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Introduction

-

Goal : to design a microprocessor that can be used and
modified by anyone without industrial pressure

<RMS_Dbeard=on> It’s all about freedom : This is
‘Freedom CPU’, not ‘Free CPU'’

‘Year 4’ means 4th presentation to CCC and 4th year of
existence

-
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F-CPU is designed ‘from scratch’ and is not compatible

Architecture

with existing computers

The architecture is aimed at high efficiency for

computation intensive software

RISC features and methods

o o @ @ o @

Fixed-size 32 bits instructions

64 x 64 bits registers

Load-store architecture

No stack

Register #0 is hardwired to O
Conditional move and jump/call/return

=

-
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Data types
-

Beware ! a register is not equivalent to a number !
Registers are ‘at least’ 64-bit wide
Registers can have more than 64 bits !

It is simpler and more efficient to enlarge the registers
than to decode more instructions per cycle (decoding
and control logic would explode

Register sizes can be any power of 2 : 128, 256, 512,
or even 32768 bits (in theory)

-

F-CPU 19C3 presentation — p.6/6.



Data types (2)
-

scalar data : aligned to the LSB, all MSB are cleared
s 8,16, 32 and 64 bit integers are supported

pointers : like scalar data but the number of valid LSB is
not known (depends on the implementation, could be
30 or 50)

SIMD data : 2**N scalar data

s 8x8, 4x16 and 2x32 bit integers are supported for 64
bit implementations

-
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- Instruction Format

-

Operand 2 Operand 1 Destination

Opcodes Flags Immediate Data

o -
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I FCO
f # 1st implementation: FCO
s Statically scheduled (scoreboard-based)
s Single-issue core
s Out Of Order Completion
s Many “Execution units” around a “Crossbar”
9

“Carpaccio” pipeline stages for higher frequency

o -
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E Ongoing work
f(this IS not complete or exhaustive)
# VHDL model

C model

Manual

Boot monitor

Gcec port

Assembler

Linker

L4

Linux

o -
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Simple SIMD character comparison
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The ROP2 (logic) unit
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E C example

-

char a;

if (a == TAB || a == CR
la==""1a==0) {



E Assembler example

-

a in Ra, temporary result in Rtemp, mask in Rmask :

| oadaddri end.if, R np ; prefetch

sdup.8 Ra, Rtenp ; duplicate a

| oadcons[ 0] 0x2000, Rmask ; | oad constants
| oadconsx|[ 1] Ox090A, Rnask

xorn. and. 32 Rmask, Rtenp, Rtenmp

bnz Rtenp, R

end. f:
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Arbitrary byte shuffling in one byte



E Random shuffling example

o .

0->3
1->2
2 ->4
3->7
4 ->5
5->1
6->0
{->6

From this, we generate the following masks :

r3 = maskl = 0x8040201008040201: /! linear bit selection
r'5 = maks2 = 0x4001028020100408; // permuted mask

o -
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= The assembly langage source

{__sdup.b rl, r2 ; duplicate rl into r2 __W
and.or r2, r3, r4 : first mask and conbi ne
and r4, r5, r6 ;: second mask
shri 32, r6, r7 ; gather the bits in | og2
or ro6, r7
shri 16, r6, r7

or r6, r7
shri 8, r6, r7
or re, r7

® 9 instructions for shuffling 8 bits :

this yields alnost 1 instruction per bit
!

o -
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Powerup and BIST method



. The FCO pipeline

Register

Set

ROP2 ASU SHL INC
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The hardware design flow
Nicolas Boulay
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Drain

Silizium (p-dotiert)

A transistor

Polysilizium

Oxid

Source

-

-
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A real transistor

— p.24/6.
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= A wafer
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Some ASIC

E:m-r
Q8
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i
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An other ASIC




FPGA principe

configurable logic block (CLB)

A
CLB ‘ ‘ CLB ‘ ‘
Switch St switeh =
CLB CLB
Switch B! switeh |=
~
Stage 1 Stage 2

reconfiguration switch



E Making hardware

-

FPGA (field programable gate array)

Semi-custom, full custom (ASIC, Application Specific
Integrated Circuit).

o -
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E Design IP (or a core)

o .

Nowdays what had been put in mainboard are put in the
same die (piece of silicon). Componants are replace by
core to create System-on-Chip (SoC).

F-cpu is a core. So a SoC could be maid of fritz chip + fcpu.

o -
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TCPA



I GPL

. B

sources. But the cores risk to be not used (imagine that

Depending of the licence, we could obliged to open al

linux unallowed to run proprietary stuff). And seeing the

code could not surely help to break the protection.

o -
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£ LGPL

o .

Only the core Is protected like the Leon is (Sparc V7 clone).



E GPL+proprietary interface

o -

Like linux kernel, we could choose to open certain interface
(like the 10 bus but not the SDRAM bus).

o -
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= L_icence

o .

But the licence Is a constant flameware on the mailing list.
GPL is currently used, but is too much restrictive from my
point of view. It's also hard to accept that GPL could cover

hardware, too (something with sources and a "result").

o -
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Design



Design cycle
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Design cycle

W5

7 Buffers

® Write HDL then T
Simulate RTL
code (waveform)

#® Synthesis it to

have a netlist
(timing result +
number of gate
used)

-
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Design cycle

=

® Write HDL then
Simulate RTL
E— code (waveform)

#® Synthesis it to
have a netlist
(timing result +
number of gate
used)

® Place and route

I IIIIIIIIII to get plan

(GDS2 files +

more precise
timing result +
area used (wire)) J



= Simulator

o .

F-CPU sources are compatible with most compilers and
have been tested with :

ncsim (cadence, fastest of the market)
modelsim
Simili (freeware, slower that ncsim)

ghdl (alpha version) (the story of a guy that wanted to
learn Ada and VHDL so he wrote a VHDL gcc front end
In Ada)

ALDEC'’s Riviera (nice but proprietary)
Vanilla VHDL (abandonware)

o -
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E Synthetiser

o .

Design Compiler (Synopsys, 100 Keur/year... for ASIC)
Synplify (Synplicity for FPGA)

_NO_ free software

o -
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I Place & Route

-

Cadence tools

Tendance of merged with synthesys tools (for <130 nm
technology).

Also NO_free software

o -
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I That’s NOT all folks |

o .

Static timing analysis tool to verify synthesis (primetime
from synopsys : 100 Keur/year).

Equivalence checking between netlist and rtl code (avoid
slooow simulation in gate level).

ATPG (automatic patern generator) to create input vectors
to test the chip at the fab to cover the maximum stuck fault
with the minimum of vectors.

BIST generator to test memory.

Formal proofing tools to help finding bug in the rtl design.

o -
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I Tools conclusion

-

So it miss a lot of free tools !
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Call convention
Cedric Ball



E F-CPU call capacity

-

# No specialised register



E F-CPU call capacity

-

# No specialised register
» No stack pointer



E F-CPU call capacity

-

# No specialised register
» No stack pointer
» No specific address pointer



E F-CPU call capacity

-

# No specialised register
» No stack pointer
» No specific address pointer
» 63 Generals registers



E F-CPU call capacity

-

# No specialised register
» No stack pointer
» No specific address pointer
» 63 Generals registers

® No call



E F-CPU call capacity

-

# No specialised register
» No stack pointer
» No specific address pointer
» 63 Generals registers

® No call
® No stack



= What we need to do a call
f # Stack pointer

® Return address

® Return value

® Parameters



C source example

I_I
J_I
fvoid hanoi (int N, char* D, char* B, char* I)T
{
1f (N == 1)
printf ("nove % to %", D, B);
el se
{ .
nanoi (N-1, D, |, B);
orintf ("nove % to %", D, B);
nanoi (N-1, |, B, D);
h
h

o -
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I The first call convention

fRO



I The first call convention

|7R

0 = always zero



= The first call convention
fRO = always zero
R1-R61

R62
R63



= The first call convention

fRO = always zero
R1-R61 = preserved accross call
R62 =return address
R63 = stack pointer

o -
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I The cost

o .

# Before using a register need to store it in memory

o Before doing a return you need to load them back from
memory

o -
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I_I

J_I

-

st or el
st or el
st or el
st or el
St or el
St or el
st or el
st or el

nuumuumuumuunmumnmuonm

Prologue example

ril
r2
r3
r4
rs
re
r/
re2

-
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J'j
fst orel -8,
storel -8,
storel -8,
storel -8,
storel -8,
storel -8,
storel -8,
storel -8,
addi 6 * 8,
oadli +8, |
oadi +8,
oadi +8,
oadi +8,

Prologue example

nuumuumuumuunmumnmuonm

ril
r2
r3
r4
rs
re
r/
re2

ril
r2 ;
r3 ;
r4
rs ;

char*
char*
char*
Int N

I
B
D

-
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Epilogue example

oadi -8, [sp], r62
oadi -8, [sp], r7
oadi -8, [sp], r6
oadi -8, [sp], r5
oadi -8, [sp], r4
oadi -8, [sp], r3
oadi -8, [sp], r2
oadi -8, [sp], r1




= hanol with first call convention

o .

® 22 * 64 bits data are stored
® 20 * 64 bits data are loaded
® No tall recursive call

o -
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I Second call convention
le-RlS = Parameters

R16-R31 = Temporary (not preserved accross call)
R32-R61 = Saved temporary (preserved accross call)
R62 = Stack pointer

R63 = Return address

o -
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E Prologue example

-

storei -8, [sp], r32
storei -8, [sp], r33
storel -8, [sp], r34
storei -8, [sp], r35
storei -8, [sp], r62




Epilogue example

oadi +8, [sp], r62
oadi +8, [sp], r35
oadi +8, [sp], r34
oadi +8, [sp], r33
oadi +8, [sp], r32




= hanol with second call convention

o .

# 10 * 64 bits data are stored
# 10 * 64 bits data are loaded
# Talil recursive call

#® Recursive prologue

o -
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E Recursive prologue example

o .

storei -8, [sp], r36
storei -8, [sp], r37

| oadcons printf, r36
| oopentry r37

Hanoi really start here

o -
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I The maskload/store 1dea

le-RlS = Parameters

R16-R31 = Temporary (not preserved accross call)
R32-R57 = Saved temporary (preserved accross call)
R58 = Mask register

R59 = Pointer to Procedure Linkage Table

R60 = Pointer to Global Offset Table

R61 = Frame pointer

R62 = Stack pointer

R63 = Return address

o -
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E Prologue example

-

Will save r48-r52, mr (r58), sp (r62), ra (r63)
1100 0100 0001 1111

nove rQ, t2
| oadcons. 3 OxC82F, t2
and nr, t2, t3

maskstore t3, [sp]
nove t2, r48

o -
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E Epilogue example

-

maskl oad r48, [sp]



I Problem

o .

#® Asynchronous
o Complex
# Faults

# Never the same binary with the same code

o -
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E Solution

fBut we can do it with conditionnal load and store. T

cstorel t3, [sp], r48
shiftlit 1, t3, t3
nsubi 8, sp, sp

o -
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El he current accepted call convention

o .

R1-R15 = Parameters

R16-R31 = Temporary (not preserved accross call)
R32-R58 = Saved temporary (preserved accross call)
R59 = Pointer to Procedure Linkage Table

R60 = Pointer to Global Offset Table

R61 = Frame pointer

R62 = Stack pointer

R63 = Return address

o -
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E Linking solution

o .

Use elf to put information on register used by function and
call graph

Clean address mode

No hidden register

Always the same result with the same code

© o o o

Always the best result for the binarie

o -
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E Questions ?
- - -
Cedric BAIL : cedric.baill@free.fr

Nicolas BOULAY : nico@seul.org
Yann GUIDON : whygee@f-cpu.org

o -
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