Outline

Hardware Description Language

- 1. Overview on hardware description language
- 2. Basic VHDL Concept via an example

Programming language

3. VHDL in development flow

RTL Hardware Design by P. Chu	Chapter 2	1	RTL Hardware Design by P. Chu	Chapter 2	2

			r rogramming language
1. C	Overview on hardware description language		 Can we use C or Java as HDL? A computer programming language Semantics ("meaning") Syntax ("grammar") Develop of a language Study the characteristics of the underlying processes Develop syntactic constructs and their associated semantics to model and express these characteristics.
RTL Hardware Design by P. Chu	Chapter 2	3	RTL Hardware Design Chapter 2 4 by P. Chu

Traditional PL

Modeled after a sequential process

- Operations performed in a sequential order
- Help human's thinking process to develop an algorithm step by step
- Resemble the operation of a basic computer model

RTL Hardware Design	
by P. Chu	

Chapter 2

5

HDL

- Characteristics of digital hardware
 Connections of parts
 - Concurrent operations
 - Concept of propagation delay and timing
- Characteristics cannot be captured by traditional PLs
- Require new languages: HDL

RTL Hardware Design Chapter 2 by P. Chu

Use of an HDL program

- Formal documentation
- · Input to a simulator
- · Input to a synthesizer

Modern HDL

- Capture characteristics of a digital circuit:
 - entity
 - connectivity
 - concurrency
 - timing

7

9

- · Cover description
 - in Gate level and RT level
 - In structural view and behavioral view

RTL Hardware Design by P. Chu

- Highlights of modern HDL:
 - Encapsulate the concepts of entity, connectivity, concurrency, and timing
 - Incorporate propagation delay and timing information

Chapter 2

- Consist of constructs for structural implementation
- Incorporate constructs for behavioral description (sequential execution of traditional PL)
- Describe the operations and structures in gate level and RT level
- Consist of constructs to support hierarchical design process

RTL Hardware Design by P. Chu

RTL Hardware Design by P. Chu

Chapter 2

Two HDLs used today

Chapter 2

- -VHDL and Verilog
- -Syntax and ``appearance" of the two languages are very different
- Capabilities and scopes are quite similar
- -Both are industrial standards and are supported by most software tools

Chapter 2

RTL Hardware Design by P. Chu

10

12

8

VHDL

- VHDL: VHSIC (Very High Speed Integrated Circuit) HDL
- Initially sponsored by DoD as a hardware documentation standard in early 80s
- Transferred to IEEE and ratified it as IEEE standard 1176 in 1987 (known as VHDL-87)

Chapter 2

- Major modification in '93 (known as VHDL-93)
- Revised continuously

RTL Hardware Design by P. Chu

11

IEEE Extensions

- IEEE standard 1076.1 Analog and Mixed Signal Extensions (VHDL-AMS)
- IEEE standard 1076.2 VHDL Mathematical Packages
- IEEE standard 1076.3 Synthesis Packages
- IEEE standard 1076.4 VHDL Initiative Towards ASIC Libraries (VITAL)
- IEEE standard 1076.6 VHDL Register Transfer Level (RTL) Synthesis – IEEE standard 1164 Multivalue Logic System for VHDL Model Interoperability
- IEEE standard 1029 VHDL Waveform and Vector Exchange to Support Design and Test Verification (WAVES)

RTL Hardware Design by P. Chu Chapter 2

2. Basic VHDL Concept via an example

13

Even parity detection circuit

 $even = a(2)' \cdot a(1)' \cdot a(0)' + a(2)' \cdot a(1) \cdot a(0) + a(2) \cdot a(1)' \cdot a(0) + a(2) \cdot a(1) \cdot a(0)'$

RTL Hardware Design	Chapter 2	14
by P. Chu		

VHDL Listing 2.1

Chapter 2

RTL Hardware Design by P. Chu

p4 <= a(2) and a(1) and (not a(0)) after 12 ns; end sop_arch ; RTL Hardware Design Chapter 2 15	<pre>library ieee; use ieee.std_logic_1164.all; entity even_detector is port(a: in std_logic_vector(2 downto 0); even: out std_logic); end even_detector; architecture sop_arch of even_detector is signal pl, p2, p3, p4 : std_logic; begin even <= (p1 or p2) or (p3 or p4) after 20 ns; p1 <= (not a(2)) and (not a(1)) and (not a(0)) after 15 p2 <= (not a(2)) and a(1) and a(0) after 12 ns; p3 <= a(2) and (not a(1)) and a(0) after 12 ns;</pre>	ns;
	$p4 \le a(2)$ and $a(1)$ and (not $a(0)$) after 12 ns; end sop_arch ;	15

- Entity declaration
 - i/o ports ("outline" of the circuit)
- Architecture body
 - Signal declaration
 - Each concurrent statement
 - Can be thought s a circuit part
 - Contains timing information
 - Arch body can be thought as a "collection of parts"
- What's the difference between this and a C program

Chapter 2

RTL Hardware Design by P. Chu 16

Conceptual interpretation

VHDL Listing 2.2

Structural description

- In structural view, a circuit is constructed by smaller parts.
- Structural description specifies the types of parts and connections.
- Essentially a textual description of a schematic
- Done by using "component" in VHDL – First *declared* (make known)
 - Then *instantiated* (used)

RTL Hardware Design by P. Chu	Chapter 2	19

Example

• Even detector using previously designed components (xor2 and not1)

RTL Hardware Design Chapter 2 by P. Chu

20

VHDL Listing 2.3

component	str_arch of even_detector is	
port (
i1,	i2: in std_logic;	
01:	out std_logic);	
end compo	onent;	
component	not1	
port (
i1:	<pre>in std_logic;</pre>	
01:	out std_logic);	
end compo	onent;	
signal sig	g1,sig2: std_logic;	
begin		
unit1: xor	r2	
port m	<pre>map (i1 => a(0), i2 => a(1), o1 => sig1);</pre>	
unit2: xor	r2	
port m	<pre>map (i1 => a(2), i2 => sig1, o1 => sig2);</pre>	
unit3: not	t1	
port m	map (i1 => sig2, o1 => even);	
end str_arch	1	
RTL Hardware Design by P. Chu	Chapter 2	21

Somewhere in library

	library ieee;		
	use ieee.std_logic_1164.a	all ;	
	entity xor2 is		
	port (
	i1, i2: in std_logi	le;	
	o1: out std_logic);		
	end xor2;		
	architecture beh_arch of	xor2 is	
	begin		
	o1 <= i1 xor i2;		
	end beh_arch;		
	library ieee;		
	use ieee.std_logic_1164.;	all;	
	entity not1 is		
	port (
	i1: in std_logic;		
	o1: out std_logic);		
	end not1;		
	architecture beh_arch of	not1 is	
	begin		
	o1 <= not i1;		
	end beh_arch;		
RTI Harr	lware Design	Chapter 2	22
by P. Chu			22
by P. Onc			

"Behavioral" description

- · No formal definition on "behavioral" in VHDL
- VHDL "process": a language construct to encapsulate "sequential semantics"
 - The entire process is a concurrent statement

```
- Syntax:
process (sensitivity_list)
variable declaration;
begin
sequential statements;
end process;
```

23

RTL Hardware Design Chapter 2 by P. Chu

Listing 2.5

```
architecture beh1_arch of even_detector is
signal odd: std_logic;
begin
   even <= not odd;
   process (a)
      variable tmp: std_logic;
   begin
      tmp := '0';
       for i in 2 downto 0 loop
         tmp := tmp xor a(i);
       end loop;
      odd <= tmp;
   end process;
end beh1_arch;
RTL Hardware Design 
by P. Chu
                     Chapter 2
                                             24
```

Conceptual interpretation

Listing 2.6 architecture beh2_arch of even_detector is begin process (a) variable sum, r: integer; begin := 0; sum for i in 2 downto 0 loop if a(i)='1' then sum := sum +1; end if; vrocess (a) end loop ; variable sum, r: integ begin sum := 0; for i in 2 downto 0 loc if a()='1' then sum := sum +1; end if; end locp ; r := sum mod 2; if (r=0) then a(2) nto 0 loop even <= '1'; a(1) else a(0) even <= '0'; end if; end process end process; RTL Hardware Design by P. Chu Chapter 2 26

Testbench

- · a "virtual" experiment table
 - Circuit to be tested
 - Input stimuli (e.g., function generator)
 - Output monitor (e.g., logic analyzer)

• e.g.,

RTL Hardware Design by P. Chu

-- test vector genOrator process begin test_in <= "000"; wait for 200 ns; test_in <= "011"; wait for 200 ns; test_in <= "010"; wait for 200 ns; test_in <= "011"; wait for 200 ns; test_in <= "100"; wait for 200 ns; test_in <= "101"; wait for 200 ns; test_in <= "111"; wait for 2

29

RTL Hardware Design	Chapter 2
by P. Chu	

VHDL Listing 2.7

Configuration

- · Multiple architecture bodies can be associated with an entity declaration - Like IC chips and sockets • VHDL configuration specifies the binding • E.g., configuration $\texttt{demo_c}\widehat{\mho}\texttt{nfig}$ of $\texttt{even_detector_testbench}$ is for tb_arch
 for uut: even_detector use entity work.even_detector(sop_arch); end for; end for;
- end demo_config;

RTL Hardware Design by P. Chu	Chapter 2	31
----------------------------------	-----------	----

3. VHDL in development flow

RTL Hardware Design by P. Chu

Chapter 2

Coding for synthesis

- · "Execution" of VHDL codes
 - · Design "realized" in a virtual environment (simulation software)
 - · All language constructs can be "realized"
 - "realized" by a single CPU

Chapter 2

34

32

- "Synthesis

- · Design realized by hardware components
- Many VHDL constructs can be synthesized (e,g, file operation, floating-point data type, division)
- · Only small subset can be used
- E.g., 10 additions
- Syntactically correct code ≠ Synthesizable code
- Synthesizable code ≠ Efficient code
- · Synthesis software only performs transformation and local search

	Chapter 2	35
by P. Chu		

- · The course focuses on hardware, not VHDL (i.e., the "H", not "L" of HDL)
- · Emphasis on coding for synthesis:
 - Code accurately describing the underlying hardware structure
 - Code providing adequate info to guide synthesis software to generate efficient implementation

Chapter 2

RTL Hardware Design by P. Chu