Sequential Statements

RTL Hardware Design Chapter 5 1
by P. Chu

1. VHDL Process

Contains a set of sequential statements to
be executed sequentially

The whole process is a concurrent statement
Can be interpreted as a circuit part enclosed
inside of a black box

May or may not be able to be mapped to
physical hardware

RTL Hardware Design Chapter 5 3
by P. Chu

A process with a sensitivity list

* Syntax
process(sensitivity_list)
declarations;
begin
sequential statement;
sequential statement;

end process;

RTL Hardware Design
by P. Chu

Chapter 5 5

Outline

VHDL process

Sequential signal assignment statement
Variable assignment statement

If statement

Case statement

Simple for loop statement

R A

RTL Hardware Design Chapter 5 2
by P. Chu

» Two types of process
— A process with a sensitivity list
— A process with wait statement

RTL Hardware Design Chapter 5 4
by P. Chu

» A process is like a circuit part, which can be
— active (known activated)
— inactive (known as suspended).

» A process is activated when a signal in the
sensitivity list changes its value

* Its statements will be executed sequentially
until the end of the process

RTL Hardware Design
by P. Chu

Chapter 5 6



* E.g, 3-input and circuit
signal a,b,c,y: std_logic;
process(a,b,c)
begin

y<=aand b andc;
end process;

» How to interpret this:
process(a)
begin
y<=aand b andc;
end process;
» For a combinational circuit, all input should
be included in the sensitivity list

RTL Hardware Design Chapter 5 7
by P. Chu

» E.g, 3-input and circuit
process
begin
y<=aandband c;
wait on a, b, c;
end process;

» A process can has multiple wait statements

» Process with sensitivity list is preferred for
synthesis

RTL Hardware Design Chapter 5 9
by P. Chu
. Eg,
process(a,b,c,d)
begin - yemry =Y
y<=aorc; - Vexit :=A0F C;
y<=aandb; - Vet :=a@and b;
y<=cand d; - Yexit := C and d;
end process; =Y <= Yesit

 Itis same as
process(a,b,c,d)
begin
y<=cand d;
end process;
* What happens if the 3 statements are concurrent
statements?

RTL Hardware Design Chapter 5 11
by P. Chu

A process with wait statement

» Process has no sensitivity list

* Process continues the execution until a
wait statement is reached and then
suspended

* Forms of wait statement:
—wait on signals;
—wait until boolean_expression;
—wait for time_expression;

RTL Hardware Design Chapter 5 8
by P. Chu

2. Sequential signal assignment
statement
¢ Syntax
signal_name <= value_expression;

» Syntax is identical to the simple concurrent
signal assignment

» Caution:

—Inside a process, a signal can be assigned
multiple times, but only the last assignment
takes effect

RTL Hardware Design Chapter 5 10
by P. Chu

3. Varible assignment statement

¢ Syntax

variable_name := value_expression;
» Assignment takes effect immediately
» No time dimension (i.e., no delay)
Behave like variables in C

Difficult to map to hardware (depending on
context)

RTL Hardware Design Chapter 5 12
by P. Chu



* E.g,
process(a,b,c)
variable tmp: std_logic;
begin
tmp =0
tmp :=tmp or a;
tmp :=tmp or b;
y <=tmp;
end process;

RTL Hardware Design Chapter 5
by P. Chu

» What happens if signal is used?
process(a,b,c,tmp)
begin == tMPgpyy = tMp
tmp <=0 -- tMpg,;; := ‘07
tmp <=tmp or a; -- tMPgy;; := tMPepyy OF &
tmp <=tmp or b; -- tMPgy;; := tMPepyy OF b;
end process; - tmp <= tMpgyi;
» Same as:
process(a,b,c,tmp)
begin
tmp <=tmp or b;
end process;

RTL Hardware Design Chapter 5
by P. Chu

Syntax

if boolean_expr_1 then
sequential_statements;
elsif boolean_expr_2 then
sequential_statements;
elsif boolean_expr_3 then
sequential_statements;
else
sequential_statements;
end if;

RTL Hardware Design Chapter 5
by P. Chu

13

15

17

 interpretation:
process(a,b,c)
variable tmpo, tmp1, tmp2: std_logic;
begin
tmp0 :='0"
tmpl :=tmp0 Or a;
tmp2 := tmpl Or b;
y <=tmp2;
end process;
o
tmp1
a
tmp2
b ¥
RTL Hardware Design Chapter 5
by P. Chu

4. |F statement

e Syntax
» Examples

» Comparison to conditional signal
assignment

» Incomplete branch and incomplete signal

assignment
» Conceptual Implementation

RTL Hardware Design Chapter 5
by P. Chu

E.g., 4-to-1 mux

architecture if_arch of mux4 is

14

16

begin
process{a,b,c,d,s)
begin
if (s="00") then
¥ <= a;
elsif (s="01")then input  output
x <= b; ] b
elsif (s="10") then
x €= c; 00 a
else 01 b
x <= d; 10 c
end if; 11 d

end process;
end if_arch;

RTL Hardware Design Chapter 5
by P. Chu

18



E.g., 2-t0-22 binary decoder

architecture if_arch of decoderd is
begin
process (s)

begin
if (s="00") then -
x <= "0001": input  output
elsif (=="01")then s X
x <= "0010"; e —
elsif (s="10")then 00 0001
x <= "0100"; 01 0010
else
x <= "1000"; - e
end If: 11 1000

end process;
end if_arch;

RTL Hardware Design Chapter 5 19
by P. Chu

Comparison to conditional signal
assignment

» Two statements are the same if there is
only one output signal in if statement

« |f statement is more flexible

» Sequential statements can be used in
then, elsif and else branches:
— Multiple statements
— Nested if statements

RTL Hardware Design Chapter 5 21
by P. Chu

e.g., find the max of a, b, ¢

if (a > b) then
if (a > c) then
max <= a;

; a=b and a>c
else
max <= c¢c; —— a=bh and c>=a

end if;

else
if (b > ¢} then
max <= b;
else
max <= c; — h==a and c==bh
end if;
end if;

b==a and b>c

RTL Hardware Design Chapter 5 23
by P. Chu

E.g., 4-to-2 priority encoder

architecture if_arch of prio_encoder42 is

begin
process (r)
begin input output
if (r(2)='1’) then r code active
code <= "11";
elsif (r(2)="1")then ‘I)I__ :l; i
code <= "10"; 001 ol 1
elsif (r(1)=’1')then
code <= "01"; oool 00 1
0000 00 0
else
code <= "00";
end if;
end process;
active <= r(3) or r(2) or r(1) or r(0);
end if_arch;
RTL Hardware Design Chapter 5 20
by P. Chu
sig <= value_expr_1 when boolean_expr_1 else
value_expr_2 when boolean_expr_2 else
value_expr_3 when boolean_expr_ 3 else
value_expr_n;
It can be written as
process{...)
if beolean_expr_1 then
sig <= value_expr_1;
elsif boolean_expr_2 then
sig <= value_expr_2;
elsif boolean_expr_3 then
sig <= wvalue_expr_3;
else
sig <= value_expr_m:
end if;
end process
RTL Hardware Design Chapter 5 22
by P. Chu

signal ac_max, be_max: std_logic;

ac_max <= a when (a > c) else c;
be_max <= b when (b > ¢} else ¢;

max <= ac_max when (a > b) else bec_max;

max <= a when ((a > b) and (a > c¢c)) else

¢ when (a > b) else
b when (b > c) else

<3

RTL Hardware Design Chapter 5
by P. Chu

e.g., 2 conditional sig assignment codes

24



« 2 conditional sig assign implementations
signal ac_max, be_max: std_logic;

ac_max <= a when (a > c) else c;
be_max <= b when (b > ¢c) else c;
max <= ac_max when (a > b) else bec_max;

max <= a when ({a > b) and (a > c)) else
c when (a > b) else
b when (b > c¢) else

c;
RTL Hardware Design Chapter 5 25
by P. Chu
y <= a-b when (a > b and op="00") else
b-a;
z <= a-1 when (a > b and op="00") else
b-1;
status <= 0’ when (a > b and op="00") else
}1};
RTL Hardware Design Chapter 5 27
by P. Chu
Incomplete branch
* E.g, * It implies

process (a,b) process (a,b)
begin begin
if (a=b) then if (a=b) then

eq <= ’17; eq <= '17;
end if ; else
end process; eq <= eq;
end if ;

end process

RTL Hardware Design Chapter 5
by P. Chu

29

e.g., “sharing” boolean condition

if (a > b and op="00") then

y <= a - b;

z <= a - 1;

status <= '07;
else

y <= b - a;

z <= b - 1;
status <= '17;

end if;
RTL Hardware Design Chapter 5 26
by P. Chu

Incomplete branch and incomplete
signal assignment

» According to VHDL definition:

— Only the “then” branch is required; “elsif” and
“else” branches are optional

— Signals do not need to be assigned in all
branch

—When a signal is unassigned due to omission,
it keeps the “previous value” (implying
“memory”)

RTL Hardware Design Chapter 5 28
by P. Chu
* fix
process(a,b)
begin
if (a=b) then
eq <= 717,
else
eq <= 07,
end if ;
end process
RTL Hardware Design Chapter 5 30

by P. Chu



Incomplete signal assignment

. E.g., process (a,b)
begin
if (a>b) then
gt <= 17,
elsif (a=b) then
eq <= '17;
else
1t <= *1°%;
end if;
end process;

RTL Hardware Design Chapter 5 31
by P. Chu

Conceptual implementation

» Same as conditional signal assignment
statement if the if statement consists of
— One output signal

— One sequential signal assignment in each
branch

« Multiple sequential statements can be
constructed recursively

RTL Hardware Design Chapter 5 33
by P. Chu

e.g.

if boolean_expr_1 then
if boolean_expr_2 then
signal_a <= wvalue_expr_1;
else
signal_a <= value_expr_2;
end if;
else
if boolean_expr_3 then
signal _a <= wvalue_expr_3;

else
signal_a <= value_expr_4;
end if;
end if;
RTL Hardware Design Chapter 5 35

by P. Chu

* Fix #1: * Fix #2

sig b

process (a,b) process (a,b)
begin begin
if (a>b) then gt <= '0°7;
gt <= '17; eq <= '07;
eq <= ’07; 1t <= '07;
1t <= 707 if (a>b) then
elsif (a=b) then gt <= ’17;
gt <= 07, elsif (a=b) then
eq <= '17; eq <= '17;
H
1t <= 07, else
"l’et « o 1t <= ’1°;
gt == ’ end if;
8q <= 075 end process;
1t <= ’17%; r o
end if;
end process;
RTL Hardware Design Chapter 5 32
by P. Chu
e.g.
il boelean_expr then
sig_a <= value_expr_a_l;
s lue
sig_ b <= value_expr_b_1 P
pape_a_1
else T
sig.a <= value_expr_a_2; F
. value.
sig.b <= value_expr_b_2;
end if;
value_
T
F
value
boolean
&
RTL Hardware Design Chapter 5 34
by P. Chu

then branch
BXPIESSON

boolean boolaan
exp 1 ep_1

RTL Hardware Design Chapter 5
by P. Chu

36



5. Case statement

¢ Syntax
« Examples

« Comparison to selected signal assignment
statement

 Incomplete signal assignment
» Conceptual Implementation

RTL Hardware Design Chapter 5 37
by P. Chu

E.g., 4-to-1 mux

architecture case_arch of muxd is

begin
process{a,b,c,d,s)
begin
case s s input  output
when "00" => s %
X <= a;
when "01" =>
x <= b 0o a
when "10" => 01 b
% <= ¢ 10 c
when others =>
x <= d; 11 d
end case;
end process;
end case_arch;
RTL Hardware Design Chapter 5 39

by P. Chu

E.g., 4-to-2 priority encoder

architecture case_arch of prio_encederd2 is
begin

process (r)

begin

case r is
when "1000"|"1001" " 100" I"100L "
"LL00" T 1101T " 1110" M 111L " =2
code <= "11";

when "0100"|"0101" |"0110" |"0111" =3
code <= "10";
input output
when "0010"|"0011" == il code  sctive
code <= "01"; ] T 1
when others "-z . 0l 0 1
code <= "00"; 00l 0l 1
end case; 0001 00 1

end process; 0000 00 1]
active <= r(3) or r{2) or r{(l1) or r{d);
end case_arch;

RTL Hardware Design Chapter 5 41
by P. Chu

Syntax

case case_expression is
when choice_1 =>
sequential statements;
when choice_2 =>
sequential statements;

when choice_n =>
sequential statements;
end case;

RTL Hardware Design Chapter 5
by P. Chu

E.g., 2-to-22 binary decoder

architecture case_arch of decoderd is

begin
procl:
process (s}
begin input
case s is s
when "00" =>
X <= "0001"; 00
when "01" => 01
x <= "0010"; 10
when "107" => 11
x <= "0100";
when others =>
X <= "1000";

end case;
end process;
END case_arch;

RTL Hardware Design Chapter 5
by P. Chu

output

0001
0010
0100
1000

Comparison to selected signal

assignment

» Two statements are the same if there is

only one output signal in case statement

» Case statement is more flexible

» Sequential statements can be used in

choice branches

RTL Hardware Design Chapter 5
by P. Chu

38

40

42



with sel_exp select
sig <= value_expr_1 when choice_1,
value_expr_2 when choice_2,
value_expr_3 when choice_3,

value_expr_n when choice_n;
It can be rewritten as:

case sel_exp is
when choice_1 =>
sig <= value_expr_1;
when choice 2 =>
sig <= value_expr_2;
when choice 3 =>
sig <= value_expr_3;

when choice_n =>
sig <= value_expr_n;
end case;

RTL Hardware Design Chapter 5 43
by P. Chu

Incomplete signal assignment
* E.g,

process (a)
case a is
when "100"["101"[" 110" ["111" =>
high <= '1°’;
when "010"["011" =>
middle <= 17;
when others =>
low <=%1"%;
end case;
end process;

RTL Hardware Design Chapter 5 45
by P. Chu

* Fix #2:

process (a)
high <= ’0°;
middle <= '0°;
low <= '0°7;
case a is
when "100"|"101"|"110"|"111" =>
high <= '1°;
when "010"|"011" =>
middle <= '1°7;
when others =>
low <=71";
end case;
end process;

RTL Hardware Design Chapter 5 47
by P. Chu

Incomplete signal assignment

 According to VHDL definition:

— Signals do not need to be assigned in all
choice branch

—When a signal is unassigned, it keeps the
“previous value” (implying “memory”)

RTL Hardware Design Chapter 5 44
by P. Chu

o Fix #1:

process(a)
case a is

when "100"[™1017 " 110" ["111" =>
high <= *1°;
middle <= '0°';
low <= '0°';

when "010"["0117 =>
high <= 07;
middle <= '1';
low <= '07;

when others =>»
high <= '0°;
middle <= '
low <= "17;

end case;
end process;

RTL Hardware Design Chapter 5 46
by P. Chu

Conceptual implementation

» Same as selected signal assignment
statement if the case statement consists of
— One output signal
— One sequential signal assignment in each

branch

» Multiple sequential statements can be
constructed recursively

RTL Hardware Design Chapter 5 48
by P. Chu



e.g.
case case_exp is
when <c0 =>
sig_a <= value_expr_a_0;
sig_b <= value_expr_b_0;
when c1 =>
sig_a <= value_expr_a_1l;
sig_b <= value_expr_b_1;
when others =>
sig_a <= value_expr_a_n;
sig_b <= value_expr_b_n;
end case;

RTL Hardware Design Chapter 5
by P. Chu

6. Simple for loop statement

e Syntax
* Examples
¢ Conceptual Implementation

RTL Hardware Design Chapter 5
by P. Chu

* E.g., bit-wide xor

library ieee;
use ieee.std_ legic_1164.all;

entity wide_xor is
port(
a, b: in std_legie_vector(3 downto 0);
y: out std_logic_vector (3 downto 0)
¥

end wide_xor;

architecture demo_arch of wide_xor is
constant WIDTH: integer := 4;
begin
process{a, bl
begin
for i inm (WIDTH-1) downte 0 loop
y{i) <= a{i) xor b{i);
end lowp;
end process;
end demo_arch;
RTL Hardware Design Chapter 5
by P. Chu

49

51

53

!
——iga
o o
mhn
em a0
value_
expr b n
ol
value_ =
wxpr b1 [———sgb
L
vahm,
i epeb o ;
e
caes_enp

RTL Hardware Design Chapter 5 50
by P. Chu
» VHDL provides a variety of loop constructs

RTL Hardware Design

Only a restricted form of loop can be
synthesized
Syntax of simple for loop:
for index in loop_range loop
sequential statements;
end loop;
loop_range must be static
Index assumes value of loop_range from
left to right

Chapter 5 52

by P. Chu

RTL Hardware Design

* E.g., reduced-xor

library iees;
wse ieee. std_logic_1164 . all;

entity reduced_xor_demeo is
port(
a: in std_logic_vector(3 dewnta 0);
¥: out std_legic
1:
end reduced_xor_demo;
architecture demo_arch of reduced_xor_dems Is

constant WIDTH: integer := 4
signal tmp: std_logic_vector (WIDTH-1 downte 0);

hegin
process(a, tap)
begin
tap(0) €= af0); bonndary bit
for i in 1 to (WIDTH-1) loop
tepii) <= ali) xor tap(i-1);
end loop:

end process:
¥ <= tmp(WIDTH-1):
end deme_arch;
Chapter 5 54

by P. Chu



Conceptual implementation

* “Unroll” the loop
 For loop should be treated as “shorthand”
for repetitive statements
» E.g., bit-wise xor
y(3) <= a(3) xor b(3);
y(2) <= a(2) xor b(2);
y(1) <= a(1) xor b(1);
y(0) <= a(0) xor b(0);

RTL Hardware Design Chapter 5 55
by P. Chu

Synthesis of sequential statements

¢ Concurrent statements
— Modeled after hardware

— Have clear, direct mapping to physical
structures

» Sequential statements
— Intended to describe “behavior”
— Flexible and versatile
— Can be difficult to be realized in hardware
— Can be easily abused

RTL Hardware Design Chapter 5 57
by P. Chu

e E.g., reduced-xor

tmp (0) <= a(0);

tmp (1) <= a(l) xor tmp(0);
tmp (2) <= a(2) xor tmp(1);
tmp (3) <= a(3) xor tmp(2);
y <= tnp(3);

RTL Hardware Design Chapter 5 56
by P. Chu

* Think hardware

* Designing hardware is not
converting a C program to a
VHDL program

RTL Hardware Design Chapter 5 58
by P. Chu

10



