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Abstract - An attempt has been made to design a high 

throughput VLSI architecture for one dimensional median 

filter to suppress the impulse noise in real time signal and 

image processing applications.  The   proposed   architecture   

is   based   on   parallel   and   pipelined techniques.  It  takes  

8-bit  data  serially  and  computes  the  median  value in 

parallel and pipelined fashion out of a window having size  of 

nine samples. This architecture is described in VerilogHDL 

and synthesized using commercially available 0.18µm CMOS 

technology at 1.8V power supply.  The synthesis result gives an 

approximate core area and power of 1.2mm
2
 and 92.5mW 

respectively at 700MHz clock frequency leading to a latency of 

thirteen clock cycles only. 

I. INTRODUCTION 

  In many signal and image processing applications, it 
is essential  to  suppress  the  noisy  signals  while  
preserving  the  required  necessary information i.e., 
without losing edge information in this  process. The 
techniques such as linear filtering, average filtering,  and  
median  filtering  have  been  used  to  smoothen  the  noisy  
signals but the linear filtering smoothens noisy signals as 
well as  edges    i.e.,    high    frequency    information.    
Median    filtering  techniques  have  been  used  to  
smoothen  the  impulsive  noise  without   losing   high   
frequency   signals   i.e.,   preserving   edge  information.  
Some  properties  of  median  filtering  are  that  (a)  it  
smoothens the transient signals, (b) removes impulse noises 
from  the signals and (c) preserves the edge information in 
the filtered  signals  (images).  The  concept  of  median  
filtering  was  first  proposed  by  Tukey  [1].  Median  
filtering  techniques  have  been  widely used in various 
signal and image processing applications  mentioned  in  
[2,3].  Since decades, implementation of median filtering   
has   been   attempted   in   software   and   commercially 
available DSP processor environment. But the main 
constraint of aforesaid implementations is speed. To 
overcome this constraint, some attempts have been made to 
implement median filtering in hardware for real time 
applications [3, 4].  Since most of the median value 
computations are based on sorting algorithm [5-8],  Fast 
median filter architecture   therefore   depends   on   the 
availability of an efficient structure to perform sorting.  

 The  rest  of  this  paper  is  organized  as  
follows:  Section-II  describes  the  algorithm  for  median  
filtering  with  an  example,  Section-III  presents  and  
describes  proposed  high  throughput  VLSI  architecture  
for  9-sample  window.  The simulation and synthesis 
results have been presented and discussed in Section-IV   
and finally Section-V concludes the paper. 

 

 

 

II.MEDIAN FILTERING ALGORITHM 

This  section  presents  steps  for  median  filtering  based  
on  fast  sorting  algorithm  with  example  for  clarity.  The 
basic theory of median filter is not discussed here, however 
readers may refer to [9, 10] for the same. 
 
The  fastest  method  of  sorting  is  to  perform  multiple  

actions  (addition and deletion of elements) at the same time 
[11,12]. We  describe these operations as given here, when 
values are input in  a serial order, into the median filter, we can 
maintain two arrays,  one  called  window  array  which  
contains  input  elements  and  second   one   is   called   sorted   
array,   which   contains   window  elements in sorted 
fashion(ascending/descending). To relate both the arrays, we 
maintain a third array called the aging array. Here importance 

of the ageing array is that the i
th

 element of the aging array 

indicates the time to be spent by the i
th

 element of sorted array 

in the window array of the median filter. In a median filter  of 
window length of 9, an element spends 9 clock cycles in the  
window  array  of  the  filter  before  leaving.  So the aging 
array contains values from 0 to 8. An example of the above 
described arrays is shown below. 
 
An Example:  
Window Array W=[66 25 81 15 255 150 174 111 181]   

Sorted Array S= [255 181 174 150 111 81  66 25 15]   
Aging Array A = [ 4 0 2 3 1 6 8 7 5] 
 
In  an  instant,  we  can  see  that  the  value  181  is  at  the  

right  extreme of the window array, so when the next value gets 
input  from the left, 181 has to leave the array. Hence its age is 
0. The value  66  which  is  at  the  left  extreme  has  8  in  its  
aging  array  register.   For every   clocking,   the values   in   
the   aging   array  decrease by 1 indicating that the value bas 
moved 1 place closer  to its exit. When value in aging array 
becomes zero, no more time  to be spent by that element in the 
window and  hence should then  be deleted with the next clock 
pulse. 
As  soon  as  a  new  value  enters  the  window  array,  the  

oldest  value in that array gets deleted. The same oldest value 
must be  deleted from the sorted array while adding the new 
element. The  oldest  value  in  the  sorted  array  is  that  
element  which  has  its  corresponding element in aging array 
with value = 0. 
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Here the steps are as follows: 

1.  The  new  element  in  window  array  W,  is  compared  
with  remaining  8  elements  of  the  window  array  to  
computes  its  position in sorted array S. 

2. The oldest value in the sorted array is identified as 
explained  before.  

3. Necessary  signals  are  generated  to  right  shift  or  left  
shift  certain  elements  in  the  sorted  array  such  that  
oldest  value  is  deleted  from  the  sorted  array  while  
accommodating  the  latest  value without disturbing the 
sorted order.  

4. The elements in aging array A, are shifted in the same 
way as  the corresponding elements in the sorted array. At 
the same time  their values are decremented by 1 for every 
clock cycle so that  the aging phenomenon is implemented.  

5. The  value  8  is  introduced  in  the  aging  array  in  the  
place  corresponding to the newly introduced value in the 
sorted array.  

6. The middle value in the sorted array is taken as the 
median.  

III. PROPOSED ARCHITECTURE 

 This  section  describes  the  proposed  fast  VLSI  
architecture  for  fixed  window  size  of  9  and  word  size  
of  8-bits.  Proposed  fast  median filter architecture as 
shown in Fig.1 has been explained in  following stages 
briefly and subsequently details of these stages  given. 

 

Stage1.  The comparison stage that involves 8 comparators 
with 8  bit comparison. 

Stage2.  Adders  stage  to  add  the  output  of  the  
comparators  to  compute the position of the new arrival in 
the sorted array. 

Stage3. The shifting signals generation stage where right or 
left  shift signals are computed to input to the 9 registers of 
the sorted  array   and   9   registers   of   aging   array.   
Aging   array   has   a  decrementor  to  decrement  values  
in  its  registers  by  1  in  every  clock cycles. 

Stage4. Output stage which is just a median collector 
connected  to 5th register in the sorted array registers. 
 
The control logic path as in Fig.1, is an important circuitry 

to  generate control signals for median filtering. And this is 
a parallel  and pipelined version to reduce the critical delay. 

 
The rest of this section explores the architecture at the 

gate level  of each block described above and shown in 
Fig.1. Here we have  designed  the  circuits  for  each  
block  and  integrated  to  a  final  architecture using 
parallel and pipelined techniques to have lesser  critical 
delay and thus to achieve high throughput.  
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.1: Proposed Median Filter Architecture 

 

A. Comparator Stage: 
 The comparator stage shown in Fig.2, happens to be 

the critical  path in [11] with an 8bit comparator taking 15gate 
delays. So to  get the fastest filter, we need optimization of the 
circuit of this  stage. We used a basic 2 bit comparator as 
shown in Fig3. This 2-  bit  comparator outputs b>a signal. We 
used similar version to get  a>b signal. Every 2-bit pairs of the 
two numbers to be compared  are  compared  in  parallel  using  
this  idea.  Two  such  blocks  are  merged to make a 4-bit 
comparison block as shown in Fig 4(a)  using the merging 
circuit in Fig4 (b). Using same merging circuit, 
  
we  can  use  two  4-bit  comparison  blocks  to  make  an  8-bit  
comparison block. Hence the critical path of the 8-bit 
comparator  is one 2-bit comparator circuit of Fig.3, which is 3 
gates plus one  inverter and two merging circuit of Fig.4(b) 
with two gates plus  one  inverter  each.  Thus  total  of   seven 
2-input  gates plus  three  inverters delay as critical delay in 
comparator. The beauty of this  comparator  design  is  that  
whenever  number  of  bit  are  doubled,  the critical path 
increases by just one merging circuit which is 2  gate plus one 
inverter delays as in Fig 4(b). This design is much  better than 
the one used in [11]. 
 
B. Addition Stage: 
This stage is just a cluster of half adders and full adders that 

add 8 single bits. For speed constraint, we have used parallel 
addition of bits, as shown in structure given in Fig5. The ge 
bits indicate the a >= b output bits from the comparators shown 
in Fig2. The addition of all eight comparator outputs (ge) gives 
the number of elements in window array, which are less than 
the new element.  Thus the output (su) of the adder stage gives 
position of the new value in the sorted array which is a 4 bit 
number ranging form 0000 to 1000. In our implementation we 
split this stage into two pipelined stages to reduce the delay.
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Fig.2: Window registers with Comparators 

 
 
 
 
 
 
 
 
 
 

Fig.3: 2-bit comparator circuit 
 
 
 
 
 
 
 
 

Fig.4: (a) Two 2-bit comparator blocks (b)Integration circuit for 4-
bit  comparator using (a) 

C. Shifting Stage (Sorting and Aging): 
This is one of the key stage in the median filtering process 

and thus has been described here in detail for the sake of 
clarity. This stage contains 18 registers in all and some 
combinational logic   gates.   Nine   8-bit   registers   for   
the   sorted   array   (in  descending  order)  and  nine  4-bit  
registers  for  the  aging  array  which  can  have  nine  
possible  values  from  0000  to  1000.  The oldest value in 
the sorted array is the one with its corresponding aging 
array value equal to 0000. The output of the addition stage  
'su' indicates the position of the newly arrived  value in the 
sorted  array  after  the  oldest  value  gets  removed.  'su'  
can  have  nine  possible values from 0000 to 1000. Also 
there are nine possible places for the oldest value, to be 
present in the sorted array. So  with  every  clock  pulse,  
right  and  left   shift  operations  must  be  performed in 
sorted and aging arrays keeping 9×9 = 81 possible  cases in 
view as shown in Table-I. These operations can be done  as 
explained below: To  each  sorted  register  and  the  
corresponding  aging  register,  we assign some signals that 
control the data that has to enter the  register. So for any 
sorted register Si, if data has to shift right into  it i.e., from 
Si+1 to Si, then a signal ri = 1 is generated. Similarly if  data  
has  to  left  shift  from  Si-1  into  Si,  then  a  signal  li=1  is  
generated.  Since  the  register  S8  has  no  register  to  its  
left,  data  cannot right shift into it. So there is no signal 
called r8. in table-1.  Similarly  data  cannot  left  shift  into  
register  S0  as  there  is  no  register to its right. So there is       
no signal called l0 in table-1 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.5: Adder Stage Circuit 

 If su=i , then the newly arrived value (X) as in Fig.6, has to 
enter Si,  with an assigned signal ci equal to logic “1”. In case 
su ≠ i, ci=0.  In  case  of  aging   registers,  the  effect  of  the  
signals  ri,  li,  and  ci  remains  the  same  as  their  
corresponding  sorted  registers.  But  when the newly arrived 
value(X) enters Si, then a 4-bit value of 8  (i.e. V8=1000), is 
assigned to its corresponding aging register Ai.  In addition to 
this, the values in all the aging registers except the register in 
which V8 enters have to decrement with every clock pulse.  
The  decrementors  are  used  at  the  output  of  all  aging  
registers, and connected to the corresponding aging registers 
with control signals of ri or li to get right or left shift 
respectively. Di is the decremented value of the content Ai. Di-1 
and Di+1 are the decremented values of right and left neighbors 
of Ai. Since there is no shifting operation in ageing registers in 
case of signals ri and  li,  equal  to    logic  “0”  and  ci  equal  to  
logic  “0”,  the    ageing  registers have to update by feed back 
from their decrementors. In this case another signal ni is 
derived from logic of li and ri and ci  as shown in Fig.8 to 
update the aging registers. 

These   signals   are   used   during   shifting   operation   in   
sorted   registers as shown in Fig.6. When the system is reset, 
the aging registers   should   get   reset   to   values   from   0   
to   8.   The implementation of this design is as shown in Fig.7. 
If the oldest  value in the sorted array is in i

th
 register, then 

content in aging  array  Ai  would  be  zero  and  an  associated  
signal  ai  becomes  1.  The computation of r's, l's and c's, is 
based on Table-I, which is  shown  in  Fig.8  in  logical  form  
and  its   analysis  is  presented  in  preceding paragraph for a 
particular case.  

For example; the oldest value is in the 4
th
 sorted array 

register, then a4=1. Now say the newly arrived value has to 
come to the  least position i.e., su=0000, then all the values in 
the sorted array  between 3

rd
 register to 0

th
 register need to left 

shift by one place  so  that  the  value  in  4
th
  register  gets  

deleted  while  the  newly  arrived  value  can  be  
accommodated  in  the  zero

th
  place.  So l4=l3=l2=l1=1 and 

c0=1. This way for each combination of Ai and su,   there   is   
some   combination   of   shifting   operation   (right shift/left 
shift) as shown in Table-1.  Here reader may refer to Table-1 
for other cases for clarity. 
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  Table-I   

  Shifting Logic   
 su r7r6r5r4r3r2r1r0 l8l7l6l5l4l3l2

a0=1 0000 00000000 00000000  

 0001 00000001 00000000  

 0010 00000011 00000000  

 0011 00000111 00000000  

 0100 00001111 00000000  

 0101 00011111 00000000  

 0110 00111111 00000000  

 0111 01111111 00000000  

 1000 11111111 00000000  

a1=1 0000 00000000 00000001  

 0001 00000000 00000000  

 0010 00000010 00000000  

 0011 00000110 00000000  

 0100 00001110 00000000  

 0101 00011110 00000000  

 0110 00111110 00000000  

 0111 01111110 00000000  

 1000 11111110 00000000  

a2=1 0000 00000000 00000011  

 0001 00000000 00000001  

 0010 00000000 00000000  

 0011 00000100 00000000  

 0100 00001100 00000000  

 0101 00011100 00000000  

 0110 00111100 00000000  

 0111 01111100 00000000  

 1000 11111100 00000000  

a3=1 0000 00000000 00000111  

 0001 00000000 00000110  

 0010 00000000 00000100  

 0011 00000000 00000000  

 0100 00001000 00000000  

 0101 00011000 00000000  

 0110 00111000 00000000  

 0111 01111000 00000000  

 1000 11111000 00000000  

a4=1 0000 00000000 00001111  

 0001 00000000 00001110  

 0010 00000000 00001100  

 0011 00000000 00001000  

 0100 00000000 00000000  

 0101 00010000 00000000  

 0110 00110000 00000000  

 0111 01110000 00000000  

 1000 11110000 00000000  

a5=1 0000 00000000 00011111  

 0001 00000000 00011110  

 0010 00000000 00011100  

 0011 00000000 00011000  

 0100 00000000 00010000  

 0101 00000000 00000000  

 0110 00100000 00000000  

 0111 01100000 00000000  

 1000 11100000 00000000  

a6=1 0000 00000000 00111111  
 0001 00000000 00111110  

 0010 00000000 00111100  

 0011 00000000 00111000  

 0100 00000000 00110000  

 0101 00000000 00100000  

 0110 00000000 00000000  

 0111 01000000 00000000  

 1000 11000000 00000000  

a7=1 0000 00000000 01111111  

 0001 00000000 01111110  

 0010 00000000 01111100  

 0011 00000000 01111000  
 0100 00000000 01110000  

 0101 00000000 01100000  

 0110 00000000 01000000  

 0111 00000000 00000000  

 1000 10000000 00000000  

a8=1 0000 00000000 11111111  

 0001 00000000 11111110  

 0010 00000000 11111100  

 0011 00000000 11111000  

 0100 00000000 11110000  

 0101 00000000 11100000  

 0110 00000000 11000000  

 0111 00000000 10000000  

 1000 00000000 00000000  

 
 
 

 

 
 
 
 
 
 
 
 
 
 

Fig.6: Sorting Array Register with control signals 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.7: Aging Array Register with control signals 
 
 

IV. SYNTHESIS RESULTS & DISCUSSION 

The technology independent results of proposed 
architecture is presented in terms of gate delay in 
Table-II which is critical delay and vital for high 
throughputs.  The  critical  delay,  in  terms  of  
number  of  2-input  gate  delays  is  much  better  
than  the  results  presented in [11]. The critical path 
delay in terms of gate delay increases by two with 
doubling of word size. This can be realized from 
Fig.4(b). The latency of our proposed parallel and 
pipelined architecture is only four clock cycles.  But  
the  window  array  requires  initial  cycles  known  
as  input  latency  to  get  window  elements. Thus 
the input latency is equal to the window size (in this 
case 9) which can not be avoided. Hence total 
latency is sum  of  input  latency  plus  architectural  
latency,  which  is  equal  to  thirteen clock cycles in 
this architecture 
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l1 = (~(a0)) & (~(su[3] | su[2] | su[1] | 

su[0]))  l2 = (~(a1 | a0)) & (~(su[2] | 

su[1] | su[0]))  
l3 = (~(a2 | a1 | a0)) & (~(su[3] | su[2] (su[1] & su[0])))  l4 = 

(~(a3 | a2 | a1 | a0)) & (~(su[3] | su[2]))  
l5 = (a8 | a7 | a6 | a5) & (~(su[3] | (su[2] & (su[1] | su[0]))))  l6 = 

(a8 | a7 | a6) & (~(su[3] | (su[2] & su[1])))  
l7 = (a8 | a7) & (~(su[3] | (su[2] & su[1] & su[0])))  

l8 = (a8) & (~su[3]) 
 

r0 = (a0) & (su[3] | su[2] | su[1] 

| su[0])  r1 = (a1 | a0) & (su[3] | 

su[2] | su[1])  
r2 = (a2 | a1 | a0) & (su[3] | su[2] | (su[1] & su[0]))  
r3 = (a3 | a2 | a1 | a0) & (su[3] | su[2])  
r4 = (~(a8 | a7 | a6 | a5)) & (su[3] | (su[2] & (su[1] | su[0])))  r5 = 

(~(a8 | a7 | a6)) & (su[3] | (su[2] & su[1]))  
r6 = (~(a8 | a7)) & (su[3] | (su[2] & su[1] & su[0]))  

r7 = (~(a8)) & (su[3]) 
 

n0 = (~(r0 | c0))  
ni = (~(ri | li | ci));   for i = 1 

to 7  n8 = (~(l8 | c8)) 
 
 
 
. 

 
Fig.8. Controller circuit signals (ri,li, ni and ci) (Where &, | and ~ stands for  

AND, OR and INVERTER function respectively) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.9. Simulation Result of synthesized netlist using unit delay model
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The  proposed  architecture  for  median  filter  has  been  

coded  using verilog HDL and synthesized using design 
compiler from  Synopsys    with    commercially    available    
0.18µm    CMOS   technology and finally the synthesized 
net-list has been verified  using random test vectors. The 
snapshot of the simulated output of synthesized netlist 
using unit delay models has been shown as  in Fig9. 
Readers can observe that the median output is the middle 
value (S4=111) in sorted array as in example given in 
Section-II.  The resultant latency of the proposed 
architecture has been also marked in Fig.9. The synthesized 
result after allowing 20% extra area for physical 
implementation and positive slacks to avoid any timing 
violation shows that the proposed VLSI architecture gives 
core area and power of 1.2mm

2
 and 92.5mW respectively at 

clock frequency of 700MHz. This results are compared 
with the results in [12] as shown in Table-III. 

V. CONCLUSION 

The present paper describes a novel VLSI architecture to 
implement   a   one   dimensional   real   time   median   
filter.   The  proposed  architecture  is  described  at  each  
level  of  hardware   design  to  optimize  for  critical  delay.  
Parallel and pipelined technique   has   been   used   to   
enhance   the   throughput.   The technology independent 
HDL codes can be used for either ASIC implementation or 
advanced FPGA implementation.  Although  this  
architecture  is  proposed  for  one  dimensional  signals  to  
suppress impulse noise, this can be used with some extra 
circuitry  for median filtering in images. This architecture is 
very regular and can be extended and modified for different 
window size as well as different sampled word size so as to 
adopt it for specific application of real time signal and 
image processing. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REFERENCES 

 
[1] J.  W.    Tukey,  “Nonlinear    (nonsuperposable)    methods    for    

smoothing   data,”  in Conf Rec., EASCON, pp.  673-674. I974   
[2] Digital  Image  Processing  ,second  edition,by  R  C.Gonzalez  ,  R  E.  

Woods,  Princeton publisher, 2005.   
[3] K. Oflazer, "Design and Implementation of a Single-Chip 1-D Median 

Filter,"  IEEE Trans on Acoustics, Speech, and Signal Process, vol.31, 
no. 5, pp. 1164-  1168 October 1983  

[4] R.L.Swenson and K.R.Dimond, "A Hardware FPGA Implementation of   
2-D  Median  Filter  using  a  Novel  Rank  Adjustment  Technique,"  
7th    International  conference  on  Image  Processing  and  its  
Applications,  vol.1.  pp.  103-106,  July  1999   

[5] G.R.Arce  and  P.J.Warter,  “A  median  filter  architecture  suitable  
for  VLSI  implementation”,  in  proc.23rd  Annu.  Allerton  conference  
on    commu.,  contr.,  comput., pp.172-181, oct. 1984.  

[6] A.L.Fisher,  “Systolic  algorithms  for  running  order  statistics  in  
signal  and  image processing,” J. Digital Syst., vol.4, No.2/3, pp. 251-
264, 1982.   

[7] D   S. Richards, "VLSI Median Filters," IEEE Trans. Acoust. Speech 
Signal  Process, vol.38, pp. 145–153, January 1990   

[8] L.   Breveglieri,   V.   Piuri   ,   “Pipelined   Median   Filters,”   in   
Proc.   IEEE  Instrumentaion  and  Measurement  Technology  
Conference  (IMTC94),  vol.3,  pp.  1455-1458, Hamamatsu, Japan, 
May 1994.   

[9] Sung-Jea Ko, Yong Hoon LE, and Adly T. Fam, “Efficient 
Implementation of  One-Dimensional  Recursive  Median  Filters,”  
IEEE  Trans  on  Circuits    Syst,  Vol.37, pp. 1447-1450, November 
1990   

[10] S.  B.  Leeb,  A.  Ortiz,  R.  F.  Lepard, S.  R.  Shaw, and  J.  L.  
Kirtley,  “Applications  of  Real-Time  Median  Filtering  with  Fast  
Digital  and  Analog  Sorters,” IEEE Trans on Mechatronics, Vol.2, 
No.2, pp. 136-143, June 1997   

[11] C.J.Tsai, E.H.Lu, C.H.Chen, J.Y.Lee, and I.C.Jou, "A New 
Architecture of  Median Filters With Linear Hardware Complexity," 
Circuits and Systems, IEEE  International Symposium, vol.1, pp. 101-
103, June 1991   

[12] M. Karaman, L. Onural, and A. Atalar  ,  "Design and implementation 
of a   general purpose Median Filter Unit in CMOS VLSI,” IEEE 
Journal of Solid state  circuits, vol.25, No2, pp. 505-513, April, 1990.  

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on April 19,2010 at 02:50:42 UTC from IEEE Xplore.  Restrictions apply. 


