
IEEE-International Conference on Signal processing, Communications and Networking

Madras Institute of Technology, Anna University Chennai India, Jan 4-6, 2008. Pp339-344

978-1-4244-1923-4/08/$25.00 ©2008 IEEE 339

V. V. Ravi Teja1, K. C. Ray, I. Chakrabarti2, A. S. Dhar3 , 1 2 3 Department of E&ECE,

Indian Institute of Technology, Kharagpur, India-721302,

teja.iitkgp@gmail.com, kcr,asd,indrajit}@ece.iitkgp.ernet.in

Abstract - An attempt has been made to design a high

throughput VLSI architecture for one dimensional median

filter to suppress the impulse noise in real time signal and

image processing applications. The proposed architecture

is based on parallel and pipelined techniques. It takes

8-bit data serially and computes the median value in

parallel and pipelined fashion out of a window having size of

nine samples. This architecture is described in VerilogHDL

and synthesized using commercially available 0.18µm CMOS

technology at 1.8V power supply. The synthesis result gives an

approximate core area and power of 1.2mm
2
 and 92.5mW

respectively at 700MHz clock frequency leading to a latency of

thirteen clock cycles only.

I. INTRODUCTION

 In many signal and image processing applications, it
is essential to suppress the noisy signals while
preserving the required necessary information i.e.,
without losing edge information in this process. The
techniques such as linear filtering, average filtering, and
median filtering have been used to smoothen the noisy
signals but the linear filtering smoothens noisy signals as
well as edges i.e., high frequency information.
Median filtering techniques have been used to
smoothen the impulsive noise without losing high
frequency signals i.e., preserving edge information.
Some properties of median filtering are that (a) it
smoothens the transient signals, (b) removes impulse noises
from the signals and (c) preserves the edge information in
the filtered signals (images). The concept of median
filtering was first proposed by Tukey [1]. Median
filtering techniques have been widely used in various
signal and image processing applications mentioned in
[2,3]. Since decades, implementation of median filtering
has been attempted in software and commercially
available DSP processor environment. But the main
constraint of aforesaid implementations is speed. To
overcome this constraint, some attempts have been made to
implement median filtering in hardware for real time
applications [3, 4]. Since most of the median value
computations are based on sorting algorithm [5-8], Fast
median filter architecture therefore depends on the
availability of an efficient structure to perform sorting.

 The rest of this paper is organized as
follows: Section-II describes the algorithm for median
filtering with an example, Section-III presents and
describes proposed high throughput VLSI architecture
for 9-sample window. The simulation and synthesis
results have been presented and discussed in Section-IV
and finally Section-V concludes the paper.

II.MEDIAN FILTERING ALGORITHM

This section presents steps for median filtering based
on fast sorting algorithm with example for clarity. The
basic theory of median filter is not discussed here, however
readers may refer to [9, 10] for the same.

The fastest method of sorting is to perform multiple

actions (addition and deletion of elements) at the same time
[11,12]. We describe these operations as given here, when
values are input in a serial order, into the median filter, we can
maintain two arrays, one called window array which
contains input elements and second one is called sorted
array, which contains window elements in sorted
fashion(ascending/descending). To relate both the arrays, we
maintain a third array called the aging array. Here importance

of the ageing array is that the i
th

 element of the aging array

indicates the time to be spent by the i
th

 element of sorted array

in the window array of the median filter. In a median filter of
window length of 9, an element spends 9 clock cycles in the
window array of the filter before leaving. So the aging
array contains values from 0 to 8. An example of the above
described arrays is shown below.

An Example:
Window Array W=[66 25 81 15 255 150 174 111 181]

Sorted Array S= [255 181 174 150 111 81 66 25 15]
Aging Array A = [4 0 2 3 1 6 8 7 5]

In an instant, we can see that the value 181 is at the

right extreme of the window array, so when the next value gets
input from the left, 181 has to leave the array. Hence its age is
0. The value 66 which is at the left extreme has 8 in its
aging array register. For every clocking, the values in
the aging array decrease by 1 indicating that the value bas
moved 1 place closer to its exit. When value in aging array
becomes zero, no more time to be spent by that element in the
window and hence should then be deleted with the next clock
pulse.
As soon as a new value enters the window array, the

oldest value in that array gets deleted. The same oldest value
must be deleted from the sorted array while adding the new
element. The oldest value in the sorted array is that
element which has its corresponding element in aging array
with value = 0.

High Throughput VLSI Architecture for One Dimensional Median Filter

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on April 19,2010 at 02:50:42 UTC from IEEE Xplore. Restrictions apply.

IEEE-ICSCN, Jan.2008

 340

Here the steps are as follows:

1. The new element in window array W, is compared
with remaining 8 elements of the window array to
computes its position in sorted array S.

2. The oldest value in the sorted array is identified as
explained before.

3. Necessary signals are generated to right shift or left
shift certain elements in the sorted array such that
oldest value is deleted from the sorted array while
accommodating the latest value without disturbing the
sorted order.

4. The elements in aging array A, are shifted in the same
way as the corresponding elements in the sorted array. At
the same time their values are decremented by 1 for every
clock cycle so that the aging phenomenon is implemented.

5. The value 8 is introduced in the aging array in the
place corresponding to the newly introduced value in the
sorted array.

6. The middle value in the sorted array is taken as the
median.

III. PROPOSED ARCHITECTURE

 This section describes the proposed fast VLSI
architecture for fixed window size of 9 and word size
of 8-bits. Proposed fast median filter architecture as
shown in Fig.1 has been explained in following stages
briefly and subsequently details of these stages given.

Stage1. The comparison stage that involves 8 comparators
with 8 bit comparison.

Stage2. Adders stage to add the output of the
comparators to compute the position of the new arrival in
the sorted array.

Stage3. The shifting signals generation stage where right or
left shift signals are computed to input to the 9 registers of
the sorted array and 9 registers of aging array.
Aging array has a decrementor to decrement values
in its registers by 1 in every clock cycles.

Stage4. Output stage which is just a median collector
connected to 5th register in the sorted array registers.

The control logic path as in Fig.1, is an important circuitry

to generate control signals for median filtering. And this is
a parallel and pipelined version to reduce the critical delay.

The rest of this section explores the architecture at the

gate level of each block described above and shown in
Fig.1. Here we have designed the circuits for each
block and integrated to a final architecture using
parallel and pipelined techniques to have lesser critical
delay and thus to achieve high throughput.

Fig.1: Proposed Median Filter Architecture

A. Comparator Stage:
 The comparator stage shown in Fig.2, happens to be

the critical path in [11] with an 8bit comparator taking 15gate
delays. So to get the fastest filter, we need optimization of the
circuit of this stage. We used a basic 2 bit comparator as
shown in Fig3. This 2- bit comparator outputs b>a signal. We
used similar version to get a>b signal. Every 2-bit pairs of the
two numbers to be compared are compared in parallel using
this idea. Two such blocks are merged to make a 4-bit
comparison block as shown in Fig 4(a) using the merging
circuit in Fig4 (b). Using same merging circuit,

we can use two 4-bit comparison blocks to make an 8-bit
comparison block. Hence the critical path of the 8-bit
comparator is one 2-bit comparator circuit of Fig.3, which is 3
gates plus one inverter and two merging circuit of Fig.4(b)
with two gates plus one inverter each. Thus total of seven
2-input gates plus three inverters delay as critical delay in
comparator. The beauty of this comparator design is that
whenever number of bit are doubled, the critical path
increases by just one merging circuit which is 2 gate plus one
inverter delays as in Fig 4(b). This design is much better than
the one used in [11].

B. Addition Stage:
This stage is just a cluster of half adders and full adders that

add 8 single bits. For speed constraint, we have used parallel
addition of bits, as shown in structure given in Fig5. The ge
bits indicate the a >= b output bits from the comparators shown
in Fig2. The addition of all eight comparator outputs (ge) gives
the number of elements in window array, which are less than
the new element. Thus the output (su) of the adder stage gives
position of the new value in the sorted array which is a 4 bit
number ranging form 0000 to 1000. In our implementation we
split this stage into two pipelined stages to reduce the delay.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on April 19,2010 at 02:50:42 UTC from IEEE Xplore. Restrictions apply.

 High Throughput VLSI Architecture for One Dimensional Median Filter

 341

Fig.2: Window registers with Comparators

Fig.3: 2-bit comparator circuit

Fig.4: (a) Two 2-bit comparator blocks (b)Integration circuit for 4-
bit comparator using (a)

C. Shifting Stage (Sorting and Aging):
This is one of the key stage in the median filtering process

and thus has been described here in detail for the sake of
clarity. This stage contains 18 registers in all and some
combinational logic gates. Nine 8-bit registers for
the sorted array (in descending order) and nine 4-bit
registers for the aging array which can have nine
possible values from 0000 to 1000. The oldest value in
the sorted array is the one with its corresponding aging
array value equal to 0000. The output of the addition stage
'su' indicates the position of the newly arrived value in the
sorted array after the oldest value gets removed. 'su'
can have nine possible values from 0000 to 1000. Also
there are nine possible places for the oldest value, to be
present in the sorted array. So with every clock pulse,
right and left shift operations must be performed in
sorted and aging arrays keeping 9×9 = 81 possible cases in
view as shown in Table-I. These operations can be done as
explained below: To each sorted register and the
corresponding aging register, we assign some signals that
control the data that has to enter the register. So for any
sorted register Si, if data has to shift right into it i.e., from
Si+1 to Si, then a signal ri = 1 is generated. Similarly if data
has to left shift from Si-1 into Si, then a signal li=1 is
generated. Since the register S8 has no register to its
left, data cannot right shift into it. So there is no signal
called r8. in table-1. Similarly data cannot left shift into
register S0 as there is no register to its right. So there is
no signal called l0 in table-1

Fig.5: Adder Stage Circuit

 If su=i , then the newly arrived value (X) as in Fig.6, has to
enter Si, with an assigned signal ci equal to logic “1”. In case
su ≠ i, ci=0. In case of aging registers, the effect of the
signals ri, li, and ci remains the same as their
corresponding sorted registers. But when the newly arrived
value(X) enters Si, then a 4-bit value of 8 (i.e. V8=1000), is
assigned to its corresponding aging register Ai. In addition to
this, the values in all the aging registers except the register in
which V8 enters have to decrement with every clock pulse.
The decrementors are used at the output of all aging
registers, and connected to the corresponding aging registers
with control signals of ri or li to get right or left shift
respectively. Di is the decremented value of the content Ai. Di-1
and Di+1 are the decremented values of right and left neighbors
of Ai. Since there is no shifting operation in ageing registers in
case of signals ri and li, equal to logic “0” and ci equal to
logic “0”, the ageing registers have to update by feed back
from their decrementors. In this case another signal ni is
derived from logic of li and ri and ci as shown in Fig.8 to
update the aging registers.

These signals are used during shifting operation in
sorted registers as shown in Fig.6. When the system is reset,
the aging registers should get reset to values from 0
to 8. The implementation of this design is as shown in Fig.7.
If the oldest value in the sorted array is in i

th
 register, then

content in aging array Ai would be zero and an associated
signal ai becomes 1. The computation of r's, l's and c's, is
based on Table-I, which is shown in Fig.8 in logical form
and its analysis is presented in preceding paragraph for a
particular case.

For example; the oldest value is in the 4
th
 sorted array

register, then a4=1. Now say the newly arrived value has to
come to the least position i.e., su=0000, then all the values in
the sorted array between 3

rd
 register to 0

th
 register need to left

shift by one place so that the value in 4
th
 register gets

deleted while the newly arrived value can be
accommodated in the zero

th
 place. So l4=l3=l2=l1=1 and

c0=1. This way for each combination of Ai and su, there is
some combination of shifting operation (right shift/left
shift) as shown in Table-1. Here reader may refer to Table-1
for other cases for clarity.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on April 19,2010 at 02:50:42 UTC from IEEE Xplore. Restrictions apply.

IEEE-ICSCN, Jan.2008

 342

 Table-I

 Shifting Logic
 su r7r6r5r4r3r2r1r0 l8l7l6l5l4l3l2

a0=1 0000 00000000 00000000

 0001 00000001 00000000

 0010 00000011 00000000

 0011 00000111 00000000

 0100 00001111 00000000

 0101 00011111 00000000

 0110 00111111 00000000

 0111 01111111 00000000

 1000 11111111 00000000

a1=1 0000 00000000 00000001

 0001 00000000 00000000

 0010 00000010 00000000

 0011 00000110 00000000

 0100 00001110 00000000

 0101 00011110 00000000

 0110 00111110 00000000

 0111 01111110 00000000

 1000 11111110 00000000

a2=1 0000 00000000 00000011

 0001 00000000 00000001

 0010 00000000 00000000

 0011 00000100 00000000

 0100 00001100 00000000

 0101 00011100 00000000

 0110 00111100 00000000

 0111 01111100 00000000

 1000 11111100 00000000

a3=1 0000 00000000 00000111

 0001 00000000 00000110

 0010 00000000 00000100

 0011 00000000 00000000

 0100 00001000 00000000

 0101 00011000 00000000

 0110 00111000 00000000

 0111 01111000 00000000

 1000 11111000 00000000

a4=1 0000 00000000 00001111

 0001 00000000 00001110

 0010 00000000 00001100

 0011 00000000 00001000

 0100 00000000 00000000

 0101 00010000 00000000

 0110 00110000 00000000

 0111 01110000 00000000

 1000 11110000 00000000

a5=1 0000 00000000 00011111

 0001 00000000 00011110

 0010 00000000 00011100

 0011 00000000 00011000

 0100 00000000 00010000

 0101 00000000 00000000

 0110 00100000 00000000

 0111 01100000 00000000

 1000 11100000 00000000

a6=1 0000 00000000 00111111
 0001 00000000 00111110

 0010 00000000 00111100

 0011 00000000 00111000

 0100 00000000 00110000

 0101 00000000 00100000

 0110 00000000 00000000

 0111 01000000 00000000

 1000 11000000 00000000

a7=1 0000 00000000 01111111

 0001 00000000 01111110

 0010 00000000 01111100

 0011 00000000 01111000
 0100 00000000 01110000

 0101 00000000 01100000

 0110 00000000 01000000

 0111 00000000 00000000

 1000 10000000 00000000

a8=1 0000 00000000 11111111

 0001 00000000 11111110

 0010 00000000 11111100

 0011 00000000 11111000

 0100 00000000 11110000

 0101 00000000 11100000

 0110 00000000 11000000

 0111 00000000 10000000

 1000 00000000 00000000

Fig.6: Sorting Array Register with control signals

Fig.7: Aging Array Register with control signals

IV. SYNTHESIS RESULTS & DISCUSSION

The technology independent results of proposed
architecture is presented in terms of gate delay in
Table-II which is critical delay and vital for high
throughputs. The critical delay, in terms of
number of 2-input gate delays is much better
than the results presented in [11]. The critical path
delay in terms of gate delay increases by two with
doubling of word size. This can be realized from
Fig.4(b). The latency of our proposed parallel and
pipelined architecture is only four clock cycles. But
the window array requires initial cycles known
as input latency to get window elements. Thus
the input latency is equal to the window size (in this
case 9) which can not be avoided. Hence total
latency is sum of input latency plus architectural
latency, which is equal to thirteen clock cycles in
this architecture

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on April 19,2010 at 02:50:42 UTC from IEEE Xplore. Restrictions apply.

 High Throughput VLSI Architecture for One Dimensional Median Filter

 343

l1 = (~(a0)) & (~(su[3] | su[2] | su[1] |

su[0])) l2 = (~(a1 | a0)) & (~(su[2] |

su[1] | su[0]))
l3 = (~(a2 | a1 | a0)) & (~(su[3] | su[2] (su[1] & su[0]))) l4 =

(~(a3 | a2 | a1 | a0)) & (~(su[3] | su[2]))
l5 = (a8 | a7 | a6 | a5) & (~(su[3] | (su[2] & (su[1] | su[0])))) l6 =

(a8 | a7 | a6) & (~(su[3] | (su[2] & su[1])))
l7 = (a8 | a7) & (~(su[3] | (su[2] & su[1] & su[0])))

l8 = (a8) & (~su[3])

r0 = (a0) & (su[3] | su[2] | su[1]

| su[0]) r1 = (a1 | a0) & (su[3] |

su[2] | su[1])
r2 = (a2 | a1 | a0) & (su[3] | su[2] | (su[1] & su[0]))
r3 = (a3 | a2 | a1 | a0) & (su[3] | su[2])
r4 = (~(a8 | a7 | a6 | a5)) & (su[3] | (su[2] & (su[1] | su[0]))) r5 =

(~(a8 | a7 | a6)) & (su[3] | (su[2] & su[1]))
r6 = (~(a8 | a7)) & (su[3] | (su[2] & su[1] & su[0]))

r7 = (~(a8)) & (su[3])

n0 = (~(r0 | c0))
ni = (~(ri | li | ci)); for i = 1

to 7 n8 = (~(l8 | c8))

.

Fig.8. Controller circuit signals (ri,li, ni and ci) (Where &, | and ~ stands for

AND, OR and INVERTER function respectively)

Fig.9. Simulation Result of synthesized netlist using unit delay model

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on April 19,2010 at 02:50:42 UTC from IEEE Xplore. Restrictions apply.

IEEE-ICSCN, Jan.2008

 344

The proposed architecture for median filter has been

coded using verilog HDL and synthesized using design
compiler from Synopsys with commercially available
0.18µm CMOS technology and finally the synthesized
net-list has been verified using random test vectors. The
snapshot of the simulated output of synthesized netlist
using unit delay models has been shown as in Fig9.
Readers can observe that the median output is the middle
value (S4=111) in sorted array as in example given in
Section-II. The resultant latency of the proposed
architecture has been also marked in Fig.9. The synthesized
result after allowing 20% extra area for physical
implementation and positive slacks to avoid any timing
violation shows that the proposed VLSI architecture gives
core area and power of 1.2mm

2
 and 92.5mW respectively at

clock frequency of 700MHz. This results are compared
with the results in [12] as shown in Table-III.

V. CONCLUSION

The present paper describes a novel VLSI architecture to
implement a one dimensional real time median
filter. The proposed architecture is described at each
level of hardware design to optimize for critical delay.
Parallel and pipelined technique has been used to
enhance the throughput. The technology independent
HDL codes can be used for either ASIC implementation or
advanced FPGA implementation. Although this
architecture is proposed for one dimensional signals to
suppress impulse noise, this can be used with some extra
circuitry for median filtering in images. This architecture is
very regular and can be extended and modified for different
window size as well as different sampled word size so as to
adopt it for specific application of real time signal and
image processing.

REFERENCES

[1] J. W. Tukey, “Nonlinear (nonsuperposable) methods for

smoothing data,” in Conf Rec., EASCON, pp. 673-674. I974
[2] Digital Image Processing ,second edition,by R C.Gonzalez , R E.

Woods, Princeton publisher, 2005.
[3] K. Oflazer, "Design and Implementation of a Single-Chip 1-D Median

Filter," IEEE Trans on Acoustics, Speech, and Signal Process, vol.31,
no. 5, pp. 1164- 1168 October 1983

[4] R.L.Swenson and K.R.Dimond, "A Hardware FPGA Implementation of
2-D Median Filter using a Novel Rank Adjustment Technique,"
7th International conference on Image Processing and its
Applications, vol.1. pp. 103-106, July 1999

[5] G.R.Arce and P.J.Warter, “A median filter architecture suitable
for VLSI implementation”, in proc.23rd Annu. Allerton conference
on commu., contr., comput., pp.172-181, oct. 1984.

[6] A.L.Fisher, “Systolic algorithms for running order statistics in
signal and image processing,” J. Digital Syst., vol.4, No.2/3, pp. 251-
264, 1982.

[7] D S. Richards, "VLSI Median Filters," IEEE Trans. Acoust. Speech
Signal Process, vol.38, pp. 145–153, January 1990

[8] L. Breveglieri, V. Piuri , “Pipelined Median Filters,” in
Proc. IEEE Instrumentaion and Measurement Technology
Conference (IMTC94), vol.3, pp. 1455-1458, Hamamatsu, Japan,
May 1994.

[9] Sung-Jea Ko, Yong Hoon LE, and Adly T. Fam, “Efficient
Implementation of One-Dimensional Recursive Median Filters,”
IEEE Trans on Circuits Syst, Vol.37, pp. 1447-1450, November
1990

[10] S. B. Leeb, A. Ortiz, R. F. Lepard, S. R. Shaw, and J. L.
Kirtley, “Applications of Real-Time Median Filtering with Fast
Digital and Analog Sorters,” IEEE Trans on Mechatronics, Vol.2,
No.2, pp. 136-143, June 1997

[11] C.J.Tsai, E.H.Lu, C.H.Chen, J.Y.Lee, and I.C.Jou, "A New
Architecture of Median Filters With Linear Hardware Complexity,"
Circuits and Systems, IEEE International Symposium, vol.1, pp. 101-
103, June 1991

[12] M. Karaman, L. Onural, and A. Atalar , "Design and implementation
of a general purpose Median Filter Unit in CMOS VLSI,” IEEE
Journal of Solid state circuits, vol.25, No2, pp. 505-513, April, 1990.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on April 19,2010 at 02:50:42 UTC from IEEE Xplore. Restrictions apply.

