IEEE P1076.6/D2.01
Draft Standard For VHDL Register Transfer
Level Synthesis

Prepared by the VHDL Synthesis Interoperability Working Group of the
Design Automation Standards Committee

Copyright ©2001 by the Institute of Electrical and Electronics Engineers, Inc.
Three Park Avenue

New York, New York 10016-5997, USA

All Rights Reserved.

This document is an unapproved draft of a proposed |EEE-SA Standard — USE AT YOUR OWN RISK. Assuch,
this document is subject to change. Permission is hereby granted for |EEE Standards Committee participants to
reproduce this document for purposes of |EEE standardization activities only. Prior to submitting this document to
another standard devel opment organization for standardization activities, permission must first be obtained from the
Manager, Standards Licensing and Contracts, | EEE Standards Activities Department. Other entities seeking
permission to reproduce portions of this document must obtain the appropriate license from the Manager, Standards
Licensing and Contracts, IEEE Standards Activities Department. The |EEE is the sole entity that may authorize the
use of |EEE owned trademarks, certification marks, or other designations that may indicate compliance with the
meaterials contained herein.

|EEE Standards Activities Department
Standards Licensing and Contracts
445 Hoes Lane, P.O. Box 1331
Piscataway, NJ 08855-1331, USA

Copyright © 2001 IEEE. All rights reserved.
Thisis an unapproved | EEE Standards Draft, subject to change

IEEE 2001 September 6
P1076.6-2001

Introduction

(Thisintroduction is not part of IEEE P1076.6, Draft Standard for VHDL Register Transfer Level Synthesis).

This standard describes a standard syntax and semantics for VHDL RTL synthesis. It defines the subset of IEEE 1076
(VHDL) that is suitable for RTL synthesisand defines the semantics of that subset for the synthesis domain. This
standard is based on the standards |EEE 1076, 1164, and 1076.3.

The purpose of this standard isto define a syntax and semantics that can be used in common by all compliant RTL
synthesis tools to achieve uniformity of resultsin asimilar manner to which simulation tools use the IEEE 1076
standard. Thiswill allow users of synthesis tools to produce well defined designs whose functional characteristics are
independent of a particular synthesis implementation by making their designs compliant with this standard.

The standard is intended for use by logic designers and el ectronic engineers.

Initial work on this standard started as a synthesis interoperability working group under VHDL International. The
working group was also chartered by the EDA Industry Council Project Technical Advisory Board (PTAB) to
develop adraft based on the donated subsets by the following companies/ groups:

» Cadence

 European Synthesis Working Group
* IBM

e Mentor Graphics

* Synopsys

After the PTAB approved of the draft 1.5 with an overwhelming affirmative response, an |EEE PAR was obtained to
clear itsway for |EEE standardization. Most of the members of the original group continued to be part of the Pilot
Group under P1076.6 to lead the technical work.

Copyright © 2001 IEEE. All rights reserved.
Thisis an unapproved | EEE Standards Draft, subject to change

IEEE 2001 September 6
P1076.6-2001

Participants

At the time this standard was compl eted, the P1076.6 Pilot Team comprised of the following individuals:

Rob Anderson (Compiler directives) Apurva Kalia (Semantics task leader)
Victor Berman Masamichi Kawarabayashi

J. Bhasker (Working Group Chair) JimLewis

David Bishop (Web and reflector admin) Sanjiv Narayan

Dominique Borrione Doug Perry

Denis Brophy Seve Schultz

Ben Cohen Doug Smith (Editor / Attibutes task leader)
Colin Dente Lance Thompson (Syntax task leader)
Wolfgang Ecker Fur-Shing Tsai

Bob Flatt Jim Vellenga

Christopher Grimm Eugenio Villar

Rich Hatcher Nels Vander Zanden

Many individuals from different organizations contributed to the development of 1076.6. In particular, in addition to
the Pilot team, the following individuals contributed to the development of the standard by being part of the working

group:

Bill Anker John Hillawi
LaNae Avra Pradip Jha
Robert Blackburn

In addition, 95 individuals on the working group email reflector also contributed to this development.
The following persons were on the ballotting committee that approved this document for submission to the Standards
Board:

<list ballotting committee here>

Copyright © 2001 IEEE. All rights reserved.
Thisis an unapproved | EEE Standards Draft, subject to change

IEEE 2001 September 6
P1076.6-2001

This page isintentionally blank

Copyright © 2001 IEEE. All rights reserved.
Thisis an unapproved | EEE Standards Draft, subject to change

IEEE 2001 September 6

P1076.6-2001
Contents

@Y Y S 9
0B s oo = RPN 9
1.2 ComplianCe to thiS STANAAIMccveiieiieeeieece ettt re e e e s aestesresneeseeneeneeseenreneenns 9
22 1Y/ oo L= oo 0T SO 9
020 1o o) oo 0! o] =g ot SO 9
IR T =4 01100 o VS 9
I o 017 g (o] TR 10
P = = = 1S RSSO 10
G I T 1 1o T RS 10
= o (< H L= o N Y/ oL 12
5. Verification MethodOIOgYcccvevuieieiieiiiie et e e te e e e nneennens 12
5.1 Combinational VEITTICAIIONcciieieieiieeie ettt sttt sttt sttt bt nene 13
LS <o [11= L0 R= L= o o) o RS 13
6. Modeling hardwar € ElemMENTES............ooi e 14
6.1 Edge-sensitive SEQUENLIAl IOQIC.......cuieiiirieieieriees sttt sttt sttt st st nnne 14
30 I @t oo = T 7= 1 o1 P 14
S I @ o Tox Q= (o1 ES o 1= o1 o= 1 Ko o ISP 14
oI I o 1S 1YY = (o1 o o SO 15
T B L= o (Y SY =0 (o1 o o SO 15
6.1.3 Modeling edge-sensitive StOrage ElEMENES.........ccvrirrri i s et sre e es e e e srenre e 16
6.1.3.1 USING the “if" StALEMEN.....c.eeeeeeccs et e e s e e aeseesaesre e e eneeneeneesrennens 16
6.1.3.2 USINg the “ Walt” SLaEMENTL.......cceiireeieie et e s e e aeseesaeere e e eneeneeeesrennens 16
6.1.3.3 With asynChronOuS CONLIOIccceiiiiiiieicese et r e neene e eesrenneas 17
6.2 Level-sensitive SEQUENLTA [OQIC.uuiueiireieieeteeeee ettt s e et e saeene e e enae e e eeneesrenns 18
6.3 Three-state and bBUS MOUEIING.......cceieiireiecec e e e e e s e et e stesresaeeneesaenaeeeseesrenns 19
X1V oo (= I aTe Welo aq o117z o] 0= N oo oS 19
A =16 | 14T L RS RTRR 19
A0 N L] o1 (=TSSR 20
7. 1.1 ENUM_ENCODING @trBULEc.cocviiesie ettt st e et ne e ene e enaesaenne e e 20
7.2 IMIBLBCOMIMIENES ...ttt ettt s bbbt e s e e e b se e Rt e bt e he e b e e e R e ne e e R e e b e eReeh e e e e a s e s e e R e e b e eheeb e e ne e s s e nn e nenrenrennis 20

Copyright © 2001 IEEE. All rights reserved.
Thisis an unapproved | EEE Standards Draft, subject to change

IEEE 2001 September 6
P1076.6-2001

G T = 3 GRS 21
8.1 Design entities and CONfIGUIALIONS.........eiiriiereceeeeesese e st se e e se e e ste e sresaeese e e eseeseesresaesseeseeneenseseessessenns 21
00 I I = 0 Y (= = oS 21
00 I I = Y == o = SO 22
8.1.1.2 ENtity deClaratiVe PaIt........cccvveiirereeeereere s et ste st e e e e st et este e seese e e e e testesresneene e e enaenaeneenrenneas 22

S I G B 0)V = 0= 1011 SO 23

8.1.2 ArChiteCtUrE DOMIES. ... ettt et b et b e et b et b e be e enes 23
8.1.2.1 ArchiteCture deClaratiVe Part.........cccceeueriererisise e see e et e e e s re s ne e e e e e neeneesrenneas 23
8.1.2.2 ArchiteCture StaleMENt PAIT........cceeeeeereere e seste s eeee e e st e st e ste e re s e e e e e e e seesaesaesseeseeseeneeseesseseessens 24

8.1.3 Configuration AECIAIELIONcceeeeesese st st ee et e et s resre e e e aeseeneesresaesseeseenaeneeneesennrens 24
<00 G 3 I =1 Vo o Qoo 1T W = o) SO 25
8.1.3.2 CoMPONENt CONFIGUIBEIONveveveeeeeeeeeieeee e ste st ste e e see e te e sre s e ese e e eeeseeseeseesseeseeseensessensessennens 25

8.2 SUDLPrograms a0 PACKAGESeeueeueeeeiereestestesesseseeseeseestestesressesseeseesse e ssessessesseeseessensessessessesseeseseensessessessenes 26
ST ST (o] o] (o= e (=10 =T = 0] 1 S 26
S I I o = 0 = 0 (SO 26

8.2.2 SUDPIrOGram DOTIES.......ccveveiieieeeeeeeese sttt sttt e e te s e e e aestestestesseeseeseesaessenseseesaeeseeneenseseensaseennens 26
8.2.3 SUBProgram OVENTOAINGccueiueeeeeeieiesese sttt e e e e e et e e ste e s tesresse e e esaeseesseseesaesseeseenseseenseseensens 27
LI ARC @ o 1< - (o 01/ 1 [T [o o [SO 27

8.2.4 RESOIULION FUNCHIONS ... vttt sttt b et b et e e bt st e st bt e b neenes 28
8.2.5 PaCKage UECIAIAtONS........ccveieeieceeeeeieste sttt e e st e e st e testesteese e e esaessenteseesaeeseeneenaeseeneeseenreas 28
A Sl =0t -0 L 0o [SRS 29
G R I oS T U PURUSOSTP P PPPRPP 30
oG S o = Y/ o= SRS 30
e 00 I I = 1010 1= o Y 0= SO 30
oG IO I 1 1= = Y/ 0= PTRPSSRP 31
G G B = V£ o= I Y 0= SO 31
G I I o= g To o L Y 0= SO 32

G I o 01010 1S] 1= 4 0= S 32
oG T I N = (Y 1] - PTRPSSRP 32

LG I o (= o] {0 I Y 0= SO 33

oG TR I AN o =SS 1Y/ == SRS 33
8.3.3.1 INCOMPIEte tyPe AECIAIrALIONSecveeeeeeeeeie ettt st st re e se e e e e e seeneesrenneas 33
8.3.3.2 Allocation and deal|0Cation Of OLJECLS.........ceiiiiiieieeee e ene s 33

G T = Y o= TSP 34
G A = o= = 4 o] = SO 34

S = ol = = o] LSRR 34
S R Y/ 1Y o (= = T 1 SO 34
NS T 0] o1 (=0 = - 1 o 0 TSRS 35

S G 1 o= o £ SRS 35
LG T @ o 1= ox o L= = = 1 o] 1= SO 35
8.4.3.2 INterfaCe dECIAratioNS...........cieiiriiieee e e ettt sttt sttt st 37
8.4.3.3 AliaS HECIArAHONS.......cuiiieeeteie ettt ettt sttt sttt e et st e et s ae et e 39

8.4.4 ALTTDULE ECIBIELIONS ...ttt sttt sttt b et b et et b e e et b e s b eneebe st e neeneseenes 39
8.4.5 COMPONENE AECIAIGLIONSc.veiveeeeeeeiesiese st sie et e e s e e et e e e e ste e s tesresse e e esaeseesteseesaesseeneenseseensessensens 39
8.4.6 Group template AECIAILIONS.........ccveierertese ettt e e e et e e e e resresre e e e s aesaestessesaeeseeneenseseenseseensens 39
8.4.7 GIOUP ECIAIGLIONS.....c.veveitesiesieeteeeestesteste e steete e e e e saestestesseese e e essesaesteseesseaseeseeseesseseseesaeeseeneensensensaseensens 40
RIS o= o) o= 1o SRS 40

Copyright © 2001 IEEE. All rights reserved.
Thisis an unapproved | EEE Standards Draft, subject to change

IEEE 2001 September 6
P1076.6-2001

RN AN 111 010 (== o = o o= (o) o S 40
8.5.2 Configuration SPECITICALION.c.eeiverererere st ettt er e e e e se e tesresreene e e eneeneeneeseenrens 41
B0 B =TT [g o o o= o) o 1SS 41
8.5.2.2 Default BiNding iNAICAIONcceeeieeeeee e e re e ese e e e e e sneneesrennens 42
8.5.3 DiSCONNECLiON SPECITICALION.......ecveeeeieieesesie sttt et et er e e e e se e tesresaeene e e eneeneeneesrenrens 42
LS T AN F= 1 1= PSS 42
o T8 A= 07 SRS 42
S L] o (= == ST 42
8.6.3 SEIECIEA NMAIMIESecueciesies ettt et e e e e st e s aeese e e es e e se e tesbeseeeseeneesae e esessesaesseeneeneeneensesennsens 42
S g0 5t o 7= 1= S 43
A SIS o= 7= 0 1= SRS 43
A SR Sl N 1] 10| (= 7= 0 1= SO 43
S T q o] === 0] 1 ST 44
8 o (=== o) 1SS 44
S I 2 @ o= = (o] =SSR 45
S 2 R W o= o o= = 0] SO 45

S A = (= F (0= o] o = = o] £SO 45

I ARG RS 11 0 0= = 0] SO 45
LI A X0 [0 1 0T o] o 1< - (o =SS 46
I SR o o o= r= 0] SRS 46
8.7.2.6 MUILIPIYING OPEIGLOIS......cveiteieeitesteeeesieseestestestestesaeeseeees e ssestestesaessesseesaessessessessessesseesenssensessessessensens 46
8.7.2.7 MiSCE|ANEOUS OPEIGLOISc.veveiveseieeeesieeetestestestesseeseeseessessessessessessesseessesessessessessesseesenssensessessessensens 46
G T o< - o SRS 46
S T I = SO 46
I N [0 (=" = =-PTRPSSRP 47
G TG 1 W v 1 o 1 =SS 47
8.7.3.4 QUAlITIEH EXPIrESSIONS......cueiieiteiteeteeeee e ettt e et ere e e e st e st e s testesaeeseesae s anteseesteseesseeneeneensensentesrennens 47
8.7.3.5 TYPE COMVEISIONS.....ccueeuieiiitestestesteeseeseestetestestessesseaseeseessessessessesseaseeseasaensessessestessesseesenssensessensessessens 48
LG T S A | o= o (=SS 48
IS - Lo = d 1= 0] 1SS 48
I N R W Tor AR = o o 00 =SS 48
8.7.4.2 Globally StatiC PriMAITES.......eceiveeeeeeeiereese e st ste st et e e e ste st e tesresae s e esae s etessesaesaesseeseessenseseensessensens 48
8.7.5 UNIVEIrSAl EXPrESSIONS....c.eeitiiieiueeuieeesiestestestesseeseeseetessessessesseasessessessesseseesseasesseessessnssessesssssessesssessensessessens 48
R RS =0 (1S LU= IS = 1= 001) RSP 48
RS I V= T S = (=100 SR 49
8.8.2 ASSEITION SAIEMENT.......eveitesieieeteeeeteste e s e seete e e e e e testeese e e eseesaesteseesseaseeseeseessenseseesaeeseeneenseneensesennsens 49
8.8.3 REPOI SLALEIMENTeeee ettt et ee s ee s e e et e e e st e sseesse e teeneeeseesseesseesseesseeseaneesneesseesseenseenseensenseensenss 49
8.8.4 Signal aSSIGNIMENE SLALEIMENLcveeeeieiesese et ee e e et e et e e et esae e s tesressee e esaesaessessesaesseeneensessensesennsens 50
8.8.4.1 Updating a projected OULPUL WaVEFOIM.......cceiiiiiecieeeeie e e e ettt ese e enaesnessesnenneas 50
8.8.5 Variahle assignNment SLAEEMENE..........ccoiiiiiieieeeeeere et e e e e e e s s e e esaeseesteseesreese e e esseseenseseenneas 51
8.8.5.1 Arraly Variabl@ @SSIgNMENES......ccviiieeieieee s e st se et et e e e e e s resresneene e e e aenrenrenrenneas 51
8.8.6 ProcedUure Call StAatEMENTcccveeeeee ettt ettt et te s tesre s s e e e aeseestesresaeeaeeneenaeneeneesennreas 51
R I L 1.1 | OSSR 51
R RS O 1 g 1 | SRS 52
LIRS T I a0 0 I = [1 | USSR 52
8.8.10 NEXE SLBLEITIENLeeeeeieeeeteesteeeeteeteseestee st e e steesteseesseesseesseesseenseeseesseesseesseesseensesneesneesneenseeseenseensensenssenss 53
IR I T 0 (111 0| 53
oS TN 2 o= LU [g = (= 0.1 0| SR 53

Copyright © 2001 IEEE. All rights reserved.
Thisis an unapproved | EEE Standards Draft, subject to change

IEEE 2001 September 6
P1076.6-2001

oSN T [1= 0= | TR 53
8.9 CONCUITENT SEAEEIMENTS ...ttt ettt s h s bt e e e b e s e e sb e eb e s aeese e s e b e s eeer e ebeebeese e e ennennenrenbe e 54
oSN I 2 [ot Qs = 1 0T | TR TTS 54
8.9.2 PrOCESS SIAIEIMENT.cuveiitistesie ettt sttt sttt e st bbb et e e e e e s e bt sh e eb e e st e s s e ns e b e sbesheebeeneennennenrenrennea 54
8.9.3 Concurrent procedure Call SLAEEMENTcceiveeeeereres et e et resresre e e enaeseeneesrenreas 55
8.9.4 ConcUrrent aSSErtioN STALEMENLcoiiieiiireeire ettt sttt b e st b et sb e e b seenes 56
8.9.5 Concurrent signal assignNMENt StAtEMENTeceeeererirese e ee e e e se et sresresse e e enaeseeneesresrens 56
8.9.5.1 Conditional SIgNal aSSIGNIMENLcceeueriireresesesesee e see e se e e s e e e e e aeseestesresseeseeeeneeseessessessens 56
8.9.5.2 Selected SIgNal aSSIGNIMENESeieiieiereee e se st sesreeee e st e seestesresre s e esee e eaeseesaesaesseeseeseensessessessessens 57

8.9.6 Component INStaNtiation SEALEMENTccvieiieeeeee e e e seestesresresre e e enaeseeneesrenrens 58
8.9.6.1 Instantiation Of @ COMPONENT.........ccccieierierere st e e st e e e e s e e e e aesresaesresseeseeeenseseensesresnens 58
8.9.6.2 Instantiation Of @ deSIgN ENLILYcccveeeieere e e et reese e e e aeseeseesrennens 58

8.9.7 GENEIELE SEAIEIMENT. ..ottt ettt ettt ettt r bbbt e e s e e b e s b e sh e eb e et e s e e neeeb e s b e eheebe e e ene e s e nrenrenrea 58
OIS oo o LC= 1o IV =T o] RSP 59
8.10.1 DECIAratiVE FEQION.......eveieeieceeeteeeesteste e teste et e e e aestestestesseese e e estessesteseesseaseeseeseessessessesaeeseeneenseseensesennsens 59
8.10.2 SCOPE Of AECIArALIONS........eiveieeeeeeeeiesie ettt e e st e testesresse e e esaesaestestesaeeseeneenseseenseseennens 59

ST 0T AN =1 1P 59
B.L0.4 USE ClALISE. ...ttt ettt sttt sttt s bt st s bt s e e Rt b e st e s e bt e e st e b e b e st e bt et e Rt e bt st e Rt e bt b e n e Re e e neere e enes 59
8.10.5 The context of overloaded reSOIULIONcciiieiiire e 59
8.11 Design unitS and their @NAIYSIS.......ccueiieiiriie sttt e e e e s te e e s reereese e e entesrenrenre e 59
S 00 0 T T o R T £ SR 59

S 2 B TS T o] = =SS 60
8.11.3 CONLEXE ClALSES......eteeetirterietiste et est sttt sttt sttt a st st s et e st e s et e se e s e b e st e st et e s e e s e e b e st en e ebe st eneeb e s b eneebeneeneeneseenes 60

S R @ o [o = £ TSP 60
ST 2 = oo = (o o TSRS 60
R = Loz I 1= 007 o (TSRS 60
8.14 Predefined 1anguage ENVIFONMENTccooiiiiieeeeeeses e e st see s e eaesees e stesressesseeseesseseessessessesseeseessensessessessenns 61
8.14.1 PredefiNed @ttriDULES.coveiiireeiee ettt sttt st b bbb e enes 61
8.14.1.1 AttributeS WhOSe PrefiX ISAtYPE L. ..o sr e s renne s 61
8.14.1.2 Attributes whose prefix isan array object a, or attributes of a constrained array subtype a............. 61
8.14.1.3 Attributes Whose PrefiXx iSASIGNAl S....cvvcveieiiiice et renne s 61
8.14.1.4 Attributes whose prefix isanamed ODJECE €.........cceeeeeieri e 62
8.14.2 PaCKage STANDARDooociirietetree et st te e st s s e e e s tesesasee e sestesesesseseseesesesssseseseesenessetenesensesessnsenesensns 62
8.14.3 PACKAGE TEXTIO ...ucuiieieesieieiesiste e st tese st te s te s et sestesesaste e e s sese s e e seseesese s e teseseesenessntenesensnsessnsnnesensas 63
Annex A Syntax Summary (INfOrmMatiVe)cccueceeereeieiie e 65

Copyright © 2001 IEEE. All rights reserved.
Thisis an unapproved | EEE Standards Draft, subject to change

IEEE 2001 September 6
P1076.6-2001

1. Overview

1.1 Scope

This standard defines a means of writing VHDL that guarantees the interoperability of VHDL descriptions between
any register transfer level synthesistools that comply with this standard. Compliant synthesis tools may have features
above those required by this standard. This standard defines how the semantics of VHDL shall be used, for example,
to model level and edge sensitive logic. It also describes the syntax of the language with reference to what shall be
supported and what shall not be supported for interoperability.

Use of this standard should enhance the portability of VHDL designs across synthesis tools conforming to this
standard. It should also minimize the potential of functional simulation mismatches between models before they are
synthesized and after they are synthesized.

1.2 Compliance to this standard

1.2.1 Model compliance

A VHDL model shall be defined as being compliant to this standard if the model:
a) Usesonly constructs described as supported or ignored in this standard, and
b) Adheresto the semantics defined in this standard.

1.2.2 Tool compliance

A synthesistool shall be defined as being compliant to this standard if it:
a) Acceptsall models that adhere to the model compliance definition defined in 1.2.1.
b) Supports language related pragmas defined by this standard.

¢) Producesacircuit model that has the same functionality as the input model based on the verification
process as outlined in section 5.

1.3 Terminology

The word shall indicates mandatory requirements strictly to be followed in order to conform to the standard and from
which no deviation is permitted (shall equalsisrequired to). The word should is used to indicate that a certain course
of action is preferred but not necessarily required; or that (in the negative form) a certain course of action is
deprecated but not prohibited (should equalsis recommended that). The word may indicates a course of action
permissible within the limits of the standard (may equals is per mitted).

A synthesistool issaid to accept aVHDL construct if it allowsthat construct to be legal input; it is said to interpret
the construct (or to provide an interpretation of the construct) by producing something that represents the construct.
A synthesistool is not required to provide an interpretation for every construct that it accepts, but only for those for
which an interpretation is specified by this standard.

The constructs in the standard shall be categorized as:

Supported RTL synthesis shall interpret a construct, that is, map the construct to
an equivalent hardware representation.

Copyright © 2001 IEEE. All rights reserved.
Thisis an unapproved | EEE Standards Draft, subject to change

IEEE 2001 September 6
P1076.6-2001

Ignored RTL synthesis shall ignore the construct. Encountering the construct
shall not cause synthesis to fail, but synthesis results may not match
simulation results. The mechanism, if any, by which RTL synthesis
notifies (warns) the user of such constructsis not defined by this
standard. Ignored constructs may include unsupported constructs.

Not supported RTL synthesis does not support the construct. RTL synthesis does not
expect to encounter the construct and the failure mode shall be
undefined. RTL Synthesis may fail upon encountering such a construct.
Failure is not mandatory; more specifically, RTL Synthesisis allowed
to treat such a construct as Ignored.

1.4 Conventions

This standard uses the following conventions:

a) The body of the text of this standard uses boldface to denote VHDL reserved words (such as downto) and
upper caseto denote all other VHDL identifiers (such as REVERSE _RANGE or FOOQ).

b) Thetext of the VHDL examples and code fragmentsis represented in a fixed-width font.
c) Syntax text that is struck-through (e.g.-text) refers to syntax that shall not be supported.
d) Syntax text that isunderscored (e.g. text) refersto syntax that shall be ignored.

e) “<"and“>" areused to represent text in one of severa different, but specific forms. For example, one of
the forms of <clock_edge> could be “CLOCK'EVENT and CLOCK ="1".

f) Any paragraph starting with “ Note --” isinformative and not part of the standard.

g) Theexamplesthat appear in this document under "Example:", are for the sole purpose of demonstrating
the syntax and semantics of VHDL for synthesis. It is not the intent of this section to demonstrate,
recommend, or emphasize coding styles that are more (or less) efficient in generating an equivalent
hardware representation. In addition, it is not the intent of this standard to present examples that represent
acompliance test suite, or a performance benchmark, even though these examples are compliant to this
standard (except as noted otherwise).

2. References

This standard shall be used in conjunction with the following publications. When the following standards are
superseded by an approved revision, the revision shall apply.

|IEEE Std 1076-1993, |IEEE Standard VHDL Language Reference Manual.

|EEE Std 1164-1993, |IEEE Standard Multivalue Logic System for VHDL Model Interoperability
(STD_LOGIC_1164).

|EEE Std 1076.3-1997, |EEE Standard Synthesis Packages (NUMERIC_BIT and NUMERIC_STD).

3. Definitions

Terms used within this standard but not defined in this section are assumed to be from |EEE Std 1076-1993 |EEE Std
1164-1993 and |EEE Std 1076.3-1997.

Copyright © 2001 IEEE. All rights reserved.
Thisis an unapproved | EEE Standards Draft, subject to change

10

IEEE 2001 September 6
P1076.6-2001

3.1 assignment reference: The occurrence of aliteral or expression as the waveform element of a signal assignment
statement or as the right-hand side expression of a variable assignment statement.

3.2 don’t carevalue: The enumeration literal *-' of the type STD_ULOGIC (or subtype STD_LOGIC) defined by
|EEE Std 1164-1993.
3.3 edge-sensitive storage element: Any edge-sensitive storage element mapped to by a synthesis tool that:

a) propagatesthe value at the data input whenever an appropriate value is detected on a clock control input,
and

b) preservesthelast value propagated at al other times, except when any asynchronous control inputs
become active.

(For example, aflip-flop.)
3.4 high-impedance value: The enumeration literal 'Z' of the type STD_ULOGIC (or subtype STD_LOGIC) defined
by IEEE Std 1164-1993.

3.5 level-sensitive storage element: Any level-sensitive storage element mapped to by a synthesis tool that:

a) propagatesthe value at the data input whenever an appropriate value is detected on a clock control input,
and

b) preservesthelast value propagated at al other times, except when any asynchronous control inputs
become active.

(For example, alatch.)
3.6 logical operation: An operation for which the VHDL operator is and, or, nand, nor, xor, or not.
3.7 LRM: The |IEEE VHDL language reference manual, that is, IEEE Std 1076-1993.

3.8 metacomment: A VHDL comment (--) that is used to provide synthesis specific interpretation by a synthesis
tool.

3.9 metalogical value: One of the enumeration literals'U’, 'X', 'W', or -' of the type STD_ULOGIC (or subtype
STD_LOGIC) defined by IEEE Std 1164-1993.

3.10 pragma: A generic term used to define a construct with no predefined language semantics that influences how a
synthesis tool will synthesize VHDL code into an equivalent hardware representation.

3.11 RTL: The register transfer level of modeling circuitsin VHDL for use with register transfer level synthesis.
Register transfer level isalevel of description of adigital design in which the clocked behavior of the designis
expressly described in terms of data transfers between storage elements, which may be implied, and combinational
logic, which may represent any computing or arithmetic-logic-unit logic. RTL modeling allows design hierarchy that
represents a structural description of other RTL models.

3.12 synthesistool: Any system, process, or tool that interprets register transfer level VHDL source code as a
description of an electronic circuit and derives a netlist description of that circuit.

3.13 user: A person, system, process, or tool that generates the VHDL source code that a synthesis tool processes.

Copyright © 2001 IEEE. All rights reserved.
Thisis an unapproved | EEE Standards Draft, subject to change

11

IEEE 2001 September 6
P1076.6-2001

3.14 vector: A one-dimensiona array.
3.15 well-defined: Containing no metalogical or high-impedance element values.

3.16 synthesis-specific attribute: An attribute recognized by an RTL synthesis compliant tool as described in
Section 7.1.

3.17 synchronous assignment: An assignment that takes place when asignal or variable value is updated as a direct
result of aclock edge expression evaluating as true.

4. Predefined types

A synthesistool, compliant with this standard, shall support the following predefined types:
a) BIT, BOOLEAN, and BIT_VECTOR as defined by |EEE Std 1076-1993
b) CHARACTER and STRING as defined in IEEE Std 1076-1993
¢) INTEGER asdefined in IEEE Std 1076-1993

d) STD_ULOGIC, STD_ULOGIC_VECTOR, STD_LOGIC, and STD_LOGIC_VECTOR as defined by
the package STD_LOGIC_1164 (IEEE Std 1164-1993)

€) SIGNED and UNSIGNED as defined by the VHDL package NUMERIC_BIT as part of IEEE Std
1076.3-1997

f) SIGNED and UNSIGNED as defined by the VHDL package NUMERIC_STD as part of IEEE Std
1076.3-1997

No array type, other than those listed in (€) and (f), shall be used to represent signed or unsigned numbers.

The synthesistool shall also support user-defined and other types derived from the predefined types according to the
rules of 8.3.

By definition, if atype with ametalogical valueis used in amodel, then this type shall have as an ancestor, atype that
belongs to the package STD_L OGIC_1164 (IEEE Std 1164-1993).

5. Verification methodology

Synthesized results may be broadly classified as either combinational or sequential. Sequential logic has some form
of internal storage (latch, register, memory). Combinational logic has outputs that are solely a function of the inputs
with no internal loops and no internal storage. Designs may contain both sequential and combinational parts.

The process of verifying synthesis results using simulation consists of applying equivalent inputs to both the original
model and synthesized models and then comparing their outputs to ensure that they are equivalent. Equivalent in this
context means that a synthesis tool shall produce acircuit that is equivalent at the input, output, and bidirectional
ports of the model. Since synthesisin general does not recognize the same delays as simulators, the outputs cannot be
compared at every simulation time. Rather, they can only be compared at specific simulation times when all transient
delays have settled and al active timeout clauses have been exceeded. If the outputs do not match at all comparable
times, the synthesis tool shall not be compliant. There shall be no matching requirement placed on any internal nodes.

The input stimulus shall comply with the following criteria:
a) Input data does not contain metalogical values.

b) Input datamay only contain 'H' and 'L' on inputs that are converted to '1' and 'O’ respectively.

Copyright © 2001 IEEE. All rights reserved.
Thisis an unapproved | EEE Standards Draft, subject to change

12

IEEE 2001 September 6
P1076.6-2001

¢) For combinationa verification, input data must change far enough in advance of sensing timesto allow
transient delays to have settled.

d) Clock and/or input data must change after enough time of the asynchronous set/reset signals going from
active to inactive to take care of the setup/hold times of the sequential elementsin the design.

€) For edge-sensitive based designs, primary inputs of the design must change far enough in advance for the
edge-sensitive storage element input data to respect the setup times with respect to the active clock edge.
Also, the input data must remain stable for long enough to respect the hold times with respect to the active
clock edge.

f) For level-sensitive storage element based designs, primary inputs of the design must change far enough in
advance for the level-sensitive storage element input data to respect the setup times. Also, the input data
must remain stable for long enough to respect the hold times.

Note -- A synthesistool may define metalogical values appearing on primary outputs in one model as equivalent to
logical valuesin the other model. For this reason, the input stimulus may need to reset internal storage elementsto
specific logical values before the outputs of both models are compared for logical values.

5.1 Combinational verification

To verify combinational logic, the input stimulus shall be applied first. Sufficient time shall be provided for the
design to settle, and then the outputs examined. To verify the combinational logic portion of a model the following
sequence of events shall be done repeatedly for each input stimulus application:

a) Apply input stimulus
b) Wait for datato settle
¢) Check outputs

Each application of inputs shall include enough delay so that the transient delays and timeout clause delays have been
exceeded. A model is not in compliance with this standard if it is possible for outputs or internal nodes of the
combinational model never to reach a steady state (i.e., oscillatory behavior).

Example:

A <= not A after 5 ns; -- oscillatory behavior, nonconpliant

5.2 Sequential verification

The general scheme consists of applying inputs periodically and then comparing the outputs just before the next set of
inputsis applied. Sequential models contain edge-sensitive and/or level-sensitive storage elements. The sequential
design must be reset, if required, before verification can begin.

The verification of designs containing edge-sensitive or level-sensitive storage elementsis as follows:

a) Edge-sensitive models: The same sequence of tasks as used for combinatoria verification shall be
performed during verification: change the inputs, compute the results, compare the outputs. However, for
sequential verification these tasks shall be synchronized with one of the inputs which isaclock. The
inputs must change in an appropriate order with respect to the input that is treated as a clock, and their
consequences must be allowed to settle prior to comparison. Comparison might best be done just before
the active clock edge and the non-clock inputs can change relatively soon after the edge. The circuit then
has the rest of the clock period to compute the new results before they are stored at the next clock edge.
The period of the clock generated by the stimulus shall be sufficient to allow the input and output signals
to settle.

Copyright © 2001 IEEE. All rights reserved.
Thisis an unapproved | EEE Standards Draft, subject to change

13

IEEE 2001 September 6
P1076.6-2001

b) Level-sensitive models: These designs are generally less predictabl e than edge-sensitive models due to
the asynchronous nature of the signal interactions. Verification of synthesized results depends on the
application. With level-sensitive storage elements, a general ruleis that data inputs should be stable
before enables go inactive (i.e. latch) and comparing of outputsis best done after enables are inactive (i.e.
latched) and combinational delays have settled. A level-sensitive model in which it is possible, in the
absence of further changes to the inputs of the model, for one or more internal values or outputs of the
model never to reach a steady state (oscillatory behavior) is not in compliance with this standard.

6. Modeling hardware elements

This section specifies styles for modeling hardware elements such as edge-sensitive storage elements, level-sensitive
storage elements and three-state drivers.

This section does not limit the optimizations that can be performed on a VHDL model. The scope of optimizations
that may be performed by a synthesis tool, depends on the tool itself. The hardware modeling styles specified in this
section do not take into account any optimizations or transformations. A specific tool may perform optimizations and
may nhot generate the suggested hardware inferences, or it may generate a different set of hardware inferences. This
shall NOT be taken as a violation of this standard provided the synthesized netlist has the same functionality as the
input model , as characterized in section 5.

6.1 Edge-sensitive sequential logic

6.1.1 Clock signal type

The allowed types for clock signals shall be: BIT, STD_ULOGIC and their subtypes (e.g. STD_LOGIC) with a
minimum subset of ‘0" and '1". Only the values ‘0" and ‘1’ from these types shall be used in expressions representing
clock levels and clock edges (See 6.1.2).

Scalar elements of arrays of the above types shall be supported as clock signals.
Example:

signal BUS8: std_l ogic_vector(7 downto 0);

bkbcess (BUS8(0))
begi n
if BUS8(0) = '1' and BUS8(0)' EVENT then

. BUS8(0) is a scalar element used as a cl ock signal

6.1.2 Clock edge specification

The function RISING_EDGE shall represent arising edge and the function FALLING_EDGE shall represent a
falling edge, where RISING_EDGE and FALLING_EDGE are the functions declared either by the package
STD_LOGIC_1164 of IEEE Std 1164-1993 or by the package NUMERIC_BIT defined by IEEE Std 1076.3-1997.

cl ock_edge ::=

Rl SI NG_EDCE(cl k_si gnal _nan®)

| FALLI NG_EDCE(cl k_si gnal _nan®)

| clock_l evel and event_expr

| event_expr and clock_|eve

cl ock_| evel =
clk_signal _name = '0' | clk_signal _nanme = '1'

Copyright © 2001 IEEE. All rights reserved.
Thisis an unapproved | EEE Standards Draft, subject to change

14

IEEE 2001 September 6
P1076.6-2001

event _expr ::=
cl k_si gnal _nane' EVENT
| not clk_signal _name' STABLE

6.1.2.1 Positive edge clock

The following expressions shall represent a positive clock edge when used as a condition in an if statement (positive
<clock_edge>):

a) RISING EDGE(clk_signal _name)

b) clk_signal _nane' EVENT and cl k_si gnal _nane = '1'

C) clk_signal _name = '1' and cl k_si gnal _nane' EVENT

d) not clk_signal _name' STABLE and cl k_signal _name = '1'
e) clk_signal _nanme = '1' and not cl k_signal _nane' STABLE

The following expressions shall represent a positive clock edge when used as a condition in await until statement
(positive <clock_edge> or <clock_level>):

a) R SING EDGE(cl k_si gnal _nane)

b) clk_signal _nane = '1'

C) cl k_si gnal _nanme' EVENT and cl k_si gnal _nanme = "1'

d) clk_signal _name = '1' and cl k_si gnal _name' EVENT

e) not cl k_signal _nane' STABLE and cl k_si gnal _nane = '1'

f) clk_signal _name = '1' and not cl k_signal _name' STABLE

6.1.2.2 Negative edge clock

The following expressions shall represent a negative clock edge when used as a condition in an if statement (negative
<clock_edge>):

@) FALLI NG EDGE(cl k_si gnal _narne)

b) cl k_signal _name' EVENT and cl k_si gnal _name = ' 0'

C) cl k_signal _name = '0' and cl k_si gnal _nane' EVENT

d) not clk_signal _name' STABLE and cl k_si gnal _name = '0'
e) cl k_signal _name = '0' and not cl k_signal _nane' STABLE

The following expressions shall represent a negative clock edge when used as a condition in await until statement
(negative <clock _edge> or <clock_level>):

a) FALLI NG EDGE(cl k_si gnal _narne)

b) clk_signal _name = '0'

C) cl k_si gnal _nane' EVENT and cl k_si gnal _nane = "'0'

d) clk_signal _name = '0' and cl k_si gnal _nane' EVENT

e) not cl k_signal _nane' STABLE and cl k_si gnal _nane = '0'

f) clk_signal _name = '0" and not cl k_signal _name' STABLE

Copyright © 2001 IEEE. All rights reserved.
Thisis an unapproved | EEE Standards Draft, subject to change

15

IEEE 2001 September 6
P1076.6-2001

6.1.3 Modeling edge-sensitive storage elements

A synchronous assignment takes place when asignal or variable is updated as a direct result of aclock edge
expression evaluation to true.

A signal updated with a synchronous assignment should model one or more edge-sensitive storage elements.

A variable updated in a synchronous assignment should model an edge-sensitive storage element. If simulation
semantics suggest that the value of the variable isread before it is written, then an edge-sensitive storage element
should be modeled by the variable. By optimization, the generated edge-sensitive storage may be eliminated.

Only one clock edge shall be allowed per process statement (including any procedur es called within the pr ocess).
Conditional or selected signal assignments shall not be used to model a edge-sensitive storage element (see 8.9.5).

No wait statements are allowed in a procedure (8.2.2).
6.1.3.1 Using the “if” statement

An edge-sensitive storage element may be modeled using a clock edge with an if statement. The template for
modeling such an edge-sensitive storage element shall be:

[process_l abel :] process (<clock_signal >)
<decl ar ati ons>
begi n

i f <clock_edge> then
<sequence_of _st at enent s>
end if;
end process [process_| abel];

The clock signal in <clock_edge> shall be listed in the process sensitivity list.
Sequential statements preceding or succeeding the if statement shall not be supported.

Example:
DFF: process(CLOCK)
begi n
i f CLOCK EVENT and CLOCK = '1' then
Q<=D -- Qnodels a rising edge triggered storage el enent
end if;

end process DFF;

6.1.3.2 Using the “wait” statement

An edge-sensitive storage element may be modeled using a clock edge as a condition in await until statement. The
wait until statement shall be the first statement in the process. No additional wait until statements shall appear
within such a processincluding any procedur es called within the process. The template for modeling such an edge-

sensitive storage element shall be:
[process_| abel :]
process

<decl ar ati ons>
begi n
wait until <clock_edge>; -- this nust be the first statement in the process

<sequence_of _st at enent s>
end process [process_| abel];

Note 1 -- Because the wait until statement must appear as the first statement of the process, an asynchronous
override (set or reset) of edge-sensitive storage elements can not be represented using the wait until statement form.

Note 2 -- Conditional or selected signal assignments shall not be used to represent edge-sensitive storage elements.

Copyright © 2001 IEEE. All rights reserved.
Thisis an unapproved | EEE Standards Draft, subject to change

16

IEEE 2001 September 6
P1076.6-2001

Example:
DFF1: process
begi n
wait until CLOCK = '0';
Q<=D -- Qnodels a falling edge triggered storage el ement

end process DFF1;
Example:

DFF2: process
variabl e VAR UNSI GNED(3 downto O0);
begi n
wait until CLOCK = '"1';
VAR : = VAR + 1,
COUNT <= VAR
end process DFF2;

-- Variable VAR should nodel four rising edge-triggered storage el enents because the

-- value of VAR is read in the first assignnent before its value is assigned.
-- By optimzation, sonme edge-triggered storage el ements may be elim nated.

Example:

DFF3: process
variabl e VAR UNSI GNED(3 downto 0);

begi n
wait until CLOCK = '1";
VAR : = COUNT,; -- Variable is witten prior to being read.
VAR : = VAR + 1, -- VAR i s conbinational .
COUNT <= VAR, -- Count npdel s edge-sensitive storage el ements.

end process DFF3;

-- Variable VAR should not nodel edge-sensitive storage el enents because VAR is
-- assigned a value before its value is read.

6.1.3.3 With asynchronous control

A variable or asignal that is synchronoudly assigned may also be asynchronously assigned to model asynchronous
set/reset edge-sensitive storage elements. Such a variable or a signal models an asynchronous set/ reset edge-sensitive
storage element. The template for representing such edge-sensitive storage elements shall be:

[process_| abel :]
process (<clock_signal > <asynchronous_signal s>)
<decl arati ons>
begi n
if <conditionl> then
<sequence_of _st at ement s>
el sif <condition2> then
<sequence_of _st at ement s>
el sif <condition3> then

el s'i'f' <cl ock_edge> t hen
<sequence_of _st at enment s>
end if;
end process [process_| abel];
Theif branches preceding the last clock edge branch represents the asynchronous set/reset logic.
A clock edge shall only appear in the last elsif condition.
Sequential statements, as used in the template above, shall not include any if statements conditional on a clock edge.

The sengitivity list of the process shall include all of the following:
Copyright © 2001 IEEE. All rights reserved.

Thisis an unapproved | EEE Standards Draft, subject to change
17

IEEE 2001 September 6
P1076.6-2001

a) Theclock signal sensed by the clock edge expression.
b) All signals sensed by the remaining conditions of the if statement.

¢) All signals sensed by the sequential statements governed by the remaining conditions of the if statement
other than the clock edge expression.

No signals other than those identified in the above list shall appear in the sensitivity list.
The order of the signals in the sensitivity list is not important.
Sequential statements preceding or succeeding the if statement shall not be supported.

Note 1 -- Asynchronous set-reset conditions are level sensitive, that is, they cannot contain a clock edge expression.
Additionally, these conditions have a higher priority than the clock edge condition.

Note 2 -- It is hot necessary to describe both set and reset cases if the desired implementation does not require both of
these features. Either, or both may be modeled in the RTL model.

Note 3 -- The vhdl semantics shall be followed in resolving any priority between set and reset.
Example:

AS_DFF: process (CLOCK, RESET, SET, SET_OR RESET, A)

begi n

if RESET = '1' then
Q<="'0;

elsif SET = '1' then
Q<="1;

elsif SET_OR RESET = '1' then
Q<= A

el sif CLOCK EVENT and CLOCK = '1' then
Q<=D

end if;

end process AS_DFF;

- Signal Q npdels an asynchronous reset/set rising edge triggered

-- edge-sensitive storage element. The reset expression is RESET, the set
- expression is SET, and SET_OR RESET namy be either a reset condition or a set
- condition according to the value of A

6.2 Level-sensitive sequential logic

A level-sensitive storage element shall be modeled for asignal (or variable) when all the following apply:

a) Thesignal (or variable) isassigned either directly in aprocess, or assigned within a subprogram invoked
within the process, and the process contains no clock edge construct.

b) There are executions of the process that do not execute an explicit assignment (via an assignment
statement) to the signal (or variable).

A level-sensitive storage element may be modeled for asignal (or variable) when all the following apply:
a) Thesignal (or variable) isassigned in a process that contains no clock edge construct.

b) There are executions of the process in which the value of the signal (or variable) isread before its
assignment.

The process sensitivity list shall list all signals read within the pr ocess statement. Processes with incomplete
sengitivity lists are not supported.

Copyright © 2001 IEEE. All rights reserved.
Thisis an unapproved | EEE Standards Draft, subject to change

18

IEEE 2001 September 6
P1076.6-2001

Note 1 -- Variables declared in subprograms never model level-sensitive storage elements because variables declared
in subprograms are alwaysinitialized in every call.

Note 2 -- Conditional or selected signal assignments shall not be used to model alevel-sensitive storage element (see
8.9.5).

Note 3 -- When asignal is assigned from within a procedure it shall have the same inference semantics asasignal
assignment from within a process.

Note 4 -- It is recommended to avoid a modeling style in which the value of asignal or variable isread before its
assignment. Thiswould avoid the generation of unwanted storage elements where none might be intended.

Example:

LEV_SENS: process (ENABLE, D)
begi n
if ENABLE = '1' then
Q<= D -- Qis an inconpl ete asynchronous assi gnnent,
end if; -- so it nodels a level-sensitive storage el ement.

end process;

6.3 Three-state and bus modeling

Three-state logic shall be modeled when an object or an element of the object is explicitly assigned the IEEE Std
1164-1993 value 'Z'.

The assignment to 'Z' shall be a conditional assignment, that is, assignment occurs under the control of a condition.

For asignal that has multiple drivers, if one driver has an assignment to 'Z', all drivers shall have at least one
assignment to 'Z'.

Note --If an object isassigned avalue 'Z' in a process that is edge-sensitive or level-sensitive, as described in 6.2 and
6.3, asynthesis tool may infer sequential elements on al inputs of the three-state logic.

6.4 Modeling combinational logic

Any process that does not contain a clock edge or wait statement shall model either combinational logic or level-
sensitive sequential logic.

If there is always an assignment to a variable or signal in al possible executions of the process and all variables and
signals have well-defined values, then the variable or signal models combinational logic.

a) If thesignal or variable is updated beforeit isread in all executions of a process, then it shall model
combinational logic.

b) If asigna or variableisread beforeit is updated then it may model combinational logic.

Concurrent signal assignment statements (See 8.9.5) and concurrent procedure calls (8.9.3) always model
combinational logic.

The process sensitivity list shall list all signals read within the process statement.

7. Pragmas

Pragmas influence how a model is synthesized. The following pragmas may appear within the VHDL code:
a) Attributes

Copyright © 2001 IEEE. All rights reserved.
Thisis an unapproved | EEE Standards Draft, subject to change

19

IEEE 2001 September 6
P1076.6-2001

b) Metacomments

7.1 Attributes

Only one attribute with a synthesis-specific interpretation shall be supported for synthesis: ENUM_ENCODING. All
others shall be ignored.

7.1.1 ENUM_ENCODING attribute

An attribute named ENUM_ENCODING shall provide a means of encoding enumeration type values. The attribute
specification for this attribute shall specify the encoding of the enumeration type literalsin the form of astring. This
string shall be made up of tokens separated by one or more spaces. There shall be as many tokens as there are literals
in the enumeration type, with the first token corresponding to the first enumeration literal, the second token
corresponding to the second enumeration literal, and so on.

Each token shall be made up of a sequence of '0' and '1' characters. Character '0' shall represent alogic 0 value and
character '1' shall represent alogic 1 value. Additionally, each token may optionally contain underscore characters;
these shall be used for enhancing readability and are to be ignored. All tokens shall be composed of the same number
of characters (ignoring the underscore characters). Given the following enumerated type declaration and attribute
declaration:

type <enumeration_type>is (<enumlitl> <enumlit2>, ... <enumlitN>);

attribute ENUM ENCODI NG STRING -- Attribute declaration

The attribute specification defines the encoding for the enumeration literals.

attribute ENUM ENCODI NG of <enuneration_type>: type is
"[<space(s)>] <t okenl><space(s) ><t oken2><space(s)>. .. <t okenN>[<space(s)>]";
- Attribute specification

Token <token1> specifies the encoding for <enum_lit1>, <token2> specifies the encoding for <enum_lit2>, and so
on.

This attribute shall only decorate an enumeration type.
Note -- Use of this attribute may lead to simulation mismatches, e.g. with use of relational operators.

Example:
- Exanpl e shows ENUM ENCODI NG used to descri be one-hot encoding:

attribute ENUM ENCODI NG string;
type COLOR is (RED, GREEN, BLUE, YELLOW ORANGE);

attribute ENUM ENCODI NG of COLOR type is "10000 01000 00100 00010 00001";

- Enuneration literal RED is encoded with the first val ue 10000,
- GREEN i s encoded with the val ue 01000, and so on.

User-defined attribute declarations and their specifications shall be ignored.

7.2 Metacomments

Two metacomments provide for conditional synthesis control. They shall be:
a) --RTL_SYNTHESISOFF
b) --RTL_SYNTHESISON

Copyright © 2001 IEEE. All rights reserved.
Thisis an unapproved | EEE Standards Draft, subject to change

20

IEEE 2001 September 6
P1076.6-2001

A synthesistool shall ignore any VHDL code after the “RTL_SYNTHESIS OFF” directive and before any
subsequent “RTL_SYNTHESIS ON” directive.

Metacomments differing only in the use of corresponding uppercase and lowercase letters shall be considered the
same.

The source code as awhole, including ignored constructs, shall conform to IEEE Std 1076-1993. The source code
exclusive of constructs ignored because of the metacomments, shall be compliant to the terms of this standard.

Note 1 -- Care should be taken when using these metacomments to ensure that synthesis behavior accurately reflects
simulation behavior. Use of these metacomments may lead to simulation mismatches.

Note 2 -- The interpretation of comments other than RTL_SYNTHESIS OFF and RTL_SYNTHESISON by a
synthesis tool is not compliant with this standard.

8. Syntax

8.1 Design entities and configurations

8.1.1 Entity declarations

entity_declaration ::=
entity identifier is
entity_header
[begin
entity_statenment_part]
end [entity] [entity_sinple_nane] ;

Supported:
* entity_declaration

Ignored:
* entity_statement_part

Not supported:
* entity_declarative part

* Reserved word entity after reserved word end

Example:
l'ibrary | EEE;
use | EEE. std_Logic_1164.all;
entity Eis
generi c(DEPTH : Integer := 8);
port (CLOCK cin std_| ogic;
RESET cin std_| ogic;
A cin std_l ogic_vector (7 downto 0);
B : inout std_logic_vector(7 dowmnto 0);
C : out std_l ogic_vector (7 downto 0));
end E;

Copyright © 2001 IEEE. All rights reserved.
Thisis an unapproved | EEE Standards Draft, subject to change
21

IEEE 2001 September 6
P1076.6-2001

8.1.1.1 Entity header

entity_header ::=
[formal _generic_clause]
[formal _port_clause]

generic_clause ::= generic(generic_list)

port_clause ::= port(port_list)

Supported:
 entity header
e generic_clause

e port_clause

a) Generics
generic_list ::= generic_interface_list

Types allowed in the generic interface list of the entity _header shall be those described in 8.4.3.2.

Supported:
» generic list

b) Ports

port_list ::= port_interface_|ist

Supported:
e port_list

Ignored:
* Initia valuesin port_list

8.1.1.2 Entity declarative part

{ entity declarative item}

subprogram decl arati on
subprogr am body
type_decl aration
subtype_decl aration
const ant _decl arati on
si gnal _decl aration
shared_vari abl e_decl arati on
file_declaration
al i as_decl aration
attribute_declaration
attribute_specification
di sconnecti on_specification
use_cl ause
group_t enpl at e_decl arati on
group_decl aration

Not supported:
 entity declarative part

 entity declarative item

Copyright © 2001 IEEE. All rights reserved.
Thisis an unapproved | EEE Standards Draft, subject to change

22

IEEE
P1076.6-2001

8.1.1.3 Entity statement part

entity_statement_part ::=
{ entity statenent }

entity statement ::=
concurrent _assertion_stat enent

| passive_concurrent_procedure_call
| passive_process_statenent

Ignored:
 entity_statement_part

 entity_statement

Note -- The entity statement part describes passive behavior for simulation monitoring purposes. It cannot drive
signalsin the architecture. It, therefore, has no effect on the behavior of the architecture.

8.1.2 Architecture bodies

architecture_body ::=
architecture identifier of entity_name is
architecture_decl arative_part
begi n
[architecture_statenment_part]
end [arechiteeture | [architecture_sinple_nanme] ;

Supported:
 architecture_body

» Multiple architectures corresponding to a given entity declaration

Not supported:
» Global signal interactions between architectures

» Reserved word architecture after reserved word end

8.1.2.1 Architecture declarative part

architecture_declarative_part ::=
{ block_declarative_item}

bl ock_decl arative_item::=
subprogram decl arati on

subpr ogr am body

type_decl aration

subt ype_decl arati on

const ant _decl arati on

si gnal _decl arati on

file_declaration
alias_declaration

conponent _decl arati on
attribute_declaration
attribute_specification
configuration_specification
di sconnecti on_specification
| use_cl ause

| group—tenplate—declaration
| group—dectaration

Supported:
 architecture_declarative part

Copyright © 2001 IEEE. All rights reserved.
Thisis an unapproved | EEE Standards Draft, subject to change

2001 September 6

23

IEEE 2001 September 6
P1076.6-2001

block_declarative item

Ignored:

« file_declaration

 dias declaration

 configuration_specification

« disconnection_specification

» User-defined attribute declarations and their specifications, except as described in 7.1.
Not supported:

» shared variable declaration
e group_template declaration
e group_declaration

A use clause shall only reference the selected name of a package (which may in turn reference all, or a particular
item_name within the package).

Attribute declarations and attribute specifications will be supported only for the synthesis-specific attributes
described in Section 7.1. All other attribute declarations and attribute specifications shall be ignored.

8.1.2.2 Architecture statement part

architecture_statenent_part ::=
{ concurrent_statenent }

Supported:
 architecture_statement_part

Asdefined in 8.9 Concurrent statements.

8.1.3 Configuration declaration

configuration_declaration ::=
configuration identifier of entity_nane is

bl ock_confi guration

end [eontiguratien] [configuration_sinple_nane];

{ configuration_declarative_i t em }
eonfiguration—declarativeitem =
use_cl ause
| attribute_specification
| group_decl aration

Supported:
 configuration_declaration

Not supported:
» configuration_declarative_part

Copyright © 2001 IEEE. All rights reserved.
Thisis an unapproved | EEE Standards Draft, subject to change

24

IEEE 2001 September 6
P1076.6-2001

 configuration_declarative_item
» Reserved word configuration after reserved word end

Configuration declaration shall only be supported to the extent of specifying the architecture to be associated with the
top level entity of a synthesized design hierarchy.

8.1.3.1 Block configuration

bl ock_configuration ::=
for block_specification
use—clause

{ _
= }
end for ;

bl ock_specification ::=
archi tecture_nane
|

block—statenent—|abel-
| generate—statenent—tabel [(—index—specification)]

discrete_range
| static_expresion

bi ock_configuration
| conponent_configuration

Supported:
» block_configuration

» block_specification

Not supported:
» use clause

* index_specification

» configuration_item

» block statement label

* generate statement_|abel
Use clause shall not be supported in this context.
Block specification shall only be an architecture name.

Configuration declaration shall only be used to select the architecture to be used with the top level entity.

8.1.3.2 Component configuration

for conponent _specification
[binding_indication ;]
[block_configuration]
end for ;

Not supported:
» component_configuration

Copyright © 2001 IEEE. All rights reserved.
Thisis an unapproved | EEE Standards Draft, subject to change

25

IEEE 2001 September 6
P1076.6-2001

8.2 Subprograms and packages

8.2.1 Subprogram declarations

subprogram decl aration ::=
subprogram speci fication ;

subprogram specification ::=
procedure designator [(formal _paraneter_list)]
i function designator [(formal _paranmeter_list)]
return type_mark

designator ::=identifier | operator_synbol
operator_synbol ::= string_literal
Supported:

» subprogram_declaration
» subprogram_specification
* designator

» operator_symbol

Not supported:
* reserved words pureand impure

8.2.1.1 Formal parameters

formal _paraneter_list ::= paranmeter_interface_list

Supported:
» formal_parameter_list

A subprogram shall not assign to an element or a slice of an unconstrained out parameter unless the corresponding
actual parameter in each call of the subprogramis an identifier.

a) Constant and variable parameters

Constant and variable parameters shall be supported.

b) Signal parameters

Signal parameters shall be supported.

c¢) File parameters

File parameters shall not be supported.

8.2.2 Subprogram bodies

subprogram body ::=
subprogram specification is
subprogram decl arati ve_part
begi n
[subprogram statenent_part]
end [subpregramkind] [designator]| ;

Copyright © 2001 IEEE. All rights reserved.
Thisis an unapproved | EEE Standards Draft, subject to change

26

IEEE 2001 September 6
P1076.6-2001

subprogram decl arative_part ::=
{ subprogramdeclarative_item}

subprogram decl arative_item::=
subpr ogram decl arati on
subpr ogr am body
type_decl aration

subt ype_decl arati on
const ant _decl arati on
vari abl e_decl arati on
file_declaration
alias_declaration
attribute_declaration
attribute_specification
use_cl ause

group—dectaration

subprogram statenent _part ::=
{ sequential _statenent }

subprogramkind ::= procedure | function

Supported:
 subprogram_body
 subprogram_specification
 subprogram_declarative part
» subprogram_declarative item

» subprogram_statement_part

Ignored:
« file_declaration

 aias declaration

Not supported:
 subprogram kind
e group_template declaration
e group_declaration

A use clause shall only reference the selected name of a package (which may in turn reference al, or a particular
item_name within the package).

Attribute declarations and attribute specifications will be supported only for the synthesis-specific attributes
described in Section 7.1. All other attribute declarations and attribute specifications shall be ignored.

Subprogram recursion shall be supported when the number of recursionsis bounded by a static value.

A subprogram statement part shall not include await statement.
8.2.3 Subprogram overloading

8.2.3.1 Operator overloading

Operator overloading shall be supported.

Copyright © 2001 IEEE. All rights reserved.
Thisis an unapproved | EEE Standards Draft, subject to change

27

IEEE 2001 September 6
P1076.6-2001

a) Signatures
Signatures shall not be supported.

Note -- In the presence of a user-defined function representing an operator (i.e. afunction defined outside any of the
standard packages named in Section 4), the RTL synthesis tool must produce logic matching the functionality of the
user-defined function.

8.2.4 Resolution functions

The resolution function RESOLVED is supported in subtype STD_L OGIC. All other resolution functions shall be
ignored.

8.2.5 Package declarations

package_decl aration ::=
package identifier is
package_decl arative_part
end [package] [package_si npl e_nane]

package_decl arative_part ::=
{ package_declarative_item}

package_decl arative_item:: =
subpr ogram decl arati on
type_decl aration

subt ype_decl arati on
const ant _decl arati on

si gnal _decl arati on

file_declaration
alias_declaration
conponent _decl ar ati on
attribute_declaration
attribute_specification

di sconnecti on_specification
use_cl ause

group—dectaration

Supported:
» package declaration
» package declarative part

» package declarative item

Ignored:
« file declaration

 aias declaration
« disconnection_specification

» User-defined attribute declarations and their specifications, except as described in 7.1.

Not supported:
» Reserved word package after reserved word end

» shared variable declaration

» group_template declaration

Copyright © 2001 IEEE. All rights reserved.
Thisis an unapproved | EEE Standards Draft, subject to change

28

IEEE 2001 September 6
P1076.6-2001

e group_declaration
Signal declarations shall have an initial value expression.

Furthermore, asignal declared in a package shall have no sources. A constant declaration must include the initial
value expression, that is, deferred constants are not supported.

A use clause shall only reference the selected name of a package (which may in turn reference al, or a particular
item_name within the package).

Attribute declarations and attribute specifications will be supported only for the synthesis-specific attributes
described in Section 7.1. All other attribute declarations and attribute specifications shall be ignored.

8.2.6 Package bodies

package_body :: =
package body package_sinple_nane is
package_body_decl arative_part

end [package—bedy] [package_sinpl e_nane]

package_body_decl arative_part ::=
{ package_body_decl arative_item}

package_body_decl arative_item::=
subpr ogram decl arati on
subpr ogr am body

type_decl aration

subt ype_decl arati on

const ant _decl arati on

file declaration
alias_declaration
use_cl ause

group—dectaration

Supported:
» package body
» package body declarative part
» package body declarative item

Ignored:
 aias declaration

« file declaration

Not supported:
» shared variable declaration

e group_template declaration
e group_declaration
» Reserved words package body after reserved word end

A use clause shall only reference the selected name of a package (which may in turn reference al, or a particular
item_name within the package).

Copyright © 2001 IEEE. All rights reserved.
Thisis an unapproved | EEE Standards Draft, subject to change

29

IEEE 2001 September 6
P1076.6-2001

8.3 Types

8.3.1 Scalar types

scal ar_type_definition ::=
enuner ation_type_definition
| integer_type_definition
| physical _type_definition
| floating_ type_definition

range_constraint ::= range range

range ::=
range_attribute_nane
| sinple_expression direction sinple_expression

direction ::=to | downto

Supported:
» scalar_type definition
* range_constraint
* range

e direction

Ignored:
» physical_type definition
« floating_type definition
Null ranges shall not be supported.

8.3.1.1 Enumeration types

enuner ation_type_definition ::=
(enuneration_literal { , enuneration_literal })

enuneration_literal ::=identifier | character_literal

Supported:
* enumeration_type definition
e enumeration_literal

Elements of the following enumeration types (and their subtypes) shall be mapped to single bits as specified by IEEE
Std 1076.3-1997:

a BIT and BOOLEAN

b) STD_ULOGIC
The synthesistool may select a default mapping for elements of other enumeration types. The user may override the
default mapping by means of the ENUM_ENCODING attribute (see 7.1.1).

a) Predefined enumeration types

Supported:

Copyright © 2001 IEEE. All rights reserved.
Thisis an unapproved | EEE Standards Draft, subject to change

30

IEEE 2001 September 6
P1076.6-2001

* CHARACTER

Ignored:
e« SEVERITY_LEVEL

Not supported:
e FILE_OPEN_KIND

« FILE_OPEN_STATUS

8.3.1.2 Integer types

integer_type_definition ::= range_constraint

Supported:
 integer_type definition

It is recommended that a synthesis tool should convert asignal or variable that has an integer subtype indication to a
corresponding vector of bits. If the range contains no negative values, the object should have an unsigned binary
representation. If the range contains one or more negative values, the object should have a twos-complement
implementation. The vector should have awidth that is capable of representing all possible valuesin the range
specified for the integer type definition. The synthesis tool should support integer types and positive, negative and
unconstrained (universal) integers whose bounds lie within the range -2,147,483,648 to +2,147,483,647 inclusive (the
range that successfully maps 32-bit twos-complement numbers).

Subtypes NATURAL and POSITIVE are supported.

Note -- Integer ranges may be synthesized as if the zero value is included. For example "INTEGER range 9 to 10"
may be synthesized using an equivalent vector length of 4 bits, just asif it had been defined with a subtype indication
of "INTEGER range 0 to 15".

8.3.1.3 Physical types

physical _type_definition ::=
range_constrai nt
units
primary_unit_declaration
{ secondary_unit_declaration }
end units [physical _type_sinple_nane]

primary_unit_declaration ::= identifier ;
secondary_unit_declaration ::= identifier = physical _literal ;
physical literal ::=[abstract_literal] unit_name

Ignored:
» physical_type definition
e physical_literal
Physical objects and literals other than the predefined physical type TIME shall not be supported.

Declarations of objects of type TIME shall be ignored. References to objects and literals of type TIME may occur
only within the time_expression following the reserved word after or the timeout_clause of await statement, and
shall beignored.

Copyright © 2001 IEEE. All rights reserved.
Thisis an unapproved | EEE Standards Draft, subject to change
31

IEEE 2001 September 6
P1076.6-2001

8.3.1.4 Floating point types

floating_type_definition ::= range_constraint

Ignored:
« floating_type definition

Floating point type declarations shall be ignored. Reference to objects and literals of afloating point type may occur
only within ignored constructs, for example, after the after clause.

8.3.2 Composite types

conposite_type_definition ::=
array_type_definition
| record_type_definition

Supported:
» composite_type definition

8.3.2.1 Array types

array_type_definition ::=
unconstrai ned_array_definition
| constrained_array_definition
unconstrai ned_array_definition ::=
array (index_subtype_definition {——ndex—subtype—definitioni)

of el ement _subtype_i ndi cation

constrained_array_definition ::=
array index_constraint of element_subtype_indication

index_subtype_definition ::= type_mark range <>
index_constraint ::= (discrete_range {—diserete—range})
di screte_range ::= discrete_subtype_indication | range

range ::= range_attribute_nane
si npl e_expression direction sinple_expression

Supported:
» array_type definition
» unconstrained_array _definition
» constrained_array_definition
* index_subtype definition
* index_constraint
« discrete_range

The index constraint shall contain exactly one discrete range. The bounds of the discrete range shall be specified
directly or indirectly as static values belonging to an integer type. The element subtype indication shall denote either
a subtype of a scalar (integer or enumeration) type or a one dimensional vector of an enumeration type whose
elements denote single bits.

Null ranges shall not be supported.

Copyright © 2001 IEEE. All rights reserved.
Thisis an unapproved | EEE Standards Draft, subject to change

32

IEEE 2001 September 6
P1076.6-2001

If adiscrete range is specified using a discrete subtype indication, the discrete subtype indication shall name a
subtype of an integer type.

In an unconstrained array definition, exactly one index subtype definition shall be supported.

A range shall comprise integer values.

a) Index constraints and discrete ranges
These shall be supported.

b) Predefined array types
Predefined array types shall be supported.

8.3.2.2 Record types

record_type_definition ::=
record
el ement _decl arati on
{ elenent_declaration }
end record [record_type_sinple_nane]

el ement _declaration ::= identifier_list : element_subtype_definition
identifier_list ::=identifier { , identifier }
el ement _subtype_definition ::= subtype_indication

Supported:

 record_type definition
e element_declaration
o identifier_list

» element_subtype definition

8.3.3 Access types

access_type_definition ::= access subtype_indication

Ignored:
» access type definition

The use of access types shall not be supported.

8.3.3.1 Incomplete type declarations

inconpl ete_type_declaration ::= type identifier

Ignored:
 incomplete _type declaration
8.3.3.2 Allocation and deallocation of objects

Allocation and deallocation shall not be supported.

Copyright © 2001 IEEE. All rights reserved.
Thisis an unapproved | EEE Standards Draft, subject to change

33

IEEE 2001 September 6
P1076.6-2001

8.3.4 File types

file_type_definition ::= file of type_mark

Ignored:
« file type definition
Use of file objects (objects declared as belonging to afile type) shall not be supported.

8.3.4.1 File operations

Not Supported:
 File operations

8.4 Declarations

declaration ::=

type_decl aration

subt ype_decl arati on
obj ect _decl arati on
interface_declaration
alias_decl aration
attribute_declaration
conponent _decl arati on

group—dectaration
entity_declaration
configuration_declaration
subprogram decl arati on
package_decl arati on

Supported:
» declaration

Ignored:
» alias declaration

Not supported:
» group_template declaration

» group_declaration
Attribute declarations and attribute specifications will be supported only for the synthesis-specific attributes
described in Section 7.1. All other attribute declarations and attribute specifications shall be ignored.
8.4.1 Type declarations

type_declaration ::=
full _type_decl aration
| inconplete_type_declaration

full _type_declaration ::=
type identifier is type_definition

type_definition ::=
scal ar _type_definition
| conposite_type_definition
| access_type_definition
| file_ type_definition

Copyright © 2001 IEEE. All rights reserved.
Thisis an unapproved | EEE Standards Draft, subject to change

34

IEEE
P1076.6-2001

Supported:
* type declaration
 full_type declaration

* type definition

Ignored:
» incomplete_type declaration
e access type definition

« file type definition

Full type declarations containing access type definition or file type definition shall be ignored.

8.4.2 Subtype declarations

subtype_declaration ::=
subtype identifier is subtype_indication

subtype_indication ::=
[resolution_function_nane] type_mark [constraint]

type_mark ::=
type_nane
| subtype_nane

constraint ::=
range_constraint
| index_constraint

Supported:
» subtype declaration

 subtype indication
» type mark

e constraint

Ignored:
» User-defined resolution functions

8.4.3 Objects

8.4.3.1 Object declarations

obj ect _declaration ::=
const ant _decl arati on
| signal _declaration
| variable_declaration
| file_declaration

Supported:
e object_declaration

Ignored:

Copyright © 2001 IEEE. All rights reserved.

Thisis an unapproved | EEE Standards Draft, subject to change

2001 September 6

35

IEEE 2001 September 6
P1076.6-2001

« file_declaration

a) Constant declarations

constant _declaration ::=
constant identifier_list : subtype_indication := expression

Supported:
e constant_declaration

Deferred constant declaration shall not be supported. That is, the expression shall be present in the constant
declaration.

b) Signal declarations

signal _declaration ::=
signal identifier_|list : subtype_indication [sigral—kird] [:= expression]

si-gral—kind ::= register | bus

Supported:
e signal_declaration

Ignored:
e expression

Not supported:
e signa_kind

Theinitial value expression shall be ignored unless the declaration isin a package, where it shall have an initia value
expression.

The subtype indication shall be aglobally static type. An assignment to asignal declared in a package shall not be
supported.

¢) Variable declarations

vari abl e_decl aration ::=
variable identifier_list : subtype_indication [:= expression]

Supported:
» variable declaration

Ignored:
* expression

Not supported:
» Reserved word shared

The reserved word shared shall not be supported. Theinitial value expression shall beignored. The subtype
indication shall be a globally static type.

The use of access objects shall not be supported.

Copyright © 2001 IEEE. All rights reserved.
Thisis an unapproved | EEE Standards Draft, subject to change

36

IEEE 2001 September 6
P1076.6-2001

d) File declarations

file_declaration ::=
file identifier_list : subtype_indication [file_open_infornmation]

file_open_information ::=
[open file_open_kind_expression] is file_logical_nane

file_logical _nane ::= string_expression

Ignored:
« file_declaration

The use of file objects shall not be supported.

8.4.3.2 Interface declarations

interface_declaration ::=
interface_constant_decl aration
| interface_signal _declaration
| interface_variabl e_declaration
ipterfacefiledeclaration
interface_constant _declaration ::=
[constant] identifier_list : [in] subtype_indication [:= static_expression]

interface_signal _declaration ::=
[signal] identifier_list : [npde] subtype_indication fbus}
[:= static_expression]

interface_variabl e_declaration ::=
[variable] identifier_list : [node] subtype_indication
[:= static_expression]

file identifier list : subtype_ indication

nmode ::=in | out | inout | buffer | H-nrkage

Supported:
* interface declaration

 interface _constant_declaration
* interface_signal_declaration

* interface variable declaration

Ignored:
o dtatic_expression (interface signal declarations and interface variable declarations)

Not Supported:
 interface file_declaration

* Modelinkage
* Reserved word bus
Generic interface constant declarations shall have a subtype indication of an integer type or a subtype thereof.

The static expression shall be ignored in port interface lists and formal parameter lists except for interface constant
declarations that shall be supported.

Copyright © 2001 IEEE. All rights reserved.
Thisis an unapproved | EEE Standards Draft, subject to change

37

IEEE 2001 September 6
P1076.6-2001

a) Interface lists

interface_list ::=
interface_element {; interface_el ement}

interface_elenment ::= interface_declaration

Supported:
* interface list

 interface_element

b) Association lists

association_list ::=
associ ation_el enent {, association_el enment}

associ ation_elenment ::=
[formal _part =>] actual _part

formal _part ::=
f or mal _desi gnat or
l = =
| type—rark{—forrmal—designator—)
formal _designator ::=
generi c_nane
| port_name
| paraneter_nane

actual _part ::=
act ual _desi gnat or

| — _desi

| type—mark{—actual _desi-gnator—)
actual _designator ::=

expression

| signal _nane

| variabl e_nane

| Hte—nare

| open

Supported:
e association list
e association_element
» formal_part
 formal_designator
e actua part

 actual_designator

Not supported:
« function_name

e type mark
« file_name

The formal part may be only aformal designator and the actual part shall only be an actual designator.

Copyright © 2001 IEEE. All rights reserved.
Thisis an unapproved | EEE Standards Draft, subject to change

38

IEEE
P1076.6-2001

8.4.3.3 Alias declarations

alias_declaration ::=
alias alias_designator [: subtype_indication] is nane [signrature}l;

alias_designator ::=identifier | character_literal | operator_synbol

Ignored:
 dias declaration

 adias designator

Not supported:
e signature

Use of aiases shall not be supported.

8.4.4 Attribute declarations

attribute_declaration ::=
attribute identifier : type_nark ;

Ignored:
« attribute_declaration

Attribute declarations and attribute specifications will be supported only for the synthesis-specific attributes
described in Section 7.1. All other attribute declarations and attribute specifications shall be ignored.

8.4.5 Component declarations
conponent _decl aration ::=
conponent identifier [is]
[l ocal _generic_cl ause]
[l ocal _port_cl ause]
end conponent f[econpenent—siApte—narel ;
Supported:

e component_declaration

Not supported:
» reserved word is

e component_simple_name

8.4.6 Group template declarations

group identifier is (entity class_entry list) ;

entity _class_entry {, entity class_entry }

enptity—elass—entry 1= entity_class [<>]
Not supported:

e group_template declaration

Copyright © 2001 IEEE. All rights reserved.
Thisis an unapproved | EEE Standards Draft, subject to change

2001 September 6

39

IEEE

P1076.6-2001

* entity class entry list

e entity class entry

8.4.7 Group declarations

group identifier : group_tenplate_nanme(group_consituent list);
group—econstituent—-st ::= group_constituent {, group_constituent }
group—constituent ::= nane | character_literal

Not supported:

e group_declaration
e group_constituent_list

e group_constituent

8.5 Specifications

8.5.1 Attribute specification

attribute_specification ::=
attribute attribute_designator of entity_specification is expression;

entity_specification ::=
entity_name_list : entity_class

entity_class ::=
entity | architecture | configuration
| procedure | function| package
| type | subtype | constant
| signal | variable| conponent
| | abel | literal | units
| greup | e

entity_name_list ::=
entity_designator {, entity_designator}
ethers

| aH-
entity_designator ::= entity_tag fsigrature}l
entity_tag ::= sinple_nane | character_literal | operator_synbol

Supported:

Ignored:

40

 attribute_specification
* entity_specification
* entity class

* entity_name_list

* entity_designator

* entity tag

» User-defined attribute declarations

Copyright © 2001 IEEE. All rights reserved.
Thisis an unapproved | EEE Standards Draft, subject to change

2001 September 6

IEEE 2001 September 6
P1076.6-2001

Not supported:
e signature
 Entity class group and file
» Use of user-defined attributes
» Reserved words other and all in entity _name list
Attribute declarations and attribute specifications will be supported only for the synthesis-specific attributes
described in Section 7.1. All other attribute declarations and attribute specifications shall be ignored.
8.5.2 Configuration specification

configuration_specification ::=
for conponent _specification binding_indication;

conponent _specification ::=
instantiation_list : conponent_nane

instantiation_list ::=
instantiation_|label {, instantiation_|abel}
| others
| all

Ignored:
* configuration_specification
» component_specification

e instantiation list

8.5.2.1 Binding indication

binding_ind!cation =

Ignored:
 binding_indication

Not Supported:
» generic_map_aspect

* port_map_aspect

a) Entity aspect

entity entity_name [(architecture_identifier)]
| configuration configuration_name
| open

Not Supported:
* entity_aspect

Copyright © 2001 IEEE. All rights reserved.
Thisis an unapproved | EEE Standards Draft, subject to change

41

IEEE 2001 September 6
P1076.6-2001

b) Generic map and port map aspects

generic_map_aspect ::=
generic map (generic_association_list)

port_map_aspect ::=
port map (port_association_list)

8.5.2.2 Default binding indication

Default binding shall be supported.

8.5.3 Disconnection specification

Disconnection specifications shall be ignored.

8.6 Names
8.6.1 Names
nane .=

si npl e_nane
| operator_synbo
| sel ected_nane
| indexed_nane
| slice_name
| attribute_nane

prefix ::=

name

| function_cal

Supported:
* name

o prefix

8.6.2 Simple names

sinmple_name ::= identifier:

Supported:
e simple_name

8.6.3 Selected names

sel ected_nane ::= prefix.suffix
suffix ::=
si npl e_nane
| character_litera

| operator_synbo
| all

Supported:
» selected name

» suffix

Copyright © 2001 IEEE. All rights reserved.
Thisis an unapproved | EEE Standards Draft, subject to change

42

IEEE 2001 September 6
P1076.6-2001

8.6.4 Indexed names
i ndexed_nane ::= prefix (expression {—expressioni)

Supported:
 indexed_name

Using an indexed name of an unconstrained out parameter in a procedure shall not be supported.

Only asingle expression shall be permitted (no multidimensional objects).

8.6.5 Slice names

slice_name ::= prefix (discrete_range)

Supported:
e dice name
Using a slice name of an unconstrained out parameter in a procedure shall not be supported.
Null slices shall not be supported.
For a discrete range that appears as part of a dice name, the bounds of the discrete range shall be specified directly or
indirectly as static values belonging to an integer type.
8.6.6 Attribute names

attribute_name ::=

prefix [signature]’ attribute_designator [(—expression) |
attribute_designator ::= attribute_sinpl e_nane
Supported attribute designators:

* 'BASE

* 'LEFT

* 'RIGHT

* 'HIGH

* 'LOW

* 'RANGE

* 'REVERSE_RANGE

* 'LENGTH

 'EVENT

* 'STABLE

* attribute_name

* attribute_designator

Copyright © 2001 IEEE. All rights reserved.
Thisis an unapproved | EEE Standards Draft, subject to change

43

IEEE 2001 September 6
P1076.6-2001

Not supported:
e signature
e expression
Attributes'EVENT and 'STABLE shall only be used as specified in 6.1.

8.7 Expressions

8.7.1 Expressions

expression ::

relation { and relation }
| relation { or relation }
| relation { xor relation }
| relation [nand relation]
| relation [nor relation]
| relation{ ser—relati-on}
relation ::=

shift_expression [relational _operator shift_expression]

shift_expression ::=

si npl e_expressi on [shift—operator—sinple—expression]

sinpl e_expression ::=
[sign] term{ adding_operator term]}

term::=
factor { multiplying_operator factor }
factor ::=
primary [** primary
| abs primary
| not primary
primary ::=
name
| litera
| aggregate
| function_cal
| qualified_expression
| type_conversion
| akllecator
|

(expression)

Supported:
* expression
* relation
 shift_expression
» simple_expression
o term
* factor

e primary

Not supported:
e Xnor operator

 All shift operators

Copyright © 2001 IEEE. All rights reserved.
Thisis an unapproved | EEE Standards Draft, subject to change

IEEE 2001 September 6
P1076.6-2001

« alocator in aprimary

8.7.2 Operators

| ogical _operator ::=and | or | nand | nor | xor | xher
relational _operator ::= =] /=] <| <=]| >]| >=
addi ng_operator ::= + | - | &
sign ::=+ | -
/| mod | rem

mul tiplying_operator ::=*

|
m scel | aneous_operator ::= ** | abs | not

Supported:
* logical_operator
* relational_operator
 adding_operator
e Sign
» multiplying_operator

» miscellaneous_operator

Not supported:
e Xnor operator

 shift_operator

8.7.2.1 Logical operators

Not supported:
e Xnor operator

8.7.2.2 Relational operators

No restriction.
Note -- Using relational operators for enumerated type that has an explicit encoding specified viathe
ENUM_ENCODING attribute may lead to simulation mismatches (see 7.1.1).

8.7.2.3 Shift operators

Supported:

e All SHIFT_LEFT and SHIFT_RIGHT functions defined in packages NUMERIC BIT and
NUMERIC_STD as part of IEEE Std 1076.3-1997

Not supported:
 All shift operators

Copyright © 2001 IEEE. All rights reserved.
Thisis an unapproved | EEE Standards Draft, subject to change

45

IEEE 2001 September 6
P1076.6-2001

8.7.2.4 Adding operators

No restriction.

8.7.2.5 Sign operators

No restriction.

8.7.2.6 Multiplying operators

Supported:
e * (multiply) operator
» /(division), mod, and rem operators
« al multiplying operators defined in |EEE Std 1076.3-1997

The/ (division), mod, and rem operators shall be supported only when both operands are static or when the right
operand is a static power of 2.

8.7.2.7 Miscellaneous operators

Supported:
e ** (exponentiation) operator
» absoperator

The ** (exponentiation) operator shall be supported only when both operands are static or when the left operand has
the static value 2.

8.7.3 Operands

8.7.3.1 Literals

literal ::=
nuneric_literal
| enuneration_literal
| string_literal
| bit_string_literal
| A
nuneric_literal ::=
abstract _literal
| physical _literal

Supported:
* literal

e numeric_literal

Not supported:
e null

References to objects and literals of type TIME may occur only within the time_expression following the reserved
word after or the timeout_clause of await statement, and shall be ignored.

Copyright © 2001 IEEE. All rights reserved.
Thisis an unapproved | EEE Standards Draft, subject to change

46

IEEE
P1076.6-2001

8.7.3.2 Aggregates

aggregate ::=
(el ement_association {, el ement_association})

el enent _association ::=
[choices =>] expression

choices ::= choice { | choice }
choice ::=
si npl e_expressi on
| discrete_range

| el enent _si npl e_nane
| others

 aggregate
e element_association
 choices

» choice

Use of atype asachoice

Example:

subtype Src_Typ is Integer range 7 downto 4;

subt ype Dest _Typ is Integer range 3 downto O;

- Constant definition with aggregates

constant Data_c : Std_Logic_Vector(7 downto 0) := (Src_Typ =>"'1",

a) Record aggregates

Not supported:
* record aggregates

b) Array aggregates

No restriction.

8.7.3.3 Function calls

function_call ::=
function_nane [(actual _paraneter_part)]

actual _paraneter_part ::= paraneter_association_list

Supported:
 function_call

» actual_parameter_part

2001 September 6

Dest _Typ => '0');

Restrictions exist for the actual parameter part. These restrictions are described in 8.4.3.2.

8.7.3.4 Qualified expressions

qual i fied_expression ::=
type_mark’ (expression)

Copyright © 2001 IEEE. All rights reserved.
Thisis an unapproved | EEE Standards Draft, subject to change

47

IEEE 2001 September 6
P1076.6-2001

| type_mark’ aggregate

Supported:
e quaified_expression

8.7.3.5 Type conversions

type_conversion ::= type_mark(expression)

Supported:
 type conversion

8.7.3.6 Allocators

aHocator 1=
new subtype_i ndi cation
| new qualified_expression

Not supported:
« adlocator

8.7.4 Static expressions

8.7.4.1 Locally static primaries

Locally static primaries shall be supported.

8.7.4.2 Globally static primaries

Globally static primaries shall be supported.

8.7.5 Universal expressions

Floating-point expressions shall not be supported. Precision shall be limited to 32 bits.

8.8 Sequential statements

sequence_of _statenents ::=
{ sequential _statenent }

sequential _statenment ::=
wai t _st at enent
assertion_statenent

report—statement

si gnal _assi gnnent _st at enent
vari abl e_assi gnnent
procedure_cal | _st at ement
i f_statenent

case_st at enent

| oop_st at enent

next _stat ement

exi t _statenent
return_stat enment

nul | _st at ement

Supported:
* sequence_of_statements

Copyright © 2001 IEEE. All rights reserved.
Thisis an unapproved | EEE Standards Draft, subject to change

48

IEEE 2001 September 6
P1076.6-2001

e sequential_statement

8.8.1 Wait statement

wait _statenent ::=

H-abel+} wait fsensitivity—eclause} [condition_clause] [tineout_clause
sensitivity—elause (1= on sensitivity_list

sensitivity_list ::= signal _name {, signal _nane}

condition_clause ::= until condition

condi tion ::= bool ean_expression

ti meout _clause ::= for time_expression
Supported:

* wait_statement
e sengitivity list
 condition_clause

e condition

Ignored:
 timeout_clause

Not Supported:
o |abel

e senditivity clause
Only one wait until statement shall be allowed per process statement and it shall be the first statement in the process.

Use of timeout clause may lead to simulation mismatches.

8.8.2 Assertion statement

assertion_statenment ::= [—abel~—} assertion

assertion ::=
assert condition
[report expression]
[severity expression]

Ignored:
» assertion_statement

e assertion

Not supported:
* |abel

8.8.3 Report statement

[1abel:] report-éxpression

Copyright © 2001 IEEE. All rights reserved.
Thisis an unapproved | EEE Standards Draft, subject to change

49

IEEE
P1076.6-2001

[severity expression] ;

Not Supported:
* report_statement

8.8.4 Signal assignment statement

si gnal _assi gnment _statenment ::=
fHabel——3 target <= [delay_nechanism] waveform;

del ay_nechanism::=
transport
{ h e . i .
target ::=
nane
| aggregate
waveform:: =
wavef orm el enent {—waveform-elenent}
—unaffected
Supported:
» signal_assignment_statement
. target

» waveform

Ignored:
» delay_mechanism

Not supported:
» |abel

» Reserved words reject, inertial and unaffected
 time_expression
» Multiple waveform_elements

An assignment to asignal declared in a package shall not be supported.

8.8.4.1 Updating a projected output waveform

wavef orm el enent ::=
val ue_expression [after tine_expression]

+—nub- [after tine_expression

Supported:
» waveform_element

Ignored:
» Time expression after reserved word after
Not supported:

Copyright © 2001 IEEE. All rights reserved.
Thisis an unapproved | EEE Standards Draft, subject to change

50

2001 September 6

IEEE
P1076.6-2001

* null waveform elements

8.8.5 Variable assignment statement

vari abl e_assi gnment _statenent ::=
: target := expression ;

Supported:
 variable assignment_statement

Not supported:
o |abel

8.8.5.1 Array variable assignments

Array variable assignment shall be supported.

8.8.6 Procedure call statement

procedure_cal | _statenment ::= [—tabel~—} procedure_call ;
procedure_call ::= procedure_nane [(actual _paranmeter_part)]
Supported:

» procedure call_statement

 procedure call

Not supported:
o |abel

Restrictions for the actual parameter part are discribed in 8.4.3.2 b).

8.8.7 If statement
if_s‘tatemant =
i f condition then
sequence_of _statenents
{ elsif condition then
sequence_of _statenents }

[else
sequence_of _statenents]

end if [—ftabel} ;

Supported:
 if_statement

Not supported:
 if label

2001 September 6

If asignal or variable is assigned under some values of the conditional expressionsin the if statement but not for all

values, storage elements may result; see 6.2.

Copyright © 2001 IEEE. All rights reserved.
Thisis an unapproved | EEE Standards Draft, subject to change

51

IEEE 2001 September 6
P1076.6-2001

8.8.8 Case statement

case_statenent ::=
case expression is
case_statenent _alternative

{ case_statenent_alternative }
end case ;

case_statenent _alternative ::=
when choi ces =>
sequence_of _statenents

Supported:
e case statement

e case_statement_alternative

Not supported:
o |abel

If asignal or variable is assigned values in some branches of a case statement but not in all, level-sensitive storage
elements may result; see 6.2. Thisistrue only if the assignment does not occur under the control of a clock edge.

If ametalogical value occurs as a choice, or as an element of a choice, in a case statement that isinterpreted by a
synthesis tool, the synthesistool shall interpret the choice as one that may never occur. That is, the interpretation that
is generated shall not be required to contain any constructs corresponding to the presence or absence of the sequence
of statements associated with the choice.

Note 1 -- If the type of the case expression includes metalogical values, and if not al the metalogical values are
included among the case choices, then the case statement must include an other s choice to cover the missing
metalogical choice values (IEEE Std 1076-1993).

Note 2 -- A case choice (such as"1X1") that includes a metalogical value indicates a branch that can never be taken
by the synthesized circuit (IEEE Std 1076.3-1997).

8.8.9 Loop statement

| oop_statenent ::=
[loop_label:]
[iteration_scheme] |oop
sequence_of _statenents
end | oop [|oop_| abel]
iteration_schenme ::=
whie—condition
| for | oop_paraneter_specification

paranet er _specification ::=
identifier in discrete_range

di screte_range ::= discrete_subtype_indication | range

Supported:
 loop_statement

e iteration_scheme
e parameter_specification

« discrete range

Copyright © 2001 IEEE. All rights reserved.
Thisis an unapproved | EEE Standards Draft, subject to change

52

IEEE 2001 September 6
P1076.6-2001

Not supported:
+ while
The iteration scheme shall not be omitted.
For a discrete range that appears as part of a parameter specification, the bounds of the discrete range shall be
specified directly or indirectly as static values belonging to an integer type.
8.8.10 Next statement

next _statement ::=
next [loop_label] [when condition] ;

Supported:
* next_statement

Not supported:
o |abel

8.8.11 Exit statement

exit_statenment ::=
exit [loop_label] [when condition] ;

Supported:
e exit_statement

Not supported:
o |abel

8.8.12 Return statement

return_statement ::=
return [expression] ;

Supported:
e return_statement

Not supported:
o |abel

8.8.13 Null statement

nul | _statenment ::=
: null ;

Supported:
e null_statement

Not supported:

Copyright © 2001 IEEE. All rights reserved.
Thisis an unapproved | EEE Standards Draft, subject to change

53

IEEE 2001 September 6
P1076.6-2001

* label

8.9 Concurrent statements

concurrent_statenent ::=
bl ock_st at enent
| process_stat ement
| concurrent_procedure_call _statenent
| concurrent_assertion_statenent
| concurrent_signal _assi gnment _st at enent
| conponent _instantiati on_statenment
| generate_stat enent

Supported:
 concurrent_statement

8.9.1 Block statement

bl ock_statenment ::=
bl ock_I abel :
bl ock [—guard—expressiony)] [s]
block_header

bl ock_decl arative_part
begi n

bl ock_st at ement _part
end bl ock [block_label]

bloek—header @ : =
[generic_clause
[generic_map_clause ;]]
[port_clause
[port_map_clause ;]]

bl ock_decl arative_part ::=
{ block_declarative_item}

bl ock_statenment _part ::=
{ concurrent_statenent }

Supported:
 block statement

» block declarative part
e block statement_part

Not supported:
 block_header

e guard_expression

* Reserved word is

8.9.2 Process statement

process_statenent ::=
[process_|abel:]
] process [(sensitivity_list)] [s]
process_decl arative_part
begi n
process_statenent _part
end process [process_|label] ;

process_decl arative_part ::=
{ process_declarative_item}

Copyright © 2001 IEEE. All rights reserved.
Thisis an unapproved | EEE Standards Draft, subject to change

IEEE 2001 September 6
P1076.6-2001

process_declarative_item::=
subpr ogram decl arati on
subpr ogr am body
type_decl aration

subt ype_decl arati on
const ant _decl aration
vari abl e_decl arati on
file_declaration
alias_declaration
attribute_declaration
attribute_specification
use_cl ause

group—dectaration

process_statenent _part ::=
{ sequential _statenent }

Supported:
e process statement

e sengitivity list
e process declarative part
» process declarative item

* process statement_part

Ignored:
« file declaration

 dias declaration

» User-defined attribute declarations and their specifications

Not supported:
» Reserved words postponed and is

» group_template declaration
» group_declaration

The sengitivity list must include those signals or elements of signals that are read by the process except for signals
read only under control of aclock edge, as described in section 6.

A use clause shall only reference the selected name of a package that may in turn reference all, or a particular
item_name within the package.

Attribute declarations and specifications as described in 7.1 shall be the only ones supported.

Use of file objects, access objects (variables of accesstype) and aliasesin a process are not supported.

8.9.3 Concurrent procedure call statement

concurrent _procedure_call _statenment ::=
[label:] [pestpened] procedure_call

Supported:
 concurrent_procedure call_statement

Copyright © 2001 IEEE. All rights reserved.
Thisis an unapproved | EEE Standards Draft, subject to change

55

IEEE
P1076.6-2001

Not supported:
* Reserved word postponed

8.9.4 Concurrent assertion statement

concurrent _assertion_statenent ::=

[label:] [postponed] assertion

Ignored:
e concurrent_assertion_statement

Not supported:
* Reserved word postponed

8.9.5 Concurrent signal assignment statement

concurrent _signal _assi gnment_statenment ::=
[label:] [—pestpened—1 conditional _signal _assignnment
| [label:] p—pestponed1 sel ected_signal _assi gnnent

options ::= [—guarded] [del ay_mechani sni

Supported:
e concurrent_signal_assignment_statement

Ignored:
e options

Not supported:
» Reserved words postponed and guarded

Any after clauses shall be ignored.
Multiple waveform elements shall not be supported.
The value unaffected shall not be supported

2001 September 6

Edge specifications (<clock_edge> or <clock level>) shall not be allowed in concurrent signal assignments.

Example:

architecture ARCH of ENT is
begi n

B(7) <= A(6);
B(3 downto 0) <= A(7 downto 4);

C <= not A
end ARCH
8.9.5.1 Conditional signal assignment

condi ti onal _si gnal _assignnent ::=
target <= options conditional _waveforns

condi ti onal _waveforns ::=

Copyright © 2001 IEEE. All rights reserved.
Thisis an unapproved | EEE Standards Draft, subject to change

56

IEEE
P1076.6-2001

{ waveform when condition else }

wavef or m [—when—econdition1

Supported:
 conditiona_signal_assignment

 conditional_waveforms

Ignored:
e options

Not supported:
» Last when condition

2001 September 6

Conditional signal assignments that satisfy either of the following conditions shall not be supported:

a) The conditional waveforms contain areference to one or more elements of the target signal.

b) The conditional waveforms contain an expression that represents a clock edge as defined by 6.1.2.

Example:

architecture ARCH of ENT is
begi n
C <= B when A(0)
not B when A(1)
"00000000" when A(2)
(others => ('1'));
end ARCH;

8.9.5.2 Selected signal assignments

sel ect ed_si gnal _assi gnnent ::=
wi th expression sel ect

target <= options sel ected_waveforns ;

sel ected_wavefornms ::=
{ wavef orm when choices , }
wavef orm when choi ces

Supported:
» selected signal_assignment
» selected waveforms

Ignored:
» options

"1 else
"1 else
"1" and RESET = '1' else

Selected signal assignments that satisfy either of the following conditions shall not be supported:

a) The selected waveforms contain a reference to one or more elements of the target signal.

b) The selected waveforms contain an expression that represents a clock edge as defined by 6.1.2.

Examples.

architecture Aof Eis

Copyright © 2001 IEEE. All rights reserved.
Thisis an unapproved | EEE Standards Draft, subject to change

57

IEEE 2001 September 6
P1076.6-2001

begi n
with A sel ect
C <= B when "00000000",
not B when "10101010",
(others => ('1")) when "11110001",
not A when ot hers;
end A

8.9.6 Component instantiation statement

conponent _i nstantiati on_statenent ::=
instantiation_| abel :
instantiated_unit
[generic_map_aspect]
[port_nmap_aspect]| ;

instantiated_unit ::=
[conponent] conponent _nane

; . ; ¢ on

Supported:
* component_instantiation_statement

e instantiated_unit

Not supported:
 entity and configuration forms of instantiated unit

* reserved word component
Restrictions exist for the generic map aspect and the port map aspect; these are described in 8.4.3.2.

Type conversions on aformal port shall not be supported.

8.9.6.1 Instantiation of a component

Component instantiation shall be supported.

8.9.6.2 Instantiation of a design entity

Not supported:
* Instantiation of adesign entity

8.9.7 Generate statement

generate_statement ::=
gener at e_| abel :
generation_scheme generate
——begint
{ concurrent_statenent }
end generate [generate_| abel] ;

generation_schene ::=
for generate_paraneter_specification
| if condition

| abel ::=identifier

Copyright © 2001 IEEE. All rights reserved.
Thisis an unapproved | EEE Standards Draft, subject to change

58

IEEE
P1076.6-2001

Supported:

+ generate_statement

e generate_scheme

* label

Not supported:

» block declarative item (the declarative region)

* reserved word begin

2001 September 6

The generate parameter specification shall be statically computable and of theform“i denti fi er in range”

only.

8.10 Scope and visibility

8.10.1 Declarative region

Declarative regions shall be supported.

8.10.2 Scope of declarations

The scope of declarations shall be supported.

8.10.3 Visibility

Visibility rules shall be supported.

8.10.4 Use clause

use_cl ause :: =

use sel ected_nane {, selected_nane} ;

Supported:
» use clause

8.10.5 The context of overloaded resolution

The context of overloaded resolution shall be supported.

8.11 Design units and their analysis

8.11.1 Design units
design_file ::=
design_unit ::=

library_unit ::
primary_uni

t

design_unit { design_unit }

context_clause library_unit

| secondary_unit

primary_unit ::

entity_declaration

Copyright © 2001 IEEE. All rights reserved.
Thisis an unapproved | EEE Standards Draft, subject to change

59

IEEE
P1076.6-2001

| configuration_declaration
| package_decl aration

secondary_unit ::=
ar chi t ect ur e_body
| package_body

Supported:
» design file
e design _unit
e library_unit
e primary_unit

e secondary_unit

8.11.2 Design libraries

library_clause ::=library |ogical _name_list
| ogical _nanme_list ::= |ogical_name {, |ogical_nane}
logical _nane ::= identifier

Supported:

e library_clause

 logical_name list

 logica_name
8.11.3 Context clauses

context_clause ::={ context_item}

context_item::=
l'ibrary_cl ause
| use_cl ause

Supported:
e context_clause

e context_item
8.11.4 Order of analysis

The order of analysis shall be supported.

8.12 Elaboration

No constraints shall be put on elaboration for synthesis.

8.13 Lexical elements

Real literals are only allowed in after clauses.

Extended identifiers shall not be supported.

Copyright © 2001 IEEE. All rights reserved.
Thisis an unapproved | EEE Standards Draft, subject to change

60

2001 September 6

IEEE
P1076.6-2001

8.14 Predefined language environment

8.14.1 Predefined attributes

8.14.1.1 Attributes whose prefix is atype t

t' BASE
t' LEFT
t' RIGHT
t'H CH
t'LOW
+-ASCENDING
HHMAGE

' LEFTOR(%)-
' R GHTOR(x)-

2001 September 6

8.14.1.2 Attributes whose prefix is an array object a, or attributes of a constrained array subtype a

" LEFT[{n)]
" REGHT[a3
H GH (A}
LOW ()]
RANGE] ()]

SRR T S S

" LENGTH &ry]
aASCENDFNGL{n)}-

' REVERSE_RANGE] {n)}]

8.14.1.3 Attributes whose prefix is a signal s

s' DELAYED[(t)]
s' STABLEL{t)]
S QUIET

s' TRANSAGTI-ON
s' EVENT

s ACTIVE

Copyright © 2001 IEEE. All rights reserved.
Thisis an unapproved | EEE Standards Draft, subject to change

61

IEEE 2001 September 6
P1076.6-2001

Attributes STABLE and EVENT may only be used as described in section 6.

8.14.1.4 Attributes whose prefix is a named object e

8.14.2 Package STANDARD
Functions in the package STANDARD shall be either supported or not supported as defined below:

Supported:
 Functions with arguments of type CHARACTER

 Functions with arguments of type STRING

« All functions whose arguments are only of type BOOLEAN

 All functions whose arguments are only of type BIT

» Thefollowing functions with arguments of type “universal integer” or of type INTEGER:
relational operator functions
B = 1 o F i

“I", “mod”, and “rem” provided both operands are static or the second argument is a static
power of two

“**" provided both operands are static, or the first argument is a static value of two

 All functions with an argument of type BIT_VECTOR

Ignored:
The attribute 'FOREIGN

Not supported:
 Functions with arguments of type SEVERITY_LEVEL

» The following functions with arguments of type “universal integer” or INTEGER:

“I", “mod”, and “rem” when neither operand is static or the second argument is not a static
power of two

“*** when the first argument is not a static value of two, or when neither operand is static
 Functions with arguments of type “universal real” or of type REAL

Copyright © 2001 IEEE. All rights reserved.
Thisis an unapproved | EEE Standards Draft, subject to change

62

IEEE
P1076.6-2001

 Functions with arguments of type TIME

The function NOW

 Functions with arguments of type FILE_OPEN_KIND
 Functions with arguments of type FILE_ OPEN_STATUS

8.14.3 Package TEXTIO
The subprograms defined in package TEXTIO shall not be supported.

Copyright © 2001 IEEE. All rights reserved.
Thisis an unapproved | EEE Standards Draft, subject to change

2001 September 6

63

IEEE 2001 September 6
P1076.6-2001

(This page left blank intentionally)

Copyright © 2001 IEEE. All rights reserved.
Thisis an unapproved | EEE Standards Draft, subject to change

64

Annex A: Syntax Summary (Informative)

This annex summarizes the VHDL syntax that is supported.

abstract _literal ::= decimal _literal | based_literal

access_type_definition ::= access subtype_indication

actual _designator ::=
expression
| signal _nane
| variabl e_nane

| open”
actual _paraneter_part ::= paraneter_association_|list

actual _part ::=
act ual _desi gnat or

| type—mark{—actual—designator—)
addi ng_operator ::=+ | - | &
aggregate ::=

(el ement_association {, elenent_association})

alias_declaration ::=
alias alias_designator [: subtype_indication] is nanme fsighaturel;

alias_designator ::=identifier | character_literal | operator_synbol

aHoeecator 1=
new subt ype_i ndi cation
| new qualified_expression

architecture_body ::=
architecture identifier of entity_nane is
architecture_decl arative_part
begi n
architecture_statenent_part]
end [arechiteeture | [architecture_sinple_nane]

architecture_declarative_part ::=
{ block_declarative_item}

architecture_statenent_part ::=
{ concurrent_statenent }

array_type_definition ::=
unconstrai ned_array_definition
| constrained_array_definition

assertion ::=
assert condition
[report expression]
[severity expression]

assertion_statenent ::= [—tabel~—} assertion ;

associ ation_elenent ::=
[formal _part =>] actual _part

association_list ::=
associ ation_elenent {, association_el enment}

attribute_declaration ::=
attribute identifier : type_mark ;

attribute_designator ::= attribute_sinple_nane

attribute_nane ::=

prefix [signrature}l attribute_desi gnator [—{(—expression)—}

attribute_specification ::=
attribute attribute_designator of entity_specification is expression;

Copyright © 2001 IEEE. All rights reserved.
Thisis an unapproved | EEE Standards Draft, subject to change

65

IEEE

P1076.6-2001

66

base ::= integer
base_specifier ::= B | O] X
base_unit_declaration ::= identifier

based_i nteger ::=
extended_digit { [underline] extended_ digit }

based_literal ::=

base # based_i nteger [—based—integer—} # [exponent]

basi c_character ::=
basi c_graphi c_character | fornmat_effector

basi c_graphi c_character ::=
upper _case_letter | digit | special_character| space_character

basic_identifier ::=
letter { [underline] letter_or_digit }

bi ndi ng_i ndi cation ::=

[use—entityaspeet—1

[—generi-c_map_aspect—}

[—poert_pap_aspest—
bit_string_literal :: base_specifier “ [bit_value] “
bit_value ::= extended_digit { [underline] extended_digit }

bl ock_configuration ::=
for block_specification
{ use—clause
i — }
end for
bl ock_decl arative_item::=
subprogram decl arati on
subpr ogr am body
type_decl aration
subt ype_decl arati on

const ant _decl aration
signal _decl aration

al i as_decl aration
conponent _decl arati on
attribute_declaration
attribute_specification
configuration_specification
di sconnecti on_specification
use_cl ause

group—declaration

bl ock_decl arative_part ::=
{ bl ock_declarative_item}

bleck—header ::=
[generic_clause
[generic_map_clause ;]]
[port_clause
[port_map_clause ;]]

bl ock_specification ::=
archi tecture_nane
| bleck—statenrent—tabel
| generate—staterent—tabel [(nrdex—speeification) |
bl ock_statenment ::=

bl ock_| abel
bl ock [—{—guard—expressien)—} s+
block—header
bl ock_decl arati ve_part
begi n
bl ock_st at ement _part
end block [block_l abel]

bl ock_statement _part ::=

Copyright © 2001 IEEE. All rights reserved.
Thisis an unapproved | EEE Standards Draft, subject to change

2001 September 6

IEEE

P1076.6-2001

{ concurrent_statenent }
case_statement ::=

case expression is
case_statenent _al ternative
{ case_statenent_alternative }
end case [—ecase—tabel} ;
case_statenment _alternative ::=
when choi ces =>
sequence_of _statenents

character_literal ::="‘ graphic_character

choice ::=
si npl e_expressi on
| discrete_range
| el enment_sinpl e_nane
| others

choices ::= choice { | choice }

for conponent_specification
[binding_indication ;]
[block_configuration]
end for ;

conponent _decl aration ::=
conponent identifier Hs}
[l ocal _generic_cl ause]
[l ocal _port_cl ause]

end conponent [econponent—si-npte—nanel;

conponent _i nstantiati on_statenent ::=
instantiation_| abel:
instantiated_unit
[generic_map_aspect]
[port_map_aspect] ;

conponent _specification ::=
instantiation_|list : conponent_nane

conposite_type_definition ::=
array_type_definition
| record_type_definition

concurrent _assertion_statenent ::=
[lTabel:] [—pestpened} assertion ;

concurrent _procedure_call _statenent ::=
[label:] [—pestpened—} procedure_call ;

concurrent_signal _assi gnnent_statenment ::=
[label:] [—pestpened—} conditional _signal _assignnment

| [label:] [—postpored] sel ected_signal _assi gnnent

concurrent_statenent ::=
bl ock_st at enent
| process_statenent
| concurrent_procedure_cal |l _statenent
| concurrent_assertion_statenent
| concurrent_signal _assi gnnent _st at ement
| conponent_i nstanti ati on_statenent
| generate_statenent

condi tion ::= bool ean_expressi on
condition_clause ::= until condition

condi ti onal _si gnal _assignnent ::=
target <= options conditional _waveforns ;

condi tional _waveforns ::=
{ waveform when condition el se }
wavef orm HH

configuration_declaration ::=

Copyright © 2001 IEEE. All rights reserved.
Thisis an unapproved | EEE Standards Draft, subject to change

2001 September 6

67

IEEE 2001 September 6
P1076.6-2001

configuration identifier of entity_name is

bl ock_configuration

end [eonfiguratien] [configuration_sinple_nane]

use_cl ause -
| attribute_specification

| group_declaration

{ configuration_declarative_item}

bl ock_configuration
| conponent _confi guration

configuration_specification ::=
for conponent _specification binding_indication

constant _declaration ::=
constant identifier_list : subtype_indication := expression

constrained_array_definition ::=
array index_constraint of element_subtype_indication

constraint ::=
range_constraint
| index_constraint

context_clause ::= { context_item}

context_item::=
library_cl ause
| use_cl ause

decimal _literal ::=integer [. integer] [exponent]

declaration ::=

type_decl aration
subtype_decl arati on
obj ect _decl aration
interface_declaration
alias_declaration
attribute_declaration
conponent _decl arati on

entity_declaration
configuration_declaration
subprogram decl arati on
package_decl ar ati on

del ay_mechani sm:: =

transport

f+ejeet—time—expressieont inertia
design_file ::= design_unit { design_unit }
design_unit ::= context_clause library_unit
designator ::= identifier | operator_synbo
direction ::=to | downto

di sconnection_specification ::=
di sconnect guarded_signal _specification after time_expression

discrete_range ::= discrete_subtype_indication | range

el ement _association ::=
[choices =>] expression

el ement _declaration ::= identifier_list : element_subtype_definition
el ement _subtype_definition ::= subtype_indication

enFity ent{iy_nane [(architecture_identifier)]

Copyright © 2001 IEEE. All rights reserved.
Thisis an unapproved | EEE Standards Draft, subject to change

68

IEEE 2001 September 6
P1076.6-2001

| configuration configuration_nane

| open
entity_class ::=
entity | architecture | configuration
| procedure | function| package
| type | subtype | constant
| signal | variable| conponent
| label | literal | units
| greup | Hte

entity—elass—entry = entity_class [<>]

entity class_entry {, entity class entry }

entity_declaration ::=
entity identifier is
entity_header
[begin
entity_statenent _part]
end [eatity | [entity_sinple_nane]

subprogram decl arati on
subpr ogr am body

type_decl aration
subtype_decl arati on

const ant _decl aration
signal _decl aration
shared_vari abl e_decl arati on
file_declaration

al i as_decl aration
attribute_declaration
attribute_specification

di sconnecti on_specification
use_cl ause

group_tenpl ate_decl arati on
group_decl aration

{ entity declarative item}
entity_designator ::= entity_tag fsigrature}l

entity_header ::=
[formal _generic_clause]
[formal _port_clause]

entity_nane_list ::=
entity_designator {, entity_designator}
| ethers

| aH-

entity_specification ::=
entity_nane_list : entity_class

entity statement ::=
concurrent_assertion_statenment

| passive_concurrent_procedure_cal
| passive_process_stat enent

entity_statement_part ::=
{ entity statenent }

entity_tag ::= sinple_nanme | character_literal | operator_synbo

enuneration_literal ::= identifier | character_literal

enuneration_type_definition ::=
(enuneration_literal { , enuneraton_literal })

exit_statement ::=
exit [loop_label] [when condition]

exponent ::= E[+] integer | E - integer

expression ::=

Copyright © 2001 IEEE. All rights reserved.
Thisis an unapproved | EEE Standards Draft, subject to change

69

IEEE 2001 September 6
P1076.6-2001

relation { and relation }
| relation { or relation }
| relation { xor relation }
| relation [nand relation]
| relation [nor relation]
| relation i
extended_digit ::=digit | letter

extended_identifier ::=
\ graphic_character { graphic_character } \

factor ::=
primary [** primary]
| abs primary
| not primary

file_declaration ::=
file identifier_list : subtype_indication [file_open_infornmation]

file_logical _name ::= string_expression

file_open_information ::=
[open file_open_kind_expression] is file_logical_nanme

file_type_definition ::=file of type_mark

floating_type_definition ::= range_constraint

formal _designator ::=
generi c_nane
| port_name
| paraneter_nanme

formal _paraneter_list ::= parameter_interface_list

formal _part ::=
for mal _desi gnat or

| type—mark{—forral_desi-ghater—)-

full _type_declaration ::=
type identifier is type_definition ;

function_call ::=
function_nane [(actual _paranmeter_part)]

generate_statement ::=
generate_| abel :
generati on_schenme generate

{ concurrent_statenent }
end generate [generate_| abel]

generation_schene ::=
for generate_paraneter_specification
| if condition

generic_clause ::=
generic(generic_list);

generic_list ::= generic_interface_|list

generi c_map_aspect ::=
generic map (generic_association_list)

graphi c_character ::=
basi c_graphi c_character | |ower_case_letter | other_special _character

group—constituent ::= nane | character_literal
group—constituent—i-st ::= group_constituent {, group_constituent }

group identifier : group_tenplate_name(group_consituent_|ist);

group identifier is (entity class_ entry list)

Copyright © 2001 IEEE. All rights reserved.
Thisis an unapproved | EEE Standards Draft, subject to change

70

IEEE 2001 September 6
P1076.6-2001

guar ded_si gnal _specification ::=
guarded_signal _list : type_mark

identifier ::=
basic_identifier | extended_identifier

identifier_list ::=identifier { , identifier }
if_s;atenent]

if condition then
sequence_of _statenents
{ elsif condition then
sequence_of _statenents }
[else
sequence_of _statenents]

end if [—ftabel}
i nconpl ete_type_declaration ::= type identifier

index_constraint ::= (discrete_range {——discrete—range—J)

di screte_range
| static_expression

ndex_subtype_definition ::= type_mark range <>

ndexed_nane ::= prefix (expression {s—expression})

nstantiated_unit ::=
[eonponent] conponent _nane

| contigurati-on—contiguration—name

nstantiation_list ::=
instantiation_|label {, instantiation_|abel}

| others

| all
integer ::=digit { [underline] digit }
integer_type_definition ::= range_constraint

nterface_constant _declaration ::=
[constant] identifier_list : [in] subtype_indication [:= static_expression]

nterface_declaration ::=
interface_constant_decl aration
| interface_signal _declaration
| interface_variabl e_declaration
: ¢ ¢

nterface_el ement ::= interface_declaration
iaterfacefile—declaration =

file identifier_list : subtype_indication
interface_list ::=
interface_element {; interface_el enent}

interface_signal _declaration ::=
[signal] identifier_list : [npde] subtype_indication [bus}
[:= static_expression]

interface_variabl e_declaration ::=
[variable] identifier_list : [npde] subtype_indication
[:= static_expression]

iteration_scheme ::=

| for | oop_paraneter_specification

label ::=identifier
letter ::= upper_case_letter | lower_case_letter
letter_or_digit ::=letter | digit

Copyright © 2001 IEEE. All rights reserved.
Thisis an unapproved | EEE Standards Draft, subject to change

71

IEEE
P1076.6-2001

library_clause ::=library |ogical_nanme_list
library_unit ::=
primary_unit
| secondary_unit

literal ::=
nuneric_literal

| enuneration_litera

| string_literal

| bit_string_litera

I

AuH-
| ogical _name ::= identifier
| ogi cal _name_list ::= logical _name { , |ogical_nane }
| ogical _operator ::=and | or | nand | nor | xor | xhRer

| oop_statenment ::=
[loop_label:]
[iteration_schene] |oop
sequence_of _statenents
end | oop [| oop_| abel

m scel | aneous_operator ::= ** | abs | not
node ::=1in | out | inout | buffer | H-nkage
mul tiplying_operator ::=* | / | mbod | rem
name ::=

si npl e_nane
| operator_synbo
| sel ected_nane
| indexed_nane
| slice_name
| attribute_nanme

next _statenent ::=
next [loop_label] [when condition]

nul | _statenent ::=
: nul |

nuneric_literal ::=
abstract _litera
| physical _litera

obj ect _declaration ::=
const ant _decl arati on
| signal _declaration
| variabl e_declaration
| file_declaration

operator_synbol ::= string_literal

options ::=[guarded] [del ay_nechani sni

package_body ::=
package body package_si npl e_nane is
package_body_decl arative_part

end [package—bedy] [package_sinpl e_nane]

package_body_decl arative_item::=
subprogram decl ar ati on
subpr ogr am body

type_decl aration

subt ype_decl arati on

const ant _decl aration

file declaration
alias_declaration
use_cl ause

group—declaration

package_body_decl arative_part ::=

Copyright © 2001 IEEE. All rights reserved.
Thisis an unapproved | EEE Standards Draft, subject to change
72

2001 September 6

IEEE

P1076.6-2001

{

package_body_decl arative_item}

package_decl aration ::=
package identifier is

package_decl arati ve_part

end [package] [package_sinpl e_nane]

package_decl arative_item::=

subprogram decl arati on
type_decl aration

subt ype_decl arati on
const ant _decl aration
signal _decl aration

file_declaration
alias_declaration
conponent _decl arati on
attribute_decl aration
attribute_specification

di sconnecti on_specification
use_cl ause

group—declaralion

package_decl arative_part ::=

{

package_decl arative_item}

paraneter_specification ::=
identifier in discrete_range

physical literal ::=[abstract_literal] unit_nane

physical _type_definition ::=

range_constraint

units
primary_unit_decl aration
{ secondary_unit_declaration }
end units [physical _type_sinple_nane]

port_clause ::=
port(port_list);

port_list ::= port_interface_list

port_map_aspect ::=
port map (port_association_list)

prefix ::=

name
function_call

primary ::=

name
literal

aggr egat e
function_call

qual i fi ed_expression
type_conversi on
aHocator

(expression)

primary_unit ::=

entity_declaration
configuration_decl aration
package_decl arati on

primary_unit_declaration ::= identifier
procedure_call ::= procedure_nanme [(actual _paranmeter_part)]
procedure_cal |l _statenment ::= [abel+—} procedure_call

process_declarative_item::=

subprogram decl arati on
subpr ogr am body
type_decl aration

subt ype_decl arati on
constant _decl aration
vari abl e_decl arati on

Copyright © 2001 IEEE. All rights reserved.
Thisis an unapproved | EEE Standards Draft, subject to change

2001 September 6

73

IEEE

P1076.6-2001

74

file_declaration
alias_declaration
attribute_declaration
attribute_specification
use_cl ause

group—declaration

process_decl arative_part ::=

{

process_decl arative_item}

process_statenent ::=

[

process_| abel :]
] process [(sensitivity_ list)] [ks]
process_decl arative_part
begi n
process_stat enent _part
end process [process_| abel]

process_statenent _part

{

sequential _statenent }

qual ified_expression ::=

type_mark’ (expression)
type_mar k' aggr egat e

range @@=

range_attribute_nanme
si npl e_expressi on direction sinple_expression

range_constraint ::= range range

record_type_definition ::=
record

el enment _decl arati on
{ el enment_declaration }

end record [record_type_sinple_nane]

relation ::=
shift_expression [relational _operator shift_expression]

relational _operator ::==] /=] <| <=| > | >=

[1abel :] report. éxpressi on

[severity expression]

return_statenent ::=

return [expression]

scal ar_type_definition ::=

enuneration_type_definition
integer_type_definition
physi cal _type_definition
floating_type_definition

secondary_unit ::=

ar chi tecture_body
package_body

secondary_unit_declaration ::= identifier = physical _literal

sel ected_nanme ::= prefix.suffix

sel ect ed_si gnal _assi gnnent ::=
wi th expression sel ect

target <= options sel ected_waveforns ;

sel ected_waveforns ::=

{

wavef orm when choices , }
wavef orm when choi ces

sensitivity—elause 1= on sensitivity_list
sensitivity list ::= signal _nane {, signal _nane}

sequence_of _statenments ::

{

sequential _statenent }

Copyright © 2001 IEEE. All rights reserved.
Thisis an unapproved | EEE Standards Draft, subject to change

2001 September 6

IEEE
P1076.6-2001

sequential _statenent ::=

wai t _st at enent
assertion_stat enment
report_statenent

si gnal _assi gnnment _st at enent
vari abl e_assi gnrment
procedure_cal | _stat ement
if_statenent
case_st at enent

| oop_st at enent

next _st at enent

exit _statenent
return_statenent

nul | _st at ement

shift_expression ::=

si npl e_expressi on [—shift—operator—sinple—expression}
shift—operator——=st—t-srl | sla| sra| rol | ror
sign ::=+ | -

signal _assi gnment _statenent ::=
: target <= [delay_mechanism] waveform

signal _declaration ::=
signal identifier_list : subtype_indication [sigral—kind] [:= expression]
sighral—kind ::= register | bus

signal _list ::=
signal _nane {, signal _name }
| others
| all

signrature (= [[type_mark { , type_mark }] [return type_mark]

si npl e_expression ::=
[sign] term{ adding_operator term}

sinple_nane ::= identifier
slice_name ::= prefix (discrete_range)
string_literal ::=*“ { graphic_character } “

subprogram body ::=
subprogram specification is
subprogram decl arative_part
begi n
subprogram st atenent _part]
end [subpreogramkind | [designator]

subprogram decl aration ::=
subprogram speci fication

subprogram decl arative_item::=
subprogram decl ar ati on
subpr ogr am body
type_decl aration
subtype_decl arati on
const ant _decl aration
vari abl e_decl arati on
file_declaration
alias_declaration
attribute_declaration
attribute_specification
use_cl ause

group—declaration

subprogram decl arative_part ::=
{ subprogramdecl arative_item}

subprogramkind ::= procedure | function
subprogram specification ::=
procedure_designator [(formal _paranmeter_list)]

| f—pure—}—inpure—t function designator [(formal _paranmeter_list)]

Copyright © 2001 IEEE. All rights reserved.
Thisis an unapproved | EEE Standards Draft, subject to change

2001 September 6

75

IEEE 2001 September 6
P1076.6-2001

return type_mark

subprogram statenment _part ::=
{ sequential _statenent }

subtype_declaration :: =
subtype identifier is subtype_indication ;

subtype_indication ::=
[resolution_function_nane] type_mark [constraint]

suffix ::=
si npl e_nane
| character_literal
| operator_synbol
| all

target ::=
nanme
| aggregate

term::=
factor { multiplying_operator factor }

tinmeout _clause ::= for tinme_expression
type_conversion ::= type_nark(expression)
type_decl aration ::=

full _type_decl aration
| inconplete_type_declaration

type_definition ::=
scal ar _type_definition
| conposite_type_definition
| access_type_definition
| file_type_definition

type_mark ::=
type_nane
| subtype_nane

unconstrained_array_definition ::=

array (index_subtype_definition {——index—subtype—definitiont)

of el ement _subtype_i ndi cation

use_cl ause :: =
use sel ected_nane {, sel ected_nane}

vari abl e_assi gnment _statenent ::=
: target := expression ;

vari abl e_decl aration ::=
variable identifier_list : subtype_indication [:= expression] ;

wait_statenent ::=

Habel+} wait fsensitivity—elausel [condition_clause] [tinmeout_clause] ;

waveform:: =

wavef orm el enent {—waveform-elerent}
| wnaffected

waveform el enent ::=
val ue_expression [after tine_expression]

Copyright © 2001 IEEE. All rights reserved.
Thisis an unapproved | EEE Standards Draft, subject to change

76

