 1

�

carry-propagate adders (i.e., ripple-carry adders, Fig. 3.8) or by

� � � 2

�

carry-
save adders followed by a final carry-propagate adder (Fig. 3.9). The two
resulting adder arrays are very similar with respect to their logic structure,
hardware requirements, as well as the length of the critical path. The major
difference is the unequal bit arrival time at the last carry-propagate adder.
While in the carry-save adder array (CSA array), bit arrival times are balanced,
higher bits arrive later than lower bits in the carry-propagate adder array
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(CPA array) which, however, is exactly how the final adder “expects” them.
This holds true if ripple-carry adders are used for carry-propagate addition
throughout.

Speeding up the operation of the CPA array is not efficient because each
ripple-carry adder has to be replaced by some faster adder structure. On the
other hand, the balanced bit arrival profile of the CSA array allows for massive
speed-up by just replacing the final RCA by a fast parallel carry-propagate
adder. Thus, fast array adders3 are constructed from a CSA array with a
subsequent fast CPA (Fig. 3.10).

Complexity:

�

ARRAY

� � � � 2

� �

CSA

� �

CPA

�

ARRAY

� � � � 2

� �

CSA

� �

CPA

3.4.2 (m,2)-Compressors

A single bit-slice of the carry-save array from Figure 3.9 is a 1-bit adder called
(m,2)-compressor. It compresses � input bits down to two sum bits ( � � �)
by forwarding ( � � 3) intermediate carries to the next higher bit position
(Fig. 3.11).

Arithmetic equation:

2

� � �

� �4�
�
 0

�
�

� 	 �
� � � �

� �1�
�
 0

� � �

� �4�
�
 0

�
�

� � (3.21)

No horizontal carry-propagation occurs within a compressor circuit, i.e.,

� � � � only influences �
� � �

� 	 � . An (m,2)-compressor can be built from ( � � 2)
full-adders or from smaller compressors. Note that the full-adder can also be
regarded as a (3,2)-compressor. Again, cells can be arranged in tree structures
for speed-up.

Complexity:

�
�

m �2

� � � � � � �
�

m �2

� � � �

log � �
3Note the difference between adder array (i.e., CSA made up from an array of adder cells)

and array adder (i.e., multi-operand adder using CSA array and final CPA).
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Figure 3.8: Four-operand carry-propagate adder array.
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Figure 3.10: Typical array adder structure for multi-operand addition.
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Figure 3.11: (m,2)-compressor symbol.

(4,2)-compressor

The (4,2)-compressor allows for some circuit optimizations by rearranging the
EXORs of the two full-adders (Fig. 3.12). This enables the construction of
more shallow and more regular tree structures.

Arithmetic equation:

2

� � � � � 	 �
� � � �

3 �
�
 0

� � � � � � (3.22)
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Complexity:

�
�
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Figure 3.12: (a) Logic symbol and (b, c) schematics of a (4,2)-compressor.

3.4.3 Tree Adders

Adder trees (or Wallace trees) are carry-save adders composed of tree-structured
compressor circuits. Tree adders are multi-operand adders consisting of a
CSA tree and a final CPA. By using a fast final CPA, they provide the fastest
multi-operand adder circuits. Figure 3.13 shows a 4-operand adder using
(4,2)-compressors.

Complexity:

�

TREE

� �
�

m �2

�

� �

CPA

�

TREE

� � �
�

m �2

�

� �

CPA
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Figure 3.13: 4-operand adder using (4,2)-compressors.

3.4.4 Remarks

Some general remarks on multi-operand adders can be formulated at this point:

� Array adders have a highly regular structure which is of advantage for
both netlist and layout generators.

� An �-operand adder accommodates ( � � 1) carry inputs.

� The number of full-adders does only depend on the number of operands
and bits to be added,but not on the adder structure. However, the number
of half-adders as well as the amount and complexity of interconnect
wiring depends on the chosen adder configuration (i.e., array or tree).

� Accumulators are sequential multi-operand adders. They also can be
sped up using the carry-save technique.

3.5 Prefix Algorithms

The addition of two binary numbers can be formulated as a prefix problem. The
corresponding parallel-prefix algorithms can be used for speeding up binary
addition and for illustrating and understanding various addition principles.

3.5 Prefix Algorithms 41

This section introduces a mathematical and visual formalism for prefix
problems and algorithms.

3.5.1 Prefix problems

In a prefix problem, � outputs ( � � �1 � � � �2 � � � � � �

0) are computed from �

inputs ( � � �1 � � � �2 � � � � � �

0) using an arbitrary associative binary operator � as
follows:

�

0

� �

0

�

1

� �

1

� �

0

�

2

� �

2

� �
1

� �

0
...

...

� � �1 � � � �1

� � � �2

� � � � � �

1

� �

0 (3.23)

The problem can also be formulated recursively:

�
0

� �

0
� � � � � � � � �1 ;

� � 1 � 2 � � � � � � � 1 (3.24)

In other words, in a prefix problem every output depends on all inputs of equal
or lower magnitude, and every input influences all outputs of equal or higher
magnitude.

prefixgraph.epsi
90 � 24 mm

Due to the associativity of the prefix-operator �, the individual operations
can be carried out in any order. In particular, sequences of operations can
be grouped in order to solve the prefix problem partially and in parallel for
groups (i.e., sequences) of input bits ( � � � � � �1 � � � � � � � ), resulting in the group
variables

� �

:

� . At higher levels, sequences of group variables can again be
evaluated, yielding � levels of intermediate group variables, where the group
variable

� ��

:

� denotes the prefix result of bits ( � � � � � �1 � � � � � � � ) at level

�

. The
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group variables of the last level � must cover all bits from

�

to 0 (

� ��

:0 ) and
therefore represent the results of the prefix problem.

�0�

:

� � � �

� ��

:

� � � � �1�

:

��

1

� � � �1�

:

� �
� � � � �

;

� � 1 � 2 � � � � � �

� � � � ��

:0 ;

� � 0 � 1 � � � � � � � 1 (3.25)

Note, that for

� � �

the group variable

� � �1�

:

� is unchanged (i.e.,

� ��

:

� � � � �1�

:

� ).
Since prefix problems describe a combinational input-to-output relationship,
they can be solved by logic networks, which will be the major focus in the
following text.

Various serial and parallel algorithms exist for solving prefix problems,
depending on the bit grouping properties in Equation 3.25. They result in
very different size and delay performance measures when mapped onto a logic
network. The major prefix algorithms are now described and visualized by
16-bit examples using a graph representation (see also [LF80, Fic83, LA94]).

In the graphs, the black nodes � depict nodes performing the binary asso-
ciative operation � on its two inputs (

� � �

in Eq. 3.25), while the white nodes

� represent feed-through nodes with no logic (

� � �

in Eq. 3.25; in hardware:
cells are empty or contain buffers).

bwcells.epsi
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Each of the � columns corresponds to one bit position. Black nodes working in
parallel are arranged in the same row, and black nodes connected in series are
placed in consecutive rows. Thus, the number of rows � corresponds to the
maximum number of binary operations to be evaluated in series. The outputs
of row

�

are the group variables

� ��

:

� . The spacing between rows reflects
the amount of interconnect (i.e., number of required wire tracks) between
consecutive rows. At the same time, the graphs represent possible hardware
topologies if realized in tiled layout.

The following complexity measures are given for each prefix algorithm
with respect to logic circuit implementation:
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computation time

�
� : black nodes on the critical path or number of rows

(levels),

�
� � �

black node area

�
� : total number of black nodes, important for cell-based

designs where the empty white nodes are not of concern

black and white node area

�
� � �: total number of black and white nodes,

which are usually incorporated for regularity reasons in custom layout
designs

area-time product

�
�

�
�

interconnect area

� �� �� � � : total number of horizontal wire tracks used for
interconnecting the given hardware topology

maximum fan-out

� �
� � � : fan-out number of the node with the highest fan-

out

The formulae containing an equal sign (“ �”) are exact for all word length
being a power of 2 (i.e., � � 2

�

), approximations otherwise.

Three categories of prefix algorithms can be distinguished: the serial-
prefix, the group-prefix, and the tree-prefix algorithms. In the literature, the
tree-prefix algorithms are commonly referred to as parallel-prefix algorithms.
The introduction of the new group-prefix algorithms in this thesis, however,
makes new naming conventions necessary. Since both algorithms, group-
prefix and tree-prefix, include some parallelism for calculation speed-up, they
form the category of parallel-prefix algorithms.

3.5.2 Serial-prefix algorithm

Equation 3.24 represents a serial algorithm for solving the prefix problem
(Fig. 3.14). The serial-prefix algorithm needs a minimal number of binary
operations � (

� � � � ) but is inherently slow (

� � � � ). Obviously, the � � 1
black nodes can be arranged in a single row for hardware implementation,
thus eliminating all white nodes (i.e.,

�
� � � � �
� ,

� �� �� � � � 1).

3.5.3 Tree-prefix algorithms

Unoptimized tree-prefix algorithm According to Equation 3.23 all outputs
can be computed separately and in parallel. By arranging the operations
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Figure 3.14: Serial-prefix algorithm.

� in a tree structure, the computation time for each output can be reduced
to

� �

log � � (Fig. 3.15). However, the overall number of operations �

to be evaluated and with that the hardware costs grow with (

� � �2

�

) if
individual evaluation trees are used for each output.

As a trade-off, the individual output evaluation trees can be merged (i.e.,
common subexpressions be shared) to a certain degree according to different
tree-prefix algorithms, reducing the area complexity to

� � � log � � or even

� � � � . Examples are the following algorithms well known from the literature.

Sklansky tree-prefix algorithm Simple overlaying of all output evaluation
trees from the unoptimized prefix algorithm leads to the tree-prefix al-
gorithm proposed by Sklansky [Skl60] (Fig. 3.16). Intermediate signals
are computed by a minimal tree structure and distributed in parallel to
all higher bit positions which require the signal. This leads to a high
fan-out of some black nodes (

� � � � , unbounded fan-out), but results in
the smallest possible number of node delays (i.e., minimal depth), a
small number of signals and very few wiring tracks (

� �

log � � ).

Brent-Kung tree-prefix algorithm A similar structure with quite different
characteristics was presented by Brent and Kung [BK82] (Fig. 3.17).
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There, the parallel distribution of intermediate signals from the Sklansky
algorithm is replaced by a tree-like and partially serial signal propaga-
tion. This almost doubles the number of node delays but reduces the
number of black nodes to

� � � � and limits the fan-out to log � or even
to 3, if the maximum fan-out on single rows is regarded (makes sense
if white nodes are allowed to contain buffers). Therefore, this prefix
structure is regarded to have bounded fan-out.

Kogge-Stone tree-prefix algorithm The algorithm proposed by Kogge and
Stone [KS73] has minimal depth (like Sklansky) as well as bounded
fan-out (i.e., maximum fan-out is 2) at the cost of a massively increased
number of black nodes and interconnections (Fig. 3.18). This is achieved
by using a large number of independent tree structures in parallel.

Han-Carlson tree-prefix algorithm Han and Carlson proposed an algorithm
which combines the advantages of the Brent-Kung and the Kogge-Stone
algorithms by mixing them [HC87]. The first and last

�

levels are of
the Brent-Kung type while the Kogge-Stone graph is used in the middle
(typically

� � 1, Fig. 3.19). The number of parallel trees and thus the
number of black nodes and interconnections is reduced at the cost of a
slightly longer critical path, compared to the Kogge-Stone algorithm.

The Sklansky prefix algorithm requires additional buffering due to its
unbounded fan-out. The Sklansky and Kogge-Stone algorithms are the fastest
ones. Depending on the amount of speed degradation caused by high fan-out
numbers (Sklansky) as well as large circuit and wiring complexity (Kogge-
Stone), their performance measures may differ to a certain degree. The Brent-
Kung and Han-Carlson prefix algorithms offer somewhat slower, but more
area-efficient solutions.

3.5.4 Group-prefix algorithms

Tree structures typically divide operands into fix-sized (and in most cases min-
imal) bit groups and apply a maximum number of levels for prefix evaluation.
Another approach uses processing of variable-sized bit groups in a fixed num-
ber of levels (e.g., one or two levels). The resulting group-prefix algorithms
again open a wide range of different prefix evaluation strategies.

Fixed-group, 1-level group-prefix algorithms The input operand is divided
into � fixed-size bit groups. The prefix result of each group is evaluated
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Figure 3.15: Tree-prefix algorithm: unoptimized.

sk.epsi///principles
59 � 26 mm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1

2

3

4

0

�
� � log �

�
� � 1

2

� log �

�
� � � � � log �

�
�

�
�

� 1
2

� log2 �

� �� �� � � � log �

� �
� � � � 1

2
�

Figure 3.16: Tree-prefix algorithm: Sklansky.
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Figure 3.18: Tree-prefix algorithm: Kogge-Stone.
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according to the serial-prefix scheme, which is done for all groups in
parallel. The result of a group is propagated to all bits of the next
higher group in parallel. The final prefix result is in turn computed
from the group results again using the serial-prefix scheme. Thus, prefix
calculation for individual bit groups is done in parallel at exactly one
level. Figures 3.20–3.22 give 16-bit examples for the 1-level group-
prefix algorithms with two, four, and � (resp. eight in the graph) bit
groups. It can be seen that the number of black nodes in a column never
exceeds two, which results in efficient layout topology (i.e., small

�
� � �)

and low wiring complexity (i.e., small

� �� �� � � ). The depth of the graph
depends on the group sizes, with some intermediate group size for the
optimal solution.

Fixed-group, 2-level group-prefix algorithms In the example of Figure3.23
a second level of parallel prefix evaluation is included. Here, many
combinations of group sizes at the two levels are possible. The higher
parallelism results in larger area but smaller delay complexity.

Fixed-group, multilevel group-prefix algorithms The number of levels for
parallel prefix computation can be increased further up to a maximum
of log � levels. Note that by adding a third parallel prefix level to the
structure of Figure 3.23,we obtain a 2 � 2 � 2 groups,3-level group-prefix
algorithm, which is equivalent to Sklansky’s tree-prefix algorithm from
Figure 3.16. Thus, Sklansky tree-prefix algorithms and maximum-level
group-prefix algorithms are identical.

Variable-group, 1-level group-prefix algorithms As can be seen in Figure
3.21 fixed group sizes lead to unnecessary idle times (i.e., white nodes
on evaluation paths) at higher bit groups. Their evaluation is completed
long before the results from the lower bit groups are obtained for final
prefix computation. This can be avoided by using variable group sizes.
Optimal group sizes are obtained if each group counts one more bit than
the preceeding group. Figure 3.24 gives a 16-bit example with group
sizes 1, 2, 3, 4, and 5.

Variable-group, 2- and multilevel group-prefix algorithms Again, additio-
nal parallel prefix levels can be applied for further delay reduction. The
2-level structure depicted in Figure 3.25 is equivalent to Sklansky’s
tree-prefix structure (Fig. 3.16) except for the highest bit. This sug-
gests that variable-group, maximum-level group-prefix algorithms also
result in the same prefix structure as Sklansky’s algorithm. Note that
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the 2-level version from Figure 3.25 shows massively increased maxi-
mum fan-out for increased adder sizes. This can be avoided by placing
some of the black nodes further down in the graph. The resulting op-
timized structure (Fig. 3.26) has a latency increased by one for some
adder sizes but has a much smaller maximum fan-out and counts less
black nodes. This structure now resembles the tree-prefix structure of
Brent and Kung (Fig. 3.17). Thus, variable-group, maximum-level, op-
timized group-prefix algorithms are equivalent to the Brent-Kung prefix
algorithm.

An important property of the group-prefix structures is that the number
of �-operators per bit position is limited by the number of levels (i.e., max.

�-operators / bit = � �

1) and thus is independent of the adder word length.
With that, the �-operators are more evenly distributed over all bit positions
than in the more irregular tree-prefix structures.

A close relation between group-prefix and tree-prefix algorithms, which
together form the class of parallel-prefix algorithms, can be observed. By
applying the maximum number of prefix levels to group-prefix structures,
tree-prefix schemes are again obtained. Since distinguishing between group-
and tree-prefix schemes is not necessary in the following text, they are both
referred to as parallel-prefix schemes.
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Figure 3.21: Group-prefix algorithm: 4 groups, 1-level parallel.
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Figure 3.22: Group-prefix algorithm: � (8) groups, 1-level parallel.
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Figure 3.23: Group-prefix algorithm: 2 � 2 groups, 2-level parallel.
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3.5.5 Binary addition as a prefix problem

Binary carry-propagate addition can be formulated as a prefix problem using
the generate-propagate scheme or the carry-select scheme described in the
introduction of the full-adder (Sec. 3.1). The semantics of the prefix operator �

and the prefix variables

� ��

:

� is defined accordingly in the following.

Generate-propagate scheme

Because the prefix problem of binary carry-propagate addition computes the
generation and propagation of carry signals, the intermediate prefix variables
can have three different values – i.e., generate a carry 0 (or kill a carry 1),
generate a carry 1, propagate the carry-in — and must be coded by two
bits. Different codings are possible, but usually a group generate

� � �

:

� and
a group propagate

� ��

:

� signal is used forming the generate/propagate signal
pair

� ��

:

� � � � � �

:

� �
� ��

:

�
�

at level

�

. The initial prefix signal pairs

� �0�

:

� �
�0�

:

� �

corresponding to the bit generate � � and bit propagate � � signals have to be
computed from the addition input operands in a preprocessing step (Eq. (3.27)),
also denoted by the operator �. According to Eq. 3.16, the prefix signal pairs
of level

�

are then calculated from the signals of level

�

� 1 by an arbitrary
prefix algorithm using the binary operation

� � � �

:

� �
� ��

:

�
� � � � � �1�

:

�� � � �1�

:

�� �
� � � �1 �

:

� �
� � �1 �

:

�
�

� � � � �1�

:

� � � � �1�

:

� � � �1 �

:

� �
� � �1�

:

� � � �1 �

:

�
�

(3.26)

The generate/propagate signals from the last prefix stage

� � ��

:0 �
� ��

:0

�

are used
to compute carry signals � � . The sum bits � � are finally obtained from a
postprocessing step (Eq. (3.29)), represented by the operator �.

Combining Equations 3.16 and 3.26 yields the following generate-propa-
gate-based (Fig. 3.4d) addition prefix problem formalism:

� � � � � � �

� � � � � � � � ;

� � 0 � 1 � � � � � � � 1 (3.27)

� �0�

:

� �
�0�

:

� � � � � � � � � �

� � � �

:

� �
� ��

:

�
� � � � � �1�

:

� � � � �1�

:

� � � �1 �

:

� �
� � �1�

:

� � � �1 �
:

�
�

�

� � � � �

;

� � 1 � 2 � � � � � �
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Figure 3.27: Sklansky parallel-prefix algorithm with fast carry processing.

� � �

1

� � ��

:0

� � ��
:0

� � � ;

� � 0 � 1 � � � � � � � 1 (3.28)

� � � � � � � � ;

� � 0 � 1 � � � � � � � 1

where �

0

� � � �

� � 	 � � � � (3.29)

Note that an additional level of � operators is added to the prefix graph
for accommodating the input carry � � � . This comes at the cost of some
hardware overhead but allows fast processing of the carry-in. As an example,
Figure 3.27 shows the Sklansky parallel-prefix graph with the additional input
carry processing level. As an alternative, the carry-in can be incorporated
at bit position 0 using a special 3-input �-operator (Eq. (3.30)), leaving the
original parallel-prefix graph unchanged (i.e., no additional �-level is required,
see Eq. (3.31)). This solution comes with negligible carry processing logic but
has comparable signal delays on the carry-in and the summand inputs.

�

0

� �

0

�

0

� �

0

� � �

� �

0

� � �

� � � � � � � ;

� � 1 � 2 � � � � � � � 1
... (3.30)

...

� � �

1

� � ��

:0 ;

� � 0 � 1 � � � � � � � 1 (3.31)

In the graph representation of the prefix addition algorithm, an extra row has to
be attached for the preprocessing operator � as well as for the postprocessing
operator �.
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Figure 3.28 shows the graph of a general prefix addition algorithm, where
any prefix structure can be used for the central carry-propagation unit. Note
that the bit propagate signals � � have to be routed through the prefix structure
because they are reused in the final step for sum bit calculation. Also notice
the left-shift of the carry signals � � by one bit position before the final stage
for magnitude adjustment. Two possibilities exist for processing of the carry-
in: a slow one (Fig. 3.28b) and a fast one (Fig. 3.28a) which requires one
more prefix level. Note that the propagate signals

� ��

:0 computed in the last
prefix level are no longer required, if Eqs. (3.30) and (3.31) are implemented.
Therefore, the AND-gate of the bottommost �-operator of each bit position for
computing

� ��

:0 can be saved.

Carry-select scheme

An alternative formulation of the addition prefix problem is based on the carry-
select scheme (see Fig. 3.4f). Here, the prefix variable

� ��

:

� is encoded by the
two possible carry signals

�

0

�
�

:

� (assuming � � � � 0) and

�

1

�
�

:

� (assuming

� � � � 1).

�0� � � � � �

�1� � � � � � �

� � � � � � � � ;

� � 0 � 1 � � � � � � � 1 (3.32)
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1

�

1

� �1 �

:

�
�

�

� � � � �

;

� � 1 � 2 � � � � � �

� � �

1

� �

0

��

:0

� � �

� �

1

��

:0

� � � ;

� � 0 � 1 � � � � � � � 1(3.33)
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Figure 3.28: General prefix addition algorithm with (a) fast and (b) slow input
carry processing.

� � � � � � � � ;

� � 0 � 1 � � � � � � � 1

where �

0

� � � �

� � 	 � � � � (3.34)

Basically, the generate-propagate and carry-select schemes are equivalent,
and the same prefix algorithms can be used. The carry-select scheme, however,
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plays only a minor role in cell-based design technologies because its black
nodes are composed of two multiplexers instead of the more efficient AND-
OR/AND combination used in the generate-propagate scheme.

3.6 Basic Addition Speed-Up Techniques

Carry-propagate adders using the simple ripple-carry algorithm are far too
slow for most applications. Several addition speed-up techniques exist, which
reduce the computation time by introducing some degree of parallelism at the
expense of additional hardware. The underlying principles are summarized in
this section.

A carry-propagate adder (CPA) calculates the sum of two input operands
while a partial CPA adds up only a portion of the operand bits, denoted by � �

:

�

and

� �

:

� (Fig. 3.29).
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Figure 3.29: Symbols for (a) CPA and (b) partial CPA.

First of all, we have to distinguish between the four main input-to-output
signal propagation paths in a CPA (Fig. 3.30). Depending on the application,
various combinations of signal path timing requirements can arise:

Critical paths: None In low-speed applications, all signal paths in a CPA are
non-critical.

Critical paths: All In applications where signal arrival times at all inputs are
equal and all outputs of the CPA are expected to be ready at the same
time (e.g., when the CPA is the only combinational block between two
registers or when the surrounding logic has balanced signal delays), all
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Figure 3.30: Main signal paths in a CPA.

signal paths within the CPA are subject to the same timing constraints
and thus are equally critical.

Critical paths: 2) + 4) Various applications ask for a fast carry-out because
this signal controls some subsequent logic network, like e.g. the carry
flag in ALUs.

Critical paths: 3) + 4) Other applications require fast input carry propagation
due to a late carry-in signal provided to the CPA. Some of the addition
speed-up techniques introduced in this chapter will rely on that fast
carry-in processing property.

Critical paths: 4) Finally, fast carry-in to carry-out propagation is sometimes
required. Partial CPAs with late carry-in and fast carry-out properties
can again be used for speeding up larger CPAs.

Critical paths: Individual bits In the above cases all bits of the operand and
sum vectors were assumed to have equal arrival times. In some appli-
cations, however, individual bits arrive at different times, resulting in
substantially differing critical paths and more complex timing require-
ments (e.g., final adder of multipliers). Adders with non-equal input
signal arrival profiles will be treated in Section 5.4.

The basic schemes for constructing and speeding up carry-propagate adders
can be divided into bit-level and block-level schemes.
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3.6.1 Bit-Level or Direct CPA Schemes

Adders using direct CPA schemes implement the logic equations of binary
addition at the bit-level as they are (Eqs. 3.27–3.29). Accordingly, they are
built from bit-slices containing the operators �, �, and � where some prefix
algorithm is used for carry propagation. These adders form the elementary
addition structures found in all adder architectures.

Ripple-carry or serial-prefix scheme

The ripple-carry addition scheme uses the serial-prefix algorithm for carry
propagation (Fig. 3.31a).

Properties:

� Minimal combinational adder structure, minimal hardware costs (

� � � � ).

� Slowest adder structure (

� � � � ).

� Used as basic partial CPA in other adder structures.

Carry-lookahead or parallel-prefix scheme

A parallel-prefix algorithm can be used for faster carry propagation (Fig. 3.31b).
It results in the parallel-prefix or carry-lookahead addition scheme, since all
carries are precomputed (i.e., “looked ahead”) for final calculation of the sum
bits.

In the traditional carry-lookahead adders [Kor93], the carries of 4-bit
groups are computed in parallel according to the following equations:

� � �

1

� � � � � � � �

� � �

2

� � � �

1

� � � � � �

1

� � � � � � � �

1
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3

� � � �

2

� � � �

1
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2

� � � � � �

1

� � �

2
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2

� � �
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3

� � � �
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� � �
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� � � �

1

� � �

2

� � �

3

� � � � � �

1

� � �

2

� � �

3

� � � � � � � �

1

� � �

2

� � �

3 (3.35)

Several of these 4-bit structures can be arranged linearly or hierarchically in
order to realize carry-lookahead structures for larger word lengths. This carry-
lookahead structure is basically one variant of the parallel-prefix scheme.
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Properties:

� Increased hardware costs (

� � � log � � ).

� Speed-up on all signal paths (

� �

log � � ).

� Trade-off between speed-up and hardware overhead exists by using
different prefix algorithms.
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Figure 3.31: (a) Ripple-carry and (b) carry-lookahead addition schemes at
the bit-level.

3.6.2 Block-Level or Compound CPA Schemes

The other class of addition schemes bases on speeding up carry propagation of
existing partial CPAs and combining several of them to form faster and larger
adders. Therefore, these adders are compounded from one or more CPAs and
some additional logic. They work at the block-level because bits are always
processed in groups (or blocks) by the contained CPAs. A distinction between
concatenation and speed-up schemes can be made: the former is used to build
larger adders from smaller ones (i.e., concatenation of several bit groups),
while the latter speeds up the processing of a fixed group of bits.



60 3 Basic Addition Principles and Structures

Ripple-carry scheme

The ripple-carry scheme at the block-level is the basic concatenation scheme
for constructing larger CPAs from arbitrary smaller CPAs. This is done by
concatenating CPAs in series so that a carry ripples through the sequence of
partial CPAs (Fig. 3.32a).

Properties:

� Concatenation of CPAs.

Carry-skip scheme

Carry computation for a single bit position, � � �

1

� � � � � � � � � (Eq. (3.12)),
can be reformulated for a whole CPA (i.e., group of bits),

� � �

1

� � �

:

� � � � �

1

� � �

:

� � � (3.36)

where

� �

:

� denotes the group propagate of the CPA and acts as select signal in
this multiplexer structure. � � is the carry-out of the partial CPA (see Fig. 3.32b).
Two cases can now be distinguished:

� �

:

� � 0 : The carry � � � �

1 is generated within the CPA and selected by the mul-
tiplexer as carry-out � � �

1. The carry-in � � does not propagate through
the CPA to the carry-out � � �

1.

� �

:

� � 1 : The carry-in � � propagates through the CPA to � � � �

1 but is not
selected by the multiplexer. It skips the CPA and is directly selected as
carry-out � � �

1 instead. Thus, the combinational path from the carry-in
to the carry-out through the CPA is never activated.

In other words, the slow carry-chain path from the carry-in to the carry-out
through the CPA is broken by either the CPA itself or the multiplexer. The
resulting carry-skip addition block therefore is a CPA with small and constant

�

CPA

� � � � � � �

1

�

, i.e., it can be used for speeding up carry propagation. It
is composed from an arbitrary CPA with group propagate output and a 2-to-1
multiplexer (Fig. 3.32b).

In the literature, an OR-gate is often used instead of the multiplexer (e.g.,
[Kor93]). This, however, speeds up only 0-to-1 transitions on the carry path;
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Figure 3.32: (a) Ripple-carry, (b) redundant and (c) irredundant carry-skip,
(d) carry-select, and (e) carry-incrementaddition schemes at the
block-level.
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for 1-to-0 transitions the adder works as ripple-carry adder. Applications are
limited to implementations using precharging (e.g., dynamic logic).

Note that the multiplexer in this circuit is logically redundant, i.e., the
signals � � � �

1 and � � �

1 are logically equivalent and differ only in signal delays.
The carry-in � � has a reconvergent fan-out. This inherent logic redundancy
results in a false longest path (i.e., combinational signal path that is never
sensitized) which leads from the carry-in through the CPA to the carry-out. This
poses a problem in automatic logic optimization and static timing analysis. Due
to computation complexity of these tools, the logic state of a circuit and thus
path sensitization usually is not considered [C

�

94, MB89]. Also, testability is
concerned, since a non-working skip mechanism can not be logically detected
(redundant faults). An additional detection capability is therefore required.
These faults are also called delay faults, because they only affect circuit delay,
but not logic behavior). Redundancy removal techniques exist which base on
duplication of the carry-chain in the CPA: one carry-chain computes the carry-
out � � � �

1 without a carry-in, while the other takes the carry-in for calculation of
the sum bits [KMS91, SBSV94]. Figure 3.32c shows the basic principle where
the reconvergent fan-out of � � is eliminated. Note that not the entire CPA but
only the carry-propagation chain has to be duplicated (i.e., the logic of the
two CPAs can be merged to a certain degree) which, however, still signifies a
considerable amount of additional logic compared to the redundant carry-skip
scheme.

Properties:

� Constant signal delay

�

CPA

� � � � � � �

1

�

.

� Inherent logic redundancy.

� Small hardware overhead: group propagate logic and single multiplexer.

� Medium hardware overhead for irredundant version: double carry-
chain.

Carry-select scheme

The basic problem faced in speeding up carry propagation is the fast processing
of a late carry input. Since this carry-in can have only two values (0 and 1), the
two possible addition results ( �0�

:

� , �0� �

1 resp. �1�

:

� , �1� �

1) can be precomputed
and selected afterwards by the late carry-in � � using small and constant time:

� �

:

� � � � �0�

:

� � � � �1�

:

� (3.37)
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� � �

1

� � � �0� �

1

� � � �1� �

1 (3.38)

The resulting carry-select addition scheme requires two CPAs — one with

� � � 0 and the other with � � � 1 — and a 2-to-1 multiplexer for each sum bit
and the carry-out (Fig. 3.32d).

Properties:

� Constant signal delays

�

CPA

� � � � � � �

1

�

and
�

CPA

� � � � � �

:

� � .

� High hardware overhead: double CPA and multiplexers.

Carry-increment scheme

In the carry-increment addition scheme only the result with carry-in 0 is
precomputed ( � � �

:

� ) and incremented by 1 afterwards, if � � � 1. The carry-out

� � �

1 is calculated from the CPA’s carry-out � � � �

1 and group propagate

� �

:

�

using the �-operator of binary addition (Fig. 3.32e):

� �

:

� � � � �

:

� � � � (3.39)

� � �

1

� � �

:

� � � �

:

� � �

� � � � �

1

� � �

:

� � � (3.40)

where � � � �

1

� � �

:

� since the carry-in to the CPA is 0. The required incrementer
circuit provides constant-time carry propagation and is much cheaper than the
additional CPA and selection circuitry used in the carry-select scheme. Also,
the logic of the CPA and the incrementer can be merged to some extent (see
Sec. 4.1.5).

Properties:

� Constant signal delays

�

CPA

� � � � � � �

1

�

and

�

CPA

� � � � � �

:

� � .

� Medium hardware overhead: incrementer, group propagate logic, and

�-operator of Eq. 3.26.

3.6.3 Composition of Schemes

The direct and compound addition schemes presented above can now be com-
posed arbitrarily in order to realize larger and faster adders. Note that each
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scheme results in a generic CPA which again can be used in compound addition
schemes, allowing for linear and hierarchical compositions.

Table 3.1 gives an overview of the basic addition speed-up schemes and
their characteristics. The block-level ripple-carry scheme is the natural (and
only) way to compose larger adders from partial CPAs by propagating the
carry from the lower to the upper bit group (concatenation scheme). All
compound speed-up schemes (skip, select, and increment) only provide prop-
agation speed-ups on signal paths starting at the carry input. They can be used
either for adder applications with late carry-in requirements or, by appropriate
combination, for realization of fast CPAs. The carry-lookahead scheme is the
only addition scheme which provides a speed-up on all signal path without
relying on the composition of different schemes (i.e., direct speed-up scheme).

Table 3.1: Speed-up characteristics of addition schemes.

speed-up paths ripple skip select increment look-ahead

�

CPA

� � �
 � � 	 
 �
� � � � �

�

CPA

� � �
 � � � � � � �

�

CPA

�� � �
� � � �	 
 �
� �

�

CPA

�� � �
� � � � � � �

Linear compositions

CPAs can be arranged linearly by repeated application of the concatenation
scheme. Put differently, input operands can be divided into bit groups which are
processed by serially concatenated partial CPAs. The ripple-carry nature of the
concatenation scheme leads to late carry-in signals at high order CPA, which
can be compensated by making use of the fast carry processing properties
of the compound speed-up schemes. This is why linear arrangements of
compound addition schemes, which by themselves only speed-up propagation
of the carry-in, allow the construction of adders with speed-up on all signal
paths.

As an example, Figure 3.33a shows the adder structure resulting from
composition of the carry-increment and the concatenation scheme. Note the
speed-up on the critical carry path by the fast carry processing of the second
carry-increment CPA.
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Hierarchical compositions

Hierarchical compositions are possible by repeated application of concate-
nation and speed-up schemes. The resulting structures make use of arbitrary
speed-up schemes at arbitrary hierarchy levels in order to achieve further speed
improvement. Figure 3.33b depicts an adder structure resulting from applica-
tion of the carry-increment, the concatenation, and again the carry-increment
scheme. Note that in the hierarchical version the input carry is processed faster
than in the linear one.

Pure and mixed composition

Pure compositions are linear or hierarchical compositions which make use
of only one speed-up scheme. Mixed compositions try to take advantage
of different speed-up schemes by combining them. Some compromise with
respect to area and speed can be achieved by mixing slow and area-efficient
schemes with fast but area-intensive ones.

Circuit simplifications

Each speed-up scheme requires some additional circuitry, which often can be
combined with the existing CPA logic. Especially hierarchical compositions
allow for massive circuit simplifications in many cases.

Group sizes

Depending on the position of individual bit groups within an adder, partial
CPAs may have different arrival times of carry-in and carry-out signals. This
leads to varying computation times for the individual partial CPAs and thus
to different group sizes. In compound speed-up schemes, groups at higher bit
positions are typically made larger in order to take full advantage of the late
carry-in signals. Optimal group sizes are determined by equalizing all signal
paths or, in other words, by maximizing all groups with the restriction of a
given overall adder delay.
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Figure 3.33: (a) Linear and (b) hierarchical composition of carry-increment
schemes.

4
Adder Architectures

This chapter discusses — based on the structures and schemes introduced in
the previous chapter — the various circuit architectures that exist for binary
addition. Their complexities and performance are compared with focus on
cell-based design techniques.

4.1 Anthology of Adder Architectures

The efficient implementation of adder circuits does not only rely on optimal
composition of speed-up schemes but also includes potential circuit simpli-
fications and optimizations. This leads us to the various adder architectures
described in this chapter.

The circuit structure of every architecture will be given by the set of logic
equations for the composing bit slices. Maximum adder and group sizes for
a given adder delay are summarized in a table. Finally, exact time and area
complexities are given for each architecture based on the unit-gate model.

4.1.1 Ripple-Carry Adder (RCA)

The ripple-carry adder (RCA) has already been introduced as the basic and
simplest carry-propagate adder in the previous chapter. It is composed of a

67
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series of full-adders (fa), where the initial full-adder (ifa) may use a majority-
gate for fast carry computation. The corresponding logic equations, adder
sizes, and complexity measures are given below. The table for the adder sizes
gives the maximum number of bits � that can be computed within the given
delay

�

.

Logic equations:

ifa �

1

� �

0

�

0

� �

0

�

0

� �

0

�

0

� � 9�

0

� �

0

� �

0

� �

0

fa � � � � � � � � � 7

� � � � � � � �

� � �

1

� � � � � � � �� � � � � � � �

Adder sizes vs. time:

�

4 4 8 16 32 64 128 256 512

� 1 2 4 8 16 32 64 128 256

Complexity:

�

RCA

� 2 �

�

RCA

� 7 � �

2

4.1.2 Carry-Skip Adder (CSKA)

Composition of the concatenation scheme and the carry-skip scheme yields
the carry-skip adder (CSKA).

1-level redundant carry-skip adder (CSKA-1L)

The 1-level carry-skip adder (CSKA-1L) is composed of a series of skipping
groups (or blocks) and an initial full-adder (ifa) at the LSB (see Fig. 3.32b).
Each skipping group consists of a series of full-adders (bfa) with additional
group propagate signal generation (

� � ), an initial full-adder (bifa) at the group
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LSB, and a final carry-generator (bcg) at the group MSB. � � � and � � � denote
the carry-out of the previous and the current (i.e., “this”) block, respectively.

Highest speed is achieved by sizing the bit groups individually. Because the
skipping scheme only speeds up

�

CPA

� � � � � � � but not

�

CPA
� � � � � � � , carry

generation starts and carry redistribution ends in slow ripple-carry blocks.
Therefore, groups at the lower and upper end are smaller while groups in
the middle can be made larger. Since the delay through a full-adder equals
the delay of a multiplexer under the unit-gate model asumption, neighboring
groups differ in size by one bit.

�

is the size of the largest group.

Logic equations:

ifa � � � � �
0

�
0

� �

0

�

0

� �

0

�

0

� � 9�
0

� �
0

� �

0

� �

0

bifa � � � � � � � � � � 9
� � � � �

� � �

1

� � � � � � � � � � � � � � � � �� � � � � � � � �

bfa � � � � � � � � � 8

� � � � � � � �

� � � � � � � �1

� � �

1

� � � � � � � �� � � � � � � �

bcg � � � � � � � � �

1

� � � � � �

� � 3

Adder and group sizes vs. time:

�

4 4 8 10 12 14 16 18 20 22 24 26 28 30 32 � � � 46

�

2 2 3 3 4 4 5 5 6 6 7 7 8 � � � 11

� 1 2 5 7 10 13 17 21 26 31 37 43 50 57 65 � � � 133

Complexity:

�

CSKA �1L

� 4

�

�

CSKA �1L

� 8 � �

6

�

� 6

� � � �
� � 1

�
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1-level irredundant carry-skip adder (CSKA-1L’)

The inherent logic redundancy of the carry-skip adder can be removed. This
leads to the 1-level irredundant carry-skip adder (CSKA-1L’) [KMS91, SBSV94].
The basic bit-slice counts two unit-gates more than the conventional carry-skip
adder.

Logic equations:

ifa � � � � �

0

�

0

� �

0

�

0

� �

0

�

0

� � 9�

0

� �

0

� �

0

� �

0

bifa � � � � � � � � � � 9

� � � � �

� � �

1

� � � � � � � � � � � � � � � � �

� � � �

1

� � � � �� � � � � � � � �

bfa � � � � � � � � � 8

� � � � � � � �

� � � � � � � �1

� � �

1

� � � � � � � �

� � � �

1

� � � � � � � � �� � � � � � � �

bcg � � � � � � � � � �

1

� � � � � �

� � 3

Adder and group sizes vs. time:

�

4 4 8 10 12 14 16 18 20 22 24 26 28 30 32 � � � 46

�

2 2 3 3 4 4 5 5 6 6 7 7 8 � � � 11

� 1 2 5 7 10 13 17 21 26 31 37 43 50 57 65 � � � 133

Complexity:

�

CSKA �1L

� 4

�

�

CSKA �1L

� 10 � � 8

�

� 6

� � � �
� � 1

�
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2-level carry-skip adder (CSKA-2L)

Hierarchical application of the carry-skip scheme results in multilevel carry-
skip adders. The 2-level carry-skip adder (CSKA-2L) contains a series of
second-level blocks which are composed from the initial full-adder (bifa2),
the final carry-generator (bcg2) and an intermediate series of first-level blocks
(bifa1 + bfa1 + bcg1). Each level has its own carry and group propagate signal
( � � � � ,

� �� �).

Optimal block sizes become highly irregular for multilevel carry-skip
adders and cannot be expressed by exact formulae. This problem was inten-
sively addressed in the literature [Hob95, Kan93, CSTO91, Tur89, GHM87].

Logic equations:

ifa �2� � � �

0

�

0

� �

0

�

0

� �

0

�

0

� � 9�
0

� �

0

� �

0

� �

0

bifa2 � � � � � � � � � � 9

�2� � � � �

�1� � � � � � � � � � �2

� �

� � � �2

� �� � � � � � �2

� �

bifa1 � � � � � � � � � � 9

�1� � � �

� � �

1

� � � � � � � � �1

� �

� � � �1

� �� � � � � � �1

� �

bfa1 � � � � � � � � � 8

� � � � � � � �

�1� � � � �1� �1

� � �

1

� � � � � � � �� � � � � � � �

bcg1 �2� � � �1� �2

� �

� � 4

�1� � � �1� � � �

1

� �1� �1

� �

bcg2 �2� � � �2� � �1� �

� �2� � �2

� �

� � 3

Adder sizes vs. time:

�

10 12 14 16 18 20 24 28 30 32

� 7 11 15 22 29 41 67 103 121 152
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Complexity:

�

CSKA �2L

� � � � 1
3

�

�

CSKA �2L

� 8 � � � � � 13

�

4.1.3 Carry-Select Adder (CSLA)

A carry-select adder (CSLA) is the composition of the concatenation and the
selection scheme. Each bit position includes the generation of two sum ( �0� � �1� )
and carry bits ( �0� � �1� ) and the selection multiplexers for the correct sum bit.
The correct carry bit is selected at the end of a block (bcg).

Because the signal paths

�

CPA

� � � � � � � as well as

�

CPA

� � � � � � � are
sped up by the selection scheme, groups can be made larger towards the MSB.

Logic equations:

ifa � � � � �

0

�

0

� �

0

�

0

� �

0

�

0

� � 9�

0

� �

0

� �

0

� �

0

biha � � � � � � � � � 7

� � � � � � � �

�0� �

1

� � �

�1� �

1

� � � � � ��0� � � ��1� � � �� � � � � � �0� � � � � �1�

bfa � � � � � � � � � 14

� � � � � � � �

�0� �

1

� � � � � � �0�

�1� �

1

� � � � � � �1��0� � � � � �0��1� � � � � �1�� � � � � � �0� � � � � �1�

bcg � � � � �0� �

1

� � � � �1� �

1

� � 2
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Adder and group sizes vs. time:

�

4 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

�

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

� 1 2 4 7 11 16 22 29 37 46 56 67 79 92 106 121 139

Complexity:

�

CSLA

� 2

� �

2

�

CSLA

� 14 � � 5

�

� 5

� � � 1
2

�

8 � � 7 � 1
2

�

4.1.4 Conditional-Sum Adder (COSA)

Also for the carry-select adder, multiple application of the selection scheme
is possible. Because the selection scheme rests on duplication of the partial
CPA, the hardware overhead in multilevel structures becomes prohibitively
large due to the repeated CPA duplication. However, since both results (i.e.,
carry-in 0 and 1) are available at each level, only the multiplexers (rather than
the entire CPA) have to be duplicated in order to get an additional selection
level (Fig. 4.1).

A carry-select adder with a maximum number of levels ( � log �) and using
the above simplification scheme is called conditional-sum adder (COSA).
Group sizes start with one bit at the lowest level and are doubled at each
additional level. Figure 4.2 depicts the circuit structure of a conditional-sum
adder.

The logic formulae are organized in levels instead of bit groups. In the
first level (csg), both possible carry and sum bits are generated for each bit
position ( �0 �0� , �1 �0� , �0 �0� , �1 �0� ). The following levels select new carry and sum
bit pairs ( �0 �

�
� , �1 �

�
� , �0 �

�
� , �1 �

�
� ) for increasingly larger bit groups (ssl, csl). The

last level performs final carry and sum bit selection (fssl, fcsl).



74 4 Adder Architectures

cosasimpl.epsi
108 � 86 mm

0 1

FA

FA

0

1

0 1 0 1

si

0 1

FA

FA

0

1

ai bi

0 1

c i
0,l c i

1,l

0 1 0 1

c i
0,l+1

ci+1

FA

FA

0

1

ai bi

c i
1,l

0 10 1

c i
0,l+1

0 1

c i
0,l

sici+1

≡
0 1

0 1 0 1

Figure 4.1: Multilevel carry-select simplifications.

Logic equations:

csg �0 �0� �
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� � � � � � � 6
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Figure 4.2: Conditional-sum adder structure.

Adder sizes and number of levels vs. time:

�

4 4 6 8 10 12 14 16 18

� 1 2 3 4 5 6 7 8

� 1 2 4 8 16 32 64 128 256

Complexity:

�

COSA

� 2 log � �

2

�

COSA

� 3 � log � �

7 � � 2 log � � 7

4.1.5 Carry-Increment Adder (CIA)

The carry-increment adder (CIA) results from combining the concatenation
scheme with the incrementation scheme. Repeated application of the incre-
mentation scheme yields multilevel carry-increment adders. However, simple
attachment of an incrementer circuit to the partial CPA does not result in a very
efficient circuit structure. Although an incrementer can provide constant delay
from the carry-in to the outputs, carry-propagation has to be performed for
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Figure 4.3: (a), (b) Carry-select and (c) carry-increment adder cells.

all input operand bits, which can be done only with

� �

log � � . Therefore, the
adder delays

�

CPA

�� �
� � � � and

�

CPA

�� �
� � � � 	 �
�

are increased massively
due to double carry-propagation.

However, the logic of the adder and the incrementer can be combined so
that only a single carry has to be propagated. This circuit structure was first
presented by Tyagi [Tya93]. A comprehensive description of its derivation
from a carry-select adder structure is given in this section [ZK].

Multilevel carry-increment structures allow for even further optimizations,
resulting in one of the most efficient gate-level adder architectures. As will be-
come clear soon, the carry-increment structures correspond to the group-prefix
algorithms using the generate-propagate scheme presented in Section 3.5.

1-level carry-increment adder (CIA-1L)

In his reduced-area scheme for carry-select adders [Tya93], Tyagi shows how
the two ripple-chains for both possible block-carry-in values in a typical carry-
select adder can be replaced by one ripple-chain and some additional increment
logic. Let us start with the logic equations of a carry-select adder bit-slice
(Fig. 4.3a) with a gate count of 14:
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Table 4.1: Signal descriptions.

signal description

� � ,

� � , � � �

th primary adder input/output bit

� �
 , �	 
 � , � � carry-in, carry-out,

�

th carry bit

�0� , �1� , �0� , �1� �

th carry/sum bits for block-carry-in = 0/1

� � , � � �

th generate/propagate bit

�� � , �1� � , �2� � carry-out of previous (level-1/2) block

� � � , �1� � , �2� � carry-out of this (level-1/2) block

� � ,

�1� ,

�2� (level-1/2) block propagate up to

�

th bit

�
� � ,

�1� � ,

�2� � propagate of previous (level-1/2) block

� � � ,

�1� � ,

�2� � propagate of this (level-1/2) block

� � � � � � � � � � � � � � � �

�0� �

1
� � � � � � �0� � �1� �

1

� � � � � � �1�

�0� � � � � �0� � �1� � � � � �1� � � � � � � � �0� � � � � �1� (4.1)

where �0� � �1� � denotes the carry at the

�

th bit position with block-carry-in 0(1)
and � � � is the carry output of the previous block. Table 4.1 gives a summary
of all signal names used and their meanings.

In a first step, the order of the XOR and multiplexer operation for the
sum bit computation can be reversed, resulting in � � �

1

� � � � �0� � � � � �1� and� � � � � � � � . Since �1� � �0� � �1� holds for the two carries (i.e., �0� � 1 �

�1� � 1), the first equation can be reduced to � � � �0� � � � � �1� . Thus, the
simplified carry-select adder bit-slice (Fig. 4.3b) counts 11 gates and computes

� � � � � � � � � � � � � � � �

�0� �

1

� � � � � � �0� � �1� �

1

� � � � � � �1�

� � � �0� � � � � �1� � � � � � � � � � (4.2)

The following transformations show that �1� �

1

� � � � � � �1� can be reduced
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to �1

�

� �

1

� � � �1� :

� � �

1

� �0� �

1

� � � � �1� �

1

� � � � � � �0� � � � �
� � � � � � �1� �

� � � � � � �0� � � � � � � � � � � � � �1�

� � � � � � �0� � � � � � � �1�

� �0� �

1

� � � � �1

�

� �

1 (4.3)

Here, �1

�

� �

1 becomes a block propagate for bit positions

�

through

�

and is
renamed

� � (

�

is the first bit of the block and

� � �1 � 1). Also, the principle
of sum bit selection has changed to an incrementer structure, where each sum
bit is toggled depending on the carry of the previous bit position, the carry of
the previous block, and the actual block propagate. Therefore this adder type
is referred to as 1-level carry-increment adder. Its basic full-adder bit-slice
counts 10 gates and contains the following logic (Fig. 4.3c):

� � � � � � � � � � � � � � � � �
� � � � � � � �1

�0� �

1

� � � � � � �0� � � � �

1

� �0� �

1

� � � � � � � � � � � � � � � (4.4)

The carry-out � � �

1 of the last slice in a block is the block-carry-out � � � . The
AND-OR gates determining � � �

1 have now been rearranged (i.e., moved into
the previous slice) in order to get a more regular block structure (see Fig. 4.4).
Note that the delay from � � � to � � increased while the delay from �0� to � �

decreased compared with the original carry-select cell (Fig. 4.3a), which,
however, has no effect on block sizes or overall addition speed.

The entire adder structure is depicted in Figure 4.4 and implements the
variable-group, 1-level group-prefix algorithm from Figure 3.24. As demon-
strated, only three logically different slices are required, and their arrangement
is linear and straightforward. The unit-gate delay model used yields the opti-
mal block and maximum adder sizes given below.

As an example, an adder with 24 gate delays can have a maximum of 67
bits with block sizes of 2, 3, ..., 11. Note that each block counts one more bit
than its predecessor (same as in Tyagi [Tya93]), and that each additional block
adds two gate delays to the adder. The carry computation in the first slice can
be sped up using a fast majority gate (i.e., �

0

� �

0

�

0

� �

0

� � �

� �

0

� � �) which
is counted here as two gate delays.

Note also that the block-carry � � � is only connected to one gate instead
of two gates in the carry-select adder cell (Fig. 4.3). Since this is the only
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signal with unbounded fan-out within the carry-increment adder, the maximum
fan-out is cut in half compared to a carry-select adder.

Logic equations:

ifa � � � � �
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� �
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�

4 4 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36

�

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

� 1 4 7 11 16 22 29 37 46 56 67 79 92 106 121 137 154

Complexity:

�

CIA �1L

� 2

� �

2

�

CIA �1L

� 10 � �

� �

2

� � �1
2

�

8 � � 7 �

1
2

� � � �

2 � �



80 4 Adder Architectures

incblock.epsi
86 � 92 mm

bfa bfa bfa biha cib

cib cib cib ifa cia

cpb

cin

ctb

cout

le
v
e

l 
0

le
v
e

l 
1

Figure 4.4: 1-level carry-increment adder structure.

2-level carry-increment adder (CIA-2L)

For further speed improvement, Tyagi proposes a select-prefix adder scheme
where the ripple-carry blocks of his carry-select adder are replaced by parallel-
prefix blocks. The resulting delay reduction is considerable, but at the expense
of a massively increased area occupation.

The basic idea of the new adder scheme to be introduced in this thesis is
to exchange the ripple-carry blocks of the carry-increment adder by a second
level of carry-increment adders. This section shows how the two levels of
increment logic can be merged in a structure which makes use of the same
basic full-adder cell as the 1-level adder. The resulting 2-level carry-increment
adder will have nearly the same size as the 1-level version. Yet, the size of the
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largest ripple-carry block and thus the delay grows only with

� � �1

�

3

�

instead
of

� � �1

�

2 �

, which substantially increases speed for medium and large word
lengths.

Let us now derive the structure and the bit-slice logic of the 2-level carry-
increment adder (see Fig. 4.6). A first-level increment block (cib1) consists
of full-adder slices with ripple-carry propagation, whereas the second-level
increment blocks (cib2) are composed of first-level blocks. Finally, the whole
adder is composed of several second-level increment blocks. Each second-
level block gets �2

� � as block-carry-in and advances its carry-out �2� � to the next
block. The inputs to a first-level block are �1

� � and �2

� � as block-carry-ins of
levels 1 and 2, and

�2

� � as propagate signal from all previous first-level blocks
within the same second-level block.

By adding the second-level increment logic to the formulae of the 1-level
carry-increment bit-slice, we obtain:

� � � � � � � � � � � � � � � �

�1� � � � �1� �1 �
�2� � � � �2� �1

�0� �
1

� � � � � � �0� � � � �

1

� �0� �

1

� �1� �1

� �

� �2� �2

� �� � � � � � � � (4.5)

Additionally, each first-level block has to compute its propagate and carry-out
signal,

�2� � � �1� �

�2

� � � �1� � � �0� �

� �1� � �1

� � (4.6)

and each second-level block its carry-out,

�2� � � �1� �

� �2� � �2

� � (4.7)

�1� � and �0� � denote

�1� and �0� of the last first-level block slice, whereas

�2� � is
used as

�2� �1 of the first slice in the next first-level block.

However, this adder slice has an increased gate count of 13 (Fig. 4.5a).
Since

�2� can be expressed by

�2� � �1� �2

� �, the following transformations are
possible:

� � �

1

� �0� �

1

� �1� �1

� �

� �2� �2

� �

� �0� �

1

� �1� �1

� �

� �1� �2

� �
�2

� �

� �0� �

1

� �1� � �1

� �

� �2

� �
�2

� �
�

� �0� �

1

� �1� � � � (4.8)
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Figure 4.5: 2-level increment adder cell with (a) 13 and (b) 10 gates.

where � � � � �1

� �

� �2

� �
�2

� � is constant within each first-level increment block
and can be precomputed once (Fig. 4.5b right). Thus, the simplified full-adder
bit-slice has again the same structure as the 1-level adder slice with a gate
count of 10 (Fig. 4.5b left part):

� � � � � � � � � � � � � � � � �
�1� � � � �1� �1

�0� �

1

� � � � � � �0� � � � �

1

� �0� �

1

� �1� � � � � � � � � � � � � (4.9)

Furthermore, every first-level block has to compute

�2� � � �1

� �

�2

� �

�1� � � �0� �

� �1� � �1

� � � � � � � �1� �

� �2� � �2

� �

(4.10)

once, while the block-carry-out �2� � of a second-level block corresponds to the
carry-out � � � of its last first-level block.

The resulting 2-level carry-increment adder structure is depicted in Fig-
ure 4.6. It is interesting to note that it exactly implements the variable-group,
2-level, optimized group-prefix algorithm of Figure 3.26. By omitting the sim-
plification of Figure 4.5 an adder structure equivalent to the variable-group,
2-level group-prefix algorithm of Figure 3.25 is obtained. As can be seen, all
the gates needed can be arranged such that every bit-slice contains the same 10
gates, with the exception of some smaller slices. However, some slices differ
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in routing, and one additional small slice is required for the final carry-out gen-
eration, thus resulting in 6 logically different slices. The linear arrangement
of the slices is again straightforward and thus perfectly suited for tiled-layout
and automated layout generation as well as for standard cells.

The block size computation for the 2-level carry-increment adder is still
quite simple and can be expressed by exact formulae. With respect to block
sizes, note again that each first-level block counts one more bit than its prede-
cessor, and that each second-level block counts one more first-level block than
its predecessor. Thus an increase of the overall delay by two gates allows the
adder to be expanded by an additional (larger) second-level block.

As was demonstrated, the 2-level carry-increment adder consists of the
same basic cell as the 1-level version and has only slightly larger cells at the
beginning of each increment block. Thus the massive speed improvement by
the second increment level comes at negligible additional area costs.

Adder and group sizes vs. time:

�

4 6 10 12 14 16 18 20 22 24 26 28

�
1 2 3 4 5 6 7 8 9 10 11

�

2 2 4 7 11 16 22 29 37 46 56 67
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Multilevel carry-increment adders

Carry-increment adders with more than two increment levels are built by
applying the same scheme as for the 2-level adder repeatedly. The example
of a 3-level carry-increment adder shows that the gate count increase remains
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Figure 4.6: 2-level carry-increment adder structure.
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small, whereas a gate-delay reduction is achieved only for adder sizes larger
than 64 bits. This holds true for a larger number of levels as well. Also,
the circuit structure becomes more complex, and the upper limit of 10 gates
is exceeded for some bit-slices. Therefore, the 2-level carry-increment adder
seems to be the best compromise between high area-time performance and low
circuit complexity for adder sizes of up to 128 bits.

Carry-increment and parallel-prefix structures

At this point, it can be observed that the carry-increment adders again have the
same basic adder structure as the parallel-prefix or carry-lookahead adders in
that they consist of a preprocessing, carry-propagation, and a postprocessing
stage. A closer look even reveals the carry-propagation structure of an �-level
carry-increment adder to be equivalent to the �-level group-prefix algorithms
with variable groups described in Section 3.5. Thus, the carry-increment
adders belong to the family of parallel-prefix adders.

4.1.6 Parallel-Prefix / Carry-Lookahead Adders (PPA / CLA)

Parallel-prefix adders (PPA) are adders using the direct parallel-prefix scheme
for fast carry computation. They are also called carry-lookahead adders
(CLA). As mentioned in Section 3.5, different parallel-prefix algorithms exist,
resulting in a variety of adders with different performances. They all have the
initial generate and propagate signal generation (igpg, gpg) and the final sum
bit generation (sg) and differ only in the arrangement of the intermediate �

carry generation levels (cg).

Usually, binary or 2-bit architectures are used, i.e., the prefix operator
processes two bits or, in other words, block sizes of two bits are used in the
first level.
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Logic equations:
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� �
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Sklansky parallel-prefix algorithm (PPA-SK)
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Brent-Kung parallel-prefix algorithm (PPA-BK)

Adder sizes and number of levels:

�
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Complexity:

�

PPA �BK

� 4 log �

�
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� 10 � � 3 log � � 1

Kogge-Stone parallel-prefix algorithm (PPA-KS)

Adder sizes and number of levels:

�

4 6 8 10 12 14 16 18 20

� 1 2 3 4 5 6 7 8

� 1 2 4 8 16 32 64 128 256

Complexity:
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� 3 � log � � � �

8

Multi-bit parallel-prefix adders

The prefix operator for binary addition can be adapted so that it processes
several bits at a time (i.e., block sizes larger than two). The corresponding
logic becomes more complex, but the resulting prefix algorithm counts less
levels.

The standard carry-lookahead adder (CLA) described in the literature
(e.g., [Kor93]) is actually a 4-bit Brent-Kung parallel-prefix adder. Here, two
phases for carry-propagation can be distinguished: in the first phase (cg1) the
carry bits for every fourth bit position are computed. The second phase (cg2)
then calculates all the remaining carries from the carries of phase one.
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Logic equations:
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4.1.7 Hybrid Adder Architectures

The adder architectures presented up to now were clean architectures, i.e., no
mixing of different speed-up schemes was done. However, the generic nature
of most speed-up schemes allows for arbitrary combination of those. Since
every scheme comes with some different kind of additional circuitry, mixing
them up results in relatively high circuit overhead.

Hybrid adder architectures, which are mainly used in full-custom imple-
mentations of ALUs and multipliers [D

�

92, G

�

94, M

�

94, OV95, O

�

95,
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M

�

91], were marginally considered in this study. The advantages of these
architectures seem to lie in the efficient implementation of specific sub-blocks
using advanced circuit techniques, such as pass-transistor logic or dynamic
logic (e.g., Manchester-chain adders [Kor93]), which are not compatible with
cell-based technologies. Unit-gate model based investigations on various hy-
brid adder architectures from the literature have not shown any performance
advantages of such architectures. Put differently, all addition speed-up tech-
niques seem to reveal their full potential when consistently applied to as large
blocks as possible instead of mixing them up.

The most often used hybrid adder architecture uses carry-lookahead blocks
with one final carry-select stage [SP92]. Under the unit-gate delay model,
speed is exactly the same as for a pure carry-lookahead adder. The gate
count, however, is increased drastically due to the multiplexer stage, which is
expensive in cell-based technologies.

4.2 Complexity and Performance Comparisons

This section summarizes the results obtained from comparing the adder ar-
chitectures presented. Comparisons include the unit-gate models for area and
delay as well as placed and routed standard-cell implementations.

4.2.1 Adder Architectures Compared

All main adder architectures were compared for word lengths of 8, 16, 32, 64,
and 128 bits with carry input and output. The realization of the ripple-carry
adder (RCA4) is straightforward. The 1/2-level carry-skip adders (CSKA-
1L/-2L), the 1-level carry-select adders (CSLA-1L), and the 1/2/3-level carry-
increment adders (CIA-1L/-2L/-3L) were implemented using variable block
sizes. The optimal block sizes were determined by minimizing the overall
circuit delay and equalizing all parallel signal paths under the given unit-
gate delay model. Minimization was achieved by constructing adders with
maximum block sizes and numbers of bits for some given delays and cutting
them down to the required adder sizes [Tur89]. The block sizes for the carry-
select adders are the same as for the carry-increment adders which are given
in the tables of the previous sections. Irredundant carry-skip adders were not

4All adder acronyms are summarized in Table 4.3 with a short architecture description.
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implemented because no efficient circuit solutions can be expected. The same
holds true for multilevel carry-select adders.

Three types of parallel-prefix architectures were chosen: the unbounded
fan-out structure used by Sklansky [Skl60, LA94] (PPA-SK) and the bounded
fan-out prefix structures by Brent and Kung [BK82] (PPA-BK) and by Kogge
and Stone [KS73] (PPA-KS). The conditional-sum adders (COSA) use the
unbounded fan-out prefix structure by Sklansky. Finally, a carry-lookahead
adder (CLA) with 4-bit blocks was chosen as a representative of the ordinary
carry-lookahead scheme [Hwa79]. As already mentioned, this scheme corre-
sponds to PPA-BK with a blocking factor of four rather than two. For adder
sizes not being a power of four, CLA uses 2-bit blocks in the first level.

Other adder architectures were also studied but not included in the compar-
isons here because they do not provide better performance for cell-based design
techniques than the above architectures they are derived from. They include
various parallel-prefix [WT90, HC87, KOIH92], conditional-sum [LA94], and
carry-skip [GHM87, CSTO91] adders as well as some hybrid architectures
[D

�

92, G

�

94, M

�

94, OV95, O

�

95, M

�

91] which partly are not suited for
standard-cell implementation due to special circuit techniques.

4.2.2 Comparisons Based on Unit-Gate Area and Delay
Models

With respect to asymptotic time and area complexity,binary adder architectures
can be divided into four primary classes. Table 4.2 lists these classes with
their complexity measures and their associated adder schemes. � denotes the
operand word length, while

�

corresponds to the number of levels in multi-level
architectures. The first class consists of the ripple-carry adder. The second
class contains the compound adder schemes – i.e., carry-skip, carry-select
and carry-increment — with fixed number of levels and variable block sizes.
Carry-lookahead and some parallel-prefix adders form the third class while
some other parallel-prefix adders and the conditional-sum adder belong to the
fourth adder class.

Table 4.3 lists the unit-gate count, unit-gate delay, and gate-count � gate-
delay product (gc � gd-product) complexities for all investigated adder archi-
tectures as a function of the word length � (all adders with carry-in). Because
some of the exact formulae are quite complex, only their asymptotic behavior
is given by the highest exponent term. Note that PPA-BK and CLA belong to
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Table 4.2: Classification of adder architectures.

area delay AT-product adder schemes

� �
�

� � �
�

� � �
�2 �

ripple-carry

carry-skip,

� �
�

� � �
�

1 � �

1

� � �
�

� �

2� �

1

�

carry-select,

carry-increment

carry-lookahead,� �
�

� � �

log �
� � �
� log �

�
parallel-prefix

parallel-prefix,� �
� log �

� � �

log �
� � �
� log2 �

�

conditional-sum

the third class with linear gate-count complexity only if circuit size is of con-
cern (e.g., in cell-based designs). Custom layout solutions, however, usually
require

� � � log � � area because of regularity reasons (i.e., � bits � � �

log � �

prefix levels).

The exact unit-gate count and unit-gate delay numbers for all adder archi-
tectures and sizes are given in Tables 4.4 and 4.5. Table 4.6 gives their gate-
count � gate-delay products relative to the reference 2-level carry-increment
adder.

4.2.3 Comparison Based on Standard-Cell Implementa-
tions

After schematic entry, automatic timing and area minimization was performed
on all circuits in order to optimize performance under standard-cell library
specifications. Circuit size and static timing (i.e., critical path) information
was extracted from the layout after place and route by taking into account
the actual wiring contributions as well as ramp delays at the primary inputs
and outputs based on typical external driving strength and capacitive load
values (fan-out = 1). A “prop-ramp” delay model was used which accounts for
cell propagation and output ramp delays (as a function of the attached load),
but not for input signal slopes. Finally, the average power consumption was
calculated based on standard-cell power as well as extracted node capacitance
and transition information obtained from gate-level simulation with a set of
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Table 4.3: Asymptotic adder complexities (unit-gate model).

adder gate gate gc � gd- architecture

type count delays product description

RCA 7 � 2 � 14 �2 ripple-carry

CSKA-1L 8 � 4 �1

�

2 32 �3

�

2 1-level carry-skip

CSKA-1L’ 10 � 4 �1

�

2 40 �3

�

2 irredundant 1-level carry-skip

CSKA-2L 8 � � �1

�

3 * � �4

�

3 * 2-level carry-skip

CSLA-1L 14 � 2 �8 �1

�

2 39 �3

�

2 1-level carry-select

CIA-1L 10 � 2 �8 �1

�

2 28 �3

�

2 1-level carry-increment

CIA-2L 10 � 3 �6 �1

�

3 36 �4

�

3 2-level carry-increment

CIA-3L 10 � 4 �4 �1

�

4 44 �5

�

4 3-level carry-increment

CLA 14 � 4 log � 56 � log � “standard” carry-lookahead

PPA-BK 10 � 4 log � 40 � log � parallel-prefix (Brent-Kung)

PPA-SK 3

�

2 � log � 2 log � 3 � log2 � parallel-prefix (Sklansky)

PPA-KS 3 � log � 2 log � 6 � log2 � parallel-prefix (Kogge-Stone)

COSA 3 � log � 2 log � 6 � log2 � conditional-sum (Sklansky)

* The exact factors for CSKA-2L have not been computed due to the highly irregular optimal block sizes.

Table 4.4: Gate count.

adder word length [bits]
type 8 16 32 64 128

RCA 58 114 226 450 898
CSKA-1L 76 146 286 554 1090
CSKA-2L 71 158 323 633 1248
CSLA-1L 87 194 403 836 1707
CIA-1L 78 157 314 631 1266
CIA-2L 79 158 316 635 1273
CIA-3L 80 159 324 639 1280
CLA 92 204 428 876 1772
PPA-SK 73 165 373 837 1861
PPA-BK 70 147 304 621 1258
PPA-KS 88 216 520 1224 2824
COSA 115 289 687 1581 3563
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Table 4.5: Gate delay.

adder word length [bits]
type 8 16 32 64 128

RCA 16 32 64 128 256
CSKA-1L 12 16 24 32 48
CSKA-2L 12 16 20 24 32
CSLA-1L 10 12 18 24 34
CIA-1L 10 12 18 24 34
CIA-2L 10 12 16 18 22
CIA-3L 10 12 16 18 20
CLA 12 16 20 24 28
PPA-SK 10 12 14 16 18
PPA-BK 12 16 20 24 28
PPA-KS 10 12 14 16 18
COSA 8 10 12 14 16

Table 4.6: Gate-count � gate-delay product (normalized).

adder word length [bits]
type 8 16 32 64 128

RCA 1.17 1.92 2.86 5.04 8.21
CSKA-1L 1.15 1.23 1.36 1.55 1.87
CSKA-2L 1.08 1.33 1.28 1.33 1.43
CSLA-1L 1.10 1.23 1.43 1.76 2.07
CIA-1L 0.99 0.99 1.12 1.32 1.54
CIA-2L 1.00 1.00 1.00 1.00 1.00
CIA-3L 1.01 1.01 1.03 1.01 0.91
CLA 1.40 1.72 1.69 1.84 1.77
PPA-SK 0.92 1.04 1.03 1.17 1.20
PPA-BK 1.06 1.24 1.20 1.30 1.26
PPA-KS 1.11 1.37 1.44 1.71 1.82
COSA 1.16 1.52 1.63 1.94 2.04
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1000 random input patterns [Naj94, CJ93]. All examinations were done using
the Passport 0 �6 �m 3V three-metal CMOS high-density standard-cell library
and the design tools by COMPASS Design Automation.

The cell primitives used by the circuit optimizer include multi-input AND-
/NAND-/OR-/NOR-gates, various AOI-/OAI-gates, two-input XOR-/XNOR-
gates and two-input multiplexers. Since the usage of full-adder cells for the
ripple-carry and carry-select adders showed better area, but worse speed and
AT-/PT-product performances, no such cells were used for the comparisons.

Tables 4.7–4.9 list the area, delay, and relative area-delay (AT) product
measures for the standard-cell implementations after placement and routing.
Area is given in 1000 � �2 (1

� � 0 �3 �m). The corresponding average
power dissipation and relative power-delay (PT) product numbers are given
in Tables 4.10 and 4.11 with the proposed CIA-2L acting as reference. Note
that the delays are given for typical-case PTV conditions (typical process,
25o C, 3.3 V). Worst-case conditions are assumed for power estimation (fast
transistors, 0o C, 3.6 V).

Figures 4.7 and 4.8 give a graphical representation of the comparison
results for the standard-cell implementations. Area vs delay resp. power vs
delay measures are drawn on a logarithmic scale visualizing the area-delay
and power-delay trade-offs for some important adder architectures.

Table 4.7: Post-layout area (1000 � �2).

adder word length [bits]
type 8 16 32 64 128

RCA 238 457 821 1734 3798
CSKA-1L 298 518 885 1932 4468
CSKA-2L 297 512 924 2196 4402
CSLA-1L 339 612 1322 2965 6381
CIA-1L 299 584 1119 2477 5189
CIA-2L 289 574 1094 2426 5353
CLA 324 649 1267 2816 6543
PPA-SK 266 580 1276 2979 7918
PPA-BK 270 549 1051 2316 5170
PPA-KS 408 1027 2292 5080 13616
COSA 419 924 1789 4399 10614
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Table 4.8: Post-layout delay ( � �).
adder word length [bits]
type 8 16 32 64 128

RCA 4.6 8.2 15.8 30.4 61.8
CSKA-1L 4.2 5.7 9.0 11.9 15.9
CSKA-2L 4.2 5.7 8.1 10.2 13.3
CSLA-1L 3.3 4.8 6.1 8.6 12.8
CIA-1L 3.6 4.7 6.1 8.0 11.2
CIA-2L 3.8 4.7 5.7 6.8 8.5
CLA 3.9 4.7 5.8 6.7 8.2
PPA-SK 3.5 4.2 5.2 6.0 8.1
PPA-BK 4.1 5.4 6.2 7.8 9.3
PPA-KS 3.4 4.2 5.3 6.9 9.3
COSA 3.4 4.5 5.1 6.4 9.2

Table 4.9: Post-layout AT-product (normalized).

adder word length [bits]
type 8 16 32 64 128

RCA 0.99 1.39 2.09 3.21 5.15
CSKA-1L 1.14 1.10 1.28 1.40 1.56
CSKA-2L 1.14 1.08 1.21 1.36 1.28
CSLA-1L 1.03 1.08 1.30 1.55 1.79
CIA-1L 0.97 1.01 1.10 1.20 1.28
CIA-2L 1.00 1.00 1.00 1.00 1.00
CLA 1.14 1.14 1.19 1.14 1.17
PPA-SK 0.85 0.90 1.07 1.09 1.40
PPA-BK 1.00 1.09 1.04 1.09 1.05
PPA-KS 1.28 1.59 1.94 2.14 2.79
COSA 1.28 1.52 1.48 1.71 2.14
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Table 4.10: Post-layout power ( �W/MHz).

adder word length [bits]
type 8 16 32 64 128

RCA 24 52 95 194 387
CSKA-1L 29 48 90 195 402
CSKA-2L 29 50 99 210 387
CSLA-1L 36 70 163 395 818
CIA-1L 32 64 116 257 494
CIA-2L 28 60 124 267 558
CLA 34 66 138 294 640
PPA-SK 27 60 134 305 704
PPA-BK 29 60 117 237 498
PPA-KS 40 102 232 498 1246
COSA 41 101 208 521 1276

Table 4.11: Post-layout PT-product (normalized).

adder word length [bits]
type 8 16 32 64 128

RCA 1.02 1.52 2.13 3.26 5.04
CSKA-1L 1.14 0.98 1.14 1.28 1.35
CSKA-2L 1.14 1.00 1.14 1.18 1.08
CSLA-1L 1.12 1.19 1.42 1.88 2.20
CIA-1L 1.06 1.06 1.00 1.13 1.17
CIA-2L 1.00 1.00 1.00 1.00 1.00
CLA 1.21 1.11 1.15 1.08 1.10
PPA-SK 0.87 0.88 1.00 1.02 1.19
PPA-BK 1.11 1.14 1.02 1.01 0.97
PPA-KS 1.29 1.52 1.73 1.91 2.45
COSA 1.28 1.59 1.52 1.84 2.47
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Figure 4.7: Area vs delay (logarithmic scale).

4.2.4 Results and Discussion

Unit-gate model

The results from the unit-gate model comparisons are of minor importance due
to the inaccuracy of the model. However, the results are quite interesting and
still allow the observation of some general tendencies.

From the circuit area point of view, the ripple-carry adder (RCA) and the
carry-skip adders (CSKA) are the most efficient ones, followed by the carry-
increment adders (CIA) which require only little additional logic. Note that the
multilevel carry-increment adders have a negligible area increase compared to
the one-level version. The Brent-Kung parallel-prefix adder (PPA-BK) shows
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Figure 4.8: Power vs delay (logarithmic scale).

roughly the same area complexity as the carry-increment adders, while all
other architectures from the log � time-complexity class have considerably
higher area requirements. In particular, the Kogge-Stone parallel-prefix adder
(PPA-KS) and the conditional-sum adder (COSA) result in very large logic
networks.

The opposite holds true if circuit delay is considered. The conditional-
sum adder (COSA) is the fastest one for every word length. It is faster by
at least two gate delays than all other adders with log � time complexity
because it works without the final sum-bit generation level built from XORs.
The parallel-prefix adders PPA-SK and PPA-KS are the second fastest circuits,
while the multilevel carry-increment adders come very close to their speed. All
remaining architectures are considerably slower, with the ripple-carry adder
being far the slowest one.
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The gate-count � gate-delay product (or area-delay product) gives a good
measure for the area and time efficiency of logic networks. Here, the good
area and delay characteristics of the proposed carry-increment adders result in
the lowest AT-product values of all adder architectures and for all word lengths
larger than 8 bits.

Standard-cell implementation

More reliable results are obtained from the standard-cell implementation com-
parisons. These are now discussed in detail.

Compared to the ripple-carry adder (RCA) which has the smallest area
and longest delay, the carry-skip adders (CSKA) are much faster with a mod-
erate area increase. The carry-increment adders (CIA) achieve further speed
improvement at small additional area costs. 2-level implementations of both
carry-skip and carry-increment adders (CSKA-2L, CIA-2L) are considerably
faster but only slightly larger than their 1-level counterparts (CSKA-1L, CIA-
1L). Because the carry-increment adder is an optimization of the carry-select
adder (CSLA), it outperforms the latter in all respects.

The various parallel-prefix addition schemes open a wide range of solutions
with different area and time performances. The unbounded fan-out parallel-
prefix scheme (PPA-SK) represents the fastest adder architecture for large
word lengths at the price of quite large area requirements. The bounded
fan-out structure by Brent and Kung (PPA-BK) is more area efficient but
has a longer computation time. The carry-lookahead adder (CLA) being a
4-bit block version of PPA-BK is considerably faster but also larger than the
latter. Note that the 8-, 32-, and 128-bit versions of CLA have better area
performance because their first lookahead level consist of 2-bit blocks (as in
PPA-BK). Finally, the conditional-sum adder (COSA) as well as the bounded
fan-out parallel-prefix adder by Kogge and Stone (PPA-KS) are very fast for
small and medium word lengths but suffer from very large circuit sizes and
routing overheads with respect to speed for high word lengths. Their very
high area costs also result in bad area-delay product values. The advantage of
bounded fan-out of PPA-KS is partly undone by the large capacitive load of
long wires, which degrades circuit speed and overall performance significantly.

Regarding the area-delay product, the two carry-increment and the PPA-
BK architectures perform best for all adder sizes with the proposed CIA-2L
presenting the lowest AT-product for large word lengths. The least area-time
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efficient structures are RCA, PPA-KS, COSA, and CSLA.

A high correlation can be observed between area and power requirements,
which is clearly documented by the similarity of the two graphs in Figures 4.7
and 4.8. This fact is not surprising, however, because dynamic power dissi-
pation mainly originates from charging node capacitances and thus is linearly
dependent on the number of (toggling) circuit nodes and on wire lengths.
Therefore, all area-efficient structures like RCA, CSKA, CIA, and PPA-BK
are also the most power-efficient ones. Regarding the power-delay product, the
carry-increment adders perform very well for all adder sizes with the 2-level
version (CIA-2L) having the lowest PT-product for large word lengths. On the
other hand, RCA, CSLA, PPA-KS, and COSA show poor power-delay per-
formance. Note that structures with heavily loaded nodes (PPA-KS, COSA)
present a significantly higher power/area ratio.

The power dissipated in glitching transitions (i.e., transitions that are fol-
lowed by an inverse transition before settling to a steady state) is of special
interest and was investigated, too. Generally, sources of glitches are gates with
an output transition caused by a first input change which is undone by a second,
delayed transition on a different input. This potentially occurs in every cir-
cuit with unequal signal path delays and multiple, uncorrelated input signals.
Sources of glitches within adder circuits are the XOR/multiplexer gates used
for sum bit generation and the carry propagation circuits, which are subject
to race conditions under certain stimulations. The average glitching power
contributions range from 10% for 8-bit up to 20% for 128-bit adders, whereas
the amount of glitching transitions at the primary outputs can be as high as
50% of all transitions in the worst case. Partly significant variations between
different adder architectures can be observed regarding glitching power. Fur-
thermore, the potential for power savings by suppressing glitching transitions
(e.g., balancing of path delays by buffer insertion to avoid race conditions)
is very limited due to the large signal delay differences and the introduced
additional buffer node activity.

The comparison results obtained allow the conclusion that RCA and CSKA
are the choices for small area and moderate speed requirements, whereas CIA-
2L and PPA-SK are the best performing candidates for high-speed demands.
It is interesting to observe that the area and speed numbers of CIA-2L lie
in-between the two parallel-prefix algorithms PPA-BK and PPA-SK. This is
not surprising because it corresponds to a parallel-prefix adder with a prefix
structure similar to the ones of PPA-BK and PPA-SK. Thus, the proposed
2-level carry-increment scheme proves to be a high-performing adder archi-
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tecture which strongly conserves low area and short delay properties also for
large adder sizes and under consideration of actual wiring contributions.

In addition to the investigations described so far, the same adder circuits
were also optimized and compared using a 0 �8 �m standard-cell library from
VLSI Technology Inc. and the tools by Compass as well as a 0 �5 �m standard-
cell library and tools by Synopsys Inc. which,however, allowed only predictive
capacitance information. The results highly match the ones given above and
show again the best performance figures for the CIA-2L, PPA-BK, and PPA-
SK architectures. Performance degradations of high-area architectures like
PPA-KS and COSA tend to even higher values for large word lengths.

4.2.5 More General Observations

It can be observed that the unit-gate delay and unit-gate count measures are
quite inaccurate when compared to the numbers obtained from actual layout
realizations, especially for the area intensive adder architectures. This is
because the unit-gate model used disregards basic aspects such as fan-out
and wiring contributions. The fan-in model mentioned in Section 2.5 has not
shown better results. In order to get more reliable pre-route information on
circuit complexity and speed, the model has to be refined by incorporating
fan-out and interconnection aspects. This becomes even more important for
deep submicron technologies, where RC delays from wiring become dominant
over gate delays. On the other hand, the unit-gate models are good enough
for indicating some general tendencies and for allowing rough architecture
classifications with respect to circuit area and delay complexity.

Another obvious observation is that area-intensive structures (like PPA-KS,
COSA) suffer from considerable speed degradations caused by long wires and
interconnection delays, whereas circuits with smaller area demands preserve
their predicted performance during the layout phase much more. This fact
is nicely documented by the 1-level carry-select and carry-increment adders.
Having exactly the same blocking scheme and thus the same critical paths and
gate-delay numbers, the area-intensive CSLA becomes slower for increasing
adder sizes compared to CIA. In other words, efficient speed-up is not al-
ways achieved by using exhaustive parallelization and hardware duplication
techniques. The conclusion is that architectures resulting in compact circuits
will profit more in area, delay, and power respects when process feature sizes
shrink.
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Note that all adder architectures can also be classified regarding their
fan-out properties. Bounded fan-out structures are found in RCA, CSKA,
PPA-BK, and CLA, whereas CSLA, CIA, PPA-SK, PPA-KS, and COSA have
unbounded fan-out. Unbounded fan-out circuits are usually faster due to a
higher parallelism but also larger which, together with the higher fan-out loads,
slows down computation again. Both classes of fan-out schemes contain area
and time efficient adder structures.

The unit-gate model based examinations demonstrate that CIA-2L is slower
than PPA-SK by only two gate delays with the exception of the 128-bit adder.
It can be shown that this holds for all multilevel carry-increment adders except
for the one with the maximum (log �) number of levels, which actually is
equivalent to PPA-SK. Thus, all carry-increment adders with an intermediate
number of levels offer no speed advantage over the 2-level implementation
but have higher area costs. Therefore, the two extremes with two (CIA-2L)
and log � (PPA-SK) increment levels represent the best performing multilevel
carry-increment adder schemes.

Further investigations on 4-bit block versions of different parallel-prefix
adder architectures have not shown any advantages over their 2-bit block
counterparts, whereas solutions with block sizes of eight bits have turned out
to become considerably larger and slower.

As already mentioned before, hybrid adder architectures have not shown
performance advantages neither under the unit-gate model nor in standard-cell
implementations.

Full-custom implementations and layout generators ask for adder archi-
tectures with highly regular circuits, like e.g. CSKA, CIA, and PPA. Because
the layout size of fast parallel-prefix and conditional-sum adders (

� � � log � � )
grows in both dimensions with the word length (1 � � dimension: number of
bits, 2 � �

dimension: number of levels), the 2-level carry-increment adder is
the fastest adder structure with linear layout arrangement and area demands
(

� � � � ).

AT- and PT-product minimization are, of course, not the only optimization
criteria for adder circuits. However, AT- and PT-product measures help finding
the most efficient solution from a set of possible circuit candidates.

The presented results of standard-cell adder realizations can by no means be
applied to transistor-level design techniques, which open many more circuit
alternatives and leave room for further AT- and PT-product optimizations:
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dedicated logic styles and circuit techniques – such as pass-gate/pass-transistor
logic or dynamic logic — potentially increase circuit efficiency of multiplexer
structures and linear carry-chains. As a result, custom conditional-sum or
hybrid adder implementations, for instance, are documented to be highly
competitive [D

�

92, G

�

94, M

�

94, OV95, O

�

95, M

�

91].

4.2.6 Comparison Diagrams

The most interesting properties and comparison results are documented in the
diagrams of Figures 4.9–4.14. The diagrams rely on results from the post-
layout solutions, with exceptions mentioned in the diagram title. Numbers
are normalized to one bit (i.e. divided by the word length) in order to allow
comparisons between adders of different word lengths.

Figure 4.9 demonstrates the high congruence between post-layout circuit
area and the area models based on gate counts, gate equivalents, and cell area.
Despite of the simplicity of the gate count estimation model, its accuracy is
quite good except for PPA-KS (where routing is underestimated) and COSA
(area for MUX overestimated). The gate equivalents model gives only slightly
more accurate results. Finally, cell area correlates very well with the final
circuit area since the routing overhead is almost constant for different adder
architectures and grows slightly with increasing adder sizes. The high area /
cell area ratios (i.e., routing factors) of the 128-bit versions of some low-area
adders (RCA, CSKA) are determined by the large number of connectors at the
standard-cell block borders and not by internal routing congestion.

Figure 4.10 compares final circuit delay with unit-gate and cell delay.
Again, the unit-gate model can be used for a rough but simple delay estimation,
while the cell delay matches the final circuit delay quite well. Exceptions are
again PPA-KS and COSA where the interconnect delays — originating from
high wiring and circuit complexity — are underestimated.

Figures 4.11 and 4.12 give some comparisons related to power dissipation.
The percentage of glitching power does vary considerably between different
adder architectures and sizes. In particular, CSLA-1L shows far the highest
amount of glitching power. Together with COSA, it has the highest power
consumption / circuit area ratio. Otherwise, the power dissipation correlates
quite well with the final circuit area. This substantiates the suggestion that
area-efficient adder architectures are also power efficient. The wiring power to
cell power ratio does not differ substantially between architectures and word
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lengths. Power estimation through toggle count — which can be determined
before place-and-route — is quite accurate with the exception of PPA-KS,
where again routing overhead is underestimated. On the other hand, power
estimation from the total wiring capacitance does not give such accurate results.
Not surprisingly, the product of average toggle count and wiring capacitance
is a very good measure for wiring power and thus also for total power.

Figure 4.13 illustrates properties related to wiring complexity. Wiring
capacitance, which highly correlates with total wire length and circuit area,
is much higher for PPA-KS and COSA than for all other architectures. The
maximum number of pins per net reflects nicely the fan-out properties of the
circuits. Automatic circuit optimization attenuates these numbers to some
degree. Constant or bounded fan-out architectures are RCA, CSKA, CLA,
PPA-BK, and PPA-KS. Unbounded fan-out architectures are CIA with rel-
atively low, CSLA with medium, and PPA-SK and COSA with very high
maximum fan-out values.

Figure 4.14 finally contains some other numbers of interest. Number of
cells and number of nodes correlate perfectly among each other as well as with
circuit area. The average capacitance of a wire is quite constant and shows
only larger values for the area-inefficient architectures PPA-KS and COSA.
The average toggle count per node has interestingly high values for CSLA and
relatively low values for PPA-KS.
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Figure 4.9: Area-related comparisons.
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Figure 4.10: Delay-related comparisons.
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Figure 4.11: Power-related comparisons.
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Figure 4.12: Power-related comparisons (cont.).
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Figure 4.13: Circuit-related comparisons.
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Figure 4.14: Circuit-related comparisons (cont.).
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4.3 Summary: Optimal Adder Architectures

This section summarizes the results obtained from the adder architecture com-
parisons in Table 4.12 and gives some recommendations for adder design with
focus on cell-based design techniques. The important design criteria for cell-
based adders are circuit performance (area and delay), regularity (synthesis),
and applicability of automated circuit optimization.

Table 4.12: Optimality of adder architectures.

adder perfor- regu- autom. prefix requirements
architecture mance 1 larity optim. scheme area speed

RCA a tttttt highest

� �

lowest lowest

CSKA-1L aa ttttt medium low low
CSKA-2L aa ttttt low

�

— —
CSLA-1L aaaa tttt high

�

— —
CIA-1L aaa tttt high

� �

medium medium
CIA-2L aaa tt high

� �

medium high

CLA aaaa tt medium

�

(

�

)2 — —
PPA-SK aaaa t medium

� �

high highest
PPA-BK aaa ttt medium

� �

medium medium
PPA-KS aaaaaa t medium

� �

— —
COSA aaaaa t low

�

— —
1 the number of a’s/t’s gives a qualitative measure for the

area/delay requirements
2 4-bit prefix scheme

As can be seen, the ripple-carry, carry-increment, and parallel-prefix/carry-
lookahead adders cover the entire range from lowest to highest performance
with, however, some gaps in-between. They all belong to the family of prefix
adders, which actually contains the smallest (RCA), the fastest (PPA-SK), and
some efficient medium-performance (PPA-BK, CIA) adder architectures. The
new 2-level carry-increment adder proposed in this thesis proves to be one of
the best performing adder architectures for medium speed requirements.



5
Special Adders

As was demonstrated in the previous chapters, the parallel-prefix scheme for
binary addition is very universal and the most efficient adder architectures are
based on it. Furthermore, this scheme presents some additional properties
which can be used for the implementation of special (or customized) adders
and related units.

5.1 Adders with Flag Generation

The basic addition flags are the carry flag

�

, the 2’s complement overflow flag

�

, the zero flag

�

, and the negative flag

�

.

Carry flag

�

The carry flag corresponds to the carry-out signal of binary
addition:

� � � � 	 � � � � (5.1)

Most adder architectures provide the carry-out without any additional
logic. In parallel-prefix adders all carries are computed before final sum
bit generation. Thus, the carry-out is available two gate delays before
the sum. In some parallel-prefix structures (e.g., Brent-Kung), � � is
even available some gate delays before most other carries.

113
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2’s complement overflow flag

�

Addition overflow of unsigned numbers is
detected by the carry flag. Overflow of 2’s complement signed numbers
is detected by the overflow flag

�

using one of the following formulae:

� � � � � � � �1 (5.2)

� � �
�
� � �

� � �
�
� � � (5.3)

Since parallel-prefix adders compute all carries, Equation (5.2) provides
an efficient and fast overflow flag computation (i.e., one additional XOR,
same delay as sum bits).

Zero flag

�

The zero flag indicates whether an addition or subtraction result
is zero or not. Obviously, the flag can be determined using the equation

� � � � �1

� � � �2

� � � � � �

0 (5.4)

This solution, however, is slow because calculation has to wait for the
final sum and uses an �-input NOR-gate. For faster solutions two cases
are to be distinguished. If a subtraction is carried out (i.e., � � � � 1) the
result is zero if both operands are equal (

� � �

). Since subtrahend

�

is in 2’s complement form, the zero flag can be expressed as

� � �� � �1

� �
� �1

� �� � �2

� �
� �2

� � � � ��

0

� �

0

�

(5.5)

which exactly corresponds to the propagate signal

�
� �1:0 for the entire

adder. Theoretically, this propagate signal is available in parallel-prefix
adders (Eq. 3.28). The calculation, which has been omitted in the
presented implementations because it is not used for normal addition,
requires only (log �) additional AND-gates. The critical path through
an XOR and an AND tree makes the zero-flag calculation even faster
than carry calculation.

In the second case,where addition is also allowed (i.e., � � � � 0), fast zero
flag generation is more expensive. It is shown in the literature [CL92]
that zero flag calculation is possible without carry-propagation. It bases
on the following formulae:

�

0

� � ��

0

� �

0

� � � � �
�

� � � � �� � � � � � � �� � �1

� � � �1

� �

� � � � �1

� � �2 � � � �

0 (5.6)

Here, only the XOR- and OR-gates can be used from the parallel-prefix
adder logic. The remaining XNOR-gates (

�

) and the AND tree are to
be realized separately.
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Negative flag

�

The negative flag is used for 2’s complement signed numbers
and corresponds to the MSB of the sum:

� � � � �1 (5.7)

5.2 Adders for Late Input Carry

As already described in Section 3.5 and depicted in Figure 3.28, two universal
prefix adder structures exist with different carry-processing properties. In the
first solution (Fig. 3.28a) the carry is fed into an additional prefix level resulting
in fast input-carry propagation at the cost of additional logic. The resulting
adder allows for a late input carry signal. The amount of delay reduction and
hardware increase depends on the chosen parallel-prefix structure. The fastest
input-carry processing is achieved by attaching one row of � operators to the
end of the prefix stage containing an arbitrary prefix algorithm (Fig. 5.1). The
overall delay of the adder is increased by two gate delays, while the delay from
the carry-in to the outputs is constant (

�

CPA

� � � � � � � 	 �
� � 2,

�

CPA

� � � � �

� � � 4). Note, however, that the fan-out of the carry-in grows linearly with
the word length and thus adds some delay in real circuit implementations.
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Figure 5.1: Parallel-prefix structure with fast carry processing.
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5.3 Adders with Relaxed Timing Constraints

As we have seen so far, the serial-prefix (or ripple-carry) adder is the slowest
but smallest one, while the parallel-prefix adders are faster but considerably
larger. If the timing constraints lie somewhere between the delay of the serial-
prefix and of a parallel-prefix adder, these two adder structures can be mixed:
for the lower bits a parallel-prefix structure can be realized, while a serial-prefix
structure is used for the upper bits (Fig. 5.2). The resulting circuit represents
a compromise between the two extremes with respect to delay and area. Such
mixed prefix structures are investigated in more detail in Chapter 6.
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Figure 5.2: Mixed serial/parallel-prefix algorithm.

5.4 Adders with Non-Equal Bit Arrival Times

All adder architectures described so far expect all input bits to arrive simul-
taneously (i.e., equal bit arrival times) and deliver all output bits at the same
moment of time (i.e., equal bit required times). Under this assumption, the
fastest adder circuits are obtained by introducing as much parallelism as possi-
ble and thus equalizing all signal paths. Depending on the surrounding logic,
however, individual input operand bits may arrive and output bits be required
at different times, resulting in unequal signal path lengths through the adder. A
fast adder circuit has to compensate for this by trading off different signal path
delays. As will be demonstrated here, prefix structures are perfectly suited for
matching arbitrary signal path profiles due to their generality and flexibility.

Prefix graphs for the most common signal arrival profiles are given in
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Figures 5.3–5.6. The graphs are optimized by hand with respect to gate delays
and, in second priority, gate counts. Fan-out as well as gate-delay/gate-count
trade-offs, which may result in smaller AT-product values,were not considered.

In Figure 5.3a the input bits arrive in a staggered fashion from LSB to MSB,
i.e., each bit arrives later than its right neighbor by one �-operator delay. A
normal serial-prefix (or ripple-carry) adder perfectly fits this case. If bit arrival
differences are smaller, a prefix structure similar to the one of Figure 3.22
can be used. In Figure 5.3b the entire higher half word arrives later. Here,
a serial-prefix algorithm is used for the lower half word while calculation is
sped up in the higher half word by a parallel-prefix structure.

The opposite bit arrival profiles are assumed in Figure 5.4. The solution
for the staggered bit arrival times towards the LSB of Figure 5.4a is fast but
very expensive. Allowing only one more �-operator latency, a much more
economic structure is obtained (Fig. 5.4b), which most likely results in a faster
circuit due to its smaller size and smaller fan-out numbers. Figure 5.5a depicts
the case where all the lower half word bits are late. A fast parallel-prefix
structure is used for the lower half word while a serial-prefix structure suffices
for carry calculation in the upper half word.

In Figure 5.5b the input bits in the middle are assumed to arrive latest.
This situation occurs typically in the final addition of multiplication, where a
Wallace tree is used for summing up the partial products [Okl94, SO96]. The
adder can be divided into three sections. In the first section higher bits arrive
later than lower bits. Therefore a simple serial-prefix scheme can be used. The
second section contains bit positions with roughly equal signal arrival times. A
fast parallel-prefix structure is used here. In the third section higher bits arrive
again earlier. Basically, the parallel-prefix structure from the middle section
is extended into the upper section and optimized by taking advantage of the
earlier MSBs. This structure optimization considerably decreases circuit area
and delay compared to a structure optimized for equal bit arrival times.

Finally, Figure 5.6 shows the graphs for staggered output bit required times
towards the LSB and the MSB, respectively. Fast processing of the high order
bits basically requires a fast parallel-prefix structure which, however, can take
almost no advantage of the slow LSBs for area optimization (Fig. 5.6a). On
the other hand, fast processing of the low order bits is for free by using the
serial-prefix scheme (Fig. 5.6b).

The given prefix graphs are just simple examples. Optimal prefix graphs
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have to be constructed individually from case to case, depending on the exact
signal arrival profiles. The automatic generation of optimal prefix graphs
under arbitrary timing constraints will be discussed in Chapter 6.
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Figure 5.3: Prefix graphs for adders with late input MSB arrival times.
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Figure 5.4: Prefix graphs for adders with late input LSB arrival times.
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Figure 5.5: Prefix graphs for adders with (a) late input LSB and (b) late
intermediate input bit arrival times.
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Figure 5.6: Prefix graphs for adders with early output (a) MSB and (b) LSB
required times.
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5.5 Modulo Adders

In end-around carry adders the carry-in depends on the carry-out, i.e., the
carry-out � � 	 � is fed through some logic back to the carry-in � � � (Fig. 5.7).
In particular, this is used for addition modulo

�

2

� �

1

�

and

�

2

�

� 1

�

(or
1’s complement addition). Such modulo adders are used in residue number
systems (RNS) [Kor93], cryptography [ZCB

�

94, Cur93], and error detection
and correction codes [Kor93]. Because the carry-in signal is used for the
modulo addition itself, no additional carry input is provided in such adders.
The basic algorithm for modulo

�

2

� �

1

�

and

�

2

�

� 1

�

addition rely on
decrementation resp. incrementation of the addition result depending on the
carry-out. Since prefix algorithms actually rely on incrementer structures,
considering parallel-prefix schemes for this kind of adders is very promising.
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Figure 5.7: General adder structure with end-around carry.

Basically, the carry-out of an end-around carry adder is functionally in-
dependent of the carry-in. Thus, it is possible to build an end-around carry
adder with no signal path from � � � to � � 	 � . However, if the end-around carry
technique is applied to a normal adder containing a signal path from � � � to

� � 	 � , a combinational loop is created which may lead to oscillations in some
special cases. This can be avoided by inserting appropriate logic into the
carry-feedback path or by breaking up the � � � to � � 	 � signal path within the
adder, which can be achieved by different approaches.

In order to obtain fast end-around carry adders both conditions of fast
carry-out generation and fast carry-in processing have to be met. This implies
a third condition which is that no combinational path exists between � � � and

� � 	 � . The parallel-prefix structure with fast carry processing introduced in
Section 3.5 fulfills all these requirements. A fast end-around carry adder can
be built using the prefix structure depicted in Figure 5.8. Here, the last prefix
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stage is used as an incrementer which is controlled by the carry-out of the
previous prefix stages.
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Figure 5.8: Prefix graph with fast end-around carry.

5.5.1 Addition Modulo

�

2

�

� 1

�

Addition modulo
�

2
�

� 1

�

or one’s complement addition can be formulated by
the following equation:

� � � �
mod 2

�

� 1

� �
�
�

�

� � �

�
�

2

�

� 1

� � � � � �

1

�

mod 2

� �

if

� � � �

2

�

� 1� � �

otherwise
(5.8)

However, the condition

� � � �

2

�

� 1 is not trivial to compute. Equation 5.8
can be rewritten using the condition

� � � �

2

�

which is equivalent to

� � 	 � � 1:

� � � �

mod 2

�

� 1

� �
�
�

�

� � �

�
�

2

�

� 1

� � � � � �

1

�

mod 2

� �

if

� � � �

2

�

� � �

otherwise
(5.9)

Now, the carry-out � � 	 � from the addition

� � � � �

can be used to determine
whether incrementation has to be performed or, even simpler, � � 	 � can be
added to the sum of

� � � � �

. This equation, however, results in a double-
representation of zero (i.e., 0 � 00 � � � 0 � 11 � � � 1). The prefix adder structure
is given in Figure 5.9.

If a single-representation of zero is required, equation 5.8 has to be realized.
The condition

� � � �

2

�
� 1 is fulfilled if either

� � � �

2

�

or

� � � � 2

�
�
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1 � 11 � � � 1 which corresponds to the propagate signal

�
� �1:0 of a parallel-

prefix adder. Thus, an adder modulo

�

2

�
�1

�

with single-representation of zero
can also easily be implemented using a parallel-prefix structure (Fig. 5.10).

Another approach for fast modulo

�

2

�

� 1

�

addition bases on modification
of the traditional carry-lookahead adder scheme [ENK94]. There, the logic
formula for the carry-out � � 	 � is re-substituted as carry-in � � � in the logic
equations for the sum bits. As a consequence, each sum bit does not only
depend on input bits of equal or lower binary weight but is a function of all
input bits. Thus, the coding logic per bit position is doubled on the average,
which results in a considerable hardware overhead.

5.5.2 Addition Modulo

�

2

� �

1

�

Addition modulo

�

2

� �

1

�

is of more specialized interest. One application
is its use in the modulo

�

2

� �

1

�

multiplier of the IDEA cryptography algo-
rithm [LM90, ZCB

�

94]. Here, the diminished-one number system is used
where a number

�

is represented by

� � � �
� 1 and the value 0 is not used.

Normal addition in this number system looks as follows:

� � � � �

� � � �

1

� � � � � �

1

� � � � � �

1

�

� � � � � �

1 � � �

(5.10)

Modulo

�

2

� �

1

�

addition can now be formulated as

� � � � � �

1

�

mod 2

� �

1

� �
�
�
�
�

�
�
�

� � � � � �

1 �
�

2

� �

1

�

� � � � � � �

mod 2

� �

if

� � � � � �

1

�

2

�

� � � � � �

1 otherwise
(5.11)

Thus, the sum

� � � � � � �

is incremented if

� � � � � �

1 � 2

�

i.e., � � 	 � � 0.
This results in the same parallel-prefix adder structure as for modulo

�

2

�

� 1

�

addition except for the inverter in the carry feedback path (Fig. 5.11).

As was demonstrated, highly efficient end-around carry adders can be im-
plemented using the parallel-prefix adder structure with fast carry-processing.
Since the algorithms for modulo

�

2

�

� 1

�

and modulo

�

2

� �

1

�

addition base
on conditional final incrementation, they fit perfectly into the carry-increment
and the (more general) prefix adder schemes.
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5.6 Dual-Size Adders

In some applications an adder must perform additions for different word lengths
depending on the operation mode (e.g. multi-media instructions in modern
processors). In the simpler case an �-bit adder is used for one

�

-bit addition
(

� � �) at a time. A correct

�

-bit addition is performed by connecting the
operands to the lower

�

bits (� � �1:0,

� � �1:0, � � �1:0) and the carry input to
the carry-in ( � � �) of the �-bit adder. The carry output can be obtained in two
different ways:

1. Two constant operands yielding the sum � � �1:

� � 11 � � � 1 are applied
to the upper � �

�

bits (e.g., � � �1:

� � 00 � � � 0,

�
� �1:

� � 11 � � � 1).
A carry at position

�

will propagate through the � �

�

upper bits and
appear at the adder’s carry-out � � 	 � . This technique works with any
adder architecture.

2. If an adder architecture is used which generates the carries for all bit
positions (e.g., parallel-prefix adders), the appropriate carry-out of a

�

-bit addition ( � � ) can be obtained directly.
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Figure 5.12: Dual-size adder composed of two CPAs.

In a more complex case an �-bit adder may be used for an �-bit addition in
one mode and for two smaller additions (e.g., a

�

-bit and a � �
�

-bit addition)
in the other mode. In other words, the adder needs selectively be partitioned
into two independent adders of smaller size (partitioned or dual-size adder).
For partitioning, the adder is cut into two parts between bits

�

� 1 and

�

. The
carry � � corresponds to the carry-out of the lower adder, while a multiplexer
is used to switch from � � to a second carry-in � � � for the upper adder.

Figure 5.12 depicts a dual-size adder composed of two CPAs. The logic
equations are:

� � 0 :

� � � � � � �1:0

� � � � �1:0

� �
� �1:0

� �

0 (5.12)

� � 1 :

� � � � � � �1:

� � � � � �1:

� � �
� �1:

� � � � � �

� � � � � � �1:0

� � � � �1:0

� � � �1:0

� �

0
(5.13)

In order to achieve fast addition in the full-length addition mode ( � � 1), two
fast CPAs need to be chosen. Additionally, the upper adder has to provide fast
input carry processing for fast addition in the single-addition mode ( � � 0).
However, depending on the adder sizes, this approach may result in only
suboptimal solutions.

Again, the flexibility and simplicity of the parallel-prefix addition tech-
nique can be used to implement optimal dual-size adders: a normal �-bit
parallel-prefix adder is cut into two parts at bit

�

. This approach allows the
optimization of the �-bit addition, which typically is the critical operation.
Because the prefix graph is subdivided at an arbitrary position, there may be
several intermediate generate and propagate signal pairs crossing the cutting
line (i.e., all

� � �

:

��
� �

:

��

with

� � �

that are used at bit positions

� �

). For
correct operation in the full-length addition mode, the following aspects are to
be considered:
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1. The carry signal � � is taken as carry-out of the lower adder.

2. No carries from the lower prefix graph partition must propagate into
the upper one. This is achieved by treating the generate and propagate
signals at the partition boundary appropriately.

3. The carry-in � � � of the upper adder must be fed into the upper prefix
graph partition at the appropriate location(s) so that it propagates to all
bit positions

� �

.

Points 2 and 3 require additional logic which may be located on critical
signal paths. Therefore, the goal is to reduce the number of inserted logic
gates to a minimum in order to minimize area and delay overhead. Different
solutions exist:

1. All generate signals

� �

:

�crossing the cutting line are exchanged by
the upper carry-in � � � using multiplexers. The propagate signals

� �

:

�

crossing the cutting line can be left unchanged. Note that insertion of
the same carry-in � � � at different intermediate carry locations is allowed
since the final carry of each bit position is the OR-concatenation of all
intermediate carries. In this algorithm a multiplexer is inserted into
each generate signal path which crosses the cutting line. The maximum
number of multiplexers to be inserted grows with

� �

log � � for the Brent-
Kung and the Sklansky prefix algorithms.

2. Only the generate signals originating from bit position

�

� 1 (

� � �1:

�)
are exchanged by the upper carry-in � � � . This satisfies point 3 because a
prefix graph propagates the carry generated at position

�
�1 to any higher

bit position only through the generate signals

� � �1:

�. Additionally, the
corresponding propagate signals

� � �1:

�must be forced to zero using
an AND-gate. This prevents the remaining generate signals (

� �

:

�,

� �

�

� 1) from propagating into the upper prefix graph partition (point
2). This solution requires a multiplexer and an AND-gate for each
generate/propagate signal pair originating from bit position

�

� 1 but
leaves all other signal pairs unchanged. In most cases no gates are
inserted into the most critical path (i.e., the one with the highest fan-out
numbers) which results in dual-size adders with negligible delay penalty.
In the Sklansky prefix algorithm, only one generate/propagate signal pair
exists per bit position that is connected to higher bit positions. It lies
on the most critical path only if the adder is subdivided at bit positions
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being a power of two (i.e.,

� � 2

�

). This case, however, can be
avoided if necessary by cutting off the LSB from the prefix graph and
thus shifting the entire graph to the right by one bit position. Thus, a
Sklansky parallel-prefix adder can always be converted into a dual-size
adder without lengthening the critical path.

Figures 5.13 and 5.14 show the mandatory multiplexer locations for dual-
size Sklansky and Brent-Kung parallel-prefix adders for different values of

�

. Each multiplexer symbol actually represents a multiplexer for the generate
signal and an AND-gate for the propagate signal, according to the following
formulae:

� �
� �1:

� � � � �1:

�� � � � � �

� �
� �1:
� � � � �1:

�� (5.14)

As can be seen, an additional multiplexer is used at the bottom of the adder
graph for selection of the final carry.

As a conclusion, parallel-prefix adders can be partitioned and converted
into dual-size adder circuits very effectively by only minor and simple mod-
ifications. The additional hardware costs as well as the speed degradation
thereby are very small while the circuit regularity and simplicity is preserved.

5.7 Related Arithmetic Operations

Several arithmetic operations — such as subtraction, incrementation, and com-
parison — base on binary addition [Zim97]. For their efficient implementation,
the presented adder architectures can be used and adapted accordingly. In par-
ticular, the parallel-prefix scheme proves to be universal and flexible enough
to provide efficient circuit solutions for these operations, too.

5.7.1 2’s Complement Subtractors

A 2’s complement subtractor relies on 2’s complementation of the input
operand

�

and subsequent addition, according to the following formula:

�
�

� � � � �
�

� �

� � � � �

1 (5.15)
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Figure 5.13: Sklansky parallel-prefix dual-size adder with cutting line and
required multiplexers for each value of
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Figure 5.14: Brent-Kung parallel-prefix dual-size adder with cutting line and
required multiplexers for each value of
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.
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Therefore, an arbitrary adder circuit can be taken with the input bits

� � inverted
and the input carry set to 1.

A 2’s complement adder/subtractor performs either addition or subtraction
as a function of the input signal � � �:

� � � � � � �
�1

� � 	 � �

� � � � � � � � � � � � � � (5.16)

The input operand

�

has to be conditionally inverted, which requires an XOR-
gate at the input of each bit position. This increases the overall gate count by 2 �

and the gate delay by 2. There is no way to optimize size or delay any further,
i.e., the XORs cannot be merged with the adder circuitry for optimization.

5.7.2 Incrementers / Decrementers

Incrementers and decrementers add or subtract one single bit � � � to/from an

�-bit number (
� � � � � ). They can be regarded as adders with one input operand

set to 0 (

� � 0). Taking an efficient adder (subtractor) architecture and remov-
ing the redundancies originating from the constant inputs yields an efficient
incrementer (decrementer) circuit. Due to the simplified carry propagation
(i.e.,

� �
:

� � � �

:

�� �

:

� ), carry-chains and prefix trees consist of AND-gates
only. This makes parallel-prefix structures even more efficient compared to
other speed-up structures. Also, the resulting circuits are considerably smaller
and faster than comparable adder circuits. Any prefix principles and structures
discussed for adders work on incrementer circuits as well.

5.7.3 Comparators

Equality and magnitude comparison can be performed through subtraction by
using the appropriate adder flags. Equality (

� �

-flag) of two numbers

�

and

�

is indicated by the zero flag

�

when computing

�
�

�

. As mentioned earlier,
the

�

flag corresponds to the propagate signal

�
� �1:0 of the whole adder and

is available for free in any parallel-prefix adder. The greater-equal (

� �

) flag
corresponds to the carry-out � � 	 � of the subtraction

�
�

�

. It is for free in any
binary adder. All other flags (

� �

,

� �

,

� �

,

� �

) can be obtained from the� �

- and

� �

-flags by simple logic operations.
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Since only two adder flags are used when comparing two numbers, the logic
computing the (unused) sum bits can be omitted in an optimized comparator.
The resulting circuit is not a prefix structure anymore (i.e., no intermediate
signals are computed) but it can be implemented using a single binary tree.
Therefore, a delay of

� �

log � � can be achieved with area

� � � � (instead of

� � � log � � ). Again, a massive reduction in circuit delay and size is possible
if compared to an entire adder. 6

Adder Synthesis

6.1 Introduction

Hardware synthesis can be addressed at different levels of hierarchy, as de-
picted in Figure 6.1. High-level or architectural synthesis deals with the
mapping of some behavioral and abstract system or algorithm specification
down to a block-level or register-transfer-level (RTL) circuit description by
performing resource allocation, scheduling, and resource binding. Special cir-
cuit blocks — such as data paths, memories, and finite-state machines (FSM)
— are synthesized at an intermediate level using dedicated algorithms and
structure generators. Low-level or logic synthesis translates the structural
description and logic equations of combinational blocks into a generic logic
network. Finally, logic optimization and technology mapping is performed for
efficient realization of the circuit on a target cell library and process technology.

The synthesis of data paths involves some high-level arithmetic optimiza-
tions — such as arithmetic transformations and allocation of standard arith-
metic blocks — as well as low-level synthesis of circuit structures for the
individual blocks. As mentioned in Section 2.4, dedicated structure generators
are required for that purpose rather than standard logic synthesis algorithms.
Generators for standard arithmetic operations, such as comparison, addition,
and multiplication, are typically included in state-of-the-art synthesis tools.

Stand-alone netlist generators can be implemented for custom circuit struc-

133
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Figure 6.1: Overview of hardware synthesis procedure.

tures and special arithmetic blocks. They produce generic netlists, e.g., in
form of structural VHDL code, which can be incorporated into a larger circuit
through instantiation and synthesis. Such a netlist generator can be realized as
a stand-alone software program or by way of a parameterized structural VHDL
description.

This chapter deals with the synthesis of efficient adder structures for cell-
based designs. That is, a design flow is assumed where synthesis generates
generic netlists while standard software tools are used for technology mapping
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and gate-level circuit optimization. Different synthesis algorithms are given
for the generation of dedicated and highly flexible adder circuits.

6.2 Prefix Graphs and Adder Synthesis

It was shown in the previous chapters that the family of parallel-prefix adders
provides the best adder architectures and the highest flexibility for custom
adders. Their universal description by simple prefix graphs makes them also
suitable for synthesis. It will be shown that there exists a simple graph
transformation scheme which allows the automatic generation of arbitrary and
highly optimized prefix graphs.

Therefore, this chapter focuses on the optimization and synthesis of pre-
fix graphs, as formulated in the prefix problem equations (Eq. 3.25). The
generation of prefix adders from a given prefix graph is then straightforward
according to Equations 3.27–3.29 or Equations 3.32–3.34.

6.3 Synthesis of Fixed Parallel-Prefix Structures

The various prefix adder architectures described in Chapter 4, such as the
ripple-carry, the carry-increment, and the carry-lookahead adders, all base on
fixed prefix structures. Each of these prefix structures can be generated by a
dedicated algorithm [KZ96]. These algorithms for the synthesis of fixed prefix
structures are given in this section.

6.3.1 General Synthesis Algorithm

A general algorithm for the generation of prefix graphs bases on the prefix
problem formalism of Eq. 3.25. Two nested loops are used in order to process
the � prefix levels and the � bit positions.
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Algorithm: General prefix graph

for (

� � 0 to � � 1)

�0� � � � ;

for (

� � 1 to �)

�

for (

� � 0 to � � 1)

�

if (white node)

� �� � � �� 1� ;

if (black node)

� �� � � � � 1� � � � � 1� ; /* 0

	 
 � �

*/

�

�

for (

� � 0 to � � 1) 
 � � � �� ;

Note that the group variables

� �� are now written with a simple index

�

representing the significant bit position rather than an index range

�

:

�

of the bit
group they are representing (i.e.,

� ��

:

� was used in Eq. 3.25). For programming
purposes, the prefix variables

� �� can be described as a two-dimensional array
of signals (e.g.,

� � �
�

� �

) with dimensions � (number of prefix levels) and �

(number of bits). The algorithms are given in simple pseudo code. Only
simple condition and index calculations are used so that the code can easily be
implemented in parameterized structural VHDL and synthesized by state-of-
the-art synthesis tools [KZ96].

6.3.2 Serial-Prefix Graph

The synthesis of a serial-prefix graph is straightforward since it consists of a
linear chain of �-operators. Two algorithms are given here. The first algorithm
bases on the general algorithm introduced previously and generates � � � � 1
prefix levels. Each level is composed of three building blocks, as depicted
in the prefix graph below: a lower section of white nodes, one black node
in-between, and an upper section of white nodes.
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Prefix graph:
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Algorithm: Serial-prefix graph

for (

� � 0 to � � 1)

�0� � � � ;

for (

� � 1 to � � 1)
�

for (

� � 0 to
� � 1)

� �� � � � � 1� ;

� �� � � � � 1� � � � � 1�� 1 ;

for (
� � � �

1 to � � 1)

� �� � � �� 1� ;

�
for (

� � 0 to � � 1) 
 � � �
 � 1� ;

The second algorithm is much simpler and bases on the fact that the graph
can be reduced to one prefix level because each column consists of only one

�-operator. Here, neighboring black nodes are connected horizontally. This
algorithm implements Equation 3.24 directly.

Reduced prefix graph:
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Algorithm: Serial-prefix graph (optimized)




0

� �

0;

for

� � � 1 to � � 1

� 
 � � � � � 
 � � 1;
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6.3.3 Sklansky Parallel-Prefix Graph

The minimal-depth parallel-prefix structure by Sklansky (structure depth � �

log �) can be generated using a quite simple and regular algorithm. For that
purpose, each prefix level

�

is divided into 2

� � �

building blocks of size 2

�

.
Each building block is composed of a lower half of white nodes and an upper
half of black nodes. This can be implemented by three nested loops as shown
in the algorithm given below. The if-statements in the innermost loop are
necessary for adder word lengths that are not a power of two ( � � 2

�

) in
order to avoid the generation of logic for bits � � � 1.

Prefix graph:
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Algorithm: Sklansky parallel-prefix graph

� � �

log �
�

;

for (

� � 0 to � � 1)

�0� � � � ;

for (

� � 1 to �)

�

for (

� � 0 to 2

� � �
� 1)

�

for (

� � 0 to 2

� � 1 � 1)

�

if (

�

2

� � � � �)

� �
�

2

�� � � � � � 1

�

2

�� � ;

if (

�

2

� �

2

� � 1 � � � �)

� �
�

2

��

2

�� 1 � � � � �� 1

�

2

��

2

�� 1 � � � � �� 1

�

2

��

2

�� 1 � 1
;

�

�

�

for (

� � 0 to � � 1) 
 � � � �� ;
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6.3.4 Brent-Kung Parallel-Prefix Graph

The algorithm for the Brent-Kung parallel-prefix structure is more complex
since two tree structures are to be generated: one for carry collection and
the other for carry redistribution (see prefix graph below). The upper part of
the prefix graph has similar building blocks as the Sklansky algorithm with,
however, only one black node in each. The lower part has two building blocks
on each level: one on the right with no black nodes followed by one or more
blocks with one black node each. For simplicity, the algorithm is given for
word lengths equal to a power of two only ( � � 2

�

). It can easily be adapted
for arbitrary word lengths by adding if-statements at the appropriate places (as
in the Sklansky algorithm).

Prefix graph:
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Algorithm: Brent-Kung parallel-prefix graph

� � �

log �
�

;

for (

� � 0 to � � 1)

�0� � � � ;

for (

� � 1 to �)

�

for (

� � 0 to 2

� � �
� 1)

�

for (

� � 0 to 2

�
� 2)

� �
�

2

�� � � � �� 1

�

2

�� � ;

� �
�

2

��

2

�� 1

� � �� 1

�

2

��

2

�� 1

� � �� 1

�

2

��

2

�� 1 � 1
;

�

�

for (

� � � �

1 to 2 � � 1)

�

for (

� � 0 to 22 � � �
� 1)

� �� � � � � 1� ;

for (

� � 1 to 2

�� � � 1)

�

for (

� � 0 to 22 � � � � 1 � 2)

� �
�

22 � � �� � � � �� 1

�

22 � � �� � ;

� �
�

22 � � ��

22 � � �� 1 � 1

� � �� 1

�

22 � � ��

22 � � �� 1 � 1

� � �� 1

�

22 � � �� 1
;

for (

� � 22 � � �� 1 to 22 � � �
� 1)

� �
�

22 � � �� � � � � � 1

�

22 � � �� � ;

�

�

for (

� � 0 to � � 1) 
 � � �2 � � 1� ;

6.3.5 1-Level Carry-Increment Parallel-Prefix Graph

Similarly to the serial-prefix graph, the 1-level carry-increment prefix graph of
Figure 3.24 can be reduced to two prefix levels (see prefix graph below) with
horizontal connections between adjacent nodes. The algorithm is quite simple,
despite the more complex group size properties. The square root evaluation for
the upper limit of the loop variable

�

must not be accurate since the generation
of logic is omitted anyway for indices higher than � � 1. Therefore, the value
can be approximated by a simpler expression for which

� �

2 � � must be a lower
bound.
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Reduced prefix graph:
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Algorithm: 1-level carry-increment parallel-prefix graph

for (

� � 0 to � � 1)

�0� � � � ;

�2
0

� �1
0

� �0
0 ;

for (

� � 0 to

� �

2 �
�

)

�


 � � � � � 1

� �

2

�

1;

if (

� �

0)

�1� � �0� ;

for (

� � 1 to min

� �
� � � 
 � � 1)

�1� � � � �0� � � � �1� � � � 1;

for (

� � 0 to min

� �
� � � 
 � � 1)

�2� � � � �1� � � � �2� � 1;

�

for (
� � 0 to � � 1) 
 � � �2� ;

6.3.6 2-Level Carry-Increment Parallel-Prefix Graph

The prefix graph below shows how the 2-level carry-increment parallel-prefix
graph of Figure 3.26 can be reduced to three prefix levels. Again, the graph
can be generated by a similar, but more complex algorithm as used for the 1-
level version. Since the implementation details are rather tricky, the algorithm
details are not given here. This is justified by the fact that the universal prefix
graph synthesis algorithm presented in the next section is able to generate this
prefix structure as well.

Prefix graph:
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6.4 Synthesis of Flexible Parallel-Prefix Structures

Each synthesis algorithm presented in the previous section generates a dedi-
cated parallel-prefix structure. Thus, a variety of algorithms is required for the
generation of some few prefix structures.

This section describes a universal and flexible algorithm for the optimiza-
tion and synthesis of prefix structures which is based on local prefix graph
transformations [Zim96]. This efficient non-heuristic algorithm allows the
synthesis of all of the above prefix structures and many more. It generates
size-optimal parallel-prefix structures under arbitrary depth constraints and
thereby also accommodates also non-uniform input signal arrival and output
signal required times.

6.4.1 Introduction

The synthesis of adder circuits with different performance characteristics is
standard in today’s ASIC design packages. However, only limited flexibility
is usually provided to the user for customization to a particular situation. The
most common circuit constraints arise from dedicated timing requirements,
which may include arbitrary input and output signal arrival profiles, e.g., as
found in the final adder of multipliers [Okl94]. The task of meeting all timing
constraints while minimizing circuit size is usually left to the logic optimization
step which starts from an adder circuit designed for uniform signal arrival
times. Taking advantage of individual signal arrival times is therefore very
limited and computation intensive. If, however, timing specifications can
be taken into account earlier during adder synthesis, more efficient circuits
as well as considerably smaller logic optimization efforts will result. The
task of adder synthesis is therefore to generate an adder circuit with minimal
hardware which meets all timing constraints. This, however, asks for an
adder architecture which has a simple, regular structure and results in well-
performing circuits, and which provides a wide range of area-delay trade-offs
as well as enough flexibility for accommodating non-uniform signal arrival
profiles.
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6.4.2 Parallel-Prefix Adders Revisited

All of the above adder requirements are met by the family of parallel-prefix
adders comprising the ripple-carry, carry-increment, and the carry-lookahead
adders, as outlined earlier in this thesis. Let us now shortly summarize these
adder architectures from a parallel-prefix structure point of view. Thereby, we
rely on the prefix addition formalism and structure introduced in Section 3.5.

Due to the associativity of the prefix operator � , a sequence of operations
can be evaluated in any order. Serial evaluation from the LSB to the MSB has
the advantage that all intermediate prefix outputs are generated as well. The
resulting serial-prefix structure does with the minimal number of � � 1 black
nodes but has maximal evaluation depth of � � 1 (Fig. 6.2). It corresponds
to ripple-carry addition. Parallel application of operators by arranging them
in tree structures allows a reduction of the evaluation depth down to log �.
In the resulting parallel-prefix structures, however, additional black nodes are
required for implementing evaluation trees for all prefix outputs. Therefore,
structure depth (i.e., number of black nodes on the critical path, circuit delay)
— ranging from � � 1 down to log �, depending on the degree of parallelism
— can be traded off versus structure size (i.e., total number of black nodes,
circuit area). Furthermore, the various parallel-prefix structures differ in terms
of wiring complexity and fan-out.

Adders based on these parallel-prefix structures are called parallel-prefix
adders and are basically carry-lookahead adders with different lookahead
schemes. The fastest but largest adder uses the parallel-prefix structure in-
troduced by Sklansky [Skl60] (Fig. 6.3(c)). The prefix structure proposed by
Brent and Kung [BK82] offers a trade-off having almost twice the depth but
much fewer black nodes (Fig. 6.3(d)). The linear size-to-depth trade-off de-
scribed by Snir [Sni86] allows for mixed serial/parallel-prefix structures of any
depth between 2 log � �3 and � �1,thus filling the gap between the serial-prefix
and the Brent-Kung parallel-prefix structure. The carry-increment parallel-
prefix structures exploit parallelism by hierarchical levels of serial evaluation
chains rather than tree structures (Figs. 6.3(a) and (b)). This results in pre-
fix structures with a fixed maximum number of black nodes per bit position
(#

� � �

� � � ) as a function of the number of applied increment levels (i.e., #

� � �

� � � � 1
levels). They are also called bounded-#

� � �

� � � prefix structures in this section.
Note that, depending on the number of increment levels, this carry-increment
prefix structure lies somewhere between the serial-prefix (#

� � �

� � � � 1) and the
Sklansky parallel-prefix structure (#

� � �

� � � � log �).
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Figure 6.2: Ripple-carry serial-prefix structure.
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Figure 6.3: (a) 1-level carry-increment, (b) 2-level carry-increment, (c) Sklan-
sky, and (d) Brent-Kung parallel-prefix structure.
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All these prefix structures have growing maximum fan-out numbers (i.e.,
out-degree of black nodes) if parallelism is increased. This has a negative effect
on speed in real circuit implementations. A fundamentally different prefix tree
structure proposed by Kogge and Stone [KS73] has all fan-out bounded by
2, at the minimum structure depth of log �. However, the massively higher
circuit and wiring complexity (i.e., more black nodes and edges) undoes the
advantages of bounded fan-out in most cases. A mixture of the Kogge-
Stone and Brent-Kung prefix structures proposed by Han and Carlson [HC87]
corrects this problem to some degree. Also, these two bounded fan-out parallel-
prefix structures are not compatible with the other structures and the synthesis
algorithm presented in this section, and thus were not considered any further
for adder synthesis.

Table 6.1 summarizes some characteristics of the serial-prefix and the most
common parallel-prefix structures with respect to:

�
� : maximum depth, number of black nodes on the critical path,

# � : size, total number of black nodes,

# max

� � � : maximum number of black nodes per bit position,

#tracks : wiring complexity, horizontal tracks in the graph,

� � max� : maximum fan-out,

synthesis : compatibility with the presented optimization algorithm, and

�
/

�

: area and delay performance.

The area/delay performance figures are obtained from a very rough clas-
sification based on the standard-cell comparisons reported in Section 4.2. A
similar performance characterization of parallel-prefix adders can be found in
[TVG95].

6.4.3 Optimization and Synthesis of Prefix Structures

Prefix Transformation

The optimization of prefix structures bases on a simple local equivalence
transformation (i.e., factorization) of the prefix graph [Fis90], called prefix
transformation in this context.
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Table 6.1: Characteristics of common prefix structures.
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By using this basic transformation, a serial structure of three black nodes
with

�
� � 3 and # � � 3 is transformed into a parallel tree structure with

�
� � 2 and # � � 4 (see Fig. above). Thus, the depth is reduced while

the size is increased by one �-operator. The transformation can be applied
in both directions in order to minimize structure depth (i.e., depth-decreasing
transform) or structure size (i.e., size-decreasing transform), respectively.

This local transformation can be applied repeatedly to larger prefix graphs
resulting in an overall minimization of structure depth or size or both. A
transformation is possible under the following conditions, where (

�

,

�

) denotes
the node in the

�

-th column and

�

-th row of the graph:

� � : nodes (3, 1) and (3, 2) are white,

� � : node (3, 3) is white and
nodes (3, 1) and (3, 2) have no successors (

�

, 2) or (

�

, 3) with

� � 3.

It is important to note that the selection and sequence of local transformations
is crucial for the quality of the final global optimization result. Different
heuristic and non-heuristic algorithms exist for solving this problem.

Heuristic Optimization Algorithms

Heuristic algorithms based on local transformations are widely used for delay
and area optimization of logic networks [SWBSV88, Mic94]. Fishburn applied
this technique to the timing optimization of prefix circuits and of adders in
particular [Fis90], and similar work was done by Guyot [GBB94]. The basic
transformation described above is used. However, more complex transforms
are derived and stored in a library. An area-minimized logic network together
with the timing constraints expressed as input and output signal arrival times
are given. Then, repeated local transformations are applied to subcircuits until
the timing requirements are met. These subcircuits are selected heuristically,
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that is, all possible transforms on the most critical path are evaluated by
consulting the library, and the simplest one with the best benefit/cost ratio is
then carried out.

On one hand, the advantage of such heuristic methods lies in their general-
ity, which enables the optimization of arbitrary logic networks and graphs. On
the other hand, the computation effort — which includes static timing analysis,
search for possible transformations, and the benefit/cost function evaluation
— is very high and can be lessened only to some degree by relying on compre-
hensive libraries of precomputed transformations. Also, general heuristics are
hard to find and only suboptimal in most cases. In the case of parallel-prefix
binary addition, very specific heuristics are required in order to obtain perfect
prefix trees and the globally optimal adder circuits reported by Fishburn.

Non-Heuristic Optimization Algorithm

In the heuristic optimization algorithms, only depth-decreasing transforma-
tions are applied which are necessary to meet the timing specifications and
therefore are selected heuristically. In the new approach proposed in this the-
sis, all possible depth-decreasing transformations (prefix graph compression)
are perform first, resulting in the fastest existing prefix structure. In a second
step, size-decreasing transformations are applied wherever possible in order to
minimize structure size while remaining in the permitted depth range (depth-
controlled prefix graph expansion). It can be shown that the resulting prefix
structures are optimal in most cases and near-optimal otherwise if the transfor-
mations are applied in a simple linear sequence, thus requiring no heuristics
at all. Only a trivial up- and down-shift operation of black nodes is used in
addition to the basic prefix transformation described above.
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The conditions for the shift operations are:

� � : nodes (1, 1) and (0, 1) are white,
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� � : node (1, 2) is white and node (1, 1) has no successor (

�

, 2) with

� � 1.

Timing constraints are taken into account by setting appropriate top and bottom
margins for each column.

Step 1) Prefix graph compression: Compressing a prefix graph means
decreasing its depth at the cost of increased size, resulting in a faster circuit
implementation. Prefix graph compression is achieved by shifting up the black
nodes in each column as far as possible using depth-decreasing transform and
up-shift operations. The recursive function COMPRESS COLUMN (

�

,

�

) shifts up
a black node (

�

,

�

) by one position by applying an up-shift or depth-decreasing
transform, if possible. It is called recursively for node (

�
�

�

� 1) starting at
node (

�

, �), thus working on an entire column from bottom to top. The return
value is true if node (

�

,

�

) is white (i.e., if a black node (

�

,

�

) can be shifted
further up), false otherwise. It is used to decide whether a transformation at
node (

�

,

�

) is possible. The procedure COMPRESS GRAPH () compresses the
entire prefix graph by calling the column compressing function for each bit
position in a linear sequence from the LSB to the MSB. It can easily be seen
that the right-to-left bottom-up graph traversal scheme used always generates
prefix graphs of minimal depth, which in the case of uniform signal arrival
times corresponds to the Sklansky prefix structure. The pseudo code for prefix
graph compression is given below.

This simple compression algorithm assumes to start from a serial-prefix
graph (i.e., only one black node exists per column initially). The algorithm
can easily be extended by distinguishing an additional case in order to work
on arbitrary prefix graphs. However, in order to get a perfect minimum-depth
graph, it must start from serial-prefix graph.

Step 2) Prefix graph expansion: Expanding a prefix graph basically means
reducing its size at the cost of an increased depth. The prefix graph obtained
after compression has minimal depth on all outputs at maximum graph size.
If depth specifications are still not met, no solution exists. If, however, graph
depth is smaller than required, the columns of the graph can be expanded
again in order to minimize graph size. At the same time, fan-out numbers
on the critical nets are reduced thus making circuit implementations faster
again by some small amount. The process of graph expansion is exactly
the opposite of graph compression. In other words, graph expansion undoes
all unnecessary steps from graph compression. This makes sense since the
necessity of a depth-decreasing step in column

�

is not a priori known during
graph compression because it affects columns

� � �

which are processed



150 6 Adder Synthesis

Algorithm: Prefix graph compression

COMPRESS GRAPH ()

�

for (

� � 0 to � � 1)
COMPRESS COLUMN (

�

, �);

�

boolean COMPRESS COLUMN (

�

,

�

)

�

/* return value = (node (

�

,

�

) is white) */
if (node (

�

,

�

) is at top of column

�

) return false;
else if (node (

�

,

�

) is white)

�

COMPRESS COLUMN (

�

,

� � 1);
return true;

�

else if (black node (

�

,

�

) has white predecessor (




,

� � 1))

�

if (predecessor (




,

� � 1) is at top of column




) return false;
else

�

shift up black node (

�

,

�

) to position (

�

,

� � 1);
COMPRESS COLUMN (

�

,

� � 1);
return true;

�

�

else

�

/* black node (

�

,

�

) has black predecessor (




,

� � 1) */
shift up black node (

�

,

�

) to position (

�

,

� � 1);
if (COMPRESS COLUMN (

�

,

� � 1))

�

/* node (

�

,

� � 2) is predecessor of node (




,

� � 1) */
insert black node (

�

,

� � 1) with predecessor (

�

,

� � 2);
return true;

�

else

�

shift back black node (

�

,

� � 1) down to position (

�

,

�

);
return false;

�

�

�

later. Thus, prefix graph expansion performs down-shift and size-decreasing
transform operations in a left-to-right top-down graph traversal order wherever
possible (EXPAND GRAPH (

�

,

�

) and EXPAND COLUMN ()). The pseudo code is
therefore very similar to the code for graph compression (see below).

This expansion algorithm assumes to work on a minimum-depth prefix
graph obtained from the above compression step. Again, it can easily be
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Algorithm: Prefix graph expansion

EXPAND GRAPH ()

�

for (

� � � � 1 to 0)
EXPAND COLUMN (

�

, 1);

�

boolean EXPAND COLUMN (

�

,

�

)

�

/* return value = (node (

�

,

�

) is white) */
if (node (

�

,

�

) is at bottom of column

�

) return false;
else if (node (

�

,

�

) is white)

�

EXPAND COLUMN (

�

,

� �

1);
return true;

�

else if (black node (

�

,

�

) has at least one successor)

�

EXPAND COLUMN (

�

,
� �

1);
return false;

�

else if (node (

�

,

� �

1) is white)

�

shift down black node (

�

,

�

) to position (

�

,

� �

1);
EXPAND COLUMN (

�

,

� �

1);
return true;

�

else

�

/* black node (

�

,

�

) from depth-decreasing transform */
/* node (

�

,

�

) is predecessor of node (

�

,

� �

1) */
remove black node (

�

,

� �

1) with predecessor (

�

,

�

);
shift down black node (

�

,

�

) to position (

�

,

� �

1);
if (EXPAND COLUMN (

�

,

� �

1)) return true;
else

�

shift back black node (

�

,

� �

1) up to position (

�

,

�

);
re-insert black node (

�

,

� �

1) with predecessor (




,

� �

1);
return false;

�

�

�

adapted in order to process arbitrary prefix graphs. Under relaxed timing
constraints, it will convert any parallel-prefix structure into a serial-prefix one.
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Figure 6.4: Prefix graph synthesis.

Synthesis of Parallel-Prefix Graphs

The synthesis of size-optimal parallel-prefix graphs — and with that of parallel-
prefix adders — under given depth constraints is now trivial. A serial-prefix
structure is first generated which then undergoes a graph compression step and
a depth-controlled graph expansion step,as illustrated in Figure 6.4. For a more
intuitive graph representation, a final up-shift step can be added which shifts
up all black nodes as far as possible without performing any transformation,
thus leaving the graph structure unchanged (used in Figs. 6.5–6.11).

Carry-increment (i.e., bounded-#

� � �

� � � ) prefix structures are obtained by
limiting the number of black nodes per column (#

� � �

� � � ) through an additional
case distinction in the graph compression algorithm. Also, a simple adaption
of the graph expansion algorithm allows the generation of size-constrained
prefix structures (i.e., the total number of black nodes is limited), resulting in
the synthesis of area-constrained adder circuits.
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6.4.4 Experimental Results and Discussion

The described synthesis algorithm was implemented as a C-program and tested
for a wide range of word lengths and depth constraints. The runtime efficiency
of the program is very high thanks to the simple graph traversal algorithms,
resulting in computation times below 1s for prefix graphs of up to several
hundred bits (Sun SPARCstation-10).

Uniform Signal Arrival Profiles

Figures 6.8(a)–(e) depict the synthesized parallel-prefix structures of depth
five to eight and 12 for uniform signal arrival times. Structure depth (

�
� ) and

size (# � ) are indicated for each graph. The numbers in parenthesis correspond
to structure depth and size after the compression but before the expansion step.

The structures (a) and (d) are size-optimized versions of the Sklansky and
Brent-Kung prefix graphs.

For depths in the range of

�

2 log � � 3

� � �
�

� � � � 1

�

a linear trade-
off exists between structure depth and size [Sni86]. This is expressed by
the lower bound

� �
�

�

# �
� � �

2 � � 2

�

which is achieved by the synthesized
structures, i.e., the algorithm generates size-optimal solutions within this range
of structure depths. This linear trade-off exists because the prefix structures
are divided into an upper serial-prefix region (with one black node per bit) and
a lower Brent-Kung parallel-prefix region (with two black nodes per bit on the
average). Changing the structure depth by some value therefore simply moves
the border between the two regions (and with that the number of black nodes)
by the same amount (Figs. 6.8(c)–(e)). In other words, one depth-decreasing
transform suffices for an overall graph depth reduction by one.

In the depth range log � � �
�

� �

2 log � � 3

�

, however, decreasing struc-
ture depth requires shortening of more than one critical path, resulting in an
exponential size-depth trade-off (Figs. 6.8(a)–(c)). Put differently, an increas-
ing number of depth-decreasing transforms has to be applied for an overall
graph depth reduction by one, as depth gets closer to log �. Most synthesized
structures in this range are only near-optimal (except for the structure with
minimum depth of log �). A strictly size-optimal solution is obtained by a
bounded-#

� � �

� � � prefix structure with a specific #

� � �

� � � value (compare Figs. 6.5
and 6.8(b)).
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Non-Uniform Signal Arrival Profiles

Various non-uniform signal arrival profiles were applied, such as late up-
per/lower half-words, late single bits, and increasing/decreasing profiles on
inputs, and vice versa for the outputs. For most profiles, size-optimal or near-
optimal structures were generated using the basic algorithm with unbounded
#

� � �

� � � . As an example, Figures 6.7(a) and (b) show how a single bit which
is late by four black node delays can be accommodated at any bit position in
a prefix structure with depth

�
� � log � �

1. The structure of Figure 6.6
has a fast MSB output (corresponds to the carry-out in a prefix adder) and
is equivalent to the Brent-Kung prefix algorithm. Figures 6.9(a)–(d) depict
the synthesized prefix graphs for late input and early output upper and lower
half-words.

Input signal profiles with steep “negative slopes” (i.e., bit

�

arrives earlier
than bit

�

� 1 by one �-operator delay for each

�

) are the only exceptions
for which inefficient solutions with many black nodes in some columns are
generated. This, however, can be avoided by using bounded-#

� � �

� � � prefix
structures. It can be observed that by bounding the number of black nodes per
column by log � (#

� � �

� � � � log �), size-optimal structures are obtained. This is
demonstrated in Figure 6.10 with a typical input signal profile found in the final
adder of a multiplier, originating from an unbalanced Wallace tree adder. This
example shows the efficient combination of serial and parallel substructures
generated, which smoothly adapts to the given signal profiles. In Figure 6.11,
the same signal profile with less steep slopes is used.

Discussion

As mentioned above, cases exist where size-optimal solutions are obtained
only by using bounded-#

� � �

� � � parallel-prefix structures. However, near-optimal
structures are generated throughout by setting #

� � �

� � � � log �. Note that this
bound normally does not come into effect since most structures (e.g., all
structures with uniform signal arrival profiles) have #

� � �

� � �

�

log � by default.

The synthesis algorithm presented works for any word length �. Because it
works on entire prefix graphs, it can be used for structural synthesis but not for
the optimization of existing logic networks. For the latter, the corresponding
prefix graph has first to be extracted which, however, resembles the procedure
of subcircuit optimization in the heuristic methods.
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Fan-out significantly influence circuit performance. The total sum of fan-
out in an arbitrary prefix structure is primarily determined by its degree of
parallelism and thus by its depth. In the prefix structures used in this work, the
accumulated fan-out on the critical path, which determines the circuit delay,
is barely influenced by the synthesis algorithm. This is why fan-out is not
considered during synthesis. Appropriate buffering and fan-out decoupling
of uncritical from critical signal nets is left to the logic optimization and
technology mapping step which is always performed after logic synthesis.

Validation of the results on silicon bases on the standard-cell implemen-
tations described in Section 4.2, where the prefix adders used in this work
showed the best performance measures of all adder architectures. As far as
technology mapping is concerned, the synthesized prefix structures can be
mapped very efficiently onto typical standard-cell libraries, since the basic
logic functions (such as AND-OR, AND, and XOR) exist as cells in any li-
brary. Most libraries also include optimized full-adder cells, which can be
used for the efficient realization of serial-prefix structures (see also Sec. 7.4).

6.4.5 Parallel-Prefix Schedules with Resource Constraints

Parallel-prefix computation not only plays an important role in adder and
circuit design, but also in digital signal processing, graph optimizations, com-
putational geometry, and loop parallelization containing loop-carried depen-
dencies. Here, we have to distinguish between problems with simple prefix
operations, where all of them are typically performed in parallel (e.g., com-
binational circuits), and applications with complex prefix operations, where
one single or only a few parallel operations are executed sequentially in �

time steps in order to perform the entire computation (corresponds to the �

levels in a prefix graph). Since in many such applications the amount of re-
sources — such as functional units or processors — is fixed and independent
of the problem size, schemes or schedules are required which perform a prefix
computation in minimal time under certain resource constraints [WNS96]. In
particular, a prefix problem of size � has to be computed on � processors with
minimal time steps. This problem can be translated into the prefix graph do-
main, where a prefix graph of width � and minimal depth is to be found having
a maximum number of � black nodes per row. The similarities between this
prefix graph optimization problem and the optimization problems discussed in
this chapter so far, but also the fact that these problems can be solved by the
same algorithm, are the reasons why it is mentioned at this point. On the other
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hand, this resource-constrained prefix problem has no significance in adder
design, since for combinational circuits only constraining the total number of
black nodes, but not the number of black nodes per prefix level, makes sense.

In [WNS96], several algorithms are presented which yield time-optimal
schedules for prefix computation problems. Basically, two problem sizes are
distinguished:

� � � � � �

1

� �

2 : Time-optimal harmonic schedules are generated using a
simple algorithm. The harmonic schedule for � � � � � �

1

� �

2 is equiv-
alent to the 1-level carry-increment parallel-prefix structure generated
by our synthesis algorithm with #

� � �

� � � � 2. A harmonic schedule for
larger � simply repeats this former schedule for higher bits, which in
our algorithm can be achieved using an additional #

� � �

� � � � 2 parameter
(i.e., maximum number of black nodes per prefix level). An example of
a synthesized harmonic schedule is given in Figure 6.12.

� � � � � �

1

� �

2 : A general scheme for generation of strict time-optimal
schedules (also for � � � � � �

1

� �

2) is described. The algorithm pro-
posed is quite complex, and these schedules cannot be generated by
our synthesis algorithm. However, the above harmonic schedules yield
near-optimal schedules, which in the worst case are deeper by only two
levels and in the typical case by one level.

Thus, the universal parallel-prefix synthesis algorithm proposed in this
work also generates harmonic schedules used for resource-constrained parallel-
prefix computations. These schedules are time-optimal for � � � � � �

1

� �

2
and near-optimal for � � � � � �

1

� �

2. However, the direct synthesis algorithm
presented in [WNS96] for harmonic schedules is simpler and more efficient
(analogously to the algorithms for fixed parallel-prefix structures of Sec. 6.3).
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Figure 6.5: Synthesized minimum-depth bounded-# max
� � � prefix structure
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Figure 6.6: Synthesized minimum-depth prefix structure for the MSB output
early by 3 �-delays.

� � # �

6 78

�

6

� �

86

�

(a)

lat7t6.epsi///synthesis
74 � 20 mm

012345678910111213141516171819202122232425262728293031

0
1
2
3
4
5
6

� � # �

6 68

�

6

� �

77

�

(b)

lat22t6.epsi///synthesis
74 � 20 mm

012345678910111213141516171819202122232425262728293031

0
1
2
3
4
5
6

Figure 6.7: Synthesized minimum-depth prefix structures (a), (b) for a single
input bit late by 4 �-delays.
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Figure 6.8: Synthesized prefix structures (a)–(e) of depths 5–8 and 12.
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Figure 6.9: Synthesized minimum-depth prefix structures for (a) late input
upper word, (b) late input lower word, (c) early output upper
word, and (d) early output lower word by 8 �-delays.
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Figure 6.10: Synthesized minimum-depth prefix structures with (a) no # max
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bound, (b) # max

� � � � 5

� � log � � bound, and (c) # max

� � � � 3 bound
for the typical input signal arrival profile in the final adder of a
multiplier (steep slopes).
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Figure 6.11: Synthesized minimum-depth prefix structure with # max
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log � � bound for typical input signal arrival profile in the final
adder of a multiplier (flat slopes).
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Figure 6.12: Synthesized minimum-depth prefix structure with # max

� � � � 2 and
# max

� � � � 5 bound (resource-constrained harmonic schedule for

� � 32 and � � 5).

6.5 Validity and Verification of Prefix Graphs

Obviously, not all directed acyclic graphs are valid prefix graphs. The validity
of a prefix graph can be checked by some simple properties. In addition, valid
prefix graphs exist which are redundant but can be converted into irredundant
ones. Although the prefix graphs generated by the above synthesis algorithms
are valid (i.e., correct-by-construction), this section gives the corresponding
theoretical background and an algorithm for the verification of arbitrary prefix
graphs.
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6.5.1 Properties of the Prefix Operator

Associativity of the Prefix Operator

The addition prefix operator ( �) is associative:

� ��

:

�

1

�

1

�
� � � �

1:

�

2

�

1

� � � �

2 :

�
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:

�

1

�

1

� � � �

1:

�

2

�

1

�
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2:

� (6.1)

Proof: (note that for addition
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The associativity property of the prefix operator allows the evaluation of
the prefix operators in any order. It is used in the prefix transformation applied
for prefix graph optimization (Sec. 6.4).

Idempotence of the Prefix Operator

The addition prefix operator ( �) is idempotent:

� ��

:

� � � ��

:
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:

� (6.2)
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Proof:
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The idempotence property of the prefix operator allows for insertion or
removal of redundancy in prefix graphs. Note that the �-operator in Eq. 6.2 is
redundant and can be eliminated.

6.5.2 Generalized Prefix Problem

For validation of prefix graphs, it is important to understand the validity of
group variables. A valid group variable

� ��

:

� is the prefix result of all inputs

� � � � � � � � � . Let us rewrite Eq. 3.25 in a more generalized form, namely with
the index

�

replaced by

�

1 and

�

2, as follows:

�0�
:

� � � �

� ��

:

� � � � �1�

:

�

1

�

1

� � � �1�

2:

� �
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1 �
�

2

� �

;

� � 1 � 2 � � � � � �

� � � � ��

:0 ;

� � 0 � 1 � � � � � � � 1 (6.3)

Three cases can now be distinguished:

�

1
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2 : Eq. 3.25 and Eq. 6.3 are equivalent. The bit groups represented by
the group variables
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�

1

�
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2 :
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:
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�

1

� �
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Note, that a redundant �-operation is performed.
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6.5.3 Transformations of Prefix Graphs

From the above prefix graph and group variable properties, all elementary
prefix graph transformations can now be summarized. They are depicted in
Figure 6.13–6.17, with the indices (

� � � � �

resp.

� � �
1

� �

2

� �

) to
the right of each node denoting the index range of the corresponding group
variable (

�

:

�

1 actually denotes

� ��

:

�

1

�

1). The basic prefix transform operation
used in Section 6.4 for prefix graph optimization bases on the associativity
property of the prefix operator (Fig. 6.13). It works in both directions while
validity and irredundancy of the graph is preserved. The shift operation of
a single black node, which is the other transformation used in the presented
optimization algorithm, also retains the validity and irredundancy properties of
a graph (Fig. 6.14). The idempotence property of the prefix operator allows to
merge two black nodes (Fig. 6.15). This is the only prefix graph transformation
which removes redundancy from or inserts redundancy (by duplication of one
black node) to a prefix graph, respectively, while validity is again preserved.

Swapping of two black nodes in the same column only results in a valid
prefix graph if the graph contains some specific redundancy (Fig. 6.16a). This
transformation applied to an irredundant prefix graph results in an invalid
group variable (Fig. 6.16b). The same holds true for the relative shift of two
black nodes depicted in Figure 6.17. I.e., valid prefix graphs are only obtained
if they are redundant (Fig. 6.17a), since otherwise one group variable covers a
too small range of bits and thus is invalid (Fig. 6.17b).

It can be shown that any valid redundant prefix graph can be converted
into an irredundant one using the above graph transformations.

6.5.4 Validity of Prefix Graphs

The validity of a prefix graph can now be defined in several ways. A prefix
graph is valid if and only if:

a) it computes its outputs according to Eq. 3.23,

b) it is functionally equivalent to the corresponding serial-prefix graph,

c) there exists a sequence of legal graph transformations that it can be
derived from the corresponding serial-prefix graph,
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Figure 6.13: Prefix transformation using associativity property.
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Figure 6.14: Shift of single black node.
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Figure 6.16: (a) Legal (with redundancy)and (b) illegal (without redundancy)
swapping of two black nodes in same column.

d) it computes the group variables

� ��

:

� according to Eq. 6.3 with

�

1

� �

2,
or

e) at least one path to group variable

� ��

:

� (output � � � � ��

:0 ) exists from
each input � � � � � � � � � (i.e., group variable

� ��

:

� is the (only) sink node of
a directed acyclic graph with the inputs � � � � � � � � � as source nodes and
an in-degree of two on all nodes).

6.5.5 Irredundancy of Prefix Graphs

A prefix graph is valid and irredundant if and only if:
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Figure 6.17: (a) Legal (with redundancy)and (b) illegal (without redundancy)
relative shift of two black nodes.

a) it can be derived from the corresponding serial-prefix graph using the
irredundancy preserving graph transformations of Figures 6.13 and 6.14
(corresponds to what the proposed prefix graph synthesis algorithm
does),

b) it computes the group variables

� ��

:

� according to Eq. 6.3 with

�

1

� �

2,
or

c) exactly one path to group variable

� ��

:

� exists from each input � � � � � � � � �

(i.e., group variable

� ��

:

� is the root of a binary in-tree5 with the inputs

� � � � � � � � � as leaves, see Fig. 3.15).

Consequently, a prefix graph is valid and redundant if it computes at least
one group variable

� ��

:

� with

�

1

� �

2.

5An in-tree is a rooted tree with reverse edge direction, i.e., edges lead from the leaves to the
root.

6.6 Summary 169

Basically, redundant prefix graphs are of no importance since they offer
no advantages while their irredundant counterparts are more efficient (e.g.,
smaller size).

6.5.6 Verification of Prefix Graphs

The prefix graphs synthesized by the presented algorithm can be regarded as
correct-by-construction since only validity and irredundancy preserving graph
transformations are applied. Thus, no verification is required. For graphs from
another source, a verification procedure may be desirable.

From the above graph-theoretical conditions for valid and irredundant
prefix graphs, a simple verification algorithm can be formulated. Its pseudo
code is given below.

6.6 Summary

The regularity and implementation efficiency of the most common prefix struc-
tures allows the realization of relatively simple adder synthesis algorithms.
Such netlist generators for fixed adder architectures can also be described in
parameterized structural VHDL and thus be incorporated easily into hardware
specification and synthesis.

The generality and flexibility of prefix structures proves to be perfectly
suited for accommodating arbitrary depth constraints at minimum structure
size, thereby allowing for an efficient implementation of custom binary adders.
The universal algorithm described for optimization and synthesis of prefix
structures is simple and fast, and it requires no heuristics and knowledge about
arithmetic at all. It generates prefix structures that are optimal or near-optimal
with respect to size under given depth constraints. It also works under other
constraints, such as size and resource constraints.

Another approach for the generation of new adders using evolutionary
algorithms (EA) was considered but not followed any further due to severe
implementation problems [CL94].
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Algorithm: Prefix graph verification

VERIFY GRAPH ()

�

�� � � � � true;

�� � � � � �
�� � � � true;

for (

� � 1 to �)

�

for (

� � 1 to � � 1)

�

if (node (

�

,

�

) is black)

�

unmark all inputs;
if (node (

�

,

�

) is at output)

� � 0; else

� � �

;
TRAVERSE TREE (

�

,

�

);
for (


 � �

to

�

)

�

if (input




is not marked )

�

�� � � � � false;
return;

�

else if (input




is marked more than once)

�� � � � � �
�� � � � false;

�

�

�

�

�

TRAVERSE TREE (

�

,

�

)

�

� � min (

�

,

�

);
if (node (

�

,

�

) at top of column

�

)

�

mark input

�

;
return;

�

TRAVERSE TREE (

�

,

� � 1);
if (node (

�

,

�

) is black and node (




,

� � 1) its predecessor)
TRAVERSE TREE (




,

� � 1);

�

7

VLSI Aspects of Adders

Some special aspects, which are related to VLSI design as well as to the imple-
mentation of parallel-prefix adders, are finally summarized in this chapter. In
particular, circuit verification, transistor-level design, layout topologies, cell
library requirements, pipelining, and FPGA implementations of prefix adders
are investigated. This chapter impressively demonstrates the versatility of the
parallel-prefix adder structure and its suitability for manifold applications.

7.1 Verification of Parallel-Prefix Adders

The importance of circuit verification is a matter of fact in VLSI design [CK94].
Functional circuit verification is used to validate the logic correctness of a
circuit and its faultless fabrication. It is performed by simulating or testing a
circuit with appropriate input stimuli against expected output responses. This
section gives a simple and general test bench for the verification of all parallel-
prefix adder circuits synthesized by the algorithms introduced in Chapter 6.
Since prefix adders do not contain any logic redundancy (as opposed e.g. to
the carry-skip adder), they are completely testable.

171
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7.1.1 Verification Goals

Functional circuit verification by way of simulation and hardware testing must
address the following two goals:

Logic verification: Circuits obtained from synthesis are usually regarded as
logically correct-by-construction. Logical circuit verification through
simulation, however, is still sometimes desired. The most crucial faults
to be uncovered by a corresponding test bench are gate faults (false logic
gates, e.g., an AND instead of a NAND) and connection faults (false
circuit connections). False logic gates can be detected by applying all
possible input combinations to each gate while making its output ob-
servable. Such a test is feasible for most circuits but is typically more
expensive than a test for node faults only (node faults are explained be-
low). On the other hand, a complete test for correct circuit connections
is not feasible since this would require the simulation of all signal com-
binations on all possible circuit node pairs, which grows exponentially
with the circuit size. However, a very high percentage of connection
faults is usually covered by gate and node fault tests (see fabrication
verification below).

Fabrication verification: A fabricated circuit may be affected by a variety of
manufacturing defects. These defects are typically modeled by simpli-
fied node fault models, such as the stuck-0/1 and the open-0/1 models.
A test covering these faults basically applies low and high levels to each
circuit node while making the signals observable at the primary outputs.

A reliable circuit verification test bench for library components — such
as the described parallel-prefix adders — should cover 100% of all possible
faults under the above fault models.

7.1.2 Verification Test Bench

In addition, the following requirements for a verification test bench can be
stated:

1. The test vector set should be kept as small as possible in order to save
tester resources and reducing simulation and testing time.
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2. The test vector set should be highly regular so that it can be generated
algorithmically as a function of the word length or by a simple on-chip
circuitry for efficient self test.

The test bench in Table 7.1 was developed for the verification of parallel-
prefix adders. It was obtained by examining all faults for the various possible
circuit structures, deriving the respective test vectors to cover them, and sum-
marizing the vectors in simple and regular test vector sets with highly repetitive
patterns. The test bench fulfills all of the above requirements. The number of
test vectors is 4 � �

4, where � is the operand word length. The input patterns
can be generated using a shift register and some multiplexers. The output
responses can be compared with a pattern generated by another shift register
and few multiplexers or by a signature checker. The test vector set guarantees
100% fault coverage under above (logic and fabrication) fault models with
the exception of some hard-to-detect connection faults6. This holds true for
all prefix adders — both AOI- and multiplexer-based — that are generated
by the synthesis algorithms presented in Chapter 6. The test vector set was
verified by fault simulations carried out using the System HILO software by
Veda Design Automation Ltd.

7.2 Transistor-Level Design of Adders

So far, the design of adder circuits using cell-based techniques was addressed.
When going down to the transistor level, new possibilities for circuit design
are showing up. On one hand, various logic styles with varying perfor-
mance characteristics exist for the implementation of logic gates. On the other
hand, special circuit solutions exist at the transistor level for some arithmetic
functions, such as the carry-chain or Manchester-chain circuit for the carry
propagation in adders. Also, buffering and transistor sizing can be addressed
at the lowest level.

A large variety of custom adder implementations exists and has been
reported in the literature. A detailed discussion of transistor-level adder circuits
is beyond the scope of this thesis, the main focus of which is on cell-based
(or gate-level) design techniques. However, some conclusions from the cell-
based investigations as well as the proposed adder architectures apply to the

6Some connection faults are very hard to detect and would required individual additional test
vectors each.



174 7 VLSI Aspects of Adders

Table 7.1: Test bench for parallel-prefix adders.

# vect.

� � � �
 � � 	 
 � coverage of

000 � � � 000 111 � � � 111 0 111 � � � 111 0
111 � � � 111 000 � � � 000 0 111 � � � 111 0

4
000 � � � 000 111 � � � 111 1 000 � � � 000 1

special single faults

111 � � � 111 000 � � � 000 1 000 � � � 000 1

000 � � � 000 111 � � � 110 1 111 � � � 111 0
000 � � � 000 111 � � � 101 1 111 � � � 110 0
000 � � � 000 111 � � � 011 1 111 � � � 100 0

�

...
...

...
...

...
000 � � � 000 110 � � � 111 1 111 � � � 000 0
000 � � � 000 101 � � � 111 1 110 � � � 000 0
000 � � � 000 011 � � � 111 1 100 � � � 000 0
111 � � � 111 000 � � � 001 0 000 � � � 000 1

+ all stuck-0/1
faults for
AOI-based adders

111 � � � 111 000 � � � 010 0 000 � � � 001 1
111 � � � 111 000 � � � 100 0 000 � � � 011 1

�

...
...

...
...

...
111 � � � 111 001 � � � 000 0 000 � � � 111 1
111 � � � 111 010 � � � 000 0 001 � � � 111 1
111 � � � 111 100 � � � 000 0 011 � � � 111 1
000 � � � 001 000 � � � 001 1 000 � � � 011 0
000 � � � 010 000 � � � 010 1 000 � � � 101 0
000 � � � 100 000 � � � 100 1 000 � � � 001 0

�

...
...

...
...

...

+ all open-0/1
faults for
AOI-based adders

001 � � � 000 001 � � � 000 1 010 � � � 001 0
010 � � � 000 010 � � � 000 1 100 � � � 001 0
100 � � � 000 100 � � � 000 1 000 � � � 001 1
111 � � � 110 111 � � � 110 0 111 � � � 100 1
111 � � � 101 111 � � � 101 0 111 � � � 010 1
111 � � � 011 111 � � � 011 0 111 � � � 110 1

�

...
...

...
...

...

+ remaining
open-0/1 faults for
mux-based adders

110 � � � 111 110 � � � 111 0 101 � � � 110 1
101 � � � 111 101 � � � 111 0 011 � � � 110 1
011 � � � 111 011 � � � 111 0 111 � � � 110 0
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transistor level as well. These aspects are shortly summarized in this section.

7.2.1 Differences between Gate- and Transistor-Level De-
sign

In cell-based designs, circuits are composed of logic gates from a library. The
set of available logic functions as well as the choice of gate drive strengths are
limited. During circuit design and optimization, an optimal combination of the
available logic gates and buffers is to be found for given circuit performance
requirements.

At the transistor level, the designer has full flexibility with respect to the
implementation of logic functions and to performance tuning. In particular,
the following possibilities exist when compared to gate-level design:

� Gates for any arbitrary logic function can be realized

� Transistor sizing allows fine-tuning of gate performance (i.e., area, delay,
power dissipation)

� Individual signal buffering allows fine-tuning of circuit performance

� Special circuit techniques and logic styles can be applied for

– the implementation of special logic functions

– the improvement of circuit performance

� Full layout flexibility yields higher circuit quality (especially area, but
also delay and power dissipation)

Performance measures

For gate-level as well as for transistor-level circuits, performance comparisons
by measuring or simulating actual circuit implementations make only sense if
all circuits are realized under the same conditions and in the same technology.
A direct comparison of performance numbers taken from different publications
is not very reliable.
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Analogously to the unit-gate model in cell-based design (Chap. 4), the unit-
transistor delay � [WE85] can be used for speed comparison of transistor-level
circuits. In this model, the number of all transistors connected in series on
the critical signal path is determined. The model accounts for the number of
signal inversion levels and the number of series transistors per inversion level.
It does not account for transistor sizes and wiring capacitances. Under the
assumption that similar circuit architectures have similar critical signal paths
with similar transistor sizes and wire lengths, the qualitative comparison of
adder architectures using this delay model is adequate.

A more accurate qualitative comparison is possible for circuit size and
power dissipation using the transistor-count model (analogous to the unit-gate
model for cell-based circuits), where the total number of transistors of a circuit
is determined.

7.2.2 Logic Styles

Different logic styles exist for the transistor-level circuit implementation of
logic gates [Rab96]. The proper choice of logic style considerably influences
the performance of a circuit.

A major distinction is made between static and dynamic circuit techniques.
Dynamic logic styles allow a reduction of transistors and capacitance on the
critical path by discharging pre-charged nodes through single transistor net-
works. The better speed comes at the cost of higher power consumption due
to higher transition activities and larger clock loads. Also, dynamic logic
styles are not directly compatible with cell-based design techniques and are
not considered any further at this place.

Static logic styles can be divided into complementary CMOS and pass-
transistor logic. While complementary CMOS is commonly used e.g. in
standard cells, various pass-transistor logic styles — such as complementary
pass-transistor logic (CPL) — were proposed for low-power applications.
However, recent investigations showed complementary CMOS to be superior
to pass-transistor logic if low power, low voltage, small power-delay products,
and circuit area, but also circuit robustness are of concern [ZG96, ZF97].
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7.2.3 Transistor-Level Arithmetic Circuits

Some special transistor-level circuits exist for adder-related logic functions.

Carry chain or Manchester chain: The Manchester chain is a transistor-
level carry-propagation circuit, which computes a series of carry signals
in a ripple-carry fashion using generate (Eq. (3.8)), propagate (Eq. (3.9)),
and kill (

� � �
�� � � �

) signals. It computes the carry with only three
transistors per bit position (Fig. 7.1), compared to two gates in the cell-
based version of Eq. (3.12). Note that the generation of the kill signal

�

requires some additional logic and that the length of a Manchester chain
must be limited due to the number of transistors in series (i.e., typically
4 bits). The Manchester chain allows the area-efficient implementation
of short ripple-carry chains and is typically used for the calculation of
intermediate non-critical carry signals [LA95, M

�

94].

carrychain.epsi
73 � 23 mmcout
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pi

ci

ki-1
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ci-1

cin

gi gi-1

Figure 7.1: Transistor-level carry-chain circuit.

Pass-transistor/pass-gate multiplexer: Carry-select, conditional-sum, and
also one variant of parallel-prefix adders consist of multilevel multi-
plexer structures. Such series multiplexers can efficiently be imple-
mented using pass-transistor or pass-gate (transmission-gate) circuits.
Hence, multiplexer-based adder architectures, which showed inferior
performance in cell-based design due to inefficient multiplexer gates,
yield better circuits at the transistor-level.

Full-adder: Special transistor-level circuits exist for full-adders, which differ
from the typical implementations using simple gates (Fig. 3.4). One
of the most efficient solutions in complementary CMOS logic style is
depicted in Figure 7.2. Other solutions exist in pass-transistor logic
styles, which are discussed in [ZF97].
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Figure 7.2: Transistor-level full-adder circuit.

7.2.4 Existing Custom Adder Circuits

Many different transistor-level adder implementations have been reported in
the literature. Basically, all of them rely on the adder architectures described in
Chapter 4. However, combinations of different speed-up techniques are often
used which, at the transistor level, yield performance advantages by applying
dedicated transistor-level arithmetic circuits (as described above) and circuit
techniques.

Many custom adder implementations use a carry-lookahead adder archi-
tecture for the computation of some carries and a Manchester chain for the re-
maining intermediate carries [O

�

95]. Alternatively, short ripple-carry adders
are used for the calculation of intermediate carries and pairs of sum bits, which
are then selected by a subsequent carry-select stage [Lo97, M

�

96, DB95,
G

�

94, LS92]. Conditional-sum architectures were used in [BDM95, AKY94],
carry-skip in [Hob95], and parallel-prefix architectures in [KOIH92, S

�

94].
A combination of Manchester chain, carry-select, and conditional-sum adder
was realized in [D

�

92]. Some adder architectures were compared in [NIO96].

Solutions with long series transistor chains (e.g., Manchester chain, series
of pass-transistor multiplexers) are difficult to compare without simulating or
even measuring actual circuit implementations. All other solutions can be
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compared qualitatively using the transistor-delay model described above.

7.2.5 Proposed Custom Adder Circuit

The goal of custom adders is usually highest possible performance, i.e., circuit
speed. Therefore, the fastest cell-based adder architecture from the presented
comparisons, the Sklansky parallel-prefix adder, was investigated with respect
to a transistor-level implementation. Its parallel-prefix stage consisting of �-
operators (1 AND-OR-gate + 1 AND-gate, see Eq. 3.28) can be realized very
efficiently in complementary CMOS logic style using and-or-invert/or-and-
invert (AOI/OAI) and NAND/NOR gate combinations. The few nodes with
high fan-out can be decoupled from the critical signal path by inserting one
level of buffers into the prefix structure, as depicted in Figure 7.3.
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Figure 7.3: Buffered Sklansky parallel-prefix structure.

The resulting buffered Sklansky parallel-prefix adder circuit has minimum
number of transistor delays and minimum node capacitances on the critical
path. If compared qualitatively (i.e., transistor-delays, transistor-counts), this
adder performs as well as the best custom adders reported in the literature.
A 32-bit version has been implemented at the transistor level in a 0.5 �m
process. The 1 607 transistors circuit has been simulated at worst-case condi-
tions (2.8 V, 110

�

C, @ 100 MHz): worst-case delay is 4.14 ns at an average
power dissipation of 7.5 mW. Quantitative adder comparisons are not made at
this point since no other custom implementations were realized as part of this
work.
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7.3 Layout of Custom Adders

In custom adder implementations, layout regularity and topology are of major
importance for circuit area and performance efficiency. That is, an array-
like, parameterizable arrangement of a few simple layout cells with only few
interconnections and a small amount of unused area slots would be ideal.

All the presented — and especially the Sklansky — parallel-prefix struc-
tures are highly regular. Their graph representations can directly be mapped
into a layout topology, resulting in an array of black and white layout cells
with only very few wires routed through them. The same holds true for the
buffered Sklansky prefix structure.

Note that half of the nodes in the Sklansky prefix structure are white, thus
containing no logic. Since they occupy the same area as the white nodes for
regularity reasons, half the area is wasted. As can be seen in Figure 7.4, a
2

�

-bit wide prefix structure can be divided into two 2

� � �1 �

-bit parts which
have an antisymmetric structure (i.e., they are symmetric with respect to the
drawn axis, if the black and white nodes are exchanged). Therefore, the
left part of the structure can be mirrored and overlaid over the right part,
filling out all white node locations with black nodes. The resulting folded
structure is a

� � �

2

�

� log � array of identical black nodes with still modest
and regular wiring, and thus is highly area-efficient and layout-friendly. The
same structure folding can be applied to the buffered Sklansky prefix structure
(Fig. 7.5). Note that for the folded structures, the high order bits are in reverse
order and interleaved with the low order bits. Whereas this is no problem for a
macro-cell implementation (i.e., the bit order in surrounding routing channels
is of minor importance), it is less convenient for data-path (i.e., bus-oriented)
applications.

Other prefix structures with high layout efficiency and regularity are the
serial-prefix and the 1- and 2-level carry-increment parallel-prefix structures
(Figs. 7.6–7.8). They are well suited for data-path implementations, since
they are composed of regular and small bit-slices and bits are in ascending
order (see also Section 6.3). Note that also the 2-level carry-increment prefix
structure can be arranged in a way that each column counts no more than two
black nodes.

For these layout topologies, the unit-gate area model used in Chapter 4
allows very accurate area estimations, since the amount of unused circuit area
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Figure 7.4: Folded Sklansky parallel-prefix structure.
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Figure 7.5: Folded buffered Sklansky parallel-prefix structure.
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and wiring is negligible.
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Figure 7.7: Compacted 1-level carry-increment parallel-prefix structure.
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Figure 7.8: Compacted 2-level carry-increment parallel-prefix structure.

7.4 Library Cells for Cell-Based Adders

So far, we have addressed the implementation of parallel-prefix adders using
either standard-cell libraries or by doing custom design. But what about cell-
based design with custom cells? What cells should a standard-cell library
contain in order to achieve highest adder circuit performance?
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7.4.1 Simple Cells

As we have seen in Chapter 3, the gate-level specification of a parallel-prefix
adder basically makes use of XOR, AND-OR, and AND gates (Eqs. 3.27–
3.29). During automatic circuit optimization, series of AND-OR resp. AND
gates are typically replaced by a series of alternating AOI and OAI resp. NAND
and NOR gates. I.e., faster inverting gates are used so that all output signals of
an odd prefix stage are inverted. Additionally, buffers and inverters are used
for appropriate signal buffering and fan-out decoupling. All these cells are
typically provided in any standard-cell library.

7.4.2 Complex Cells

Two complex cells, which are also included in most cell libraries, can be used
for a more efficient implementation of prefix adders.

Majority gate: A majority gate implements Eq. 3.30 directly as one inverting
gate. It can be used for the fast computation of the first generate signal
in a carry chain (if a carry-in is present), since its delays �

0

� �

0 and

�

0
� �

0 are shorter than in a typical full-adder structure (Fig. 3.4).

Full-adder: A single full-adder cell from the library is typically more efficient
with respect to area and delay than an implementation using simpler
gates. This is due to the efficient transistor-level circuits used in full-
adder cells. However, entire full-adders are only used in ripple-carry (or
serial-prefix) but not in parallel-prefix adders, where functionality is split
into preprocessing, parallel-prefix computation, and post-processing.
Of course, full-adders can be used in the serial-prefix part of a mixed
serial/parallel-prefix adder presented in Sections 5.3 and 6.4.

No other special cells are required for the efficient realization of serial- or
parallel-prefix adders. Thus, prefix adders are highly compatible with existing
standard-cell libraries.

Synthesis and technology mapping

In order to take full advantage of the mixed serial/parallel-prefix adders syn-
thesized under relaxed timing constraints by the algorithm presented in Sec-
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tion 6.4, full-adder cells should be used during technology mapping for the
serial-prefix part. This can be accomplished easily if the adder synthesis algo-
rithm is incorporated into an entire synthesis package, where circuit synthesis
and technology mapping typically work hand in hand. However, if the syn-
thesis of the prefix adder structure is performed outside the circuit synthesis
tool (e.g., by generating intermediate structural VHDL code), a tool-specific
approach must be taken (e.g., by instantiating full-adder cells explicitly, or by
letting a ripple-carry adder be synthesized for the corresponding range of bits).

7.5 Pipelining of Adders

In this work, the fastest adder architectures were evaluated for combinational
circuit implementations. However, if throughput requirements are not met
by the fastest combinational realization, pipelining can be applied in order to
increase throughput at the cost of increased latency. With respect to pipelining
of adder circuits, the following aspects must be considered:

� High regularity of an adder structure simplifies the insertion of pipeline
registers.

� Basically, every adder (i.e., every combinational circuit) can be made
faster (i.e., to run in circuits clocked at higher frequencies) using pipelin-
ing. However, the kind of adder architecture used for pipelining strongly
influences the amount of storage elements required and the circuit’s la-
tency (i.e., length of the pipeline).

� The number of internal signals, which have to be stored in a pipeline
register, determine the register size. An adder architecture should have
as few internal signals as possible in order to minimize the number of
pipeline storage elements per stage.

� Faster adders require less pipeline stages for a requested throughput.
An adder architecture should be as fast as possible (i.e., minimal logic
depth) in order to minimize the number of pipeline registers. Note that
on the other hand, fast adders tend to have more internal signals (due to
higher parallelism), which again increases register size.

� If some latency constraints — and with that the maximum number
of pipeline stages — are given, then a fast adder architecture may be
required in order to fulfill cycle time requirements.
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Pipelining of prefix adders

Pipelining of prefix adders is very straightforward, since they are composed of
stages (pre-processing stage, several prefix levels, and post-processing stage)
with a logic depth of only two unit gates each (i.e., one XOR resp. AOI-gate).
Therefore, � �

1 locations exist for placing pipeline registers, where � is
the number of prefix levels. This enables the realization of pipeline stages of
arbitrary size and allows for fine-grained pipelining. Fine-grained pipelined
Sklansky parallel-prefix and serial-prefix adders are depicted in Figures 7.9
and 7.10, respectively, while Figure 7.11 shows a medium-grained pipelined
Brent-Kung parallel-prefix adder. Qualitative performance measures are given
for cycle time (

�
� ), black node (

�
� ) and flip-flop area (

�
� � ), latency (

�

), and
maximum fan-out (

� �
� � � ). As can be seen, selecting a good adder structure

as starting point pays off.

The number of internal signals in prefix adders is rather high (i.e., up to
three signals per bit position in the prefix-computation stage), resulting in
large pipeline registers. It can be reduced to some degree – especially in the
serial-prefix adder — by shifting up the post-processing operators � as far as
possible. The resulting flip-flop area numbers are given in parenthesis.
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Pipelining of other adders

With respect to the number of internal signals and thus the size of the pipeline
registers, other adder architectures do not yield better results. The lower reg-
ularity of some of them makes the insertion of pipeline registers considerably
more difficult.

Another approach was proposed in [DP96], where small carry-lookahead
adders are inserted between pipeline registers in order to increase throughput
and decrease latency of a medium-grain pipelined ripple-carry adder (corre-
sponds to the structure of Fig. 7.12). This solution, however, is not competi-
tive if compared to pipelined parallel-prefix adders, because its global prefix
structure is not optimal (compare Figs. 7.11 and 7.12, where cycle time and
maximum fan-out are equal but size and latency of the latter much larger). This
especially holds true for larger word lengths, where the number of pipeline
registers grows logarithmically for the parallel-prefix adder, but linearly for
the adder architecture of [DP96].

7.6 Adders on FPGAs

Cell-based design techniques are also used for the realization of circuits on field
programmable gate arrays (FPGAs). Here, the set of available gates, or logic
functions respectively, varies considerably between different FPGA architec-
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Figure 7.10: Fine-grained pipelined serial-prefix adder.
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Figure 7.11: Medium-grained pipelined Brent-Kung parallel-prefix adder.
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tures and granularities. In particular, fine-grained FPGAs are comparable to
other cell-based technologies, such as standard cells. Some investigations on
the realization of adders on fine-grained FPGAs have been carried out and are
summarized here.

7.6.1 Coarse-Grained FPGAs

Coarse-grained FPGAs — such as the members of the Xilinx XC4000 and
Altera FLEX8000 families — are composed of logic blocks with about four
or more inputs. Their output(s) are computed using look-up tables (LUT),
which allow quite complex logic functions per single logic block. The adder
circuits presented cannot be mapped directly onto such complex logic blocks.
On the contrary, adder architectures and circuits have to be adapted in order
to take full advantage of the corresponding logic block resources. This also
implies the usage of macros for the implementation of library components
(such as adders) rather than the more universal approach using gate-level
synthesis/optimization and technology mapping. Furthermore, the inherent
large logic depth of the complex logic blocks disallows for the implementation
of fast carry chains. Therefore, most coarse-grained FPGAs include an extra
fast-carry logic. This fast-carry logic makes ripple-carry adders — made
accessible through vendor-specific soft- or hard-macros — the best choice for
all but very large word lengths.

Due to these incompatibilities between the prefix adder architectures and
the coarse-grained FPGA structures and design techniques, no further investi-
gations were done in this direction.

7.6.2 Fine-Grained FPGAs

Fine-grained FPGAs — such as the members of the Xilinx XC6200 and At-
mel AT6000 families — typically allow the realization of an arbitrary 2-input
gate or a 2-input multiplexer per logic cell. Since this logic cell complexity
is comparable to the complexity of standard cells, standard gate-level circuits
and synthesis techniques can be used. At this granularity, the presented adder
architectures again exploit their full potential, and the absence of dedicated
fast-carry logic makes their application mandatory for efficient circuit imple-
mentations.
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Differences between fine-grained FPGAs and standard cells

The basic differences between fine-grained FPGAs and custom cell-based
technologies (such as standard cells) are:

� In standard-cell technologies, AND / OR gates perform better (area and
speed) than AND-OR / OR-AND gates, which in turn perform better than
multiplexers. On fine-grained FPGAs, AND / OR gates and multiplex-
ers have the same performance, since both are implemented by one logic
cell. Thus, AND-OR / OR-AND gates require two logic cells, which
makes them much less efficient than multiplexers. Put differently, mul-
tiplexers are the only two-level logic functions which can be realized
in one logic cell. While AND-OR / OR-AND gates are preferred over
multiplexers in standard-cell technologies, the opposite holds true for
FPGAs. As worked out in Section 3.5, the prefix circuit of an adder
can be realized using AND-OR gates (Eqs. 3.27–3.29) or multiplexers
(Eqs. 3.32–3.34). Therefore, on FPGAs the multiplexer-based prefix
adder structure is the better choice.

� As opposed to standard-cell technologies, where routing resources are
almost unlimited (i.e., routing channels can be made as wide as required),
routing resources on FPGAs are very limited. The amount of wiring
compared to the number of logic cells as well as the proper placement of
the logic cells are crucial for the routability of a circuit. Also, the routing
of placed cells using the limited wiring resources is very difficult, and
software algorithms for automated routing are still a challenge. For
the efficient implementation of library components, circuit architectures
have to be chosen which provide a good balance between wiring and
logic complexity.

� Finally, circuit regularity of library components is of major importance
on FPGAs with respect to layout generation, layout efficiency, and
routability. Bit-sliced layout techniques are helpful for combining sev-
eral components to form entire data paths, thus limiting the amount of
area-intensive inter-block routing.
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Optimal adder architectures for fine-grained FPGAs

As mentioned above, adders for fine-grained FPGAs should be highly regular,
have low wiring requirements, and allow for a bit-sliced layout implementa-
tion. We can conclude from the adder architecture comparisons of Section 4.2
that the ripple-carry adder (low speed), the carry-skip adder (medium speed)
and the 1-level carry-increment adder (high speed) perfectly fulfill the above
requirements. The 2-level carry-increment adder has more complex wiring
and thus is more difficult to implement. All other adder architectures — such
as parallel-prefix, carry-lookahead, carry-select, and conditional-sum adders
— lack efficient realizations on fine-grained FPGAs due to low regularity and
high routing complexity.

Note that the unit-gate model used in the qualitative adder architecture
comparisons of Chapter 4 yield very accurate performance estimations for
circuits implemented on fine-grained FPGAs. This is because each logic
cell exactly implements one simple 2-input gate — with the exception of the
multiplexer — and has a roughly constant delay. However, wiring (including
the costly routing switches) must be considered as well as it contributes a
considerable amount to the overall circuit delay (more than e.g. for standard
cells).

Adder implementations on a Xilinx XC6216

For validation of the above qualitative evaluation, a ripple-carry and a 1-
level carry-increment adder were realized on a Xilinx XC6216 FPGA [Xil97,
Mül97]. The basic XC6216 logic cell implements any arbitrary 2-input gate
or a 2-input multiplexer plus one flip-flop. It has one input and one output
connector to the neighbor cell on each side. A hierarchical routing scheme
allows the efficient realization of long distance connections. The XC6216
contains 64 � 64 � 4096 logic cells.

A bit-slice layout strategy was used for the circuit realizations with a pitch
of two logic cells per bit.

Ripple-carry adder (RCA): The ripple-carry adder consists of a series of
full-adders (Fig. 7.13). Each full-adder requires three logic cells but
occupies 2 � 2 � 4 logic cells for regularity reasons. The total size of a
ripple-carry adder is therefore 4 � logic cells.

7.6 Adders on FPGAs 191

1-level carry-increment adder (CIA-1L): As depicted in Figure 7.14, the
1-level carry-increment adder is made up of three different slices (A, B,
and C), each of them occupying six logic cells (only two more than the
full-adder). Long wires (i.e., wires ranging over 4 logic cells) are used
for propagating the block carries. Slice B and C are equivalent except
for the carry-out, which in slice C is the block carry-out connected to a
long wire. The size of a 1-level carry-increment adder is 6 � logic cells.

Circuit sizes and delays (from static timing verification) for both adder
implementations are given in Table 7.2 (taken from [Mül97]). Although the 1-
level carry-increment adder does not implement the fastest existing architecture
for standard cells, its proposed FPGA implementation can hardly be beaten
since the small speed advantage of other adder architectures is undone by their
less efficient layout and routing. To be more specific, other adder architectures
— such as the parallel-prefix and carry-select adders — need to propagate
three intermediate signals per bit position, which can only be accomplished by
increasing the pitch from two to three logic cells per bit (i.e., 50% more area)
or by using also the longer wires of the secondary interconnection level (i.e.,
much larger pitch in the second dimension).

Table 7.2: Comparison of adder implementations on a XC6216.

area (# logic cells) delay (ns)
# bits

RCA CIA-1L RCA CIA-1L

4 16 24 16.2 19.4
8 32 48 29.1 25.7

16 64 96 54.9 34.1
32 128 192 106.5 44.7

These adder implementations demonstrate the importance of proper cell
placement for routability. In the case of the carry-increment adder, only two
cell placements within a bit-slice were found which were routable at all. More
complex circuits and adder architectures are only routable if more empty cells
are inserted and the pitch per bit is increased. Note that only one signal
can be exchanged between two neighboring cells in each direction, i.e., only
two signals per bit position can propagate in parallel through a circuit with a
bit-slice pitch of two logic cells.
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8
Conclusions

Binary adder architectures for cell-based design and their synthesis have been
investigated in this thesis. The research items and results of this work can be
summarized as follows:

� The basic addition principles and speed-up schemes for the carry-
propagate addition of two binary numbers have been assembled.

� A comprehensive and consistent overview of the existing adder
architectures is given.

� A new multilevel carry-increment adder architecture with excellent
performance characteristics has been developed and proposed.

� Qualitative and quantitative comparisons of adder architectures for cell-
based design have been carried out.

� All adder architectures are characterized with respect to circuit
speed, area and power requirements, and suitability for cell-based
design and synthesis.

� The ripple-carry, carry-increment, and the carry-lookahead adders
show the best characteristics in all respects and fill the entire range
of possible area-delay trade-offs.

193



194 8 Conclusions

� The parallel-prefix scheme reported in the literature was found to repre-
sent the universal adder architecture.

� It provides a universal and consistent description of all well-
performing adder architectures — i.e., ripple-carry, carry-incre-
ment, and carry-lookahead adders — and summarizes them in the
class of prefix adders.

� Its flexibility allows the efficient and simple realization of various
special adders.

� A simple local prefix transformation enables the optimization of
prefix adders for speed or area or both.

� Prefix circuits can be generated by simple algorithms and thus be
described in parameterized structural VHDL.

� Prefix adders allow for simple circuit verification, efficient transis-
tor-level design and layout topologies, and simple pipelining.

� A fast non-heuristic optimization and synthesis algorithm has been de-
veloped for prefix graphs.

� A universal algorithm exists for the synthesis of all prefix adders.

� The runtime-efficient synthesis of area-optimal adders for the en-
tire range of area-delay trade-offs and for arbitrary timing con-
straints is possible.

In addition, some important observations and experiences have been made:

� Smaller circuits typically also provide a speed advantage compared
to larger ones, even if logic depth is the same. This is due to the
smaller interconnect delays of shorter wires, which becomes an even
more important performance parameter in deep-submicron VLSI. Also,
smaller circuits are more power-efficient.

� Adder architectures are a striking example illustrating the possibility for
trading off area versus delay in circuit design.

� Collecting and comparing different solutions to a problem at the con-
ceptual level gives a better understanding and more abstract view of
the underlying principles. On this basis, more reliable characterization
and performance comparison of existing solutions is possible and new
solutions can be found.
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� Universal structure representations, such as the parallel-prefix scheme
for binary addition, often provide a consistent description of efficient and
flexible circuit structures and allow their synthesis by simple algorithms.
Graph representations in particular are very effective to that respect.

Finally, the following outlook and topics for future work can be formulated:

� The qualitative results presented in this thesis are expected to be valid
also in future deep-submicron VLSI technologies. While such tech-
nologies have a high impact on large circuits with long interconnects,
the rather small cell-based adder circuits treated here are qualitatively
affected only marginally by the expected technology parameter changes.

� With the increasing number of metalization levels in modern process
technologies, cell-based designs almost become as layout-efficient as
custom designs. This, together with the productivity increase, will
make cell-based circuit design and synthesis more and more important
in the future.

� The comparison between cell-based and custom adder implementations
in a modern submicron technology (e.g., 0 �35 �m, four-metal) would be
a valuable extension of this thesis.

� The desirable continuation of this work would be the integration of
the proposed adder synthesis algorithm into a commercial hardware
synthesis tool.
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[ZK] R. Zimmermann and H. Kaeslin. Cell-based multilevel carry-
increment adders with minimal AT- and PT-products. submitted
to IEEE Trans. VLSI Syst.



Curriculum Vitae

I was born in Thusis, Switzerland, on September 17, 1966. After finishing
high school at the Kantonsschule Chur GR (Matura Typus C) in 1986, I
enrolled in Computer Science at the Swiss Federal Institute of Technology
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