
14th IEEE Symposium on Computer Arithmetic (ARITH 14), Adelaide,Australia, April 1999 1

Efficient VLSI Implementation of Modulo
�
2n � 1� Addition and Multiplication

Reto Zimmermann
Swiss Federal Institute of Technology (ETH)

Integrated Systems Laboratory
CH-8092 Z̈urich, Switzerland
zimmermann@iis.ee.ethz.ch

Abstract

New VLSI circuit architectures for addition and multi-
plication modulo�2� � 1� and �2� � 1� are proposed that
allow the implementation of highly efficient combinational
and pipelined circuits for modular arithmetic. It is shown
that the parallel-prefix adder architecture is well suited to
realize fast end-around-carry adders used for modulo addi-
tion. Existing modulo multiplier architectures are improved
for higher speed and regularity. These allow the use of
common multiplier speed-up techniques like Wallace-tree
addition and Booth recoding, resulting in the fastest known
modulo multipliers. Finally, a high-performance modulo
multiplier-adder for the IDEA block cipher is presented.
The resulting circuits are compared qualitatively and quan-
titatively, i.e., in a standard-cell technology, with existing
solutions and ordinary integer adders and multipliers.

1. Introduction

Arithmetic modulo �2� � 1� (Mersenne numbers) and
modulo �2� � 1� (Fermat numbers) is used in various ap-
plications, e.g., residue number systems (RNS) [11] and
cryptography [8]. Efficient and fast modulo adders and
multipliers are a prerequisite for corresponding high per-
formance integrated circuits. The main focus in this work
is on modulo�2� � 1� multiplication as used in the IDEA
(International Data Encryption Algorithm) block cipher [8].
As tangential results, modulo�2� � 1� addition and modulo�2� �1� addition and multiplication are treated as well. The
algorithms for addition are described and compared with
existing solutions in Section 2, while the same is done for
multiplication in Section 3. Section 4 describes the IDEA
modulo multiplier-adder. Experimental results are given in
Section 5.

This work has been funded in part by Ascom Systec AG and in partby
Microswiss, a Microelectronics Program of the Swiss Government.

1.1. Foundations

Binary numbers with� bits are denoted as	
���1
���2

 �0 in the following text, where

	
 ��1�
��

0

2
��� (1)

Reduction of a number	 modulo a number� (“	 mod� ”) can be accomplished by a division (with the remain-
der as result) or by iteratively subtracting the modulus until	 � � . For the moduli�2� � 1� and �2� � 1�, the mod-
ulo reduction of a number	 with at most 2� bits can be
computed simply by an addition or subtraction. Since

2� mod �2� � 1�
 2� � �2� � 1�
 1 (2)

the reduction modulo�2� � 1� can be formulated as

	 mod �2� � 1�
 �	 mod 2� � 	 div 2� � mod �2� � 1�
(3)

where the modulo operation on the right hand side is used
for final correction if the addition yields a result� 2� � 1
(i.e., 2� � 1 has to be subtracted once). Thus, the modulo�2� � 1� reduction is computed by adding the high�-bit
word (div 2�) to the low�-bit word (mod 2�) and then
conditionally subtracting 2� � 1 [5].

Analogously, since

2� mod �2� � 1�
 2� � �2� � 1�
 �1 (4)

the reduction modulo�2� � 1� can be computed as

	 mod �2� � 1�
 �	 mod 2� � 	 div 2� � mod �2� � 1�
(5)

where the modulo operation on the right hand side is used
for final correction if the subtraction yields a negative result
(i.e., 2� � 1 has to be added once). Thus, the modulo�2� � 1� reduction is computed by subtracting the high�-
bit word from the low�-bit word and then conditionally
adding 2� � 1 [5, 13].

14th IEEE Symposium on Computer Arithmetic (ARITH 14), Adelaide,Australia, April 1999 2

Furthermore, the modulo operator has the property that a
sum (product) modulo� is equivalent to the sum (product)
of its operands modulo� :

�	 � � � mod�
 �	 mod� � � mod� � mod� (6)

��
 � � mod�
 �� mod� �
 �� mod� � mod� (7)

2. Modulo addition

Modulo carry-propagate addition is the basic operation
in modular arithmetic:

�
 �	 � � � mod �2� � 1� (8)

All known solutions rely on end-around-carry adders and
our solution on parallel-prefix adders more particular, both
of which are introduced in this section.

2.1. Parallel-prefix adders

In a prefix problem,� inputs���1���2

�0 and an ar-
bitrary associative operator� are used to compute� outputs� �
 � � � � ��1 �

 � �0 for �
 0	

 	� � 1. Thus, each
output � � is dependent on all inputs�� of same or lower
magnitude (

�
 �). Carry propagation in binary addition is
a prefix problem [7]. The�-bit carry-propagate addition

����� 	 � �
 2� ���� � �
 	 � � � � �� (9)

with input operands	 and� , carry-in � �� , sum output
�

,
and carry-out���� can be expressed by the logic equations:

preprocessing:

� �

� �

0�0 � �
0�0 � �0�0 if �
 0���� otherwise� �
 �� � �� (10)

prefix computation:

��0�
:
� 	 � 0�

:
� �
 �� � 	� � �

����:� 	 � ��:� �
 ����1�
:� �1 	 � ��1�

:� �1� � ����1� :� 	 � ��1� :� �

 ����1�

:� �1 � � ��1�
:� �1���1� :� 	 � ��1�

:� �1� ��1� :� �
(11)

postprocessing:

� ��1
 ���:0� �
 � � � � � (12)

for �
 0	

 	� � 1, �
 1	

 	 � , and 0

 �
 �

where�� and�� are the operand input signals,� � and� � the
generate and propagate,� � the carry, and� � the sum output
signals at bit position�. �0 and�� correspond to the carry-in

!"
$

"
#

#%& " '(")

%* +,1"
:
- .

1
' / +,1"

:
- .

1
)
#

%* +,1-
:0 ' / +,1-

:0)1123112%*+"
:0 ' / +"

:0)
#%* +"

:0 ' / +"
:0)

("
4

"1125
#6"

%* +,1"
:0 ' / +,1"

:0)
#7112%*+"

:0 ' / +"
:0)

#%* +"
:0 ' / +"

:0)
Figure 1. Prefix adder logic operators.

� �� and carry-out����, respectively.���:� and� ��:� denote
the group generate and propagate signals for the group of
bits � 	

 	 at level�. The� operator is repeatedly applied
according to a given prefix structure of� levels in order to
compute the group generate signal���:0 (
 � ��1) for each
bit position�.

Prefix structures and adders can be visualized using di-
rected acyclic graphs (DAGs) with the edges standing for
signals or signal pairs and the nodes representing the four
logic operators depicted in Fig. 1. Fig. 2 shows the general
prefix adder structure and Fig. 3 the parallel-prefix struc-
ture with the least depth (i.e., resulting in the fastest circuit)
[15]. The square (8) and diamond (9) nodes form the pre-
and postprocessing stages, respectively. The black nodes
(�) evaluate the prefix operator� and the white nodes (:)
pass the signals unchanged to the next prefix level. A variety
of other prefix structures with different depths and sizes ex-
ist which represent alternative circuit area-delay trade-offs.
Also, an efficient algorithm for area optimization of prefix
structures under arbitrary depths constraints exists [15].

It is shown in [16] that — at least for cell-based design,
e.g., standard cells — the class of prefix adders contains the
most efficient adder architectures for the entire range of area-
delay trade-offs, i.e., from the smallest ripple-carry adder
(serial-prefix) to the fastest carry-lookahead adder (Sklansky
parallel-prefix). The simple and highly regular structure
of prefix adders allows for easy synthesis, e.g., by netlist
generators in pure parameterized VHDL code [17].

2.2. End-around-carry adders

In end-around-carryadders, the carry-out is fed back into
the carry-in, i.e.,

����� 	 � �
 	 � � � ���� (13)

in order to realize some special function (see below). If done
with an ordinary adder, where the carry-out depends on the
carry-in, a combinational loop is created that may lead to an
unwanted race condition [4]. Different solutions exist:

14th IEEE Symposium on Computer Arithmetic (ARITH 14), Adelaide,Australia, April 1999 3

add.epsi///figures
82 � 52 mm

a
n

-1

a
0

b
n

-1

b
0

s
n

-1

s
0

cout

cin

cn pn-1

(g , p)00

c0p0c1

(g , p)n-1n-1
carry-propagation
(prefix structure)

... preprocessing

postprocessing

a
1

b
1

s
1

a
n

-2
b

n
-2

s
n

-2

...

... ...

Figure 2. Prefix adder structure.

sk.epsi///figures
82 � 36 mm

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1

2

3

4

0

Figure 3. Parallel-prefix structure by Sklan-
sky.

a) In some cases, an additional logical operation on the
feedback carry can eliminate the race condition [4].

b) The addition is done in two cycles (i.e., the carry-out
of the first cycle is added in the second cycle) [2].

c) An adder followed by an incrementer is used.

d) Two adders compute both possible results (i.e., for a
carry-in of ‘0’ and ‘1’) in parallel and the correct sum
is selected afterwards according to the carry-out.

However, the solutions a)–c) realize two carry propagations
in series and thus are slow, while solution d) requires two
adders and a multiplexer which results in a large circuit. One
approach for fast modulo addition is based on a modification
of the traditional carry-lookahead adder [4]. There, the
logic formula for the carry-out is re-substituted as carry-in
in the logic formulae for the sum bits. Thereby, the carry-
lookahead logic is roughly doubled since each sum bit now
is a function of all input bits.

In our approach, an adder is required which computes
the carry-out independently of the carry-in (i.e., only as
carry-out of the sum	 � �) and which propagates the
carry-in to the sum output very quickly (i.e., fast output
incrementer) [12].

addmm1dz.epsi///figures
75 � 59 mm

a
n

-1

a
0

b
n

-1

b
0

s
n

-1

s
0

prefix structure

...

a
1

b
1

s
1

a
n

-2
b

n
-2

s
n

-2

...

... ...

cout

cin

Figure 4. End-around-carry parallel-prefix
adder structure.

Since the individual prefix levels in a parallel-prefix adder
basically implement incrementer structures (i.e., they com-
pute new generate signals depending on a group-generate
input signal of ‘0’ or ‘1’), an adder with incorporated out-
put incrementer can be built simply by adding an additional
prefix level [16]. Fig. 4 depicts the structure of such an
end-around-carryparallel-prefix adder. The prefix-structure
size is only increased by� black nodes and the critical path
by one black node, which results in highly area and delay
efficient end-around-carry adders. Note that an�-bit end-
around-carry parallel-prefix adder has the same delay but
is smaller compared to an ordinary 2�-bit parallel-prefix
adder.

2.3. Modulo �2n � 1� addition

Modulo �2� � 1� addition or, which is the same, one’s
complement addition can be formulated as

�	 � � � mod �2� � 1�

����
���

	 � � � �2� � 1�
 �	 � � � 1� mod 2�
if 	 � � � 2� � 1	 � � otherwise

(14)
The modulo2� reduction is automatically performed if an�-
bit adder is used. Note that the value “11

1” never occurs
and that only one single representation “00

0” of zero
exists. Equation (14) can be rewritten using the condition	 � � � 2� :

�	 � � � mod �2� � 1�

����
���

	 � � � �2� � 1�
 �	 � � � 1� mod 2�
if 	 � � � 2�	 � � otherwise

(15)

14th IEEE Symposium on Computer Arithmetic (ARITH 14), Adelaide,Australia, April 1999 4

Now, zero has a double representation (“00

0” and
“11

1”). Since the new condition	 � � � 2� is equiva-
lent to ����
 1, where���� is the carry-out of the addition	 � � , equation (15) can be rewritten as

�	 � � � mod �2� � 1�
 �	 � � � ���� � mod 2� (16)

which basically is equivalent to (13). Therefore, modulo�2� �1� addition with a double representation of zero can be
realized by the�-bit end-around-carry parallel-prefix adder
of Fig. 4 with � ��
 ����.

The additional condition of	 � �
 2� � 1
 11

1
found in (14) is equivalent to� ���1:0
 1 (i.e., group propa-
gate signal computed in a prefix adder). Therefore, modulo�2� � 1� addition with a single representation of zero can be
realized by the end-around-carry parallel-prefix adder with� ��
 ���� � � ���1:0 (i.e., with an additional OR-gate in the
carry-feedback path).

2.4. Modulo �2n � 1� addition

Diminished-one number representation. For modulo�2� � 1� addition, the diminished-one number system is of-
ten used, where the number	 is represented by	 �
 	 � 1
and the value 0 is not used or treated separately [1] (i.e.,
requires an additional zero-indication bit which is omitted
here). Ordinary addition in this number system looks as
follows:

	 � �
 �
�	 � � 1� � �� � � 1�
 �

� � 1

	 � � � � � 1
 �
� (17)

Modulo �2� � 1� addition can now be formulated as

�	 ��� ��1� mod �2� �1�

����
���

	 � � � � � 1 � �2� � 1�
 �	 � � � � � mod 2�
if 	 � � � � � 2�	 � � � � � 1 otherwise

(18)
The sum	 � � � � is incremented if	 � � � � � 2� , i.e., if����
 0. Thus, modulo�2� �1� addition can be realized by
the end-around-carry parallel-prefix adder with� ��
 ����
(i.e., with an inverter in the carry-feedback path):

�	 � � � � � 1� mod �2� � 1�
 �	 � � � � � ���� � mod 2�
(19)

The diminished-one number representation, however, of-
ten requires the conversion from and to the normal number
representation using incrementation/decrementation, which
might be too expensive when compared to its advantages.

Normal number representation. Equation (19) can also
be used for the modulo�2� � 1� addition of numbers in
normal representation

�	 � � � 1� mod �2� � 1�
 �	 � � � ���� � mod 2� (20)

with the property that
� � 1 is computed (i.e., an extra ‘1’

is added). In many applications, such as multipliers (see
Section 3), this property can easily be dealt with. Here, the
value 2� must be treated separately as a special case.

2.5. Modulo carry-save addition

A carry-save adder adds three�-bit input operands	1,	2, and	3 without carry-propagation, yielding a redundant
sum represented by a sum-bit vector

�
 ���1
���2

 �0

and a carry-bit vector
�
 �� ���1

 �1:

�� 	 � �
 2
� � �
 	1 � 	2 � 	3 (21)

It is composed of� full-adders arranged in parallel and
has constant delay [6, 14].� � 2 carry-save adders can
be arranged in a linear or tree structure for fast addition
of � operands, resulting in an adder array or adder tree
(Wallace tree), respectively [6]. In an adder array, the carry-
save adder at level� with redundant sum output�� � 	 � � �
adds the addition operand	 � to the redundant sum output�� ��1 	 � ��1� of the adder at level� � 1:

�� � 	 � � �
 	 � � � ��1 � ���1��1

 ���1
1 ���� (22)

where ���� can be regarded as carry-in and�����
 ��� as
carry-out of the carry-save adder. Analogously to the end-
around carry-propagate adders in the previous text,a modulo�2� � 1� end-around carry-save adder array can be realized
by feeding the carry-out���1��� back into the carry-in���� of
the next level, i.e.,����
 ���1��� . A modulo �2� � 1� carry-
save adder array is realized by inverting the feedback carry,
i.e., ����
 ���1��� . The same principle of feeding back the
carry-outs into the carry-ins can also be applied to adder
trees. Fig. 5 shows an� -operand end-around carry-save
adder using (m,2)-compressors (� � �� denotes the�-th bit of	 �). As an example, Fig. 6 gives an (8,2)-compressor with
linear structure for adder arrays (slower, more regular) and
with tree structure for adder trees (faster, less regular).

Multi-operand adders can now be built using a modulo
carry-save adder array or tree and a final modulo carry-
propagate adder. The resulting circuits are very similar to
ordinary multi-operand adders but more regular, since the
carry-outs have not to be accumulated but can be fed back
into the adder structure as carry-ins. Note that modulo�2� � 1� adders with normal number representation require
an additional correction term due to the property of (20).

2.6. Discussion

The proposed modulo carry-propagate adders are supe-
rior to the solutions based on two carry propagations from
the literature [2]. It is also assumed that they result in smaller
circuits than the modified carry-lookahead adder from [4].
A quantitative comparison with the latter, however, has not
been carried out due to its complex circuit structure.

14th IEEE Symposium on Computer Arithmetic (ARITH 14), Adelaide,Australia, April 1999 5

csvadd.epsi
84 � 34 mm

sn-1 s1 s0

(m,2)(m,2)(m,2)(m,2)

s2

...

cn-1 c1 c0c2

am-1,n-1a0,n-1 am-1,2a0,2 am-1,1a0,1 am-1,0a0,0

Cout
m-4:0 C in

m-4:0

Figure 5. m-operand end-around carry-save
adder using (m,2)-compressors.

cpr82lin.epsi
37 � 52 mm

FA

a0a1 a2a3a4a5a6

FA

FA

FA

a7

c s

c in
0cout

0

c in
1

c in
2

c in
3

cout
1

cout
2

cout
3

c in
4cout

4

(a)

cpr82tree.epsi
42 � 50 mm

FA

a0

FA

a1 a2a3 a4a5 a6

FA FA

FA

FA

a7

c s

c in
0cout

0

c in
1

c in
2

c in
3

cout
1

cout
2

cout
3

c in
4cout

4

(b)

Figure 6. (a) Linear- and (b) tree-structured
(8,2)-compressor.

3. Modulo multiplication

For modulo multiplication,

�
 �
 � mod �2� � 1� (23)

various ROM-based solutions using table-lookup have been
proposed and compared [10, 3]. Sophisticated methods exist
to reduce the table sizes by combining smaller table-lookups
with simple arithmetic operations, such as additions. For
word lengths larger than eight bits, however, these solutions
still require prohibitively large ROMs or many clock cycles
for evaluation.

For high-performance modulo multiplication, dedicated
multipliers are required which can be implemented as com-
binational or pipelined circuits. Solutions based on ordinary
integer multiplication with subsequent modulo correction
using adders are proposed in [3, 5]. A modulo�2��1�multi-
plier architecture with modulo-reduced, Booth-recoded par-
tial products and with concurrent modulo reduction during
carry-save addition is proposed in [3] and improved in [9].
It is shown in [13] that modulo�2� � 1� multipliers with

highly regular modulo carry-save adder arrays and trees can
be realized.

In this paper, the multiplier from [13], which bases on
the diminished-one number representation, is improved by
eliminating the precomputation of a correction term� (i.e.,
counts the number of ‘0’ in the multiplier

�
) and by using a

faster final adder. Also, the algorithm is extended for Booth
recoding and for modulo�2� � 1� multiplication as well as
for modulo �2� � 1� multiplication using normal number
representation.

3.1. Modulo �2n � 1� multiplication

According to (3), modulo�2� � 1� multiplication can be
formulated as

�
 � mod �2� � 1� (24)

 ��
 � mod 2� � �
 � div 2� � mod �2� � 1�
where

�
� mod 2� corresponds to the low output word and�
 � div 2� to the high output word of the multiplication�
 � . Therefore, modulo�2� � 1� multiplication can be
accomplished by an�-bit unsigned multiplication followed
by an�-bit modulo�2� � 1� addition. The major drawback
of this solution is that two carry-propagate adders in series
are required (i.e., one as final adder in the multiplier and one
in the modulo adder), resulting in a larger and considerably
slower circuit compared to an ordinary multiplier. On the
other hand, a standard unsigned multiplier can be used for
modulo multiplication.

However, one carry-propagate addition can be saved if
the redundant product��� 	 �� � after the carry-save adder
(i.e., before the final adder) is already reduced by the modu-
lus. Then, the addition of (24) is not required anymore and
one single modulo�2� � 1� adder is sufficient to resolve
the redundant product representation. A modulo-reduced
redundant product��� 	 �� � can be obtained by

1. modulo-reducing the partial products [3], and

2. using modulo carry-save addition to add them up.

Equation (24) can be rewritten as sum of partial products:

�
 � mod �2� � 1� (25)

 ��1�
��

0

2
�� �
 � mod �2� � 1�

 ��1�
��

0

� �
 �2�� mod �2� � 1�� mod �2� � 1�

 ��1�
��

0

� �
 �2�� mod 2� � 2
�� div 2� � mod �2� � 1�

14th IEEE Symposium on Computer Arithmetic (ARITH 14), Adelaide,Australia, April 1999 6

mulmodm1.epsi
44 � 43 mm

modulo partial-product generator

Y

P

...

PC PS

PPn-1 PP0

X

modulo carry-save adder

modulo carry-propagate adder

Figure 7. Modulo �2n � 1� multiplier architec-
ture.

 ��1�
��

0

� �
 ������1

 �00

0 � 0

0���1

 ���� �
mod �2� � 1�

 ��1�
��

0

� �
 �����1

 �0
���1

 ���� mod �2� � 1�

 ��1�
��

0

�� � mod �2� � 1�
where�� �
 � �
 �����1

 �0

���1

 ���� (implemented
using AND-gates) is the�-th partial product modulo�2��1�.
Note that all�-bit partial products�� � have the same mag-
nitude (as opposed to ordinary multiplication, where the
partial products have increasing magnitude), i.e., the num-
ber of product bits to add is the same for all bit positions.
This allows their addition by a highly regular modulo carry-
save adder composed of� (�,2)-compressors, yielding the
modulo-reducedredundantproduct��� 	 �� �. Fig. 7 depicts
the multiplier architecture with the partial-product genera-
tion, �-operand carry-save addition, and carry-propagate
addition steps, which are all performed modulo�2� � 1�
(note that all signal buses are� bits wide).

Wallace-tree addition. The first speed-up technique for
multiplication is to accelerate the addition of the partial prod-
ucts using a carry-save adder tree (Wallace tree) [6]. This
technique is easily applicable to modulo carry-save adders
(and thus to modulo multipliers), as already described in
Section 2. The resulting tree structures are even more reg-
ular than in ordinary multipliers, because the same number
of bits is added for each bit position and the carry-outs
are fed back into the carry-ins. In cell-based design, the
lower regularity of tree structures compared to linear ones
has a negligible impact on circuit area, while a considerable
speed-up is achieved. Therefore, the use of carry-save adder
trees is always recommended.

Booth recoding. The second speed-up technique for mul-

Table 1. Bit-pair recoded modulo �2n � 1� par-
tial products.

�
2
".

1
�

2
" �

2
",1

//"
0 0 0

�
0 0 � � �0 0 � � �0

0 0 1
� � ��,2

",1 � � � �0
��,1 � � � ��,2

"
0 1 0

� � ��,2
",1 � � � �0

��,1 � � � ��,2
"

0 1 1
�

2
� ��,2

",2 � � � �0
��,1 � � � ��,2

",1

1 0 0 � 2
� � �,2

",2 � � � �0
��,1 � � � � �,2

",1

1 0 1 � � ��,2
",1 � � � �0

��,1 � � � � �,2
"

1 1 0 � � ��,2
",1 � � � �0

��,1 � � � � �,2
"

1 1 1 � 0 0 � � �0 0 � � �0

tiplication is to reduce the number of partial products by
applying bit-pair recoding (Booth recoding) [6]. Equation
(1) can be rewritten for the multiplier

�
as

�
 ��2�
��

0

22
� ��2

��1 � �2
� � 2�2

��1� 	
 ���2��1�0��1��2

� (26)

where���1 	 �� 	 ��1
 0. The resulting� �2 � 1 bit pairs��2
��1 	 �2

� � are used to specify� �2 � 1 partial products
according to Table 1 (note that the third bit�2

��1 must also
be considered), which are summed up as follows:

�
 � mod �2� � 1�
 ��2�
��

0

�� � mod �2� � 1� (27)

The carry-save adder is thereby cut in half (i.e., only half
the number of partial products have to be added) while some
recoding logic is added. With respect to circuit delay, the re-
coding logic is roughly compensated by the shallower adder
tree (note that in an adder tree, only about two full-adders
are saved on the critical path if the number of operands
is cut in half). Delay can only be reduced if a carry-save
adder array is used. With respect to circuit area, it has been
observed that — at least for cell-based design using effi-
cient full-adder cells — the additional recoding logic is not
necessarily compensated by the smaller carry-save adder.
Therefore, bit-pair recoding not always yields faster and
smaller multiplier circuits (see the results in Section 5).

3.2. Modulo �2n � 1� multiplication

Modulo �2� � 1� multiplication is considered here for
application in the IDEA cipher. That is,�-bit numbers
in normal representation are used for operands and result,
where the value 0 is not used and the value 2� is represented
by “00

0”. The presented algorithm can easily be adapted
for number representations with the value 0 included and the
value 2� indicated by a separate bit.

14th IEEE Symposium on Computer Arithmetic (ARITH 14), Adelaide,Australia, April 1999 7

According to (5), modulo�2� � 1� multiplication using
the normal number representation can be formulated as�
 � mod �2� � 1� (28)

 ��
 � mod 2� � �
 � div 2� � mod �2� � 1�
Likewise to modulo�2� � 1� multiplication, an�-bit un-
signed multiplication followed by an�-bit modulo�2� � 1�
subtraction can be performed [3]. Again, the multiplication
can be accelerated by performing partial-product generation
and carry-save addition modulo�2� � 1�.

Equation (28) can be rewritten as sum of partial products:�
 � mod �2� � 1� (29)

 ��1�
��

0

2
�� �
 � mod �2� � 1�

 ��1�
��

0

� �
 �2�� mod �2� � 1�� mod �2� � 1�

 ��1�
��

0

� �
 �2�� mod 2� � 2
�� div 2� � mod �2� � 1�

 ��1�
��

0

� �
 ������1

 �00

0 �
0

0���1

 ����� mod �2� � 1�

 ��1�
��

0

�� �
 ������1

 �00

0 �
0

0���1

 ���� � �� �
 ��0

00

0�� mod �2� � 1�

 ��1�
��

0

�� �
 ������1

 �00

0 �
1

1���1

 ���� � 2� �

� �
 �1

11

1 � 2�� mod �2� � 1�

 ��1�

��
0

�� �
 ������1

 �00

0 �
0

0���1

 ���� � �� �
 0

01

1 ��� � � � � �
 �1

10

0 � 2�� mod �2� � 1�

 ��1�
��

0

�� �
 �����1

 �0
� ��1

 ���� �� �
 0

01

1 � 1 �

1

10

0 � 1� mod �2� � 1�

 � ��1�

��
0

�� �
 �����1

 �0
���1

 � ��� �� �
 0

01

1 � 1�

� 2� mod �2� � 1�

 � ��1�

��
0

��� � � 1� � 2� mod �2� � 1�
where “0

01

1” denotes the number with� � � ‘0’ and

� ‘1’. The complement modulo�2� � 1� is computed as

��	 � mod �2� � 1�
 	 � 2 mod �2� � 1� (30)

The term� �
 ��0

00

0�
 � �
 �1

11

1 � 2� is
added in (29) so that the constant 1

10

0 � 2 can be
factored out in order to get simpler partial products. Also,
the data-dependent correction term� used in [13] can be
eliminated this way. A ‘1’ is added to each partial product
in the second last equation of (29) for their modulo�2� � 1�
addition, as required in (20). The sum of the remaining
constants can be represented by one single constant term:

��1�
��

0

�1

1� 	
 �
������

0

0� 	
 ��� �1� mod �2� � 1�
 2 (31)

Thus, modulo �2� � 1� multiplication is per-
formed by adding the modulo-reduced partial products�� �
 � �
 �����1

 �0

���1

 � ��� � � �
 0

01

1
(implemented using simplified multiplexers due to constant
inputs) and the constant 2 by an�� � 1�-operand carry-save
addition and a final carry-propagate addition, which are all
performed modulo�2� � 1�. Note that a total of� modulo�2� � 1� additions are carried out which, according to (20),
also add the� ‘1’ found in the last equation of (29).

The value 2� , which in our case is represented by 0 (and
otherwise by an extra bit), must be treated separately. The
following cases have to be distinguished:

�

��������
�������

2�
 � mod �2� � 1�
 ��� � mod �2� � 1�
 �� � 2� mod �2� � 1� if
�
 2�

2�
 � mod �2� � 1�
 ��� � mod �2� � 1�
 �� � 2� mod �2� � 1� if �
 2�
2�
 2� mod �2� � 1�
 1 if

�
 �
 2��
 � mod �2� � 1� otherwise
(32)

A 2�-correction unit is required to compute the redundant
product

�� �� 	 � �� �

��
�
�� 	1� if

�
 2��� 	1� if �
 2��0	0� if
�
 �
 2� (33)

which is then selected by a multiplexer before the final adder.
Note that the constants from (32) are diminished by 1 in
(33) because the final modulo adder adds an extra ‘1’. With
2� represented by 0, the correction unit requires two zero-
detectors which, however, are not on the critical path. One
additional multiplexer is on the critical path through the
multiplier. Fig. 8 depicts the architecture of the modulo�2� � 1� multiplier.

Wallace-tree addition. As in modulo �2� � 1� multipli-
cation, adder trees can be applied very easily to speed up
carry-save addition in modulo�2� � 1� multiplication.

14th IEEE Symposium on Computer Arithmetic (ARITH 14), Adelaide,Australia, April 1999 8

mulmodp1.epsi
80 � 69 mm

modulo partial-product generator

Y

P

...

PC PS

PPn-1 PP0

X

modulo carry-save adder

modulo carry-propagate adder

2 - correctionn
2

P’C P’S

Figure 8. Modulo �2n � 1� multiplier architec-
ture.

Booth recoding. Bit-pair recoding to reduce the number
of partial products is also possible for modulo�2� � 1�
multiplication. An additional correction term� is required
which depends on the multiplier

�
by the logic equations:

�
0
 �1�0���1 � �1�0���1 � �0���1�
1
 �1 � �0���1�

2
�
 �2

��1�2
� � �2

��1�2
��1 � �2

��2
��1�

2
��1
 �2

��1 (34)

for �
 1	

 	 � �2 � 1. Also, the additional constant is 1
instead of 2. The derivation of the constant and correction
terms is not given here due to its complexity. The terms
have been exhaustively verified in a circuit implementation.

The � �2 � 1 partial products are given in Table 2 and
summed up as follows:�
 � mod �2� � 1� (35)

 � ��2�
��

0

��� � � 1� � 1 � � � mod �2� � 1�
3.3. Diminished-one multiplication

The modulo�2� � 1� multiplication algorithm of Fig. 8
can easily be adapted for the diminished-one number repre-
sentation of input operands and output product [13]:

�
 �
 � mod �2� � 1�
� � � 1
 �� � � 1�
 �� � � 1� mod �2� � 1�
� � � 1
 �� �
 � � � �

� � � � � 1� mod �2� � 1�
� �
 �� �
 � � � �

� � � � � mod �2� � 1� (36)

Table 2. Bit-pair recoded modulo �2n � 1� par-
tial products.

�
2
".

1
�

2
" �

2
",1

//"
0 0 0

�
0 0 � � �0 1 � � �1

0 0 1
� � ��,2

",1 � � � �0
��,1 � � � � �,2

"
0 1 0

� � ��,2
",1 � � � �0

��,1 � � � � �,2
"

0 1 1
�

2
� ��,2

",2 � � � �0
��,1 � � � � �,2

",1

1 0 0 � 2
� � �,2

",2 � � � �0
��,1 � � � ��,2

",1

1 0 1 � � ��,2
",1 � � � �0

��,1 � � � ��,2
"

1 1 0 � � ��,2
",1 � � � �0

��,1 � � � ��,2
"

1 1 1 � 0 1 � � �1 0 � � �0

Thereby, the two additional terms
�

� and � � have to be
added in the modulo carry-save adder, resulting in only a
small area and delay increase. The special case of

� 	 �
 0
has to be treated separately and the constant correction term
to be adapted.

3.4. Discussion

The described modulo�2� � 1� multiplier is almost as
efficient as an ordinary integer multiplier with respect to
circuit size and delay, but has an even more regular struc-
ture. Booth recoding and Wallace-tree addition can both be
applied for speed-up. The�-bit modulo final adder is as fast
but smaller than the 2�-bit final adder used for�-bit integer
multiplication.

The same holds true for the modulo�2� � 1� multiplier
which is slightly less efficient due to the additional correction
term and the 2� -correction. It is suited for normal and
diminished-one number representation. The correction term
is constant as opposed to [13], where the precomputation of
the data-dependent correction term� adds a delay of some
full-adders (i.e., an�� � 1�-bit counter). Compared to [9],
two carry-save adder stages for modulo reduction after the
carry-save adder array are eliminated.

4. Modulo
�
2n � 1� multiplication-addition

In the IDEA cipher algorithm, two of the four modulo�2� � 1� multiplications required for one encryption round
are followed immediately by a modulo 2� addition [8]:

�
 �
 � mod �2� � 1��
 �� � 	� mod 2� (37)

This multiply-add structure is on the critical path of the
IDEA data path and should therefore be made as fast as pos-
sible. A common speed-up technique is to include the output
addition as carry-save addition before the final adder of the
multiplier, thus reducing the number of carry-propagation

14th IEEE Symposium on Computer Arithmetic (ARITH 14), Adelaide,Australia, April 1999 9

mulmodp1add.epsi
83 � 91 mm

modulo partial-product generator

Y

P

...

PC PS

PPn-1 PP0

X

modulo carry-save adder2 - correctionn
2

S

modulo carry-propagate addermodulo carry-propagate adder

carry-save adder

A

SC SS

P’C P’S

cout

Figure 9. Modulo �2n � 1� multiplier-adder ar-
chitecture.

steps in series from two to one. Because the product� and
the sum

�
both are used as outputs, two parallel final adders

are required. And because the final adder of a modulo mul-
tiplier also performs a final modulo correction step (i.e., by
adding���� according to (20)), the same correction has to
be done in both final adders:

�
 ��� � �� � 1� mod �2� � 1�

 ��� � �� � ���� � mod 2� (38)�
 ���� � �� � 1� mod �2� � 1� � 	 � mod 2�

 ��� � �� � ���� � 	� mod 2�

 ��� � �� � ���� � mod 2� (39)

where
�� � ��
 �� � �� � 	 is the carry-save addition of

the redundant product��� 	 �� � and the addend	 yielding
the redundant sum��� 	 �� �, and���� is the inverted carry-
out of the final adder for product� (38). Fig. 9 depicts the
architecture of the modulo�2� � 1� multiplier-adder (again,
all buses are� bits wide). In this solution, the number of
carry propagations has been reduced from four when using
standard components (i.e., multiplier final adder, modulo
adder-incrementer, and output adder) down to one.

5. Implementations and results

A modulo �2� � 1� adder, a modulo�2� � 1� adder,
and an integer adder have been implemented based on the

Table 3. Unit-gate adder results.

adder area delay

integer 3
2� log�

�
4� 2 log�

�
3

mod
%
2
� �1) 3

2� log�
�

7� 2 log�
�

5

mod
%
2
� �

1) 3
2� log�

�
7� 2 log�

�
5

Table 4. Unit-gate multiplier results.

multiplier area delay

integer 8�2�3� log� �3� 4
� %
�)�2 log�

�
6

mod
%
2
� �1) 8�2� 3

2� log� �7� 4
� %
�)�2 log�

�
6

mod
%
2
� �

1) 9�2� 3
2� log�

�
11� 4

� %
�
�

1)�2 log�
�

9

mod
%
2
� �

1)� 9�2�2� log�
�

25� 4
� %
�
�

1)�2 log�
�

13

parallel-prefix adder architecture described in Section 2. A
modulo �2� � 1� multiplier, a modulo�2� � 1� multiplier
and multiplier-adder (denoted as “mod�2� � 1� � ”), and
an integer multiplier have been implemented using Wallace
trees for carry-save addition and the modulo parallel-prefix
adders for final addition, but with no Booth recoding. All
units have been described as parameterized circuit genera-
tors in synthesizable VHDL code [17].

5.1. Unit-gate model

Circuit size and delay estimates can be given on a unit-
gate basis. Thereby, each two-input monotonic gate (e.g.,
AND, NAND) counts as one gate (area and delay), an XOR
as two gates (area and delay), and a full-adder has an area
of seven gates and a delay of four gates. Tables 3 and 4
give the gate-count and gate-delay estimates as a function
of the word length� for the adders and multipliers, respec-
tively. Thereby,� �� � denotes the depth of the Wallace tree
in multipliers [13]:

� � 3 4 5–6 7–9 10–13 14–19 20–28 29–42 43–63� � �� %
�) � 1 2 3 4 5 6 7 8 9 � � �

5.2. Standard-cell implementation

Circuits have been synthesized from their VHDL de-
scriptions and optimized for highest speed with the syn-
thesis tools by Synopsys, Inc. A 0.25�m standard-cell
library under typical PTV conditions (i.e., typical process,
25� C, 2.5 V) has been used. For comparison, integer and
modulo �2� � 1� adders and multipliers have been synthe-
sized using standard components from the Synopsys De-
signWare Foundation Library (denoted as “DW”) with the

14th IEEE Symposium on Computer Arithmetic (ARITH 14), Adelaide,Australia, April 1999 10

Table 5. Standard-cell adder results.

8 bit 16 bit 32 bit 64 bitadder
area delay area delay area delay area delay

integer 4239 0.52 7137 0.7115336 0.9334065 1.14
mod

%
2
� �1) 4365 0.7810611 0.9319269 1.1743452 1.43

mod
%
2
� �

1) 4806 0.77 8181 1.0623706 1.1645000 1.44
DW integer 4923 0.5515021 0.7522608 0.8950130 1.09
DW

%
2
� �1) 6975 0.9214400 1.3030771 1.5870443 1.95

Table 6. Standard-cell multiplier results.

8 bit 16 bit 32 bitmultiplier
area delay area delay area delay

integer 16668 2.32 61542 3.33 237564 4.51
mod

%
2
� �1) 16740 2.54 60894 3.51 233127 4.83

mod
%
2
� �

1) 20232 2.47 66213 3.60 236574 4.76
mod

%
2
� �

1)� 23256 2.91 74835 3.95 258858 5.02
DW integer 18306 2.55 57690 3.46 202131 4.26
DW mod

%
2
� �1) 22194 3.70 70902 4.98 228573 6.16

fastest circuit architectures (i.e., fast carry-lookahead adder
“clf”, Booth-Wallace multiplier “wall”). Thereto, modulo
addition requires an integer adder and an incrementer (16),
while modulo multiplication requires an integer multiplier,
an adder, and an incrementer (24). The results are given in
Tables 5 and 6. The differences between the custom and the
DesignWare integer adders and multipliers are mainly due to
the different carry-lookahead adder structures and to Booth
recoding (i.e., not used in the custom multipliers). All cus-
tom modulo arithmetic units show considerable speed and,
in most cases, also area advantages compared to the solu-
tions based on standard components. The proposed modulo�2� � 1� multiplier-adder allows the implementation of a
high-performance IDEA cipher engine delivering up to 720
Mbit/s data rate at 100 MHz clock frequency.

6. Conclusions

Parallel-prefix adders with an additional prefix level have
been used to implement novel fast and simple end-around-
carry adders for modulo�2� � 1� addition. Modulo�2� � 1�
multiplication has been realized using modulo-reduced par-
tial products, modulo carry-save adders, and a modulo final
adder, resulting in the fastest modulo multiplier circuits re-
ported in the literature. Their architecture allows the use of
Wallace-tree addition and Booth recoding of partial prod-
ucts for speed-up. An optimized modulo multiplier-adder
has been presented for the efficient circuit implementation
of the IDEA block cipher. The performance of all pro-
posed modulo arithmetic units is only slightly inferior to
units for ordinary integer addition and multiplication. The

highly regular structure of the units allows their description
by circuit generators purely in parameterized synthesizable
VHDL code, which makes them suitable for efficient imple-
mentation of high-performance modulo-arithmetic units in
modern cell-based VLSI technologies.

References

[1] D. P. Agrawal and T. R. N. Rao. Modulo (2
� �

1) arithmetic
logic. IEEE J. on Electronic Circuits and Syst., 2:186–188,
Nov. 1978.

[2] M. A. Bayoumi, G. A. Jullien, and W. C. Miller. A VLSI
implementation of residue adders.IEEE Trans. Circuits and
Syst., CAS-34(3):284–288, Mar. 1987.

[3] A. V. Curiger, H. Bonnenberg, and H. Kaeslin. Regular VLSI
architectures for multiplication modulo

%
2
� �

1). IEEE J.
Solid-State Circuits, 26(7):990–994, July 1991.

[4] C. Efstathiou, D. Nikolos, and J. Kalamatianos. Area-time
efficient modulo 2

� � 1 adder design.IEEE Trans. Circuits
and Syst., 41(7):463–467, July 1994.

[5] A. Hiasat. New memoryless, mod
%
2
��

1) residue multiplier.
Electronics Letters, 28(3):314–315, Jan. 1992.

[6] I. Koren. Computer Arithmetic Algorithms. Prentice Hall,
1993.

[7] R. E. Ladner and M. J. Fischer. Parallel prefix computation.
J. ACM, 27(4):831–838, Oct. 1980.

[8] X. Lai and J. L. Massey. A proposal for a new block encryp-
tion standard. InAdvances in Cryptology – EUROCRYPT’90,
pages 389–404, Berlin, Germany: Springer-Verlag, 1990.

[9] Y. Ma. A simplified architecture for modulo
%
2
� �

1) multi-
plication. IEEE Trans. Comput., 47(3):333–337, Mar. 1998.

[10] A. Skavantzos and P. B. Rao. New multipliers modulo 2
� �1.

IEEE Trans. Comput., 41(8):957–961, Aug. 1992.
[11] M. A. Soderstrand, W. K. Jenkins, G. A. Jullien, and F. J.

Taylor. Residue Number System Arithmetic: Modern Appli-
cations in Digital Signal Processing. IEEE Press, New York,
1986.

[12] A. Tyagi. A reduced-area scheme for carry-select adders.
IEEE Trans. Comput., 42(10):1162–1170, Oct. 1993.

[13] Z. Wang, G. A. Jullien, and W. C. Miller. An efficient tree
architecture for modulo 2

� �
1 multiplication.J. VLSI Signal

Processing Systems, 14(3):241–248, Dec. 1996.
[14] S. Wei and K. Shimizu. Modulo 2� � 1 arithmetic hardware

algorithm using signed-digit number representation.IEICE
Trans. Inform. & Systems, E79-D(3):242–246, Mar. 1996.

[15] R. Zimmermann. Non-heuristic optimization and synthesis
of parallel-prefix adders. InProc. Int. Workshop on Logic and
Architecture Synthesis, pages 123–132, Grenoble, France,
Dec. 1996.

[16] R. Zimmermann.Binary Adder Architectures for Cell-Based
VLSI and their Synthesis. PhD thesis, Swiss Federal Institute
of Technology (ETH) Zurich, Hartung-Gorre Verlag, 1998.

[17] R. Zimmermann. VHDL library of arithmetic units. InProc.
1st Int. Forum on Design Languages (FDL’98), Lausanne,
Switzerland, Sept. 1998.

