F-CPU: Year 4

Bail Cedric
Boulay Nicolas

Yann Guidon

/

© o o o o o @

Plan

=

F-CPU 4 dummies

A simple SIMD character comparison

Another example : arbitrary byte shuffling in one byte
The hardware design flow

TCPA

Design

Call convention

-

F-CPU 19C3 presentation — p.2/6.

F-CPU 4 dummies
Yann Guidon

. 1

Introduction

-

Goal : to design a microprocessor that can be used and
modified by anyone without industrial pressure

<RMS_Dbeard=on> It’s all about freedom : This is
‘Freedom CPU’, not ‘Free CPU'’

‘Year 4’ means 4th presentation to CCC and 4th year of
existence

-

F-CPU 19C3 presentation — p.4/6.

. 1

F-CPU is designed ‘from scratch’ and is not compatible

Architecture

with existing computers

The architecture is aimed at high efficiency for

computation intensive software

RISC features and methods

o o @ @ o @

Fixed-size 32 bits instructions

64 x 64 bits registers

Load-store architecture

No stack

Register #0 is hardwired to O
Conditional move and jump/call/return

=

-

F-CPU 19C3 presentation — p.5/6.

© o o 0

°

Data types
-

Beware ! a register is not equivalent to a number !
Registers are ‘at least’ 64-bit wide
Registers can have more than 64 bits !

It is simpler and more efficient to enlarge the registers
than to decode more instructions per cycle (decoding
and control logic would explode

Register sizes can be any power of 2 : 128, 256, 512,
or even 32768 bits (in theory)

-

F-CPU 19C3 presentation — p.6/6.

Data types (2)
-

scalar data : aligned to the LSB, all MSB are cleared
s 8,16, 32 and 64 bit integers are supported

pointers : like scalar data but the number of valid LSB is
not known (depends on the implementation, could be
30 or 50)

SIMD data : 2**N scalar data

s 8x8, 4x16 and 2x32 bit integers are supported for 64
bit implementations

-

F-CPU 19C3 presentation — p.7/6.

- Instruction Format

-

Operand 2 Operand 1 Destination

Opcodes Flags Immediate Data

o -

F-CPU 19C3 presentation — p.8/6.

I FCO
f # 1st implementation: FCO
s Statically scheduled (scoreboard-based)
s Single-issue core
s Out Of Order Completion
s Many “Execution units” around a “Crossbar”
9

“Carpaccio” pipeline stages for higher frequency

o -

F-CPU 19C3 presentation — p.9/6.

E Ongoing work
f(this IS not complete or exhaustive)
VHDL model

C model

Manual

Boot monitor

Gcec port

Assembler

Linker

L4

Linux

o -

F-CPU 19C3 presentation — p.10/6:

© o o o o o o 0

E
- -

Simple SIMD character comparison

11

The ROP2 (logic) unit

s s s s S s S s
3 FF T FF FF FF
[[l [[l [l [l
I I I [I I
l L T T l ! l | l T T l T l: partial_OR
8 partial_AND
i
_ =] _
2| [F
> T S J
=2 |52 7
% % &R o
NI E.Sé@
o (32le8
e |ZEBfs
™ Tl 2 — — le————partial_MUX
]]
partial_ROP
/ r Y / r \ / r \ / r / r \ / r Y / r \ / r
[T] [T] [T] J | | [[] [T] [T] J | |
L I I I I I L I I I I I
L | | L | |
[—< [—< [—< [[—< [—< [—< [
B B EE IE:ZI Ea IEZI F] F] B IE:ZI E:I Ea
ROP2 node A B C A B A B C A B C A B C A B C A B C A B C
- The fanout is higher
than that : 16 for the
64-bit version. fanout_tree
is used to conpensate for
. . his.
ROP2_function bit3| 2 1 0 this
. ANA
< o .
5 F-CPU Design Team e of the cquation compl exity.
o ROP2 unit : schematic view for one byte The circuit will be synthesised
> (O Yann Guidon 8/31/2001 T fromthe paranetised LUT.
> version : dec. 2, 2001
o
= LuT
2 1 0

ROP2_function

F-CPU 19C3 presentation — p.12/6.

E C example

-

char a;

if (a == TAB || a == CR
la==""1a==0) {

E Assembler example

-

a in Ra, temporary result in Rtemp, mask in Rmask :

| oadaddri end.if, R np ; prefetch

sdup.8 Ra, Rtenp ; duplicate a

| oadcons[0] 0x2000, Rmask ; | oad constants
| oadconsx|[1] Ox090A, Rnask

xorn. and. 32 Rmask, Rtenp, Rtenmp

bnz Rtenp, R

end. f:

F-CPU 19C3 presentation — p.14/6:

E
- -

Arbitrary byte shuffling in one byte

E Random shuffling example

o .

0->3
1->2
2 ->4
3->7
4 ->5
5->1
6->0
{->6

From this, we generate the following masks :

r3 = maskl = 0x8040201008040201: /! linear bit selection
r'5 = maks2 = 0x4001028020100408; // permuted mask

o -

F-CPU 19C3 presentation — p.16/6:

= The assembly langage source

{__sdup.b rl, r2 ; duplicate rl into r2 __W
and.or r2, r3, r4 : first mask and conbi ne
and r4, r5, r6 ;: second mask
shri 32, r6, r7 ; gather the bits in | og2
or ro6, r7
shri 16, r6, r7

or r6, r7
shri 8, r6, r7
or re, r7

® 9 instructions for shuffling 8 bits :

this yields alnost 1 instruction per bit
!

o -

F-CPU 19C3 presentation — p.17/6:

. 1

Powerup and BIST method

. The FCO pipeline

Register

Set

ROP2 ASU SHL INC

Register
Set

Popcount unit and LFSR

ROP2 ASU SHL

INC

ZAN

Signal Generator

compact
signature

generate
signature

ZN

A

J_I
/
N
ST
=
64
x /| B
x |/ |8
@
a
i
ST

- Popcount unit and LFSR

MUX

LFSR

/S

. 1

The hardware design flow
Nicolas Boulay

. 1

Drain

Silizium (p-dotiert)

A transistor

Polysilizium

Oxid

Source

-

-

F-CPU 19C3 presentation — p.23/6.

A real transistor

— p.24/6.

ntation

F-CPU 19C3 prese

= A wafer
5

_ it
- ' e
. p . :_1"!:'
\ i =

11

Some ASIC

E:m-r
Q8

Q

1
N
i
L)

F-CPU 19C3 presentation — p.26/6.

An other ASIC

FPGA principe

configurable logic block (CLB)

A
CLB ‘ ‘ CLB ‘ ‘
Switch St switeh =
CLB CLB
Switch B! switeh |=
~
Stage 1 Stage 2

reconfiguration switch

E Making hardware

-

FPGA (field programable gate array)

Semi-custom, full custom (ASIC, Application Specific
Integrated Circuit).

o -

F-CPU 19C3 presentation — p.29/6:

E Design IP (or a core)

o .

Nowdays what had been put in mainboard are put in the
same die (piece of silicon). Componants are replace by
core to create System-on-Chip (SoC).

F-cpu is a core. So a SoC could be maid of fritz chip + fcpu.

o -

F-CPU 19C3 presentation — p.30/6:

. 1

TCPA

I GPL

. B

sources. But the cores risk to be not used (imagine that

Depending of the licence, we could obliged to open al

linux unallowed to run proprietary stuff). And seeing the

code could not surely help to break the protection.

o -

F-CPU 19C3 presentation — p.32/6:

£ LGPL

o .

Only the core Is protected like the Leon is (Sparc V7 clone).

E GPL+proprietary interface

o -

Like linux kernel, we could choose to open certain interface
(like the 10 bus but not the SDRAM bus).

o -

F-CPU 19C3 presentation — p.34/6:

= L_icence

o .

But the licence Is a constant flameware on the mailing list.
GPL is currently used, but is too much restrictive from my
point of view. It's also hard to accept that GPL could cover

hardware, too (something with sources and a "result").

o -

F-CPU 19C3 presentation — p.35/6:

. 1

Design

Design cycle

Fle Edt Froject Compie Simulste Mindow Help ‘

istdistandard:
ieyprassicypressi
ieesistd logic_1164
ieypressipmpkg;
primitive: c20sp:
primitive: c3okp:

th_yhd psi_lpm0s

B buf _nfifo_rst_in_ean_1

B it _par_eq1d_out(15)R_
B buf_rresst_in_sqn_t;

B buf_rcv_data_sel_in_eqn_1
B8 buf_smit_slk_sel !
B buf _smit_data_seid_in_eqr
B buf_xmit_data_s

B fifo_err_out_eqn_L.

B ne_Faulk_out_eqn_ 1t

B8 rov_ch_diaz_outd 1

B rev_ck_divaz_p180_outd

B nic sace setan

[
| [SETEE o
Woein i
B mic_cre_givaz_our o0
® [§ xmic par_davein o002
s

Fie Edit Proect Compie Simulate Window Help
el TG

library wnisinz
use unisin.vee

11 library adv_vi

ibrary syrpify => cfTestipatni ||| 12 use adv vircex

e Bl Library adv_virtex == c/Te| || 13
[] Py — 1 —— 14 library s L1
[mic gsta oucp 10 T G+ B pho.vhd (D CifTestpatrick y syp
B re{rimtats ef] ac_virtex 15 use synplify.
W oo cue oo LM U e vitantbody) =
Bl rev_data in NILT BB t2.uhd (Dir: CfTestPatrick)
ity L By |50 eies avv o

= = 9 generic (Ind

top Open 12vhe, e 56 | tvpe
toplarct)

Compile t2vhd in

abaddes | Binierarchy | |

41
[Eit_vhd_psi_lpm0Se.vhd | gwavefarmo whs |

Remu 12 vhd from Library in

bit_rate_clk_in '1'
ref_cli_in p o
ref_clk in n]
smit_clk_divaz o '0!

B it par data in

[Ssonals [hvahes =

Set'adv_cdieger(fast] as top level

flries [“atodues |

At th_vhd pei lpmOse.vhd: (lim

Tnstance _vhd_pai_lpni

At th_vha psi

Tnstance

lassERT: ARWING ofEIS EOHl Fropet

At tb_vhd pei [
Instanc

E f Setings.
05 (archtb_serdes_test):testichk_rovd par_out:

lation stoppe| [Signals

xmit_cli_sel in '0°
xmit data sell ir'0'

y

Elapsed Tine: 00h| [Wnse sace s in
s 1s -1rt = e

|

e o

Esionels | 5 Varisbles |

———| [i
Dconsole | Danm | EEE ctionn 0

‘Seanring fil th_vhe_psi_lpmase. vhd

=
e c1x_aivsz our g

& [f] cmic par_datain oooz

® Write HDL then
Simulate RTL
code (waveform)

F-CPU 19C3 presentation — p.37/6:

Design cycle

W5

7 Buffers

® Write HDL then T
Simulate RTL
code (waveform)

#® Synthesis it to

have a netlist
(timing result +
number of gate
used)

-

F-CPU 19C3 presentation — p.37/6:

Design cycle

=

® Write HDL then
Simulate RTL
E— code (waveform)

#® Synthesis it to
have a netlist
(timing result +
number of gate
used)

® Place and route

I IIIIIIIIII to get plan

(GDS2 files +

more precise
timing result +
area used (wire)) J

= Simulator

o .

F-CPU sources are compatible with most compilers and
have been tested with :

ncsim (cadence, fastest of the market)
modelsim
Simili (freeware, slower that ncsim)

ghdl (alpha version) (the story of a guy that wanted to
learn Ada and VHDL so he wrote a VHDL gcc front end
In Ada)

ALDEC'’s Riviera (nice but proprietary)
Vanilla VHDL (abandonware)

o -

F-CPU 19C3 presentation — p.38/6:

e o o o

o

E Synthetiser

o .

Design Compiler (Synopsys, 100 Keur/year... for ASIC)
Synplify (Synplicity for FPGA)

NO free software

o -

F-CPU 19C3 presentation — p.39/6:

I Place & Route

-

Cadence tools

Tendance of merged with synthesys tools (for <130 nm
technology).

Also NO_free software

o -

F-CPU 19C3 presentation — p.40/6:

I That’s NOT all folks |

o .

Static timing analysis tool to verify synthesis (primetime
from synopsys : 100 Keur/year).

Equivalence checking between netlist and rtl code (avoid
slooow simulation in gate level).

ATPG (automatic patern generator) to create input vectors
to test the chip at the fab to cover the maximum stuck fault
with the minimum of vectors.

BIST generator to test memory.

Formal proofing tools to help finding bug in the rtl design.

o -

F-CPU 19C3 presentation — p.41/6:

I Tools conclusion

-

So it miss a lot of free tools !

. 1

Call convention
Cedric Ball

E F-CPU call capacity

-

No specialised register

E F-CPU call capacity

-

No specialised register
» No stack pointer

E F-CPU call capacity

-

No specialised register
» No stack pointer
» No specific address pointer

E F-CPU call capacity

-

No specialised register
» No stack pointer
» No specific address pointer
» 63 Generals registers

E F-CPU call capacity

-

No specialised register
» No stack pointer
» No specific address pointer
» 63 Generals registers

® No call

E F-CPU call capacity

-

No specialised register
» No stack pointer
» No specific address pointer
» 63 Generals registers

® No call
® No stack

= What we need to do a call
f # Stack pointer

® Return address

® Return value

® Parameters

C source example

I_I
J_I
fvoid hanoi (int N, char* D, char* B, char* I)T
{
1f (N == 1)
printf ("nove % to %", D, B);
el se
{ .
nanoi (N-1, D, |, B);
orintf ("nove % to %", D, B);
nanoi (N-1, |, B, D);
h
h

o -

F-CPU 19C3 presentation — p.46/6:

I The first call convention

fRO

I The first call convention

|7R

0 = always zero

= The first call convention
fRO = always zero
R1-R61

R62
R63

= The first call convention

fRO = always zero
R1-R61 = preserved accross call
R62 =return address
R63 = stack pointer

o -

F-CPU 19C3 presentation — p.47/6:

I The cost

o .

Before using a register need to store it in memory

o Before doing a return you need to load them back from
memory

o -

F-CPU 19C3 presentation — p.48/6:

I_I

J_I

-

st or el
st or el
st or el
st or el
St or el
St or el
st or el
st or el

nuumuumuumuunmumnmuonm

Prologue example

ril
r2
r3
r4
rs
re
r/
re2

-

F-CPU 19C3 presentation — p.49/6:

J'j
fst orel -8,
storel -8,
storel -8,
storel -8,
storel -8,
storel -8,
storel -8,
storel -8,
addi 6 * 8,
oadli +8, |
oadi +8,
oadi +8,
oadi +8,

Prologue example

nuumuumuumuunmumnmuonm

ril
r2
r3
r4
rs
re
r/
re2

ril
r2 ;
r3 ;
r4
rs ;

char*
char*
char*
Int N

I
B
D

-

F-CPU 19C3 presentation — p.49/6:

Epilogue example

oadi -8, [sp], r62
oadi -8, [sp], r7
oadi -8, [sp], r6
oadi -8, [sp], r5
oadi -8, [sp], r4
oadi -8, [sp], r3
oadi -8, [sp], r2
oadi -8, [sp], r1

= hanol with first call convention

o .

® 22 * 64 bits data are stored
® 20 * 64 bits data are loaded
® No tall recursive call

o -

F-CPU 19C3 presentation — p.51/6:

I Second call convention
le-RlS = Parameters

R16-R31 = Temporary (not preserved accross call)
R32-R61 = Saved temporary (preserved accross call)
R62 = Stack pointer

R63 = Return address

o -

F-CPU 19C3 presentation — p.52/6:

E Prologue example

-

storei -8, [sp], r32
storei -8, [sp], r33
storel -8, [sp], r34
storei -8, [sp], r35
storei -8, [sp], r62

Epilogue example

oadi +8, [sp], r62
oadi +8, [sp], r35
oadi +8, [sp], r34
oadi +8, [sp], r33
oadi +8, [sp], r32

= hanol with second call convention

o .

10 * 64 bits data are stored
10 * 64 bits data are loaded
Talil recursive call

#® Recursive prologue

o -

F-CPU 19C3 presentation — p.55/6

E Recursive prologue example

o .

storei -8, [sp], r36
storei -8, [sp], r37

| oadcons printf, r36
| oopentry r37

Hanoi really start here

o -

F-CPU 19C3 presentation — p.56/6:

I The maskload/store 1dea

le-RlS = Parameters

R16-R31 = Temporary (not preserved accross call)
R32-R57 = Saved temporary (preserved accross call)
R58 = Mask register

R59 = Pointer to Procedure Linkage Table

R60 = Pointer to Global Offset Table

R61 = Frame pointer

R62 = Stack pointer

R63 = Return address

o -

F-CPU 19C3 presentation — p.57/6:

E Prologue example

-

Will save r48-r52, mr (r58), sp (r62), ra (r63)
1100 0100 0001 1111

nove rQ, t2
| oadcons. 3 OxC82F, t2
and nr, t2, t3

maskstore t3, [sp]
nove t2, r48

o -

F-CPU 19C3 presentation — p.58/6:

E Epilogue example

-

maskl oad r48, [sp]

I Problem

o .

#® Asynchronous
o Complex
Faults

Never the same binary with the same code

o -

F-CPU 19C3 presentation — p.60/6:

E Solution

fBut we can do it with conditionnal load and store. T

cstorel t3, [sp], r48
shiftlit 1, t3, t3
nsubi 8, sp, sp

o -

F-CPU 19C3 presentation — p.61/6:

El he current accepted call convention

o .

R1-R15 = Parameters

R16-R31 = Temporary (not preserved accross call)
R32-R58 = Saved temporary (preserved accross call)
R59 = Pointer to Procedure Linkage Table

R60 = Pointer to Global Offset Table

R61 = Frame pointer

R62 = Stack pointer

R63 = Return address

o -

F-CPU 19C3 presentation — p.62/6:

E Linking solution

o .

Use elf to put information on register used by function and
call graph

Clean address mode

No hidden register

Always the same result with the same code

© o o o

Always the best result for the binarie

o -

F-CPU 19C3 presentation — p.63/6:

E Questions ?
- - -
Cedric BAIL : cedric.baill@free.fr

Nicolas BOULAY : nico@seul.org
Yann GUIDON : whygee@f-cpu.org

o -

F-CPU 19C3 presentation — p.64/6:

	Plan
	F-CPU 4 dummies\ Yann Guidon
	Introduction
	Architecture
	Data types
	Data types (2)
	Instruction Format
	FC0
	Ongoing work
	Simple SIMD character comparison
	The ROP2 (logic)
unit
	C example
	Assembler example
	Arbitrary byte shuffling in one byte
	 Random shuffling example
	The assembly langage source
	Powerup and BIST method
	The FC0 pipeline
	Popcount unit and LFSR
	Popcount unit and LFSR
	The hardware design flow \ Nicolas Boulay
	A transistor
	A real transistor
	A wafer
	Some ASIC
	An other ASIC
	FPGA principe
	Making hardware
	Design IP (or a core)
	TCPA
	GPL
	LGPL
	GPL+proprietary interface
	Licence
	Design
	Design cycle
	Simulator
	Synthetiser
	Place & Route
	That's NOT all folks !
	Tools conclusion
	Call convention\ Cedric Bail
	F-CPU call capacity
	What we need to do a call
	C source example
	The first call convention
	The cost
	Prologue example
	Epilogue example
	hanoi with first call convention
	Second call convention
	Prologue example
	Epilogue example
	hanoi with second call convention
	Recursive prologue example
	The maskload/store idea
	Prologue example
	Epilogue example
	Problem
	Solution
	The current accepted call convention
	Linking solution
	Questions ?

