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Abstr act

Thispaper presentsacomprehensive survey of existing techniquesfor interconnect optimizationduringthe VL SI physical design
process, with emphasis on recent studieson interconnect design and optimization for high-performance VLSI circuit design un-
der the deep submicron fabrication technologies. First, we present anumber of interconnect delay models and driver/gate delay
model s of various degrees of accuracy and efficiency which are most useful to guide the circuit design and interconnect opti-
mization process. Then, we classify the existing work on optimization of VLSI interconnect into the following three categories
and discuss the resultsin each category in detail: (i) topology optimization for high-performance interconnects, including the
algorithmsfor total wirel ength minimization, critica pathlength minimization, and delay minimization; (ii) device and intercon-
nect sizing, including techniquesfor efficient driver, gate, and transistor sizing, optimal wiresizing, and simultaneous topol ogy
congtruction, buffer insertion, buffer and wire sizing; (iii) high-performance clock routing, including abstract clock net topol-
ogy generation and embedding, planar clock routing, buffer and wire sizing for clock nets, non-tree clock routing, and clock
schedule optimization. For each method, we discuss its effectiveness, its advantages and limitations, as well as its computa-
tional efficiency. We group the related techniques according to either their optimization techniques or optimization objectives

so that the reader can easily compare the quality and efficiency of different solutions.
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1 Introduction

The driving force behind the rapid growth of the VLS| technology has been the constant reduction of the feature size of VLS

devices (i.e. the minimum transistor size). The feature size decreased from about 2umin 1985, to about 1umin 1990, and to
0.35-0.5pmtoday (1996). The predictionisthat it will bereduced to about 0.18umin Year 2001 [SIA94]. Such continua minia-
turization of VLSI devices has strong impact on the VLS| technology in several ways. First, the device density on integrated
circuits grows quadratically with the rate of decrease in the feature size. As aresult, the total number of transistors on a sin-
gle VLSI chip has increased from less than 500,000 in 1985 to over 10 million today. The prediction isthat it will reach 64
millionin Year 2001 [SIA94]. Second, the devices operate at a higher speed, and the interconnect delay becomes much more
significant. According to the simple scaling rule described in [Ba90], when the devices and interconnects are scaled downin all

three dimensions by a factor of S theintrinsic gate delay is reduced by afactor of S, the delay of local interconnects (such as
connections between adjacent gates) remains the same, but the delay of global interconnects increases by afactor of S2. Asa
result, the interconnect delay has become the dominating factor in determining system performance. In many systems designed
today, as much as 50% to 70% of clock cycle are consumed by interconnect delays. This percentage will continueto rise asthe
feature size decreases further.

Not only do interconnects become more important, they al so become much more difficult to model and optimizein the deep
submicron VLSI technology, asthedistributed nature of theinterconnectshasto be considered. Roughly speaking, theintercon-
nect delay is determined by the driver/gate resistance, theinterconnect and | oading capacitance, and the interconnect resistance.
For the conventional technology with the feature size of 1um or above, the interconnect resistance in most cases is negligible
compared to the driver resistance. So, the interconnect and loading gates can be modeled as alumped loading capacitor. Inthis
case, the interconnect delay is determined by the driver resistance times the total loading capacitance. Therefore, conventional
optimization techniques focus on reducing the driver resistance using driver, gate, and transistor sizing, and minimizing thein-
terconnect capacitance by buffer insertion and minimum-length, minimum-width routing. For the degp submicron technol ogy
which became avail able recently, the interconnect resistance is comparable to the driver resistance in many cases. Asaresult,
the interconnect has to be modeled as a distributed RC or RLC circuit. Techniques such as optimal wire sizing, optimal buffer
placement, and simultaneous driver, buffer, and wire sizing have become necessary and important.

This paper presents an up-to-date survey of the existing techniques for interconnect optimization during the VLSI layout
design process. Section 2 discussesinterconnect delay models and gate delay model s and introduces a set of concepts and nota-
tion to be used for the subsequent sections. Section 3 presents the techniques for interconnect topol ogy optimization, where the
objectiveisto compute the best routing pattern for anet for interconnect delay minimization. It covers the algorithmsbased on
total wirelength minimization, pathlength minimization, and delay minimization. Section 4 presents the techniques for device
and interconnect sizing, which determines the best geometric dimensions of devices and interconnects for delay minimization.
It includes driver sizing, transistor sizing, buffer placement, wire sizing, and combinations of these techniques. Section 5 dis-
cusses techniques for high-performance clock routing, including clock tree topology generation and embedding, planar clock
routing, buffer and wire sizing for clock nets, non-tree clock routing, and clock schedul e optimization. Section 6 concludes the

paper with suggestions of several directionsfor future research.



2 Preliminaries

VLSl design involvesa number of steps, including high level design, logic design, and physica layout. Designs are generally
composed of a number of functional blocks or cells which must be interconnected. This paper addresses the interconnection
problems of these blocks or cells.

A net N is composed of aset of pins {sy,s1,%, - - -, S} which must be made electrically connected. sy denotes the driver of
the net, which suppliesasignal totheinterconnect. In some cases, anet may have multipledrivers, each driving theinterconnect
at adifferent time (such asin asignal bus). These netsare called multi-source nets. Theremaining pinsinanet are sinks, which
receive the signa from the driver.

The interconnection of a net consists of a set of wire segments (often in multiple routing layers) connecting al the pinsin
the net. It can be represented by a graph, in which each edge denotes a wire segment and each vertex denotes a pin or joint of
two wire segments. Interconnections are generally rectilinear.

In this paper, we will primarily be interested in interconnect trees, in which there exists a unique simple path between any
pair of nodes. We use Path(u, v) to denotethe uniquepath from u to vin theinterconnect tree. dr(u, v) denotesthe path length of
Path(u, v). The source node o will generally bereferred to as theroot of an interconnect tree, each nodevin atreeis connected
toitsparent by edgee,. Weuse T, to denote the subtree of T that isrooted at v. Given an edge e, we use Des(e) to denotethe set
of edgesin the subtree rooted at e (excluding €), Ans(e) to denote the set of edges {€'|e € Des(€/)} (again, excluding €), and Te
to denote the subtree of T rooted at e, i.e., Des(e) U {e}. Thetopology of an interconnect tree T refers to an abstraction of T on
the Manhattan plane, without considering the wire width, routing layer assignment, and all electrical properties. In this paper,
we often use an interconnect tree and its topol ogy interchangesbly.

However, we distinguishan interconnect tree T fromitsabstract topology G, which isabinary tree (with the possibleexcep-
tionat theroot) such that al sinksaretheleaf nodes of thebinary tree. The sourcedriver istheroot node of thetree, and may have
asingletoninternal node asitsonly child. Consider any two nodes, say u and v, with a common parent nodew = p(u) = p(w)
in the abstract topology, then the signal from the source has to pass through w before reaching u and v (and their descendants).
The topology of an interconnect tree T isan embedding of the abstract topology G, i.e. each internal nodev € G is mapped to
alocation I (v) = (xy, Yv) in the Manhattan plane, where (xy,yy) are the x- and y-coordinates, and each edge e € G is replaced
by arectilinear edge or path. Figure 1 shows an abstract topol ogy and its embedding (which is not unique). Some interconnect
optimization algorithmsfirst compute a good abstract topology and then generate an optimal or near-optimal embedding.

The definitionsand notation for interconnect tree T also apply to abstract topology G. For example, we also use Path(u, v) to
denotethe unique path fromu to vin the abstract topology G. Furthermore, we definethe level of anodein an abstract topol ogy.
The root node of the abstract topology isat level 0, and the children of anode at level k are at level k+ 1. A nodewith asmaller
level number isat ahigher level of the hierarchy.

In this paper, we are mainly concerned with the Manhattan (rectilinear) distance metrics. We use d(u, v) to denote the Man-
hattan distance between pointsu and v. If edge e connectsu and v, then |€] > d(u, v). Notethat we differentiate between d(u, v)
and dt(u,Vv); ingenera, dr(u,v) > d(u, v). The distance between two pointsetsP and Q isdefined as d(P, Q) = min{d(p, q)|p€
P, q € Q}, whilethediameter of apoint set P isdiameter (P) = max{d(p, q)|p, g€ P}, and theradiusof apoint set P with respect
to some point cisradius(P) = max{d(p,c)|p € P}.



Figure 1: The abstract topology of an interconnect tree, and its embedding.

Aninterconnect tree T is evaluated on a number of attributes, including cost and delay. Generally, the cost of edge e refers
toitswireength, and is denoted by |€|. For instances where we consider variably sized wires, with the width of edge e denoted
by we, the cost of edge e may refer to itsarea (i.e., the product of itslength and width, |e| - wg). |T| denotes the total cost of al
edgesintreeT.

Let t(u,v) denote the signal delay from node u to node v. Then, t(sp, 5) denotes the delay from sourceto sink s;. For sim-
plicity, we uset; to denotet(sp, ). A brief discussion on the various delay models can befoundin Sections2.1 and 2.2. Weare
also interested in the skew of the clock signal, defined to be the difference in the clock signal delaysto the sinks. One common
definition of the skew of clock tree T is given by skew(T) = maxs s;es|ti —tj].

Let r, ca and c; denote the unit square wire resistance, unit area capacitance, and unit length fringing capacitance (for 2
sides), respectively. Then, the wireresistance of edge e, denoted r¢, and the total wire capacitance of e, denoted ce, are given as
follows:

r-le|
We

, Ce=Ca-|€]-We+Cs-|€].

re:

We use Cap(v) to denote the total capacitance of T,. We will use Ry as the resistance of the driver, and cg to denote the sink
capacitance of 5. Wewill use Cap(.$) asthe capacitance of al the sink nodes. We will use sink(Ty) to denotethe set of sinksin
T\/.

2.1 Interconnect Delay Models

AsVLSI design reaches deep submicron technol ogy, the delay model used to estimate interconnect delay in interconnect design
has evolved from the simplistic lumped RC modd to the sophisticated high order moment matching delay model. In the fol-
lowing, wewill briefly describe afew commonly used delay modelsin the literature of interconnect performance optimization.
Although our discussion will center around RC interconnect, some of the models are not restricted to RC interconnect. For a

more comprehensive list of references on RLC interconnect, the interested reader may refer to [Pi95].



In the lumped RC modd, “R” refersto the resistance of the driver and “C” refers to the sum of the total capacitance of the
interconnect and the total gate capacitance of the sinks. The model assumes that wire resistance isnegligible. Thisisgenerally
truefor circuitswith feature sizes of 1.2umand above since the driver resistance is substantially larger than thetotal wireresis-
tance. Inthiscase, the switching time of the gate dominates thetime for the signal to travel along the interconnect and the sinks
are considered to receive the signal at the same time due to the negligible wire resistance.

However, asthefeature size decreases to the submicron dimension, thewireresistanceisno longer negligible. Sinksthat are
farther from the source generally have alonger delay. For example, under the pathlength (or linear) delay model, the delay from
utovinaninterconnect treeisproportiona to the sum of edgelengthsintheuniqueu-v path, i.e,, t(u,v) U 3 o cpan(uy) |€w|- The
limitation of the pathlength delay model isthat it ignores the wire resistance but consider only wire capacitance a ong the path.
Moreover, it ignoresthe effect of edges not along the path. The merit of the pathlength delay model is that routing problemsfor
pathlength control or optimization are generally much easier than delay optimization under more sophisticated delay modelsto
be presented bel ow.

The delay model s presented inthe remainder of this section consider bothwire resi stance and capacitance of theinterconnect.
Under these models, the interconnect is model ed as an RC tree, which isrecursively defined as follows[RuPH83]: (i) alumped
capacitor between ground and another node is an RC tree, (ii) alumped resistor between two nonground nodesis an RC tree,
(iii) an RC line with no dc path to ground isan RC tree, and (iv) any two RC trees (with common ground) connected together
to anonground node is an RC tree. We can extend the above definition for RLC tree easily by considering inductorsand RLC
lines.

Given an RC tree, Rubinstein, Penfield, and Horowitz [RuPH83] compute a uniform upper bound of signal delay at every
node, denoted tp, as follows:

tt= Y R«GC 1
all nodesk
where Cy isthe capacitance of thelumped capacitor at nodek and R; isdefined to be theresi stance of the portion of the (unique)
path Path(sp, i) that is common with the (unique) path Path(sp, k). In particular, R is the resistance between the source and
node k. There are a few advantages of thismodel: (i) it is simple, yet still captures the distributed nature of the circuit; (ii) it
gives auniform delay upper bound and is easier to use for interconnect design optimization; (iii) it correlates reasonably well
with the EImore delay model, which will be discussed next.

The ElImore delay model [El48] isthe most commonly used delay model in recent works on interconnect design. Under the
Elmore delay model, the signal delay from source s to nodei inan RC treeis given by [RuPH83]:

to,)= 5 R G @)

all nodesk
Unlike the upper bound signal delay model in Egn. (1), each sink (and in fact, al nodesin the RC tree) has a separate delay
mesasure under the Elmore delay model. It is used to estimate the 50% delay of a monotonic step response (to a step input) by
the mean of theimpulse response, whichisgiven by [t - h(t)dt where h(t) istheimpulse response. Theimpulse response h(t)
can be viewed as either (i) the response to the unit impulse (applied at time O) at timet, or (ii) the derivative of the unit step
response at timet. The 50% delay, denoted tsg, is the time for the monotonic step response to reach 50% of Vpp, and it isthe
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Figure 2: Modeling of an interconnect tree as an RC tree: (a) an interconnect tree, (b) each edge is modeled as a T-type circuit,

and (c) each edge ismodeled as an RC line.

median of theimpulse response.® It can be shown that the Elmore delay givesthe 63% (= 1— 1/¢€) delay of asimple RC circuit
(withasingleresistor and a single capacitor), which isan upper bound of the 50% delay. In general, the Elmore delay of asink
in an RC treeisa(loose) absolute upper bound on the actual 50% delay of the sink under the step input [GUTK95].

The main advantage of the ElImore delay isthat it providesasimple closed-form expression with greatly improved accuracy
for delay measure compared to the lumped RC moddl. In thefollowing, weillustrate that the ElImore delay can be expressed as
asimple agebraic function of the geometric parameters of theinterconnect, i.e., the lengths and widths of edges, and parasitic
constants such as the sheet resistance, unit wire area capacitance and unit fringing capacitance of the interconnect.

Consider an interconnect T in Figure 2. To model an interconnect as an RC tree, an edge ein the interconnect in (a) can be
modeled as a Tetype circuit with alumped resistor of resistance re and two capacitors, each of capacitance ce/2, wherere and
Ce e thewireresistance and capacitance of edge e as shown in (b). Other lumped circuit models such as L- and T-type circuits
may be used to model an edge aswell [Ba90]. It is aso possibleto model an edge as a distributed RC line as shown in ().

In the case of each wire segment modeled as a Tr-type circuit as in Figure 2(b), we can write the ElImore delay from the
source to sink s in terms of the geometry of the interconnect, i.e., |€| and we, and the parasitics of the interconnect as follows
[CoLe95, CoKa94]:

t(s0,8) = > Te(Ca/2+Cap(V)
evePath(sy,s)

1In general, the x% delay, denotedty, isthe delay time for the signal to reach x% of Vpp.
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wherec = (fsj if sink s;j isat nodev and ¢, = 0 otherwise. The above agebraic expression alowsanalysis of how topology and
wire widths affect Elmore delay, which leads to interconnect topology optimization a gorithms such as [BoKR93, BoKM94]
and wiresizing a gorithms such as [ColL €95, Sa94, CoHed5)].

The approximation of the 50% signal delay by the Elmore delay is exact only for a symmetrical impulse response, where
the mean isequal to the median [GUTK95]. Althoughthe Elmore delay model isnot accurate, it has a high degree of fiddlity: an
optimal or near-optimal solution according to the estimator isalso nearly optimal according to actua (SPICE-computed [Na75])
delay for routing constructions[BoKM 93] and wiresizing optimization [ CoHe964]. Simulationsby [CoKK95] a so showed that
the clock skew under the Elmoredelay model has a high correlation with the actual (SPICE) skew. The same study al so reported
apoor correl ation between the pathlength skew and the actual skew.

Infact, one can show that the Elmore delay isthefirst moment of theinterconnect under theimpul seresponse. More accurate
delay estimation of the interconnect can be obtained using the higher orders of the moments. In the remainder of this section,
we show how to compute the higher order moments efficiently and present severa interconnect delay models using the higher
order moments.

Wefirst define moments of theimpul seresponse of alinear circuit. Let h(t) be theimpul seresponse at anode of an intercon-
nect (which may be an RCinterconnect, an RLC interconnect, adistributed-RL Cor transmission lineinterconnect). Let vi,(t) be
theinput voltage of thelinear circuit, v(t) bethe output voltage of anode of interest inthe circuit, Vin(s) and V(s) bethe Laplace
transform of vi,(t) and v(t), respectively; then, H(s) = V(s)/Vin(s) isthe transfer function. Applying Maclaurin expansion to

the transfer function H(s), which isthe Laplace transform of h(t), we obtain
H(s) = /mh(t)efﬂdt -3 (_—1)i§ /mtih(t)dt. 4
0 i; ! 0
The i-moment of the transfer function my is related to the coefficient of thei-th power of sin Eqn. (4) by?
17,
m = i_'/o tih(t)ct. ®)

For any linear system, the normalized transfer function can aso be expressed as

1t ast a4+ ans

H(s) = 6
®) 1+ bis+ 082+ - - -+ bps™’ ©

where m > n. Expanding H(s) into a power series with respect to s, we have
H(s) = My — My S+ MpS — - - ()

The Elmore delay model isin fact the first moment m; = f3°t - h(t)dt of theimpulse response h(t). Notethat m; = b; — &g
where a; and by aretermsin Eqgn. (6), and it can also be shown that the upper bound delay tp (Egn. (1)) isin fact by [RuPH83].

2From the distribution theory, the i-th moment of a function h(t) is in fact defined to be f5’ t'h(t)dt. In some previous works [PIR090, MeBP95, Pi95], a
variant of the moment definitionm, = K_T,l)—' - [ tih(t)dt was used. In this case, H(s) in Eqn. 7 becomesH(s) = mg+ mys+ mps®+ - - -



Several approaches have been proposed to compute the moments at each node of alumped RLC tree, where the lumped
resistors and lumped inductors are floating from the ground and form a tree, and the lumped capacitors are connected between
the nodes on the tree and the ground [KaMu95, RaPi94, YuKu95b].

In the following, we present amethod proposed by Yu and Kuh [YuKu95b] for moment computation in an RLC tree. Con-
sider alumped RL C treewith n nodes. Let k be the parent node of nodek, and T, bethe subtreerooted at nodek. Let Cy betheca-
paci tance connected to nodek, R and Ly betheresi stance and inductance of the branch betweenk and k. Let Hy(s) = Vk(S)/Vin(S)
be thetransfer function at node k, where V(s) is the Laplace transform of the output voltage at k, denoted v (t). Let ix(t) bethe
current flowing from k to k, then its Laplace transform I (s) is given by [YuKu95b:

Ik(s) = _ Ci-s-Vj(9). (8)
1€k
Let Ry and Ly bethetotal resistance and inductance onthe portion of the path Path(sg, i) that iscommon with the path Path(sg, k),
respectively; then, the total impedance along the common portion of paths Path(sp, i) and Path(sp, k) isZ = R + s+ Lii. The
voltage drop from root sp to node k is[YuKu95b]:

Vin(s) = Vk(8) = ) Za-Gi-s-Vi(s). 9)
Then, the transfer function Hy(s) = Vk(S) /Vin(s) becomes [YuKu95h]:
Hk(S) =1- szi -G-s- Hi(S). (10)

Let ml’(’ be the p-th order moment of Hy(s). Expanding Hk(s) and H;(s) in Egn. (10) by theexpressionin Egn. (7), and equating
the coefficients of powers of s, the p-th order moment at node k under a step input can be expressed as [ YuKu95b):

0 if p=-1,
m=< 1 if p=0, (11)
5i (Ra-GomP =L -G -nf?) ifp>o.
Let C?k =YjeT, m? -Cj, whichisthetotal p-th order weighted capacitance of Ty, then mlf (for p > 0) can bewritten recursively
as[YuKu95b:

0 if Kistheroot 5,
p_ { % (12)

mE‘f‘Rk'ClT)k_l_Lk'C?k_z ifk # 0.
Therefore, given the (p— 1)-th order and (p — 2)-th order moments, the p-th order moments of all nodes can be computed by
first computing C?k’l and C?k’z in O(n) timein a bottom-up fashion. Then, ml’(’ can be computed in a top-down fashion for al
nodes in the interconnect tree in O(n) time. Therefore, the moments up to the p-th order of an RLC tree can be computed in
O(np) time.

For moment computation of a tree of transmission lines, several worksfirst model each transmission line as alarge number
of uniformlumped RLC segments [PiR090, SrKa94] and then compute the moments of the resulting RLC tree. However, this
approach isusualy not efficient nor accurate. Kahng and Muddu [KaMu94] showed that using 10 uniform segments to approx-
imate the behavior of atransmissionlineentails errorsin thefirst and second moments of around 10% and 20%, respectively. In
[KaMu94, YuKu95h], the authorsimprove both accuracy and efficiency by considering non-uniform segmentation of thetrans-

mission line. Yu and Kuh [ YuKu95b] found that for exact moment computation of up to the p-th order, each transmission line
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should be modeled by |3p/2| non-uniform lumped RLC segments. Combining the non-uniform lumped RLC segment model
by [KaMu94, YuKu95b] with the moment computation algorithm by [ YuKu95b], the moments of atransmission linetreeinter-
connect up to the order of p can be computed in O(np?) time, wheren isthe number of nodesin thetree. Another work of Yu and
Kuh [YuKu95g computes the moments of a transmission line tree interconnect directly, without first performing non-uniform
segmentation of the transmission lines. This algorithm also has acomputational complexity of O(np?).

Higher order moments are extremely useful for circuit analysis. Ingenera, higher order moments can be used to improvethe
accuracy of delay estimation. For example, Krauter et al. [KrGW95] proposed metrics based on thefirst three central moments,
which are the moments of the distribution of the impulse response. From the distribution theory, the second central moment
provides a measure of the spread of h(t) and the third central moment measures the skewness of h(t). Since the accuracy of
the Elmore delay is affected by the spread and skewness of the impulse distribution, the three central moments may be used to
reduce the relative errors of Elmore delay [GUTK95].3

Another advantage of using higher order moments for circuit analysisisthat it can handle the inductance effect. When the
operating frequencies of VLSI circuitsare in the giga-hertz range and the dimension of interconnect is comparable to the signal
wavelength, inductance playsasignificant rolein signal delay and signal integrity. Aninherent shortcoming of the Elmoredelay
model and other simpler delay modelsisthat they cannot handle the inductance effect.

The Asymptotic Waveform Eval uation (AWE) method proposed by Pillage and Rohrer [PiR090] is an efficient technique to
use higher order momentsin interconnect timing analysis which can handle the inductance effect. It constructsa g-poletransfer
function H(s), called the g-pole model,

H _y _k 13
(Qﬂ;&mﬂ (13

to approximate the actual transfer function H(s), where p; are poles and k; are residues to be determined. The corresponding

time domain impulse response is
aozihwﬁ (14)
i=1
The poles and residuesin I:|(s) can be determined uniquely by matching theinitia boundary conditions, denoted m_;, and the
first 29— 1 moments my of H(s) to thoseof H(s) [PiRa90]. The choice of order q depends on the accuracy required butis aways
much lessthan the order of the circuit. In practice, q < 5iscommonly used.

When qischosen to betwo, it isknown as the two-pole model [Ho84, ZhTG93, Gazh93, ZhST93, ZhST94]. In thismodel,
thefirst threemoments mg (whichisnormalized), m;, and mp are used. A closed-form expression of my isgivenand an analytica
formularelating the performance of an RLC interconnect to its topology and geometry is derived by Gao and Zhou [Gazh93].
This provides a closed-form formula for the topology optimization algorithm in [ZhTG93]. However, the expression of m; is
much more complicated than that of m; (the Elmore delay). Moreover, the method of [Ho84, Gazh93, ZhST94] cal cul ates the
second moment by replacing the off-path admittance by the sum of the total subtree capacitance. Thisis correct only to the
coefficient of sin the subtree admittance. Thus, such a method underestimates the subtree impedance. Asaresult, the response

obtained isalower bound of the actual response, and the delay estimate is an upper bound on the actual delay. To compute the

3The three moments were also used to detect underdamping, determine the conditions of critical damping for series terminated transmission line nets, and
estimate the delay of the properly terminated line [KrGW95)].
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second moment exactly, the admittance of off-path subtrees must be calculated correctly up to the coefficient of s2. Thiswas
donein [KaMu95, KaMu96b, YuKu95b].

Based on the two-pole methodol ogy, Kahng and Muddu [KaMu96b] derived an analytical delay model for RLC intercon-
nects. Consider a source driving a distributed RLC line with total resistance R, total inductance L, and total capacitance Cy.
The source is modeled as a resistive and inductive impedance (Zy = Ry + S Lg). The load Ct at the end of the RLC lineis
modeled as a capecitive impedance (Zr = %). The transfer functionistruncated to be [KaMu96b]

1

H(s) ~ 1+ bys+ bys?’

(15)
where

R.C

b1 = RiICL+RGCr+ 5 +RCr,
C? C.C CL)? C.C L,.C
by RdRGL L_|_RdRL2L T—|—(RL24L) —|—R56L T—|—LdCL—|—LdCT+%+LLCT.

Thefirst and second moments m; and m, can be obtained fromb; and by, i.e.,, my = by andmp = b% — by. The authors separately

derivethe sink delay at the load Cy, denoted ty, from the two-pol e response depending on the sign of b% — 4b, [KaMu96h:

4mp—3
K, . Sty e vg‘z”‘% if b2 — 4b, > 0, i.e, red poles

tr = Ke- \7% if b2 — 4b, < 0, i.e,, complex poles
Ka- 5t if b2 — 4b, = 0, i.e., double poles

where K;, K¢, and Ky are functions of by and b, as described in [KaMu96b]. The model is further extended to consider RLC
interconnection trees [KaMu96b] and ramp input [KaMM96].

While the methods in [KaMu96b, KaMM96] used only the first two moments, Tutuianu, Dartu, and Pileggi [TuDP96] pro-
posed an explicit RC-circuit delay approximation based on thefirst three moments of the impul se response. The model usesthe
first three moments (my, my, and mg) to determine stable approximations of the first two dominant poles p; and p, of H(s). By
matching thefirst two moments of the actual transfer function, the two residues k, and k, can be obtained. The explicit approxi-
mation of the delay point isasingle Newton-Raphson iteration step, using thefirst order delay estimate (which can be expressed
in terms of the poles and residues) astheinitial guess. The reader is referred to [TuDP96] for the exact expressions of p1, po,

ki, ko, and the delay function.

2.2 Driver Delay Modéels

In interconnect-driven layout designs, gates/buffers need to be optimized according to the interconnect load. Moreover, the
design of agate/buffer also affects theinterconnect design and optimization considerably. It iscommon that each gate or buffer
hasaset of implementationswith varying driving capabilities. Theseimplementationsare normally characterized by input (gate)
capacitance, effectiveoutput (driver) resistance, denoted Ry, and internal delay, derived from either analytical formulasor circuit
simulation.

Inthefollowing, wecollectively refer to gates, buffersand even transistorsasdrivers. Givenaninput signal, we areinterested

in modeling the response waveform of a gate, buffer, or transistor at the output of the driver. We definethe fall time, denoted t ¢,
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Figure 3: A switch-level RC mode of (a) an n-transistor and (b) an inverter with equa pull-up and pull-down strength by ad-

justing the p- and n-transistor sizes d and dy, respectively.

as thetime for the response waveform to fall from 90% to 10% of its steady-state value. The delay time for the falling signal,
denoted tqs, is the time difference between input transition (50%) and the 50% output level. Similarly, we can define the rise
time, denoted t;, and the delay time for therising signal, denoted ty, . We use ty to denote delay timefor the signal if we do not
distinguish between rising and falling signal. In general, theinput has an input transitiontime, denotedt;, whichistheinput rise
or fal time.

Wefirst useatransistor toillustratethe simple switch-level RC model, where atransi stor ismodeled as an effective resistance
discharging or charging a capacitor [WeES93]. Figure 3(a) shows a simple switch-level RC modd of an n-transistor. Let the
minimum n-transistor resistance be R,. The gate capacitance and output diffusion capacitance of the minimum n-transistor are
denoted Cjj and Cf, respectively. We normalize the transistor size such that a minimum-size transistor has unit size.

In the simple switch-level RC model, for an n-transistor of sized > 1, its effective resistance Ry is R,/d. The capacitances
aredirectly proportional tothetransistor sizes, i.e, thegamecapacitanoeiscg -d and thediffusion capacitanceisCjj-d. Assuming
astep input, thefall time of the signa at the gate output is given by [WeES93]:
_ &

B d-Vop’

where k is typicaly in therange of 3 to 4 for values of Vpp in therange of 3 to 5, By, , is the gain factor for the minimum n-

tr=k- (16)

transistor, and C,_ isthe loading capacitance driven by the transistor. The delay time for thefalling signal can be approximated
to betys = t;/2 [WeES93]. Note that since the effective resistance Ry is proportiond to 1/Byin - d, we can simply approximate
tqs by the product of the effective transistor resistance and the loading capacitance C, . The above discussion can be applied to
ap-transistor by simply replacing the superscript n by p and thefall time by the rise time.

Aninverter consistsof an n-transistor and a p-transi stor, and can be model ed by the simple switch-level RC model as shown
in Figure 3(b). The output capacitance of the inverter is the sum of the diffusion capacitances due to the p- and n-transistors.
Similarly, the input gate capacitance of the inverter is the sum of the gate capacitances due to both transistors. It isa common
practice to size the p- and n-transistorsin theinverter to afixed ratio, called the p/n ratio. In thiscase, the size of an inverteris
defined to be the scaling factor with respect to the minimum-size inverter (with the fixed p/n ratio). Other CMOS gates can be
modeled similarly.

A shortcoming of the ssimple RC model isthat it cannot deal with the shape of theinput waveform. In practice, the effective
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resistance of a transistor depends on the waveform on itsinput. A sharp input transition allows the full driving power of the
driver to charge or discharge the load and therefore resultsin a smaller effective resistance of the driver. On the other hand, a
dow transitionresultsin alarger effective resistance of the driver. Hedenstiernaand Jeppson [HeJe87] consider input waveform
dlope and provide the following expression for the delay time of afalling signal:

t; Al
— (14240, 17
5 VDD) 17)

tar =t¢/2+
where t; is the input transition time (more specifically, the input rise time in this case) and V;j, is the threshold voltage of n-
transistor.

Intheslopemode (first proposed by Pillingand Skalnik [PiSk72]), aone-dimensional tablefor theeffective driver resistance
based on the concept of rise-timeratio is proposed by Ousterhout [Ou84]. The effective resistance of a driver depends on the
transition time of the input signal, the loading capacitance, and the size of the driver. In the ope model, the output load and
transistor size arefirst combined into asinglevauecalled theintrinsicrise-time of thedriver, whichistherise-timeat the output
if theinput is a step-function. The input rise-time of the driver isthen divided by the intrinsicrise-time of the driver to produce
therise-timeratio of thedriver. The effective resistanceis represented as a piece-wise linear function of therise-timeratio and
stored inaone-dimensional table. Given adriver, onefirst computesitsrise-timeratio and then calcul ates its effective resistance
Ry by interpolation according to its rise-time ratio from the one-dimensiona table. The driver rise-time delay is computed by
multiplying the effective resistance with the total capacitance. Similarly, we can have alook-up table for the fall-time ratio of
thedriver.

Another commonly used driver delay model pre-characterizes the driver delay of each type of gate/buffer in terms of the
input transition timet;, and the total load capacitance C_ in the following form of k-factor equations[WeES93, QiPP94]:

(ki+ko-C)-ti+ks-Ci+ky-CL+ks, (18)

(K + K -CL) -t + Ky -CZ+ Ky - CL+ K, (19)

tat

ts

where k;..5 and ki are determined based on detailed circuit smulation (e.g. using SPICE [Na75]) and linear regression or
least square fits. Similar k-factor equations can be obtained for the delay and rise time of the rising output transition.

More generally, alook-up table can be used to characterize the delay of each type of gate. A typical entry inthetable can be
of thefollowingform: {(tgs,t¢),t,CL}. Givenaninput transitiontimet; and an output | oading capacitance, thelook-up tablefor
a specific gate providesthe delay and rise/fall time. The tablelook-up approach can be very accurate, but it is costly to compute
and store amulti-dimensional table.

All thesedriver delay model suse the l oading capacitance for delay computation. Inthefirst order approximation, theloading
capacitance issimply computed as the total capacitance of the interconnect and the sinks (Figure4(a) and (b)). However, not al
the capacitance of the routing tree and the sinks are seen by the driver due to the shielding effect of the interconnect resistance,
especidly for fast logic gates with lower driver resistance. Qian, Pullela, and Pileggi [QiPP94] proposed the effective capac-
itance model which first uses a T=model [OBSa89] to be discussed next (Figure 4(c)) to better approximate the driving point
admittance at the root of the interconnect (or equivalently, the output of the driver), and then computeiteratively the “ effective
capacitance” seen by the driver, denoted Cet £, using the k-factor equations.

In[OBSa89], O'Brien and Savarino construct the T-=model 1oad of an interconnect using thefirst three momentsys, y, and
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Figure4: (a) Aninverter driving an RC interconnect. (b) The same inverter driving thetota capacitance of thenet in (a). (c) A
m-model of the driving point admittance for the net in (a). (d) The same inverter driving the effective capacitance of the net in

(8). Theinput signal has atransition time of t;.
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Figure5: An open-ended RLC lineto capture an RLC interconnect tree, and the RLC Ttmodel.

y3 of thedriving point admittance. The three moments of the driving point admittance are computed recursively in a bottom-up
fashion, starting from the leaf nodes of the interconnect. The 1-segment is characterized by C1, C, and R which are computed

as follows:

Ci=Y5/ys, Co=Yy1—(¥3/¥s), R=—(¥3/%3)- (20)

For an unbranched uniform distributed RC segment, C1, C; and Rare 5C_ /6, C /6 and 12R, /25, respectively, where C isthe
total capacitance of thelineand R, isthetotal resistance of theline. Simulationresultsshow that the responsewaveform obtained
using the Temodel isvery close to the response waveform of the actual interconnect at the gate output [OBSa89)].

Kahng and Muddu [KaMu964] further ssimplify the modeling of the interconnect tree. They equateit to an open-ended RLC
linewith resistance R, inductance L , and capacitance C, which are equal to the total interconnect resistance, inductance, and
capacitance, respectively as shown in Figure 5(b). It was in turn simplified to a =moded with C; = 5C, /6, C, = C./6, R=
12R /25, and L = 12L /25 (Figure 5(c)) by matching the first three moments of the driving point admittance of the RLC line.
It was shown that thissimpleopen-ended RLC rtmodel givesgate delay and rise/fall timewhich are within 25% of SPICE delays
[KaMu96a).

The Temodel s computed above are usually incompatible with the commonly used k-factor equations, the slope model, and
the table look-up method since these driver delay models assume a single loading capacitance. [QiPP94] proposed to compute
an “ effective capacitance” iteratively from the parameters R, C, and C, intheTemode (Figure4(c) and (d)) using the following
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expression:

R.-C R-Cq)2 =(tp—tx) —t
. 1 ( l) . eTRP T . (1_ emjzz) ’ (21)

Cett = C+Cy- |1

wheretp =ty +t/2andty = tp — t; /2, and tys andt; can both be obtained from the k-factor equationsin terms of the effective
capacitance and the input transitiont;. The iteration starts with using the total interconnect and sink capacitance as the loading
capacitance C_ to get an estimate of tp and ty through the k-factor equations. A better estimate of the effective capacitance is
computed using Egn. (21) and it isused as theloading capacitance for the next iteration of computation. The process stopswhen
the value of Cgf s does not change in two successive iterations.

[QiPP94] aso observes that the slow decaying tail portion of the response waveform is not accurately captured by the ef-
fective capacitance model. Thisis due to the CMOS gate behaving like aresistor to ground beyond some timepoint ts, and its
interaction with at-model load yielding avastly different response than the effective capacitance. Therefore, [QiPP94] usesthe
effective capacitance model to capturetheinitia delay and aresistance model (R-model) to capture the remaining portion of the
response. They calculate the effective driver resistance by [QiPP94] (Figure 6):

Cef 1 |n\,\$§) ’

wheretg isthe 80% point delay computed by the k-factor equationsand v(ts) can be estimated from the Cet + model. The com-

putation of ts is given in [QiPP94]. Then, the voltage response at the gate output after time ts can be expressed as a double
exponential approximation [QiPP4]:

Vo(t) = g P t1) g ePa(tts) (23)

where a1, 0y, p1, and p, can be obtained from Ry, the Temodel parameters (R, Cq, and Cy), and the initia conditions on the
T-model as described in [QiPP94]. Notethat the driver resistance Ry, together withty, andt, (or tys andt¢) computed by the k-
factor equations, and the RC interconnect, can be used to estimate the input transition time and delay for the sinksusing models
described in Section 2.1.

The model s described above are used mostly in the works on wiresizing optimization since an accurate estimate of thedriver
resistance preventsoversizing of thewirewidths. They arealso crucial intheworksthat consider sizing of drivers, together with

the optimization of the interconnect.

3 Topology Optimization for High Perfor mance I nter connect

In this section we address the problem of topology optimization for high performance interconnect. Two major design goals
must be considered for this problem: the minimization of total interconnect wire length, and the minimization of path length or
signal delay from a driver to one or severa timing-critical sinks.

Wire length minimization is of interest for the following reasons.

¢ When the wire resistance is negligible compared to the driver resistance, minimization of total wire capacitance (and

hence, net wire length) provides near optimal performance with respect to delay[ CoLZ93].
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Figure 6: Computethe effective resistance from the 50% and 90% points.

o Even when wire resistance is considered, the total wire capacitance till contributes a significant factor to interconnect

delay[CoLZ93].

¢ Interconnect wiring contributesto circuit area. Reduction of wire length reduces circuit area, lowering manufacturing

costs and increasing fabrication yield.

o Wire capacitance contributessignificantly to switching power. Reduction of wirelength also reduces power consumption

and the amount of energy to be dissipated.

From the discussion of delay modelsin the previous section, one can conclude that for interconnect topol ogy optimization,
of major concern are the total wire length and the resistance of the paths from the driver to the critical sinks. Therefore, high
performance interconnect topologies must strike a balance between path length and tree length optimization.

Wewill first address the minimization of interconnect treelength, aproblemwhich has been widely studied by boththe VL SI
design community and by researchers in many other areas of computer science. While these methods do not explicitly address
delay concerns, they form the foundations of many algorithmsfor delay optimization.

We next consider the optimization of interconnect topologies for critical netsin cases where the interconnect resistance is
not negligible. In general, we areinterested in reducing the path length or resistance from the source to the timing critical sinks,
whileavoidingalarge penaty inthetotal treelength. Wefirst survey workswhich provide“geometrical” approachestotopol ogy
congtruction, addressing the problem of path length minimization from a source to critical sinks. We then consider methods
designed for the“physical” model, inwhich VLSI fabrication parameters and physical delay model sinfluencethenet topol ogies.

Many of the early problems and a gorithms on interconnect topol ogy optimization surveyed in this section are discussed in
depth in [KaR094], which is highly recommended to the reader who isinterested to know more details of the results presented

here.

17



3.1 Topology Optimization for Total Wirelength Minimization

A problem central to any area of interconnect optimization is the minimization of the wirelength of a net. Research on the
construction of Minimum Spanning Trees (MST) and Steiner Minimal Trees (SMT) is directly applicable to problemsin VLSI
interconnect design. Note that we use the abbreviation SMT for Steiner Minimal Trees to avoid ambiguity with the abbreviation
MST.

3.1.1 Minimum Spanning Trees

The MST probleminvolvesfinding aset of edges E which connect a given set of points P with minimum total cost. Two classic
algorithms solve this problem optimally. Kruska'’s algorithm[Kr56] begins with aforest of trees (the singleton vertices), and
iteratively adds the lowest cost edge which connects two trees in the current forest (forming a new tree), until only a single
tree which connects al pointsin P remains. Prim’s algorithm[Pr57] starts with an arbitrary node as the root of a partia tree,
and grows the partia tree by iteratively adding an unconnected vertex to it using the lowest cost edge, until no unconnected
vertex remains. Both algorithms construct MSTswith the minimum total cost. For aproblem with n vertices, we can construct a
Voronoi diagram[LeWo80] to constrain the number of edgesto be considered by thetwo a gorithmsto belinear with n. Withthis
constraint on the number of edges, both a gorithms can be made to run in O(nlogn) time. Naive implementations have slightly

higher complexity. We use MST(P) to denote the minimum spanning tree of point set P.

3.1.2 Conventional Steiner Tree Algorithms

MST constructions are restricted to direct connections between the pins of a net, which is not necessary in VLS design. Inter-
connect topology constructionisin fact arectilinear Steiner tree problem, which has been studied extensively outsidethe VLSI
design community, and goeswel | beyond the scope of thispaper. Wewill discusssevera typical and commonly used algorithms
here, and recommend a more detailed survey by Hwang and RichardsfHwWRIi92] to the interested reader.

The Steiner problem is defined as follows: Given aset P of n points, find a set Sof Seiner pointssuch that MST(PJ S) has
the minimum cost. For interconnect optimization problems, the set P consists of the pins of anet. Note that the inclusion of
additional pointsto the spanning tree can reduce the total tree length.

Whilethe MST problem can be solved optimally in polynomial time, construction of a SMT isNP-hard for graphs, and for
both rectilinear and Euclidean distance metricg Galo79]. We shall present several effective SMT heuristics for the rectilinear
distance metric, which ismost relevant to VLSI interconnect design.

Clearly the set of potential Steiner pointsisinfinite. For the rectilinear metric, however, Hanan[Ha66] showed that the set
of Steiner pointswhich need to be considered in the construction of a SMT can be limited to the “Hanan grid,” formed by the
intersections of vertica and horizonta lines through the vertices of the initia point set. Given this observation, optimal SMT
algorithmswhi ch utilize branch-and-bound techni ques can be constructed, but these al gorithmshave exponential complexity and
are applicableto only small problems. Giventhat construction of an optimal SMT isNP-hard, itisnatural to look for heuristics.
Aninteresting result, dueto Hwang[Hw76], isthat theratio of tree lengthsbetween arectilinear MST and arectilinear SMT isno
worse than % The bounded performance of MST constructions has made the Prim and Kruskal algorithms popular as the basis

of Steiner tree heuristics. We choose to present three genera heuristic approaches which are effective and commonly used for
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SMT construction. One approach uses “edge merges,” a second involvesiterative Steiner point insertion, and a third involves
iterative edge insertion and cycle removal.

Many Steiner tree heuristicsfollow the general approach of improving an initial Minimum Spanning Tree by a series of edge
merges. For apair of adjacent edges in a spanning tree, there is the possibility that by merging portions of the two edges, tree
length can be reduced. An example of thisisshownin Figure7. There may be morethan oneway inwhich edges can be merged;

the selection of edges and the order of their merging isa centra concern of many Steiner tree heuristics.

Figure 7: A conventiona spanning tree improvement through the merging of edges.

The best known exampl e of thisapproach isthat of Ho, Vijayan, and Wong[HoVW90]. They first compute a separable MST
in which no pair of non-adjacent edges have overlapping bounding boxes. They showed that for any point set P, there exists
a separable MST on P. Given a separable MST, their method constructs the optimal length SMT that can be achieved by edge
merging. Examples of non-separable and separable MSTs are shown in Figure 8.

[]

Figure8: Non-separableand separable MSTs. In thefirst exampl e, the bounding boxes of non-adjacent edges e; and e, intersect.
The second example shows a separable MST for the same point set.

A separable MST can be computed through avariant of Prim’salgorithm. Thethree-tuple (d(i, j), — | yi —Y; |, —max(x;, X;))
isused to weight each edge for MST construction. Since the edge weights are compared under the lexicographic order, thetotal
cost of a separable MST will be equal to that of an ordinary MST.

Given aseparable MST, the authorsthen find the optimal orientation of edgesto maximize theamount of overlap obtained by
edge merging (minimizing thetotal tree cost of the derived Steiner tree). Marking an arbitrary leaf node as theroot, arecursive
process is used to determine the orientation of edgesin each subtree, from bottom to top. At any level, only a constant number
of possihilitiesneed be considered, resulting in alinear time agorithm. The algorithm obtains an improvement of roughly 9%

over MST tree cost on average.
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Whileimprovement of an MST through edge merging can be effective at minimizingtreelength onaverage, thereexist patho-
logical cases in which merge-based Steiner heuristics can exhibit the worst case performancel KaRo92]. In Figure 9, one such
case is shown. For thispoint set, the tree constructed by any MST agorithmis unique. Traditiona merge-based heuristics have
relatively littlegain, as only the three leftmost edges will be able to merge. The optimal Steiner tree, however, has significantly

lower wirelength. The ratio of tree lengths of a merge-based heuristic and an optimal Steiner tree can be arbitrarily close to the

3
5 bound.
A difficult problem for merge-based An initial Minimum Spanning Tree
Steiner heuristics.
o a o 0 u |
a o o o 0 0 u |
o o o 0 =]
Best merge-based improvement of the The optimal Steiner tree solution.
spanning tree.
0 u |
0 u |
0 u |

Figure9: A pathological case for conventiona merge-based Steiner tree heuristics. The minimum spanning tree for the vertices

isunique, resulting in limited improvement through edge merging.

In [GePa87], Georgakopoulos and Papadimitriou considered the 1-Seiner problem, which is to find a point s such that
IMST(P)| - [IMST(PUs)| ismaximized. The point sisknown as a“ 1-Steiner point.” The authors presented an O(n?) method to
determine this point for the Euclidean plane. Kahng and Robing KaR092] adapted thisresult for the rectilinear metric, and pre-
sented the Iterated 1-Steiner heuristic. Thisalgorithm represents our second heuristic class, and constructsa Steiner treethrough
iterative point insertion. At each step, a 1-Steiner point is added to the point set, until no Steiner point can be found to reduce
the MST length. The agorithmis explained in Figure 10. The same method was proposed for genera graphs earlier[Mi90].

Initial Minimum First inserted Second inserted
Spanning Tree Steiner point Steiner point

73,5

Figure10: A 1-Seiner construction. Startingfrom an initial minimum spanning tree, asingle Steiner pointisinsertediteratively,

until no further improvement can be found.
The 1-Seiner algorithm has very good performance in terms of wirelength minimization; on random point sets, the trees
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generated by this agorithm are 11% shorter than MSTs on average. The best possible possible improvement is conjectured to
be roughly 12% on average[ Be88], so the 1-Seiner algorithm is considered to be very close to optimal. While this algorithm
congtructs trees which are close to optimal in terms of length, it suffers from relatively high complexity. A sophisticated im-
plementation is O(n), while anaive approach may be O(n®); this may make it impractical for problemswith large numbers of
vertices.

The third approach we discuss is an MST based heuristic by Borah, Owen, and Irwin[BoOI94]. It produces resultsthat are
comparable to the 1-Steiner algorithm, but with a complexity of only O(n?). Rather than optimizing a MST by merging edges,
their method improves an initial MST by finding the shortest edge between a vertex and any point along an MST edge. If the
edge is inserted, a cycle is generated; remova of the longest edge on this cycle may result in a net decrease in tree length.
The algorithm operates in a series of passes. For each vertex, the shortest connection to an existing edge is determined, and
the improvement of inserting the connection and then breaking the cycle is determined. In one pass, candidate modifications
for all nodes are determined, and then are implemented (if possible) according to the decreasing order of their gains. After all
modifications have been made, the algorithm makes another pass, until no gain can be found. This algorithmis explained in

Figure11.

Initial spanning tree

Inserted edge \

Edges of cycle After removal of
the longest cycle

\v\ edge

X

Longest edge
on cycle

Figure11: A Steiner heuristicwhich insertsaredundant edge between anodeand atree edge. For each node, the nearest location
on a non-adjacent edge is determined, and the gain obtained by insertion of a new edge, and removal of a redundant edge, is

determined.

As there are O(n) vertices and edges, determination of the shortest distance from any edge to a vertex is no worse than
O(n). For each candidate edge, the most costly edge on the generated |oop can be determined with alinear-time search. Thus,
determination of candidate modificationsis no worse than O(n?). The number of passes required is generaly very small, with
cases where more than four passes are required being rare. The authors noted that the algorithm complexity can be improved to

O(nlogn) through the use of more complex data structures and algorithms.
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3.2 Topology Optimization for Path Length Minimization

If we wish to reduce the delay from anet driver to acritical sink, and the interconnect resi stance between the two is significant,
an obvious approach is to reduce this resistance. Assuming uniform wire width, constraining path lengths between source and
sink clearly realizes thisgoal.

In this subsection, we discuss approaches to delay minimization through the“ geometric” objective of path length reduction

or minimization.

3.21 TreeCogt/Path Length Tradeoffs

Cohoon and Randal[ CoRa91] presented an early work which addressed the problem of constructing interconnect trees for the
VLS| domain, considering path length while not requiring shortest paths. Their heuristic method attempts to construct a Max-
imum Performance Tree (MPT), defined as a tree which has minimum total length among trees with optimized source-to-sink
path lengths. Their method consists of three basic steps: trunk generation, net completion, and tree improvement.

In their study, the authors observed that trees which had relatively low path lengths usually had “trunks,” monotonic paths
from the source to distant sinks. Other sink vertices generally were connected to atrunk at a nearby location. Trunk generation
consists of constructing paths from the source to the most distant sinks. Five methods of trunk generation were studied. Four
involvetheinsertion of an S-shaped three segment monotoni ¢ path fromthe sourceto adistant sink. The middle segment location
is determined by finding either the mean or median of the point set. The fifth method constructs trunks by building a rectilinear
shortest path tree on the graph, and then keeping the paths derived for the most distant sinks as the basis of the MPT.

Net completioninvolvesthe attachment of the remaining sink verticesto thetrunksthat have been formed. The authorsuse
three techniques: arectilinear MST (RMST) agorithm, a rectilinear Shortest Path Tree (RSPT) algorithm, and a hybrid of the
two. The hybrid works as follows: if the RMST connection of a sink does not result in a path length greater than the radius of
the net, the connection is used; otherwise, an RSPT connection is used. For each connection, the edge routing which resultsin
the maximum overlap with the existing treeis selected, and the edges are merged.

Tree improvement involves a series of edge merges (similar to the merge-based Steiner tree heuristics of [HoVW90], de-
scribed in Section 3.1.2) and edge insertions and deletions. The operations are performed such that the path length from the
source to the most distant sink is not increased, and this phase terminates at thelocal optimum. In experiments with a variety of
point sets, the authors observed that their heuristic produced an average of 25% reductionsin path length with increases of 6%
in wire length, when compared to the Steiner tree heuristic of [HoVW90].

While the MPT algorithm provides a measure of control over the tradeoff between path length and tree length, a number of
authors have attempted to refine this control. Some algorithms are able to bound the maximum tree length, the maximum path
length, or both, with constant factors.

In[CoKR91b], Cong et a. proposed an extension of Prim’s MST a gorithm known as Bounded Prim (BPRIM). This ago-
rithm boundsradius by using ashortest path connection for asink when the MST edge normally selected would resultin aradius
in excess of aspecified performance bound. While BPRIM producestreeswithlow average wirelength and bounded path length,
pathological cases exist where the tree cost is not bounded.

In order to compute a spanning tree with bounded radius and bounded cost, Cong et al.[ COKR92] extended the shallow-light
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tree construction by Awerbuch, Baratz, and Peleg [AwBP90], which was originally designed for communications protocols. The
algorithm of [ AwBP90] constructs spanning trees which have bounded performance for both total treelength and al so maximum
diameter. This class of constructions are known as shallow-light trees. Total tree length for their algorithmisat most (2+ %)
times that of a minimum spanning tree, whilethe diameter is at most (1+ 2¢) times that of the diameter of the pointset. The €
parameter may be adjusted freely, allowing a preference for either tree length or diameter.

The Bounded Radius Bounded Cost (BRBC) spanning tree of [CoKR92] uses the shallow-light approach, and works as fol -

lows.

1. Construct an MST Ty and an SPT Ts for the graph.
2. Perform adepth-first traversal of Ty. Thistraversa defines atour of the tree, and each edgeistraversed exactly twice.

3. Construct a“line-version” L of Ty, which isa path graph containing the verticesin the order that they were visited during

depth-first traversal. Note that each vertex appearstwice in L, and that the cost of L isat most twice thetotal cost of Ty.

4. Congtruct agraph Q by traversing L. A running total of the distance in Q from the source is maintained; if the distance
exceeds 1 + € timesthe radius, a shortest path from sy to the current vertex isinserted.

5. Construct ashortest pathtree T in Q.

The resulting tree has length no greater than 1+ % timesthat of a minimum spanning tree, and radius no greater than 1+ ¢
times that of a shortest path tree. An example of tree construction using the BRBC method is shown in Figure 12. Khuller,
Raghavachari, and Young[KhRY 93] devel oped a method similar to BRBC contemporaneously.

Alpert et a.[AIHK93] proposed AHHK trees as adirect trade-off between Prim’sMST agorithm and Dijkstra’ sshortest path
tree algorithm. They utilizea parameter 0 < ¢ < 1to adjust the preference between tree length and path length. Their agorithm
iteratively adds an edge epq between verticespe T and g ¢ T, where p and g minimize (¢ dr(So, p)) +d(p, q).

The authors showed that their AHHK tree has radius no worsethan ¢ timestheradius of a shortest path tree. For pathological
cases in general graphs, their tree may have unbounded cost with respect to a minimum spanning tree. They conjectured that
the cost ratio may be bounded when the problem is embedded in arectilinear plane.

Most of the algorithms presented in this subsection so far are focused on bounded radius spanning tree construction, and
do take advantage of Steiner point generation. In [LiCW93], Lim, Cheng, and Wu proposed Performance Oriented Rectilinear
Seiner Trees for the interconnect optimization problem. Their heuristic method attempts to minimize total tree length while
satisfying distance constraints between the net driver and various sink nodes.

Their method utilizesa*“ Performance Oriented Spanning Tree” a gorithm repeatedly during Steiner tree construction. Span-
ning tree construction proceedsin amanner similar to that of BPRIM, with edge sel ection being based on finding the lowest cost
edge which does not violate a distance bound by itsinclusion. Note that the constructed tree is not necessarily planar, and can
have cost higher than that of an MST. The Steiner variant of their algorithm proceeds as follows. Beginning with the driver as
theroot of apartial tree, the Steiner tree growsby a single Hanan grid edge from the partial treetowardsasink node. Asthetree
grows, certain edges may be required for inclusion (to meet path length bounds); these edges are inserted automatically. If there
are no edges that must be included, their heuristic assigns weightsto edges of the Hanan grid, and sel ects the edge with highest
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The "line" graph L, constructed
by a depth first tour of the graph.

An initial spanning tree.

Additional edges inserted to The shortest path tree based
ensure radius bound. on the depth first tour and inserted
--tT edges.

Figure 12: A Bounded-Radius Bounded-Cost construction.

weight. Edge weighting is done by maintaining a score for grid edges and grid points, based on the number of Performance
Oriented Spanning Tree edges which may contain the Hanan grid edge. An example of their Steiner tree construction method

isshown in Figure 13.

3.2.2 Arboresences

At the extreme of path length minimization objectives are constructions which provide shortest paths from the source to sink
nodes. While this clearly minimizes path resistances, we also want to minimize the tota tree capacitance. Cong, Leung, and
Zhou[CoL Z93] showed that a minimum-cost shortest path tree is very useful for delay minimization. Given aroutingtree T,
they decomposed the upper bound signal delay tp at any nodein T under the Rubinstein, Penfield, and Horowitz[ RuPH83] model

asfollows (see Eqgn. (2)):

tp = tl(T) + tz(T) + t3(T) + t4(T)7 (24)
where
t(T) = Rq-c[T|, (25)
B(T) = 1 Zk cs - 1d(s0. )1, (26)
all sinks s¢
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Figure13: Performance Optimized Minumum Rectilinear Steiner Tree construction. At each step, afew of the Hanan grid edges
are candidatesfor inclusion. Insomeinstances, theincluded edge can isdetermined by path|ength constraints; in other instances,

the edge is selected based on a heuristic weighting.

t3(T) = r~c~zr|dT(so,v)|, (27)
ve

W) = Ry S (28)

all sinks s¢

c denotesthe unit length capacitance. Thefirst termt(T) isminimized when |T| isminimized, corresponding to aminimum
wirelength solution. The second termto(T) is minimized by a shortest path tree. The thirdts(T) term isthe sum of pathlengths
from the source to every node in the tree (including non-sink nodes), which is affected by both the path length and total tree
length. The fourth term isa constant. This analysis shows the importance of constructing a minimum-cost shortest path tree.

For a shortest paths spanning tree construction, the classical method by Dijkstra can be used to construct a shortest paths
tree (SPT) in a graph[Di59], in which every vertex is connected to the root (or source) by a shortest path. While the origina
algorithm only ensures that al paths are shortest paths, it can be easily modified to construct the minimum cost shortest path
tree.

For a shortest paths Steiner tree construction, Rao et a.[RaSH92] posed the following problem for the rectilinear metric:
Given a set of vertices V in the first quadrant, find the shortest directed tree rooted at the origin, containing al verticesinV,
with all edges directed towards the origin. Such a tree is known as an arboresence, and clearly results in shortest paths from
the root to every vertex. The authors of [RaSH92] were concerned with the construction of Rectilinear Minimum Spanning
Arboresences (RMSA) and Rectilinear Seiner Minimal Arboresences (RSMA), for total wire length minimization in both cases.
First, they showed that a % performance bound between an RMST and an RSMT does not hold for arboresences. Instead, they
have % = Q(n/logn) asatight bound, indicating that as the size of the problem grows, the length of aspanning arboresence
grows faster than the length of a Steiner arboresence. For large problems, the length of a spanning tree solution may be much
larger than that of the Steiner solution.

Next, they presented asimple heuristic for the RSMA construction problem. Let min(p, q) denote the point at (min(Xp, Xq),
min(Yp, Yq)), which is called the merging point of p and g. Their heuristic algorithm constructs an arboresence H iteratively by
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connecting apair of vertices p and ¢ tomin(p,q). The pair p and g are chosen to maximize the distance between min(p, q) and
theroot, i.e, the pair with the merging point furthest from theroot are selected first. An example of tree construction using this

heuristic is shown in Figure 14.

Initial problem
a a T
a a
o o Oo—0a Oo—0a
u] a a
| | |
1 2
u]
| |
3 4 5

Figure 14: The H heuristic, applied to a single quadrant problem.

Despiteits simplicity, the algorithm provides an interesting bound on total tree length: |T| < 2 x |RSMA|, i.e,, thelength of
atree generated by the heuristicis no worse than twice the optimal Steiner arboresence length.

When the problem is not restricted to one quadrant, the heuristic can be applied in the following manner. If we assume the
root to be located at the origin, we can restrict the tree to contain the x-axisin therange fromato b, a < 0 < b. Similarly, we
can restrict the tree to the y-axis for values ¢ < 0 < d. By considering the single quadrant solutions given various values of a,
b, ¢, and d, and then finding the best performing combination, their heuristic constructs a tree in O(n®logn) time.

In [CoLZ93], Cong, Leung, and Zhou aso addressed the construction of rectilinear Steiner arboresences, and presented
the A-Tree algorithm. The A-tree agorithm constructs trees by starting with a forest of points (the source and al sinks), and
then iteratively merges subtrees until all components are connected. In addition to the merging operation used in [RaSH92],
the authors of [CoLZ93] identify three types of “safe moves’ for optima merging at each step. In other words, the safe merge
moves preserve the tree length optimality during the construction process; if only safe moves are applied, the resulting tree
will have optimal length. The A-Tree algorithm applies safe moves whenever possible. On average, it was shown that 94% of
merge moves were optimal, and the trees constructed by the A-Tree algorithm were within 4% of the optimal arboresence length.
In experiments on random nets under the 0.51 CMOS I C technology, the A-Tree constructions produced delay improvements
approaching 20% over 1-Seiner [KaR092] constructions.

3.23 Multiple Source Routing

The existence of multiplesource nets, such as signal busses, complicatesinterconnect topol ogy construction, as atopol ogy which
provides good performance for one source may perform poorly for another. An example of such an instance is shown in Fig-
ure 15. A method proposed by Cong and Madden[CoMa95] constructs interconnect topol ogies which limit the maximum path

length between any pair of pinsto thediameter of the net, whileusing minimal total wirelength. Their Minimum-Cost Minimum
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Diameter A-Tree (MCMD A-Tree) agorithm consists of three main steps: determination of the net diameter, identification of a

feasibleregion for the root of a minimum diameter tree, and construction of ashortest-path tree rooted at the sel ected root point.

READ RITE

Tri-state gate
input

enableg*

output

Figure 15: A multisource routing problem. When each vertex may act as either a driver or as a sink, diameter minimization

(rather than radius minimization) may be the preferred goal.

For the Euclidean metric, Ho et al.[HLCW89] presented a method to construct a minimum diameter tree. They determine
the smallest enclosing circlefor the point set, and then construct a shortest path tree from the center of thiscircle. The method of
[CoM&a95] followsasimilar approach. For therectilinear metric, determination of the equivalent of the smallest enclosing circle
issimple. A tiltedrectangular region (TRR) isdefined to bearectanglewith sideshaving slopesof +1. Therectilinear equivalent
of thesmallest Euclidean circle, asmallest tilted square (STS) can be constructed from thesmallest TRR enclosing the points. The
STShas diameter equal to that of the point set, with pointss; and s; on opposing sides having distance d(s;, s;) = diameter(P).
For apoint c at the center of an STS, we have d(c,s) < % for any 5 inthe net. By constructing a shortest-path tree rooted &t c,
any path from s; to s; will clearly have length no greater than D.

It was noted in [CoMa95] that the feasible position for the root ¢ of a minimum diameter rectilinear treeis not unique, and
that the constraint d(c, s) < % isoverly restrictive. Infact, the Feasible Region (FR) of theroot position of aminimum diameter
rectilinear tree can be characterized by the set {c|d(s;, c) +d(c,sj) < D, Vs, sj € P}. For each pair of pinss; and s;, the equation
d(s,c)+d(c,sj) < D defines an octilinear elipse (OE). The intersection of the OEs for al pairs defines the FR for the point
set. Figure 16 showsthe octilinear elipses for a set of points, and their intersection which resultsin the FR. Straight forward
computation of the FR takes O(n?) time by intersecting O(n?) OEs; alinear time method to construct the FR was presented in
[CoMa95h).

The authorsuse the A-Tree algorithm[CoL Z93] to construct a shortest path tree T from aroot point withinthe FR to the pins
of thenet. Asdr(c,5) = d(c,s) inthe A-Tree, and ¢ satisfies d(s;,c) + d(c,sj) < D, clearly dr(s;,c) + dr(c,sj) < D for al
pairss and s;. While any point within the FR provides a feasible root point for a minimum diameter construction, some root
pointsresult in lower wire length solutions. An exampleis shownin Figure 17. The root pointsconsidered are restricted to the
corner points of the FR, the intersections of Hanan grid lines with the FR, and Hanan grid points contained by the FR. In the
worst case, there may be O(n?) candidate root points for a problem with n pins.

The authors used the Elmore delay model to sel ect thetree with best performance among the A-Trees rooted at candidate dif-
ferent positionsinthe FR; HSPI CE simulation showed that on random netsunder the 0.5u CM OS|I C technol ogy, their MCMD A-
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Figure 16: The feasible region for the root of a minimum diameter tree. Each pair of points constrains the root to an area (an
octilinear elipse) on the plane. The intersection of these octilinear ellipses gives the set of pointsthat can serve as the root of

thetree.

,,,,,,,,,

Cenl rqtmeSTS

Maximum diameter of 12, tree length Maximum diameter of 12, tree length
of 18. of 17.

Figure 17: The length of a minimum diameter may be reduced by the selection of an appropriate root location. The center of

the smallest enclosing rectilinear circleis not necessarily the best root point.

Tree constructionsshowed an average of 11.4% reductionsin themaximum interconnect del ay when compared to 1-Steiner[KaR092]

tree constructions. Industrial examples showed as much as a 16% delay reduction.

3.3 Topology Optimization for Delay Minimization

Whiledelay was an implied objectivein the two previous subsections, the methods discussed there used geometric measures for
optimization. Geometric objectivesarein general moretractable than physical delay models, but can be inaccurate measures for
signal delay. In this subsection, we discuss a number of methods which employ more accurate physical delay models to guide
optimization.

Prasitjutrakul and Kubitz [PrKu90] presented an early method as part of their timing-driven global router. Asthis method
wasapart of their global router, they utilized globa delay constraintsin their optimization. Individua sink pinshad uniquede ay
requirements, resultingin differing required arrival timesfor signals (and differingslack values). Their approach for interconnect

topol ogy construction was to iteratively add an unconnected sink to a partia tree, using a path that would maximize the slacks
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of al sinksalready connected, and the target sink. The target sink was selected to minimize the distance between the sink and
the partial tree. The agorithm uses the A* search technique, with delay cal cul ated by a method described in [Sa83].

In [HOXK93], Hong et a. propose two tree construction methods. The first, called the Iterative Dreyfus-Wagner (IDW)
Seiner tree algorithm. This method modifies the optimal Steiner tree construction method of Dreyfus and Wagner [DrwWar72]
to utilizeaphysica delay model from [Sa83]. Through successive runs of the Dreyfus-Wagner method, three termswhich cap-
ture resistance, capacitance, and their product, are adjusted iteratively; the convergence of these terms produces the optimum
solution.

A second approach in [HoXK 93] isbased on aconstructiveforce directed method. This method beginswith aninitial forest
of points, computes the “weighted medium point” for each vertex, and then grows the smallest weighted subtree. This pro-
cess isiterated until all vertices are connected. The weighted medium point, subtree weights, and direction of growth, are al
heuristically determined.

In [ZhTG93], Zhou, Tsui, and Gao presented a heuristic method to construct routing trees based on their analysis using a
2-pole RLC delay model. Their model has been described in Section 2.1. The authorswere concerned with minimizing signal
delay using an accurate model, and with obtaining signal waveforms which did not exceed target voltages by a wide margin.
Their tree construction method adds sink nodes one by one, in amanner somewhat similar to Prim MST agorithm. Rather than
constructing a spanning tree, their a gorithm connects nodes to vertices or Steiner points that could be contained by the partial
tree. Their algorithm utilizes a 2-pole simulator to evauate signa delay and waveform integrity at each step.

In [BoKR93], Boese, Kahng, and Robins define the Critical-Snk Routing Tree (CSRT) Problem as. Given signal net N,
congtruct T(N) which minimizes § a; +t(s). This formulation alows for the weighting of individua sinks to account for the
varying importance of specific delay paths. They utilize the ElImore delay model for their optimization.

Two methods for this problem were proposed, one for the construction of spanning trees, and the other for the construction
of Steiner trees.

Their EImore Routing Tree (ERT) a gorithm constructs a spanning tree over the pinsby iteratively adding edges, in amethod
similar to Prim’s MST algorithm. In each step, verticesp e T and q ¢ T are selected, such that the addition of an edge from p
to q minimizes the maximum Elmore delay to al sinksin the new tree. The ERT algorithm was generdized to allow Steiner
points, resulting in the Seiner EImore Routing Tree (SERT) agorithm. At each step, the edge sel ected was allowed to connect
to any vertex or to any Steiner point that could be contained by the partial tree. The complexity of thisagorithmis O(n#). If
only asinglesink iscritical, the algorithm is known as SERT-C.

The authors used random point sets and 0.8y CMOS IC design parameters to evaluate the performance of their SERT al-
gorithm. On average, improvements of 21% in delay over 1-Seiner[KaRo92] constructionswere obtained. When compared to
the AHHK[AIHK 93] agorithm (described in Section 3.2.1, delay improvements of 10% were obtained.

The basic SERT method was extended to utilize branch-and-bound optimization, resulting in the Branch-and-Bound Steiner
Optimal Routing Tree (BB-SORT) agorithm[BoKM94]. Tree construction is restricted to the Hanan grid, making the problem
tractable. This approach has exponentia time complexity, but pruning of the search space makes its application feasible for
small problem sizes.

For any weighted linear combination of sink delays, BB-SORT-C was shown to construct an optimal tree. For minimizing

the maximum sink delay, however, it was shown that the optimal tree may not fall on the Hanan grid[BoKM94], which prevents
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the BB-SORT-C algorithm from finding the optimal solution.

Experiments showed that the delays of SERT constructionswere very closeto those of BB-SORT constructions. For random
problemswith 9 points, using 0.54 CMOS I C parameters, the SERT delayswere only 3.9% above those of BB-SORT[BoKM 94].
In[BoKM95], it was also shown that the trees constructed using the Elmore delay model as an objective provided good perfor-
mance under SPICE simulation. The authorsenumerated all possibletopologiesfor small nets, and ranked them by delay using
the Elmore delay model and SPICE; they found that the rankings were nearly identical, indicating that Elmore delay is ahigh
fidelity objective for interconnect topol ogy construction.

In [ViMa94], Vitta and Marek-Sadowska presented an algorithm which constructs interconnect topologies that are com-
petitive in terms of delay with the SERT and BB-SORT methods described above, but with a complexity of only O(n?). Their
approach is through the construction of Alphabetic Trees (which are abstract topologies).

The Alphabetic Tree problem is defined as. given an ordered set of weights, find abinary tree such that the weighted sum of
path lengths from the root to the leaves is minimum among all such trees, and the left to right order of the leavesinthetreeis
maintained. The weightsare associated with sinks of the net, while edges are of unit length (asthe treeis an abstract topol ogy).
An example of an Alphabetic tree is shown in Figure 18.

The construction in [ViMa94] uses the circular ordering with respect to the driver to order the sinks, and uses the sink ca-
pacitance as the weight fore each sink. The authorsfirst construct the Alphabetic Tree as an abstract topology. They then merge
subtrees of the abstract topology in a similar way to the heuristic of [RaSH92], described in Section 3.2.2. Afterwards, a post-

processing procedureis applied to perform heuristic local optimization to further minimize the delay.

14 4 3 2 4

Figure 18: An example of Alphabetic Tree. The optimum lengthis 14+ 3 (44 3+ 2+ 4) = 53.

Recently, Lilliset al.[LiCL96b] addressed performance driven interconnect topology problem through the construction of
Permutation-constrained Routing Trees or P-Trees. Their algorithm first constructs a MST for the point set, and then derives
its abstract topology. Rather than considering the node weights and path lengths from the root, as is done in [ViMa94], the
authors consider the tour length of traversing from sink to sink, using an ordering of the sinksthat is consistent with the abstract
topol ogy. Using dynamic programming methods, their P-Tree algorithm findsthe optimal permutation of sinksto minimizetour

length, while maintaining consistency with the abstract topology. Given an abstract topology and an ordering of sink nodes, the
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algorithm can then find the optimal embedding of the topol ogy into the Hanan grid (through a dynamic programming approach
which considers possiblelocationsfor theinternal nodes of the abstract topology). Solutionsare chosen to optimize the Elmore
delay of the topology.

In dl of the works mentioned earlier in this section, we have been interested in the construction of routing trees, and have
not allowed multiple connections between pairs of hodes.

Recent work, however, has considered therel ative merits of non-treeroutings. Xue and Kuh[XuKu95a XuKu95b] have sug-
gested “multi-link insertion” as a method to reduce the resistance between a driver and critical sinksinatree. In some respects,
thiscan be considered as a generalization on the variable wirewidth formul ationswhich are detailed in a subsequent section. At
the heart of thisapproach isthe observation that additional paths from a driver to asink may substantially reduce the effective
interconnect resistance, with anominal penalty to total interconnect length. Multiple paths between source and sink complicate
the delay analysis of an interconnect topology, and have higher interconnect length than tree constructions. At present, the use

of non-treeinterconnect topologiesis not wide spread.

4 Wireand Device Sizing

Both device sizing and interconnect sizing can be used to reduce the delay. A larger driver/gate at the source of an interconnect
tree hasastronger driving capability (or equivalently, smaller effective driver resistance), reducing the delay of thisinterconnect.
But alarger driver/gatea so means aheavier load (larger sink capacitance) to the previous stage and thusincreasesitsdelay. The
device sizing problemisto determinetheoptimal size of each driver/gateto minimizethe overall delay; thishas been extensively
studiedinthepast. Interconnect sizing, often called wire-sizing, on the other hand, wasinvestigated only recently. If thewidth of
awireisincreased, the resistance of the wire will go down, which may reduce the interconnect delay, but the capacitance of the
wire will go up, which may increase the interconnect delay. The wire-sizing problem isto determine the optimal wire width for
each wire segment to minimizetheinterconnect delay. When theinterconnect resi stance can be neglected asintheearly days, the
interconnect can be modeled asalumped capacitor. Inthiscase, theminimumwirewidthispreferred for delay minimizationand
only devicesizingisnecessary. But in the current deep submicron technol ogy where theinterconnect resi stance can no longer be
neglected, both device and wire sizing are needed to reduce the interconnect delay. Techniques for both device and wire sizing
for delay minimization will be surveyed in thissection. Sections 4.1 and 4.2 will present works on device sizing only and wire
sizing only, respectively. Section 4.3 will focus on simultaneous device and wire sizing works, and Section 4.4 on simultaneous
topology construction and sizing works. Because this survey deals mainly with interconnect design and optimization, more

emphasis will be given on wire-sizing and simultaneous device and wire sizing.

4.1 Device Sizing

The device sizing problem is equivalent to determining the transistor channel widthin CMOS logic since the transistor channel

length isusudly fixed to the minimum feature size. The following device sizing techniques are commonly used.

e Driver sizing: A chain of cascaded driversis usually used at the source of an interconnect tree for heavy capacitive load.

The driver sizing problem isto determine both the number of driver stages and the size for each driver.
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e Transistor or gatesizing: Thetransistor sizing problemisto determinetheoptimal width, either continuousor discrete, for
each transistor to optimizethe overal circuit performance. Similarly, the gate sizing problemincludes both the continuous
and the discrete gate sizing problems. The continuous gate sizing problem assumes that al transistorsin a gate can be
scaled by acommon factor, which is called the size of agate. The discrete gate sizing problem assumes that each gate has
adiscrete set of pre-designed implementations (cells) as in a given cdll library, and one needs to choose an appropriate

cell for each gate for performance optimization.

o Buffer insertion: A buffer can be a pair of inverters or asingle inverter?, and they may have different sizes. The buffer
insertion problem isto determine both the placement and the size of each buffer in arouting tree. In auniform view, the

driver sizing problem isaspecia case of buffer insertion with buffers only at the source of the routing tree.

411 Driver Sizing

DO D1 Di Dn-1

Figure 19: The cascaded driversfor a heavy capacitance loading.

For an interconnect tree with heavy load (due to large interconnect capacitance or/and sink capacitance), a chain of cascaded
driversisusually used at the source. The O-th stage is a small, often minimum size, driver, and the driver size increases until
the last stage islarge enough to drivethe heavy loading capacitance (see Figure 19). An early result on the optimal driver sizing
problem wasreported in [LiLi75]. Let D; bethe driver of thei-th stage, and C; and R; be itsinput gate capacitance and effective
driver resistance, respectively. The stageratio isdefined to be f; = %(i > 0), it was shown that

Lin-Linholm Theorem: If the loading capacitance is C, and the stage number is N, the optimal stage ratio at each stageisa
constant (%)1/ N in order to achieve the minimum delay.

Let 1o = Ry - Cp, WhereCy and Ry are theinput gate capacitance and the effective driver resistance for D, respectively. Under
the constant stage ratio f and the switch-level driver model, we have R, = ?’,ﬁ and C; = Cp - f'. Therefore, every stage has the
same delay ftg, and thetotal delay of N stagesisty = Nf1g. When N isnot fixed, the optimal stage numberisN = In(%)/lnf.
Thetotal delay becomes Nf1g = In(C_/Cy) - To- f/Inf. It isminimized when % is minimum, which leadsto f = e, the base
of natura logarithms. Thisisthe well known optimal stage ratio for delay minimization presented in most textbooks (such as
[MeCa93)).

The output capacitance of adriver is not considered in the above derivation. In [Hele87], a more accurate analytical delay

formulawas devel oped with consideration of theinput waveform slope and the output capacitance of the driver. Based on their

4For single-inverter buffers, the signal polarity needsto be considered during buffer insertion
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delay formula, the optimal stageratio f satisfies

fo— dotn/f

where a isthe ratio between the intrinsic output capacitance and the input gate capacitance of the inverter. Sincetypical o is
about 1.35 for the technology they used, the optimal stage ratio isin the range of 3-5 instead of e. It is easy to find that the
optimal stage ratio is ill eif o = 0. The stage number N can be determined by the optimal stage ratio f as N = In%/lnf.
Then, f isused for al stages, except that the last stage has alittlebit larger ratio for delay minimization [HeJe87].

Most recently, Zhou and Liu [ZhLi96] discussed the optimal driver sizing for high-speed low-power ICs. The increasing
stageratios f; = fo(1+Y)' are used, where y is a modification factor determined by the I-V curve of the transistor. The typical
value of yisaround 0.2. The reason for the increasing stage ratio is the following: if the step waveform is applied at the input
of the very first stage, the waveforms become increasingly “softer” at the subsequent stages, i.e., the input waveform to the
following stage is no longer a step so an increasingly larger delay is expected for each following stage. Thus, an increasing
stage ratio is applied to maintain equal delay in different stages. The authors derived an analytic relationship between signal
delay, power dissipation, driver size and interconnect loading. They show that

Yo [ovS )
foze2+ gt and f; = fo(1+Y)'

arethe optimal stageratiosfor delay minimization. Wewould liketo point out that al studiesin [LiLi75, HeJe87, ZhLi96] aso
discussed the optimal driver sizing for power minimization. Another study on optimal driver sizing for |ow-power can be found
in[Ves4].

41.2 Transistor and Gate Sizing

In addition to sizing drivers which usually drive global interconnects, the sizes of al transistors and gates in the entire circuit
or a sub-circuit can also be adjusted properly according to their capacitive loads for performance or power optimization. The
transi stor sizing problem has been approached using both sensitivity based methods and mathematical optimization based meth-
ods. The gate sizing problem has been classified into both continuous and discrete gate sizing problems, and solved by different
approaches.

A. Sensitivity Based Transistor Sizing

Fishburn and Dunlop [FiDu85] studied the transistor sizing problemsfor synchronousMOS circuits. Let Xy, -+ -, X, - - -, X, bethe
transistor sizes, A thetotal active area of transistorsand T the clock period. If K isapositive constant, there are three formsfor

the transistor sizing problem as follows:
1. Minimize A subject to the constraint T < K.
2. Minimize T subject to the constraint A < K.

3. Minimize ATK.
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Let atransistor be modeled by the switch level model, then the gate, source and drain capacitance are all proportional to the
transistor size, and the effective resistance isinversely proportional to it. A CMOS gate will be modeled by a distributed RC
network. The Elmore delay (Egn. (3)) isused to compute theworst-case delay of the gate, which isthe delay throughthe highest
resistive path in the RC network. The delay of a PI-PO path isthe sum of delaysthrough al gatesin the path. It is not difficult
to verify that the delay of a PI-PO path can be written into thisform

B+ > % (29)

1<f7<n X 1<I<N

where the a;; and b; are nonnegative constants. In fact, & is non-zero only when transistorsi and j are dc-connected.
Furthermore, the authors of [FiDu85] show that Eqn. (29) and the area A = S X; are posynomials and the transistor sizing
problems of the three forms are all posynomial programs.® Even though posynomial programming methods can be used to
optimally solve the three forms of thetransistor sizing problem, it is computationally expensive to be used for an entire circuit.
Thus the transistor sizing tool TILOS (TImed LOgic Synthesizer) was developed to minimize A subject to T < K based on the
following scheme: First, the minimal size is assigned to all transistors. Then, timing analysisis performed to find the critical
delay T. If T islarger than K, the sengitivitiesof al transistors related to the critical path will be computed. The sensitivity is
defined as the delay reduction due to per transistor size increment. The size of the transistor with the largest sensitivity will be
multiplied by a user defined factor (BUMPSIZE) and then the algorithm goes to the timing analysis again. This procedure will
be terminated when the timing specification is satisfied or there is no improvement in the current loop, i.e., al sensitivitiesare
zero or negative. The performance of TILOS is quite good. Circuitswith up to 40,000 transistors have been tested. Based on
the experiments, the results are reasonably close to the optimum under their delay model. However, it assumes that the effective
resistance for atransistor isindependent of the waveform slope of theinput. But, in fact, the input sope has a significant effect
on thetransistor effective resistance. Another sensitivity based transistor sizing work is[Sap90] which also performsiiterative
transistor sizing to reduce the critical path delay. In contrast to TILOS, it changes the size of more than one transistor in each
iteration. In addition, asensitivity-based transistor sizing is presented by Borah et a. [BoOI95] to minimize power consumption

of CMOS circuit under delay constraint.

5According to [Ec80], a posynomial is afunction of positive vector X € R™ having the form g(X) = TN ; u;(X) with
Ui(X) = cxixg2 ... xqm, i=12,--- N
where the exponentsa;j are real numbersand the coefficients ¢; are positive. A posynomial program is the following minimization problem:

min go(X) subjecttogy(X) <1

k=1,2,---,pand X >0

whereeach gk (k=0,1,2,---, p) isaposynomia. The posynomial program has the important property that the local optimum is also the global optimum. In

fact, the concepts of posynomial and posynomial program play an important role in many wire and device sizing works to be presented.
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B. Mathematical Programming Based Transistor Sizing

Note that the method in [FiDu85] does not guarantee the optimality of the result. Studies have been doneto formulate the tran-
sistor sizing problem as mathematical programming problems to obtain an optimal solution. Methodsin [Ci87, He87, Ma36]

formulatethetransistor sizing problem as nonlinear programsand solve them by the method of Lagrangian multipliers. Methods
in [DaAs89, HeFi91, ChKa91] apply thefollowing two-step iterations. First, the delay budget is distributed to each gate; Then,

the transistorsin each gate are sized optimally to satisfy the time budget.

Later, atwo-phase a gorithm was presented in [ ShFD88] to minimizethe circuit area under timing constraints: first, TILOS
[FiDu85] is used to generate an initia solution; then, a mathematic optimization is formulated and solved by using feasible
directionsto find the optimal solution. The variablesin the optimization problem, however, are not sizes of all transistorsinthe
circuit, but only sizes of those transi storsthat have been tuned by TILOS, thusit is still possibleto lose the optimal solutionwith
respect to the whole circuit. Experimental results of circuitswith up to 500 transistors have been presented.

More recently, Sapatnekar [SaRV 93] developed a transistor sizing tool iCONTRAST, again, to minimize the circuit area
under timing constraints. It employs the analytical delay model devel oped in [HeJe87] which can consider the waveform slope
of input signalsto transistors, but assumes that the transition time is twice the Elmore delay of the previous stage. Under the
delay moddl, the transistor sizing problem is a posynomial program that can be transformed into a convex program and the
convex programming method [Va89] was implemented to solve the transformed problem. When using the simple delay model
of TILOS [FiDu85], and the timing specification is loose, the area of the solution obtained by TILOS is close to that of the
solution obtained by the iCONTRAST algorithm. However, as the time specification is tightened, the TILOS-solutions have
larger area when compared with the iICONTRAST-solutions. Experimenta results of circuits with up to 800 transistors have

been presented.

C. Continuous Gate Sizing

The continuous gate sizing problem assumes that al transistorsin a gate can be scaled by a common factor, which is called the
size of agate. In essence, it isvery similar to the transistor sizing problem, but has much lower complexity for a given design,
sincedl transistorsin agate are scaled by the same factor. Hoppe et al [HONS90] devel oped analytical modelsfor signal delay,
chip area and dynamic power dissipation and formulated a nonlinear problem to minimize the weighted linear combination of
delay, area and power. The nonlinear problem is solved by the Newton-Raphson algorithm. A 64K-SRAM was optimized on a
mai nframe computer in 2 hours.

In order to speed up the gate sizing problem, thelinear programming (L P) formul ation has been proposed. Berkelaar and Jess
[BeJe90] used apiecewise-linear (PWL) function to linearize the delay function. More precisaly, one dividesthe gate sizesinto
subranges so that the delay of agateisalinear function of gate sizes within each subrange. Thus, the gate sizing problem can be
formulated asaL P problem. Their LP formul ation[BeJe90] isto minimizethe power subject to adelay constraint. Experimental
resultson circuitswith up to 500 gates were presented. Later on, their LP-based method was expanded [BeBJ94] to computethe
entire area or power-consumption versus delay trade-off curve. Results on MCNC' 91 two-level benchmarks with up to 4,700
gateswerereported. Recently, Tamiya, Matsunagaand Fujita] TaM F94] proposed another L P-based method wherethelatest and

the earliest arrival times are introduced so that the setup and hold time constraints can be handled. The objectiveisto minimize
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the weighted linear combination of clock period, area and power. Result on a chip of 13,000 transistorswas reported. Note that
gate sizing worksin [BeJe90, BeBJ94, TaM F94] assume that the gate delay is a convex function of gate sizes, which isneeded
to make sure that the error introduced by the PWL approximationissmall. However, the gate delay in fact isnot a strict convex
function.

More recently, Chen, Onodera and Tamaru [ChOT95] removed the convex delay model assumption in previous L P-based
works. They aso divided the the gate sizes into subranges, but different from the previous works [BeBJ94, BeJe90, TaM F94]
where only one LP problemisformul ated over the whole gate size range with the delay being a PWL functioninthisLP formu-
lation, aLP problem isformulated for every subrange with the delay being alinear function for each LP formulation. When the
subrangeissmall enough, the error introduced by the non-convexity will be small. The linear programming is performed itera-
tively, and subranges of gate sizes are updated according to theresult from the previous step. Experimental resultsfor |SCAS85
benchmarks with up to 3,500 gates were reported.

D. Discrete Gate Sizing

The resulting optimized design by the continuousgate sizing formulation may beimpractical or expensive to implement since a
large number of manually-designed cells or a smart cell generator are needed. Thus, the discrete gate sizing problemis studied
by assuming that each gate has a discrete set of pre-designed implementations (cells) as in agiven cell library and one needs
to choose an appropriate cell for each gate for performance optimization. In general, the discrete gate sizing problem is NP-
complete: Chan [Ch90] showed that the double sized discrete gate sizing problem to find discrete gate sizes to satisfy both
maximum and minimum delay constraints is NP-complete, even without consideration of area minimization. Hinsberger and
Kolla[HiK092] proved the single-sided (with only maximum delay constraint) discrete gate sizing probleminaDAG (directed
acyclic graph) is NP-complete under three objectives: to minimize the maximum delay, to minimize the maximum delay under
an area constraint, and to minimize the area under a maximum delay constraint. Li [Li94] further showed that the discrete gate
sizing problem under both area and maximum delay constraintsis strongly NP-hard even for a chain of gates.

The methodswhich are optimal for logic networksof certain structureshave been proposed. For the double-sided problem, a
branch and bound algorithm [ Ch90] was devel oped to find the optimal solutionfor tree structures. For the single-sided problem,
an optimal dynamic programming method to minimize the maximum delay was proposed, again for tree structures [HiK092].
It assumes that the delay for a gate could be determined locally, i.e., the delay could be determined only by the sizes of the gate
and itsfanout gates, and worksin a bottom-up manner. Furthermore, an exact a gorithm to minimize area subject to a maximum
delay constraint (single-sided) was presented for series-parallel circuits[LiLA92]. A simpleseriescircuitissolved by adynamic
programming method and asimple parallél circuit is solved by a number of transformations. All series-paralé circuitscan be
solved recursively.

Heuristics have been proposed to expand the optimal agorithms for trees or series-parallel circuits to the general cases in
[Ch90, LiLA92]. Furthermore, the foll owing methods have been developed: Lin, Marek-Sadowskaand Kuh [LiIMK90] usethe

weighted sum of sensitivity and criticality to choose cell sizes for standard-cell designs. The sensitivity of a cell isdefined as

__Adelay
Darea '

where both delay and area are in terms of the cell. The criticality isinversely proportiona to the slack of a cell so
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that a cell in anon-critical path will not be over-sized®. Chuang, Sapatnekar and Hajj [ChSH93a, ChSH95] presented a three-
step method to minimize the area subject to the single-sided delay constraint. First, they formulate a linear programming (LP)
problem to obtain a continuous solution. Then, they map the continuous solution onto the allowed discrete gate sizes; Finaly,
they adjust the gate sizes to satisfy the delay constraint. Also, the three-step a gorithm was modified in [ChSH93b] to minimize
the areaunder the double-sided delay constraint. It isworth mentioning that thework in[ ChSH93a, ChSH95] further formul ated
gatesizing and clock skew optimizationasasingleL P problem not only to reducethecircuit areabut a so to achievefaster clocks.
Another method to combine both gate sizing and clock skew optimization can be found in [SaSF95]. In addition, Chuang and
Sapatnekar proposed another L P formulationto address the continuous gate sizing problem for power optimizationin [ChSa95].

4.1.3 Buffer Insertion

Buffer (also called repeater) insertion isa common and effective techniqueto reduce interconnect delay. Asthe Elmore delay of
along wire grows quadratically in terms of the length of the wire, buffer insertion can reduce interconnect delay significantly.
Bakoglu (|Ba90]) givesaclosed-form formulato determine the number and sizes of buffers (inverters) that are uniformly placed
in along interconnect linefor delay minimization. Let k be the number of invertersand h the uniform size for every inverter,

then the optimal values for an interconnect line of uniform wire width are the following:

« _ [04RnCin
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where R and Cj; are the tota resistance and capacitance for the interconnect line, respectively, and Ry and Cy the driver re-
sistance and the input capacitance of the minimum-size inverter, respectively.

A polynomid -timedynamic programming a gorithmwas presented in [va9d0] to find the optimal buffer placement and sizing
for RC trees under the Elmore delay model. The formulation assumes that the possiblebuffer positions (called legal positions),
possiblebuffer sizes, and therequired arrival times at sinksare given. The optimal buffer placement and sizing is chosen so that
therequired arrival timeat the sourceis maximized. For simplicity, the buffer of two inverterswith thefixed sizeisused and the
polarity of the signal can beignored. Legal positionswere assumed to be right after the branching pointsin the tree (see Figure
20.a).

The algorithmincludes both bottom-up synthesisand top-down sel ection procedures. It beginswith the bottom-up synthesis
procedure, wherefor each legal positioni for buffer insertion, aset of (g, ¢;) pairs, called options, is computed for possiblebuffer
gnmentsin the entire subtree T; rooted at i. Each q; isarequired arrival timeat i and ¢; isthe capacitance of of dc-connected
subtree’ rooted at i corresponding to g (Figure 20.b). Notethat ¢; isnot the total capacitance in T;.

A wire segment in the routing tree is modeled by a T-type circuit and only the wire area capacitance is considered. Recall

that r and ¢, aretheresistance and the area capacitance for aunit-lengthwire, respectively. When awire segment with upstream

6Since the method in [FiDu85] only sizes thosetransistors in the critical path based on their sensitivities, criticality has been considered implicitly.

7 dc-connected” means “ directly connected by wires”.
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Figure 20: (a) Legal position for buffer insertion; (b) An optionin alegal position.

nodek isadded at i, an option (qx, ¢k) will be generated at k for every (g, ¢) at i as the following:

c-l
O = Qi—f'|'(7+ci)

Ck G+c-l

where | isthelength of the wire segment.
A buffer ismodel ed by theinput gate capacitance Cy,, ¢, thedriver resistance Ry, and theintrinsicdelay Dy, . When abuffer
with input nodek isinserted at i, an option will be generated at k for every (q;, ¢;) a i asthe following:

Ok = 0i— Doyt — Rour - Gi
Cout

Ck

When two subtrees T; and T; are merged at nodek, for every pair of (q;, ;) and (q;,c;) (at i and j, respectively) an option
(0, ck) will be generated at k as the following:

Gk = min(g;,q;)

Ck G +Cj

The following pruning rule is used to prune a suboptimal option during the computation of options. For two options(q, ¢)
and (¢, c) in the same lega position, if ¢ > cand g < g then (d/,c) is suboptimal, thus, it can be pruned from the solution
space. If the total number of legal positionsis N, it was shown in [va90] that the total number of optionsat the source of the
whole routing tree is no larger than N+ 1 even though the number of possible buffer assignmentsis 2N.

After thebottom-up synthesi sprocedure, the optimal optionisthe onewhich has themaxi mum requirement time at the source
pin of the whole interconnect tree. Then, the top-down selection procedure is carried out to trace back the buffer placement (in
general, also the buffer sizes) which led to the optimal option. Severa extensions can be made. It iseasy to allow buffers of
different types(sizes) to be placed. With different Ry, ¢, Cpys @nd Dy ¢ Valuesfor each typeof buffer, theremay bean extraoption
generated inevery legal positionfor every extrabuffer type. Let B bethe number of buffer typesand N, again, bethetotal number
of lega positions, thetotal number of optionsat the root of thewholetree is bounded from above by N+ B. In generdl, thetime
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complexity of the algorithmis O((N + B)? + k), where N is the total number of legal positionsfor buffer insertion, B the total

number of buffer types and k the total number of sinks.

4.2 Wiresizing Optimization

It was first shown by Cong, Leung, and Zhou [CoLZ93] that when wire resistance becomes significant, as in the deep submi-
cron CMOS design, proper wire-sizing can further reduce the interconnect delay. Their work presented an optimal wire-sizing
algorithm for a single-source RC interconnect tree to minimize the uniform upper bound of the delay (Section 2.1, Egn. (1)).
Later on, single-source wire-sizing algorithms were presented in [CoL €93, CoL €95, Sa94, XuKu95b, ChCW96b, ChCW964]
using the ElImore delay moddl, in [MePD94] using a higher-order RC delay model and in [ XuKY 96] using alossy transmission
l[inemodel. In addition, the wire-sizing problem for multiple-source netswas formul ated and solved in [CoHe95]. Furthermore,
wire-sizing was carried out simultaneously with device sizing in [CoK 094, MePP95, MeBP95, LiCL 95, CoHed6b, CoHe96c].
We classify the wire-sizing works according to their objective functions and present them in Sections 4.2.1 and 4.2.2, and then

discuss the simultaneous device and wire sizing in Section 4.3.

421 Wiresizingto Minimize Weighted Delay

In order to reduce the delays to multiple critical sinksin an interconnect tree with a single source, the wire-sizing algorithms
given by Cong and Leung [CoLe93, CoLe95] minimize a weighted combination of Elmore delays from the single source to
multiple critical sinks. Later on, Cong and He [CoHe95, CoHeQ6a] extended this formulation to the multiple-source net case,
where the objective is to minimize the weighted combination of Elmore delays between multiple source-sink pairs. Wiresizing
worksin[CoLe93, CoL e95, CoHed5, CoHed64] assumed that the wirewidthsare discrete and uniformwithin awire segment or
sub-segment. Most recently in[ChCW96h], an optimal wire-sizing formulawas derived by Chen et . to achievethe continuous
and non-uniformwirewidth for each wire segment, again to minimize the wei ghted combination of Elmore delaysfromasingle
sourceto aset of critical sinks. All these works assume that the weights of the delay penalty between the source and each sink

or each source-sink pair are given aprior.

A. Discrete Wiresizing for Single-Source RC Tree

In [CoLZ93], Cong, Leung and Zhou modeled an interconnect tree as a distributed RC tree and applied the upper-bound delay
model showninEgn. (1). They showed that when thedriver resistanceismuch larger than thewireresi stance of theinterconnect,
the interconnect can be modeled as alumped capacitor without 1osing much accuracy and that the conventiona minimum wire
width solution often leads to an optimal design. However, when the resistance ratio, i.e. the driver resistance versus unit wire
resistance, issmall, optimal wire-sizing can lead to substantia delay reduction. In addition, they devel oped thefirst polynomial-
time optimal wire-sizing algorithm. Sincetheuniform upper bound delay model doesnot distinguishthedelaysat different sinks
and may lead to over-sizing, Cong and Leung [CoL €93, CoL e95] extended the work to the Elmore delay formulation of Eqgn.
(3). Their formulation and method are summarized as follows.

Given aroutingtree T, let sink(T) denote the set of sinksin T, W be the wire-sizing solution (i.e., wire width assignment

for each segment of T) and tj( 1) be the EImore delay from the sourceto sink s; under 7. The following wei ghted combination
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of delaysisused as the objective function for wire-sizing optimization.

(W)= 3y AN-t(w) (30)
sesnk(T)
where A; istheweight of the delay penalty to sink s;. Thelarger A;, themore critical sink 5 is.

The following monotone property and separability were shown in [CoLe95].

Monotone Property: Given arouting tree, there exists an optimal wire-sizing solution 7/ such that we > wy if segment
ec Ans(€).

Separability: Given the wire width assignment of a path P originated from the source, the optimal wire width assignment
for each subtree branching off from P can be carried out independently.

Based on these two properties, the optimal wire-sizing algorithm (OWSA) was developed. It is a dynamic programming
method based on the wire-sizing solution for asingle-stemtree, which is atree with only one segment (called the stem segment
of that tree) incident on its root (see Figure 21(a)). We use sst(€) to denote the single-stem tree with steme.

According to the separability, once e and every ancestor segment of e are assigned the appropriate widths, the optimal wire
width assignment for the single-stem subtrees sst(ec1), sst(ex), - - - St(exp) of the tree sst(e) (with respect to the width assign-
ment of e and its ancestors) can be independently determined, where the segments e, - - -, &y, are the children of e. Therefore,
given a set of possiblewidths {Wy, W5, - - - )W }, OWSA enumerates al the possible width assignments of e. For each possible
width assignment W of e (1 < k < r), the optimal wire-sizing is determined for each single-stem subtree sst(eg) (1 < i< b)
of st(e) independently by recursively applying the same procedure to each sst(eg;) with {Wy, Wb, - - - Wk} asthe set of possible
widths (to guarantee the monotone property). The optimal assignment for e isthe one which givesthe smallest total delay.

If the original routing tree T is not a single-stem tree, we can decompose it into b single-stem trees, where b is the degree
of theroot of T, and apply the agorithmto each individual single-stem tree separately (see Figure 21(b)). The worst-case time
complexity of OWSA isO(n"), whichismuch faster than brute-forceenumeration O(r"), where nisthenumber of wire segments
and r isthe number of possible wire widths. However, OWSA agorithm can be slow whenr islarge.

In order to further speed-up the OWSA algorithm, the greedy wire-sizing a gorithm (GWSA) was devel oped based on the
local refinement and the dominance property to compute the lower and upper bounds of the optimal wire widths.

Given two wire-sizing solutions % and W', W is defined to dominate W if we > W, for every segment e. Given awire-
sizing solution W for the routing tree, and any particular segment e in the tree, alocal refinement on e is defined to be the
operationto optimizethewidth of ewhilekeeping thewirewidth assignment of %/ on other ssgmentsunchanged. Thefollowing
dominance property was shown in [CoLe95]

Dominance Property: Suppose that 7/* is an optima wire-sizing solution. If awire-sizing solution %/ dominates W™,
then any local refinement of W till dominates W*. Similarly, if W is dominated by W*, then any local refinement of ¥/ is
still dominated by W*.

The GWSA agorithm works as follows: starting with the minimum-width assignment, GWSA traverses the tree and per-
forms a locd refinement on each segment whenever possible. This process is repeated until no improvement is achieved on
any segment in the last round of traversal. According to the dominance property, a lower bound of the optimal wire width on

every segment isobtained. An upper bound of the optimal wire width assignment can be obtained similarly by starting with the
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Figure21: (a) A single-stem tree consists of astem and a set of single-stem subtrees. Inthisexample, eisthe stem of the single-
stemtree sst(e), and sst(e1) and sst(ex) arethesingle-stem subtrees of sst(e) (ex1 and ey arethechildren of €). (b) Any general

tree T can be decomposed into a set of independent single-stem trees.

maximum-width assignment. In most cases, GWSA obtainsidentical lower and upper bounds on all segments, which givesan
optimal wire-sizing solution. In cases when the lower and upper bounds do not meet on afew edges, the gaps are usually small
and the OWSA agorithm can be applied very efficiently to obtain the optimal wire-sizing solution. The worst-case time com-
plexity of GWSA isO(n®.r). Experiments using SPICE simulation showed that, for the 0.5um CMOS technol ogy, the optimal

wire sizing solution can reduce the maximum delay by up to 12.01% when compared with the minimum wire width solution.

B. Discrete Wiresizing for Multi-Source RC Tree

The wire-sizing problem for the multiple-source interconnect tree (MSIT) was studied by Cong and He in [CoHe95]. They
decompose a MSIT into the source subtree (SST) and a set of loading subtrees (LSTS) (see Figure 22). The SST is the subtree
spanned by al sourcesin the MSIT. After the SST is removed from the MSI T, the remaining segments form a set of subtrees,
each of themiscalled an LST.

A Source LST1 LST2
\ N )w V< -

< — /

A Source / P 7( SST

Both a source and a sink LST3

Figure22: AnMST can be decomposed into the source subtree SST, and a set of |oading subtrees (three LST s here) branching
off from the SST. The dark segments belong to the SST.

Parallel to the ancestor-descendent relation in the single-source interconnect tree, the left-right relation is introduced in an

MSIT. An arbitrary source is defined as the leftmost node (Lsrc). The direction of the signal (current) flowing out from Lsrcis

41



the right direction along each segment. Under such definitions, the signal in any LST always flows rightward, but the signa
may flow either leftward or rightward in the SST.

The following properties were shown in [CoHe95] for the wire-sizing problem for MSITs (the MSWS problem):

L ST Separability: Given the wire width assignment of the SST, the optimal width assignment for each LST branching off
from the SST can be carried out independently. Furthermore, given the wire width assignment of both the SST and a path P
originated from theroot of an L ST, the optimal wirewidth assignment for each subtree branching off from P can be carried out
independently.

L ST Monotone Property: For an MSIT, there exists an optimal wire-sizing solution #* where the wire widths decrease
monotonically rightward within each LST inthe MSIT.

Because of the two properties, the polynomial-time OWSA algorithm devel oped for single-source wire-sizing in [CoLe95]
can be applied to compute the optimal wire widthsindependently for each L ST when given the wire width assignmentsfor the
SST. Furthermore, the authors of [CoHe95] proved that the MSWS problem has the dominance property presented in Section
4.2.1.A. Thus, the GWSA agorithm, again developed in [CoLe95] for the single-source wire-sizing problem, can be applied to
compute thelower and upper boundsfor the optimal solution of the M SWS problem. When the lower and upper bounds do not
meet for al segments, the authors propose to enumerate the wire width assignment for the SST between the lower and upper
bounds. During each enumeration of the SST, OWSA is applied independently for each LST to compute an optimal wire-sizing
solution between the lower and upper bounds. Because the identical lower and upper bounds are often obtained by the GWSA
algorithm for all segments, the optimal wire-sizing solution can be achieved very efficiently in practice. Experiments using
SPICE simulations showed that the optimal wire-si zing sol ution reduces the maximum delay by up to 36.9% (for an MSIT from
theindustry with the total wirelength of 31980pum) when compared with the minimum wirewidth solutionin the 0.5umCMOS
technol ogy.

C. Discrete Wiresizing Using Variable Segment-Division

An assumption is made for wire-sizing a gorithms presented in Subsections 4.2.1.A and 4.2.1.B that the wire width does not
change within a segment. Intuitively, better wire-sizing solutionsmay be achieved when variable wirewidthisalowed withina
segment. In[CoK094], asegment isfurther dividedinto asequence of grid-edgeswith aunitlength and thewirewidthisalowed
to change every grid-edge. The fine and uniform segment-division, however, may result in high memory usage and computation
time. An approach based on the bundl ed refinement property was proposed by Cong and He [ CoHe95] to decide the appropriate
segment-division during the wire-sizing procedure. It uses much less memory and computation time and is applicable to both
single-sourceand multi-sourcewire-sizing problems. For the simplicity of presentation, we assume themulti-sourcewire-sizing
problem since the single-source wire-sizing problem is a ssimple case of it.

First, the concepts of uni-segment and min-segment wereintroduced. Each segment i sdividedintoasequence of uni-segments
and each uni-segment has a uniformwire width withinit. The wire-sizing problem isformulated to find an optimal wire width
for every uni-segment. A min-segment is a uni-segment of the minimum length, which is set by the user or determined by the
technology. The finest segment-division is the one with each uni-segment being a min-segment.

Then, the following property was revealed in [CoHe95], even though the signal direction in the SST of an MSIT may be
changed with respect to different sources.
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L ocal Monotone Property: There existsan optimal wire-sizing solution for arouting tree, such that the wire widthswithin
any segment eismonotone: (1) if F(e) > F (e), thewirewidthswithin e decrease monotonically rightward. (2) if F(e) = F(e),
thewirewithin e have asame width. (3) if i (e) < F(e), thewirewidthswithin eincrease monotonically rightward. Both F(e)
and R (e) are functionsthat can be determined before the wire-sizing procedure.

L et abundled-segment be amaximal sequence of successive min-segmentsinawire segment such that all these min-segments
have the same wire width in the optimal solution under the finest segment-division. Based on the local monotone property, if
there are r possible wire widths for a wire segment, there are at most r bundled-segments, even though the total number of
min-segments could be arbitrarily large (see Figure 23). It is not difficult to see that the optimal wire-sizing solution under
the segment-division defined by bundled-segments has the same accuracy as the optimal wire-sizing solution under the finest

segment-division, but requires much less computation.

T T T @)
[ T

Figure 23: (a) Twelve uni-segments (min-segments) under the finest segment-division; (b) Three bundled-segments with the

same wire-sizing accuracy.

The bundled refinement operation finds optimal wire width assignment for bundled-segmentsinstead of min-segments. Let
W be awire-sizing sol ution which dominates the optimal solution W* under the finest segment-division. Without loss of gen-
eraity, assume R (e) > F(e) for the segment e. Segment e may contain many min-segments. Instead of performinglocal refine-
ments on all these min-segments, the following will be carried out: eistreated astwo uni-segments, e, and §. g istheleftmost
min-segment in e and g isthe remaining part of e. Clearly, thelocal refinement of g provides an upper bound for the optimal
wirewidthfor g according to the dominance property. Furthermore, thislocal refinement is a so an upper bound for the optimal
wirewidth of g, because it isaways narrower than the optimal wirewidth for e according to thelocal monotone property. This
operation to treat the local refinement of g aslocal refinements for all min-segmentsin eis called bundled refinement for the
upper bound(BRU). The bundled refinement for the lower bound (BRL) can be defined similarly. For ' dominated by W*, if
R(e) > K(e), thelocd refinement of the rightmost min-segment e, is treated as the local refinement for al min-segments in
segment e. The following property was proved in [CoHe95].

Bundled Refinement Property: Let W* be an optimal wire-sizing solution under the finest segment division. If awire-
sizing solution %/ dominates W*, then the wire-sizing sol ution obtai ned by any bundled refinement under any segment-division
on W till dominates W*. Similarly, if 7/ isdominated by 7/*, then thewire-sizing sol ution obtai ned by any bundl ed-refinement
under any segment-division on ¥/ is still dominated by W*.

Based on this property, the bundled wire-sizing a gorithm BWSA works as the follows: Starting by treating each segment
as a uni-segment, we assign the minimum width to al uni-segments, then traverse the MSIT and perform bundled refinement
operations for the lower-bound on each uni-segment. The bundled refinement operation is repeated until no improvement is

achieved on any uni-segment inthelast round of traversal. We obtain alower bound of the optimal wire-si zing sol ution under the
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finest segment-division. Similarly, we assignthe maximum widthto all uni-segmentsand perform bundl ed refinement operations
for the upper-bound, and obtainan upper bound of the optimal wire-sizing solution. Thisisthefirst pass of the BWSA agorithm.

After each pass, one checks the lower and upper bounds. If thereis a gap between the lower and upper bounds for a uni-
segment, it is non-convergent. For every non-convergent uni-segment longer than a min-segment, it will be divided into two
uni-segments of egqual length and each inheritsthe lower and upper bounds of their parent. Then, another pass to compute the
lower/upper boundsis carried out by performing bundled refinement operations under the refined segment-division.

The BWSA agorithm iterates through a number of passes until either identical lower and upper bounds are achieved for
all uni-segments or each non-convergent uni-segment is a min-segment. It was shown in [CoHe95] that the lower and upper
bound obtai ned by the BWSA a gorithm under theiteratively refined segment-divisionisastight asthose obtai ned by the GWSA
algorithm under the finest segment-division where every uni-segment is a min-segment. Both a gorithms have the same worst-
case complexity, however, experiments showed that the BWSA a gorithm often runs 100x time faster than the GWSA agorithm
under thefinest segment-division. In additionto replacing the GWSA a gorithmin both the single-source and multi-sourcewire-
sizing problems, the BWSA a gorithm can be used in the simultaneous driver and wire sizing problem [CoK 094] to be presented
in Section 4.3.1.

D. Continuousand Non-uniform Wiresizing for Single-Source RC Tree

Another alternativeto achieve non-uniformwirewidth withinasegment isthe optimal wire-sizing formulaproposedin [ ChCW96b]
very recently. Let f(x) bethewirewidth at positionx of awiresegment. When given thedriver resi stance and theloading capac-
itance for the wire segment, Chen et al. show that the Elmore delay through the wire segment is minimized when f(x) = ae~™
where a and b are constants. Furthermore, when the lower and upper bounds for the wire width of a wire segment are given,
the optimal wire width function is one of the six truncated forms of ae . In all cases, formulas can be determined in constant
time. However, it did not model the fringing capacitance.

In order to apply the optimal wire-sizing formulato arouting tree, the authors propose to minimize thewei ghted combination
of Elmoredelaysfrom the sourceto multiplesinks. A procedurelikethe GWSA agorithmdeveloped in[CoLe95] isused. First,
the minimum wirewidth is assigned to every segment. Then, the optimal wire-sizing formulaisiteratively applied to each wire
segment until no improvement can be achieved. In contrast to the case of a single wire segment, the total upstream weighted
resistance is used to replace the driver resistance, and the total downstream capacitance to replace the loading capacitance. The
resulting wire width is continuous and non-uniform within a wire segment. Note that when a discrete wire-sizing solution is

needed, the mapping from a continuous solution to a discrete solution may lose its optimality.

4.2.2 Wiresizingto Minimize Maximum Delay or Achieve Target Delay

In addition to minimizing the wei ghted combination of delays, wire-sizing methods have been devel oped to minimize the max-
imum delay or achieve a target delay. We will present first the wire-sizing work [Sa94] to minimize the maximum delay in
Subsection 4.2.2.A, where the EImore delay model is used, then the wire-sizing work [MePD94] to achieve the target delay in
Subsection 4.2.2.B, where a higher-order RC delay model is used, and finally the wire-sizing work [ XuKY 96] to minimize the
maximum delay for atree of transmission linesin Subsection 4.2.2.C, where alossy transmission linemode! isused. Note that

the ElImore delay mode is suitablefor formul ationsthat minimize the weighted sum of delaysfor current CMOS designs, since
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it has high fidelity with respect to the SPICE-computed delay for the wire-sizing optimization, which is verified by the exper-
iments in [CoHe96a] based on the 0.5 um CMOS designs. On the other hand, in order to achieve the target delay or handle
MCM designs, more accurate delay models are required asin [MePD94, XuKY 96]. Furthermore, several iterations of the pro-
cedures to minimize the weighted delay can be used to minimize the maximum delay or achieve the target delay by adjusting
the weight penaty assignment in practice. Particularly, the Lagrangian relaxation wire-sizing work [ChCW964a] proposes an
optimal method to assign the weight penalty, which will be presented in Subsection 4.2.2.D.

A. Single-Source RC Tree under EImore Delay M odel

Sapatnekar [ Sa94] studied the wire-sizing problem to minimize the maximum delay under the Elmore del ay formulation of Egn.
(3). First, he showed that the separability no longer holds for minimizing the maximum delay. So, the dynamic programming
based approach in [CoLZ93, CoLe93] does not apply. However, since the Elmore delay in an RC treeis a posynomial function
of wire widths as first pointed out in [FiDu85], it has this property that the local optimum is also the globa optimum,; thus a
sensitivity-based method like that used in [FiDu85] can be applied.

The agorithm in [Sa94] goes through a number of iterations. In each iteration, the sink with the largest delay isidentified
and the sengitivity § given in the following is computed for each wire segment i on the path from the source to the identified
sink:

S— Delay(F - w;) — Delay(w;)
(F=1)-w

where Del ay(w; ) isthedelay from the source to theidentified sink and F is a constant larger than 1 (set to 1.2 or 1.5in[Sa94]).
Intuitively, the sengitivity is the delay reduction of unit wire area increment. For all wires on the path from the source to the
identified sink, the width of the wirewith the minimum negative sensitivity will bemultipliedby F > 1. Theiterationis stopped
when no wire has a negative sensitivity or the delay specification is satisfied.

Since aposynomial function can be mapped into a convex function, the convex programming technique developed in [Va39,
SaRV 93] was applied in [SaSa94] by Sancheti and Sapatnekar to achieve the exact solution at higher computation costs. Note
that both algorithms in [Sa94] and [SaSa94] produce wire-sizing solutions assuming continuous wire width choices, and then

map them into the discrete wire widths. The optimality of the wire-sizing solution may be lost after mapping.

B. Single-Source RC Tree under Higher-Order RC Delay Mode

In [MePD94], a moment fitting approach is used to wiresize RC interconnect trees to achieve the target delays and sopes at
critical sinks. Let target moments be moments for the 2-poletransfer functionsthat have the target delays and slopes at critical
sinks, and real moments those for the transfer function under the current wire width assignment for the RC tree, Menezes et al.
propose to modify the wirewidth assignment in the RC tree to match the real momentswith the target moments so that the target
delays and dopes will be obtained.

The sensitivitiesof real momentswith respect to thewirewidthsare used to guidethe search for the proper wirewidths. The
method worksasfollows: Firgt, for each sink, a2-poletransfer functionisgenerated so that it hasthetarget delay and slopeat the

sink. For each transfer function, thefirst four target moments are obtained. Then, the first four real moments are computed for
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each sink based on the recursive method devel oped in [PiRo90], which computes the higher moments from the lower moments,
and a O(MN?) method is proposed to compute the sensitivitieswith respect to the wire widthsfor real moments, where M isthe
number of critical sinksand N the number of wire segments. Finally, such sensitivity values guide the search for wire widthsto
minimize the mean square error between the first four target moments and thefirst four real moments for every critical sink.
Furthermore, the following is proposed in order to achieve the solution with smaller area: each wire is assigned a weight
in order to favor those wires which are related to the more critical sinksand those wires with respect to which the critical sinks
exhibit larger ElImore delay sensitivities. Widening those wires has the maximum effect on delay with a minimal area penalty.
Moreover, the delay sensitivity with respect to the driver area is also computed and compared with the delay sensitivity with
respect to the interconnect area to empirically determine whether alarger driver should be used. The approach is extended in
[MePP95] to conduct simultaneous gate and interconnect sizing, which will be presented in Section 4.3. Notethat the algorithm

in [MePD94], similar to [Sa94, SaSa94], assumes continuouswire width choices for their wire-sizing solutions.

C. Single-Source Tree of Transmission Lines under Lossy Transmission Line M odel

Thewire-sizing work by Xue and Kuh in[XuKY 96] takes thewireinductance into account by modeling each wire segment as a
lossy transmissionline, and sizesthewire segmentsinan interconnect tree to minimizethemaximum delay. The maximum delay
and its sensitivities with respect to wire widths are computed via high order moments. Based on the exact moment matching
method in [ YuKu95g], the higher moments and their sensitivitieswith respect to the wire widths are computed recursively from
thelower moments and the sensitivitiescan be computed anaytically. Thus, the maximum delay and itssensitivitieswithrespect
to the wire widths can be computed efficiently. The following procedure is repeated to reduce the maximum delay: First, one
computes the high order moments, the maximum delay (t4) and its sensitivity with respect to every wirewidth (gt—vsi). Then, if a
wire segment g has the maximum | gt—vsi |, & will be assigned either the next larger or smaller wire width, based on the polarity
of gt—vsi. The procedure iterates until the sensitivities of the maximum delay becomes small.

[XuKY 96] showed the following experimental results: The 2-pole transfer function with moments mp, my and my(mp = 0)
is reasonably accurate when compared with SPICE2. The approach can reduce the rising delay in the critical sink by over 60%
with asmall penalty in routing area 8. The monotone property is still true under this lossy transmission line formulation. The

final wire-sizing solution reduces the overshoot and is more robust under parameter variation.

D. Weighted Delay For mulation versus Maximum Delay Formulation

All the wire-sizing algorithms presented in Section 4.2.1 for minimizing the weighted sum of delays can be used to minimize
the maximum delay by iteratively adjusting the weights so that the sinkswith larger delays have higher weights. In particular,
Chen, Chang and Wong [ChCW96d] showed that for the continuous wire-sizing formulation where the wire width can be any

value between the lower and upper bounds, the weighted delay formulation is able to optimally minimize the maximum delay

8Notethat the delay in atree of transmission linesisthe sum of flying time and the rising delay of the responsewaveform. Wiresizing only affects the rising

delay, and the delay reduction means the reduction of the maximum rising delay at threshold voltage of 0.5Vdd
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among al sinks. They formulated the following Lagrangian rel axation problem:

Minimze  trex+ > AN(t(W) —tmm)
Sesnk(T)
Subjectto (W) < tmex

where tj( W) is the delay from the source to sink s; under the current wire-sizing solution W and tyx is the maximum delay
from the source to al sinks.

The following two-level agorithm was proposed in [ChCW964d]: in the outer loop, the weights associated with the delays
from the source to sinks are dynamically adjusted, which are basically proportional to the delays at the sinks. In the inner loop,
the continuous wire-sizing solution is computed for the given set of weights, by the wire-sizing agorithm [ChCW96b] (Sec-
tion 4.2.1.D) to minimize the weighted linear combination of delays. They showed that the Lagrangian relaxation iteration will
converge to an optimal solution in terms of maximum-delay minimization. Moreover, the authors expanded their Lagrangian
rel axation based a gorithmto simultaneous wireand buffer sizing for buffered clock treesto minimizethe wei ghted combination

of delay, power and area minimization, and to address the problem of skew and sensitivity minimization for clock trees.

4.3 Simultaneous Device and Wire Sizing

The device sizing works presented in Section 4.1 model theinterconnect as alumped |oading capacitor and do not consider the
possibility of sizing theinterconnect. Ontheother hand, thewiresizing works presented in Section 4.2 model thedriver asafixed
effective resistor and do not consider the need to size the device again after interconnects have been changed. Both approaches
may lead to suboptimal designs. As aresult, a number of recent studies size both devices and interconnects simultaneoudly.

These methods will be discussed in this subsection.

4.3.1 SimultaneousDriver and Wire Sizing

The simultaneous driver and wire sizing problem for delay minimization (SDWS/D problem) was studied in [CoK094]. The
switch-level modd is used for a driver and both the gate and the drain (output) capacitances of the transistor are taken into
account, while the interconnect tree is modeled by a distributed RC tree as was used in [CoLe95]. The objective functionisto
minimize the summation of the delay for cascaded drivers and the weighted delay for the RC tree. The SDWS/D algorithmis
based on the following important rel ation between the driver size and the optimal wire sizing:

Driver and Wire Sizing Relation [CoK094]: Let Ry be the effective resistance for the last stage driver and ‘W* be the
optimal wiresizing solution for driver resistance Ry. If Ry isreduced to R}, the new corresponding optimal wiresizing solution
W™ dominates W*.

The core for the SDWS/D agorithmisthe procedure to compute the optimal driver and wire sizing when given astage num-
ber k, which worksasfollows. Firgt, thea gorithm starts with the minimum wire width assignment and computes the capacitive
load of the routing tree. Then, it computes the optimal sizes of the k cascaded drivers based on Lin-Linholm Theorem in Sec-
tion4.1.1. Next, the optimal wiresizing algorithms (GWSA followed by OWSA) developed in [CoLe95] are performed on the
routing tree based on the effective resistance of thelast driver. If the wire width assignment changes, the new driver sizes are

obtained according to Lin-Linholm Theorem. Then, the optimal wiresizing solution will be computed again based on the new
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size of the last driver. The process is repeated until the wire width assignments do not change in consecutive iterations. In this
case, the lower bounds are obtained for the optimal sizes of both the drivers and the wire segments.

The upper bound for the optimal sizing solution can be obtained similarly by beginning with the maximum wire width as-
signments. If thelower and upper bounds meet, the optimal solutionis achieved, which occursin almost @l cases as shownin
the paper. Otherwise, the size of thelast driver isenumerated between the lower and upper bounds. The corresponding optimal
wiresizes and thefirst (k— 1) driver sizes are computed, and the optimal k-driver SDWS/D solution is selected for this set.

The overadl SDWS/D agorithm computes the optimal number of stages by alinear search, increasing k starting with k = 1.
The process terminates when stage k does not perform better than stage k — 1 (i.e. when adding an additional driver actually
slows down the circuit). Then, the optimal sizing solution for the k — 1 stage drivers and the corresponding optimal wiresiz-
ing is the optimal SDWS/D solution. In practice, the runtime of SDWS/D is on the same order as k times the runtime of the
GWSA algorithm followed by the OWSA a gorithm to compute the optimal wiresizing algorithm. Note that the BWSA ago-
rithm [CoHe95] presented in Section 4.2.1.C can be used to gresatly speed-up the computation of the optimal wiresizing solution.
The simultaneousdriver and wire sizing problem for power minimization was also studied in[ CoK 094] and the efficient optimal
algorithm was developed. Accurate SPICE simulation shows that the method reduces the delay by up to 12%—49% and power
dissipation by 26%—63% compared with existing design methods. Very recently, Cong, Koh, and Leung [CoKL96] extended
the work on SDWS to handle driver/buffer and wire sizing for buffered interconnects. However, both [CoK 094, CoKL96] do

not consider the waveform dope effect during the computation of the optimal driver/buffer sizes.

4.3.2 SimultaneousGateand Wire Sizing

Recently, Menezes et a. [MePP95, MeBP95] studied the simultaneous gate and wire sizing problem for different objectives: to
achievethetarget delaysin [MePP95], and to find the minimal -areasol utionto satisfy the performance requirement in[MeBP95].

A. Simultaneous Gate and Wire Sizing to Achieve Target Delay

The algorithm in [MePP95] is the extension of the moment fitting method for wiresizing [MePD94] (Section 4.2.2.C) to the
simultaneous gate and wire sizing problem. Again, let target moments be momentsfor the 2-poletransfer functionsthat has the
target delays, and real moments those for the transfer function under the current widths of all wires and gates, the sensitivities
of the real moments with respect to the wire and gate widths will guide the search for wire and gate widths to match the rea
moments and target moments.

A higher-order RC delay model is used for the interconnect tree as in [MePD94]. Meanwhile, all transistorsin a gate are
assumed to scale by the same factor, which alows that a gate can be described by its “width” wg. The gate is modeled by the
single-resistor voltage-ramp model as proposed in [DaMQ94] (see Figure 6), which can accurately estimate the driver delay as
well as output waveform slope. The sensitiveswith respect to thegate and wirewidthsfor real moments can be computed, which
are used to guidethechanges of gate and wirewidthsto achieve thetarget del ay for astage by the af orementioned moment-fitting
method (in thiswork, a stage is adc-connected path from the voltage source in the gate model to asink).

Furthermore, the agorithmin [MePP95] handles a path, which contains cascaded stages. It is also based on the sensitivity
guided moment-fitting method. The following assumption is made to simplify the sensitivity computations: given two succes-

sive stagesn and n—+ 1 in a path, first, except the gate of stagen+ 1, nowire/gatein stagesn+1,n+ 2, - - - affects the delay in

48



stage n; Second, sizing the gate or awire in stage n only affects the input transition timeto the gate in stage n+ 1, not thosein
stagesn+1,n+ 2, ---. In their experiment, the objective for each PI-PO path was a 50% delay reduction, through gate sizing
only and simultaneous gate and wire sizing, respectively. It was shown that for larger delay reductions, simultaneous gate and
wire sizing could achieve lower area and that gate sizing only could not reach 50% delay reduction because the path delay was

dominated by the interconnect delay. The trade-off between the area and the delay reduction was shown as well.

B. Simultaneous Gate and Wire Sizing to Satisfy Performance Requirement

The simultaneous gate and wire sizing approach [MeBP95] is aimed at finding the minimal-area solution to satisfy the perfor-
mance requirement. First, thedriver ismodeled by afixed resistance driven by astep waveform and thedel ay of theinterconnect
treeismodeled by theElmore delay model. The path delay in thiscaseisaposynomial function of both gate and wirewidthsand
the simultaneous gate and wire sizing problem is a posynomial programming problem which can be transformed into a convex
programming problem. The sequential quadratic programming (SQP) 2 is used to solve this transformed convex programming
problem to achieve an optimal solution.

Then, the delay of the interconnect tree is modeled by the higher-order RC delay while the driver is modeled by a fixed
resistance. Althoughthe path delay is no longer a posynomial function of gate and wire widths, the authors assumed that it was
near-posynomial so that the SQP method could be applied. A g-poletransfer function isused and the sensitivity computation of
the poles and residues is conducted during the SQP procedure.

Finally, thedriverismodel ed by themore accurate single-resi stor voltage-ramp model [DaM Q94]. Again, the near-posynomial
isassumed for path delay and the SQP method isapplied. The sizing results showed that the fixed-resistance driver model could
lead to undersized solutions. RC meshes (non-treeinterconnects) can be handled by the SQP method, again under the assumption
that the delay formulation is near-posynomial.

4.3.3 SimultaneousTransistor and Wire Sizing

Very recently, the simultaneous transistor and interconnect(wire) sizing (STIS) problem isformulated and solved by Cong and
He [CoHe96b, CoHed6c]. In order to minimize the delay aong multiple PI-PO paths, they propose to minimize the weighted
combination of delaysfor al stages in these PI-PO paths by choosing the discrete or continuoustransistor sizes and wire widths.

Rather than devel oping ad hoc methods for STIS problems under different delay model s, the authors study the optimization

problems whose objective functions have the following form:

f(x) _ < © i api(Xj) b (X ) el
= -bq e
péq: i=1j=1,]#i Xip S
where api(%) > 0and byj(xj) >0
O<L<X<U (31)

9According to [Po78], the SQP method reduces the nonlinear optimization to a sequence of quadratic programming (QP) subproblems. At each iteration,
a QP subproblemis constructed from a quadratic linearization of both the objective function and the constraints about the solution from the previousiteration.
The solution of the current iteration is then used as an initial solution for the next iteration. The iteration convergesto a solution for a convex programming

problem.
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When coefficients are constants, the class of functions, named simple CH-posynomials, is a subset of posynomials defined in
[Ec80]. Furthermore, they define the following general CH-posynomials, which are no longer posynomials.
General CH-posynomial: Egn. (31) isageneral CH-posynomial if coefficients satisfy thefollowing conditions: (i) api (%)
api (Xi)

isafunctionof x;. It monotonically increaseswith respect to an increase of x; but 2 till monotonically decreases with respect

to anincrease of x;. (ii) bgj(x;) isafunction of x;. It monotonically decreases with respect to an increase of x; but bgj(X;) x?
still monotonically increases with respect to an increase of x;.

Let the optimization problem to minimize a simple/general CH-posynomial be a simple/general CH-posynomial program.
After generalizing the concepts of loca refinement operation and the dominance property in [CoLe95] (presented in Section
4.2.1.A), the authors of [CoHe96b, CoHed6¢] showed the foll owing important theorem:

Theorem (Cong-He): The dominance property holdsfor both the simple and the general CH-posynomial programs.

The theorem provides an easy way to verify the dominance property for both the single-source and the multi-sourcewiresiz-
ing problemsin[CoL e95] and [ CoHe95], respectively, since both obj ectivefunctionsareinstances of the simple CH-posynomial.
Furthermore, thetheorem leadsto efficient al gorithms, for exampl e, the generalizations of the GWSA agorithm[CoL e95] or the
BWSA algorithm [CoHe95], to compute a set of lower and upper bounds of the optimal solution to a CH-posynomial program
by the local refinement operation and the bundled refinement operation very efficiently (in polynomial time).

The authors of [CoHe96b, CoHed6c] further show that the STIS problem is a CH-posynomia program under the RC tree
mode! for interconnects and anumber model sfor thetrans stors, including both simple anal ytical model s or more accurate table-
lookup based model s obtained by detailed simulation to consider the effect of the waveform slope. Thus, the BWSA agorithm
[CoHed5] is generaized to compute the lower and upper bounds for the optimal widthsfor both wires and transistors.

Experiments show that in nearly all cases, the optimal solution to the STIS problem is achieved because the recursive ap-
plication of local refinement operations using the dominance property leads to identical lower and upper bounds. In contrast
to the transistor sizing algorithm in [FiDu85] that is not able to consider the waveform-dope effect for transistors, the domi-
nance property based STIS a gorithm can be efficiently applied to either analytical or table-lookup based transi stor modelswith
consideration of the waveform-dope effect. The simultaneous driver and wire sizing problem (for multi-source nets) and the
simultaneous buffer and wire sizing problem have been solved as special cases of the STIS problem, and a smooth area-delay

trade-off has been yielded for the transistor sizing problem for circuitsimplemented by complex gates.

4.3.4 SimultaneousBuffer Insertion and Wire Sizing

The polynomial-time dynamic programming a gorithm for the buffer insertion problem [va90] was generalized in [LiCL95] to
handl e the simultaneous wiresizing and buffer insertion for both delay and power minimization. The slope effect on the buffer
delay was a so taken into account. Only the delay minimization feature will be discussed in the following.

Different from[va90], when awire segment of length| (with upstream nodek) isadded at theroot i of adc-connected subtree,

anew option (g, c) will be generated at k for every wire width choicew and every (g, ¢;) at i asthefollowing:

g by

C = G+ca-wl

+G)
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The non-uniform wiresizing can be easily carried out by just introducing 2-degree Steiner points within a wire segment, and
the other two bottom-up rules to compute new options (with extension to multipleinverter sizes and consideration of the signal
polarity) and the ruleto prune suboptimal optionsgiven in [vad0] can be applied without any modifications. The number of total
options at the source of the routing tree is still polynomia bounded.

According to[HeJe87], thedelay of aninverter isthe delay under the step input plus an increment dueto theinput lope. The
increment is proportional to theinput waveform transition time. By assuming that the delay increment due to the input slopeis
proportional to the ElImore delay D prey in the previous stage, [LiCL95] further formulated the following buffer (inverter) delay

for the downstream capacitance cy.
buf_delays(b,ck) = buf_delay(b,ck)+ApDprev

where buf_delay(b, cy) equals to Dy, + Ryt - C« With Dy, being the intrinsic delay of an inverter and D yrev being the Elmore
delay of the previous wire path.

Because the dynamic programming worksfrom the bottom-upand D grev iSunknown, theoptionisre-defined as( f, ) instead
of (g, c) when considering the slope effect, where f isa piece-wise linear functionand f(x) = g isthe optimal required arrival
time g for the downstream capacitance ¢ and D prey = X. With this new definition for the option, the number of total optionsat
the source of arouting tree is no longer polynomially bounded in the theoretical sense. However, it was observed in [LiCL95]

that the run time of the new version is comparable to that of its simpler version assuming step-input to buffers.

4.4 Simultaneous Topology Construction and Sizing

All wire and device sizing works presented up to now assume that the topology of interconnectsis given, which can be called
gtatic sizing. Recently, dynamic wiresizing has been studied, where the wiresizing is performed during interconnect construc-
tion. Furthermore, simultaneousinterconnect construction, buffer insertion and sizing, and wiresizing has been studied in order

to achieve even better designs.

4.4.1 DynamicWiresizing during Topology Construction

Hodes, McCoy and Robins[HOMR94] propose a method to do wiresizing dynamically during tree construction. They combine
the Elmore Routing Tree (ERT) algorithm [BoKR93] (Section 3.3) and the GWSA a gorithm [CoLe93] (Section 4.2.1) asfol-
lows: starting with a degenerate tree initialy consisting of only the source pin, grow the tree at each step by finding a new pin
to connect to the tree in order to minimize the ElImore delay in the current wiresized topology. In other words, in each step they
invokethe GWSA dagorithm for each candidate edge and add the edge that yieldsthe wiresized tree with the minimal maximum
delay. After the construction spansthe entire net, the GWSA agorithmisinvoked once moreto wiresize the entiretree, starting
with the minimal width.

Recently, Xue and Kuh [ XuKu95b, XuKu95a] propose insertion of multi-linksinto an existing routing tree and do dynamic
wiresizing during the link insertion in order to minimize the maximum delay. The Elmore delay formulation for RC meshesin
[Wy87] isused. The algorithm works as follows: Given a routing tree with a performance requirement, the sink npy with the

maximum delay isidentified. A wirelink e is established between the source and npmay. While the performance requirement is
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not met and Ny remains the most critical (i.e, still has the max-delay), e is assigned with non-uniform wire width. Suppose
Nfrax DECOMeEs the most critical sink after wiresizing on e. If thereisadirect link € from source to ., then the algorithm sizes
thewireof € instead until nj,,, isnolonger themost critical sink or thedelay requirement ismet. If thereisnodirect link & from
source to Ny, € will be established only if further wiresizing of e can not satisfy the performance requirement with less area
than creating the new link €. The wiresizing isformulated as a Sequential Quadratic Programming (SQP) problem. Moreover,
non-uniformwiresizing is achieved by dividing every segment into a number of sub-segments defined by the user. Because the
sink with the maximum delay also has the maximum skew, minimization of the maximum delay aso minimizes the maximum

skew.

4.4.2 SimultaneousTree Construction, Buffer Insertion and Wiresizing

Most recently, Okamoto and Cong [ OkCo96b] study the simultaneoustree construction, buffer insertionand wiresizing problem1°.
The following techniques are combined to devel op awiresized buffered A-tree (WBA-tree) algorithm: the A-tree algorithm for
tree construction [ColL Z93], the simultaneous buffer insertion and wiresizing al gorithm [vad0, LiCL95], critical pathisolation,
and a balanced load decomposition used inlogic synthesis. Inlogic synthesis, when one or several sinksaretiming-critical, the
critical path isolation technique (Figure 24(a)) generates a fanout tree so that the root gate drives only the critical sinks and a
smaller additional load due to buffered non-critica paths. On the other hand, if required times at sinks are withina small range,
balanced load decomposition (Figure 24(b)) is applied in order to decrease the load at output of root gate. These transforma-
tionsare applied recursively in abottom-up process from the sinksin the same manner asthe A-tree and the simultaneousbuffer

insertion and wiresizing algorithms.
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Figure 24: Fanout optimizationin logic synthesis

Asinthebuffer insertionalgorithmof [vad0] (Section 4.1.3), the WBA algorithminclude two phases: the bottom-up synthe-
sis procedure and the top-down selection procedure. Similar definitions of the option and the pruning rule are used. Recall the
heuristic move in the A-tree a gorithm [ CoL Z93] merges subtrees recursively in the bottom-up manner, starting from the set of
subtrees, each containingasinglesink. Let T; be subtreerooted in nodei, the following basic steps are iterated in the bottom-up

synthesis procedure.

10An early version of this work considers only simultaneous topology construction and buffer insertion [OkC0964].
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e Select vand w with considering critical path isolation and balanced load decomposition.
e Merge T, and Ty, to T;, and compute a set of optionsat r.

In order to select the pair of v and w (equivalent to T, and Ty,) to merge, first, the following concepts are defined:

The distance between the source and themerging pair of vand w, denoted D, isdefined as Dyw = min(vy, Wx) +min(vy, wy).
Thisdefinition is for the case that v and w are in the first quadrant with sy at the origin. Other cases can be defined in asimilar
way.

The maximum possiblerequired time at theroot r of subtree T, generated by merging of T, and Ty, denoted Ry, is defined
as Ry = Maxzz, 0z, Wherer isthe merging point of Ty and Ty, and Z; isaset of optionsat r.

The maximum R, among all possible merging pairs v and w in the set of roots ROOT of the current subtrees, denoted
Rmax(ROOT), is defined as Ryax (ROOT ) = maxy, weroot Rw

The merging cost for v and w is defined as merge_cost (v, w, ROOT) = o * Ry + (1 — o) * Dy Where a is afixed constant
with0 < a < 1.0.

Then, the v and w pair with the maximum merge_cog is the oneto be merged. Theideabehind it is as follows: we want to
maximize the required arrival time in the source pin so that we wish that the Ry, is as large as possible. Meanwhile, we want
to minimize the total wire length, intuitively, we wish that D, isas large as possible. Notethat, when a = 0, it is equivalent to
the heuristic move in [CoLZ93].

The option computation and pruning can be carried out in amanner similar to [vad0, LiCL95] after each merging of T, and
Tw. Overdl, after the bottom-up synthesis procedure to construct tree and compute options, the top-down sel ection procedure
isinvoked. It chooses the option which gives the maximum required time and the minimum total capacitance at the source pin,
then traces back the computationsin the first phase that led to this option. During the back-trace, the buffer positionsand wire
width of each segments are determined.

Similarly, Lillis et al studied the simultaneous tree construction and wiresizing problem [LiCL96b] and the simultaneous
tree construction and buffer insertion problem [LiCL964d], respectively. In fact, their method can generalized to handle the si-
multaneous tree construction, buffer insertion and wiresizing problem as well. In short, during the dynamic program scheme to
congtruct a P-Tree [LiCL96b] (Section 3.3) in a bottom-up manner for a given permutation, a set of options are computed for

each subtree asin [vad0, LiCL95] and the same option pruning rule is applied.

5 High-Performance Clock Routing

In layout synthesis, the distribution of clock signalsis critical to both the operation and performance of synchronous systems.
If not properly controlled, the clock skew, defined to be the difference in the clock signal delays to registers, can impact the
performance of the system and even cause erratic operations of the system, e.g., latching of an incorrect data signal within a
register. At the same time, the routing solutionsto distributethe clock signals should have low wiring areato reduce the diesize
and the capacitive effects on both performance and power dissipation. Dueto technol ogy scaling where long global interconnect
becomes highly resistive as the wire dimensions decreases, the clock routing problem has become increasingly important since

clock nets generally have very large fanout and span the entire chip. Thus, clock synthesis has generated tremendous interests
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within both the industrial and academic communities over the past severa years.

In general, the clock routing problem can be formulated as follows: Givenaset {I(sy),...,1(sh)} C R2 of sink (register) lo-
cationsand skew constraintson variouspairsof registers, construct aminimum-cost clock treethat satisfiesthe skew constraints.
Most of theworks deal with zero-skew clock tree (ZST) construction where all sinks are required to have identical clock delay.
There are possibly other constraints and/or objectives to the problem:

(i) We want to impose a constraint on the rise/fall times of the clock signal at the sinks sinceit is critical to keep the clock
signal waveform clean and sharp.

(ii) We want to minimize the delay of clock signal, whichis closely related to the rise/fall time.

(iii) We want to minimize the total power dissipation since a clock signal typically operates at a very high frequency and
dissipates alarge amount of the power.

(iv) Wewant the clock treeto betol erant of process variations, which cause thewire widthsand device sizes on thefabricated
chip to differ from the specified wire widths and device sizes, respectively, resulting in so-called process skew, i.e. clock skew
due to process variations.

Intherest of thediscussion on clock routing, we consider the following clock routing problem: Given aset of sink locations
and a skew bound B > 0, construct a minimum-cost clock tree T that satisfies skew(T) < B where skew(T) = max; j [tj —t;].
In most works, B = 0, i.e., they attempt to achieve zero-skew for the clock net. This formulation requires the clock signal to
arrive at all sequential elementsamost at the same time, which iscommonly used in random logic design. For datapath design,
however, it is possible to optimize the circuit performance by planning the clock arrival times (clock schedule) at al registers
more carefully; “intentional” clock skews are used constructively to improve system performance. Clock schedule optimization
will be discussed in Section 5.6.

Recent workson clock skew minimization have accomplished exact zero skew under both the pathl ength delay model [BoK 892,
Ed91, Ed92] and the EImore delay model [Ts91, BoKa92, ChHH92a, ChHH92b)]. The Deferred-Merge Embedding (DME) al-
gorithm by [BoKa92, ChHH92a, Ed91] can be either applied to a given clock topology or combined with a clock topology
generation agorithm to achieve zero skew with a smaller wirdength [Ed93a]. The methodsin [CoK 095, HUKT95, CoKK95]
address the bounded-skew tree (BST) construction problem under the pathlength and Elmore delay models by extending the
DME agorithmfor zero-skew tree to BST/DME agorithms by the enabling concept of amerging region, which generalizesthe
merging segment concept of [BoKa92, ChHH92a, Ed91] for zero-skew clock trees. Recent studieson clock routing havealsoled
to new methods for single-layer (planar) clock routing [ZhDa92, KaTs94a, KaTs94b]. Furthermore, a number of authors have
applied wiresizing optimizations and/or buffer optimizations to minimize phase delay [PuM 093, Ed93b, MePP93, PUMP93],
skew sensitivity to process variation [PUM 093, ChCh94, LiWo94, XiDa95], and/or power dissipation [PuMQ93, ViMa95).

Most of these works are based on the pathlength and Elmore delay models. In practice, bounding pathlength skew does not
provide reliable control of actual delay skew [CoKK95]. For example, Figure 25(a) plots HSPICE delay skew against path-
length delay skew for routing trees generated by the Greedy-BST/DME agorithm under pathlength delay [CoK 095, HUKT95]
on MCNC benchmark circuit r3[Ts91]. Not only isthe correlation poor, but the pathlength-based BST solutions simply cannot
meet tight skew bounds (of 100ps or less). On the other hand, Figure 25(b) demonstrates the accuracy and fidelity of Elmore
delay skew to actua skew for routing trees constructed by the Greedy-BST/DME algorithm under Elmore delay [CoKK95].
Nevertheless, for completeness, we will discuss studies under both pathlength and ElImore delay models. The clock routing
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Figure 25: Plots of (a) pathlength skew and (b) Elmore delay skew versus actual (SPICE simulation) delay skew for routing
solutions obtained by Greedy-BST/DME agorithm [CoKK95] under pathlength delay and Elmore delay for benchmark r3.

problem under the pathlength problem is more tractable and theoretically interesting. Many important results are obtained un-
der the pathlength delay model. Also notethat most of the studies on clock routing arefirst based on the pathlength delay model
and later extended to handle the EImore delay model.

We will present various works on clock routing based on the following classification: (i) Abstract topology generation, (i)
Embedding of abstract topology, (iii) Planar routing, (iv) Buffer and wire sizing, (v) Non-tree clock routing, and (vi) Clock
schedule optimization. Many resultsin (i)—(iii) were also surveyed in [KaRo94]. While we aim to cover al recent works on
interconnect design and optimization in high performance clock routing in this section, thisis not a comprehensive survey on
clock synthesisand we left out some related topics. For example, thereis a clock synthesis algorithm that specifically targets
towards|ow power design using gated clock [ TEFS95]. Two-level clock routingwith theupper level routing in multichipmodule
substrate has a so been studied [ZhXDS94]. In addition, there are studiesthat target hierarchical data path design (instead of flat
logic design) [NeFr93, NeFro4, NeFr95] and consider retiming [Fro2b, SoFro4, SoFM95] using skew information. Interested
reader may also refer to [Fr95] for a survey on different aspects of clock synthesis.

5.1 Abstract Topology Generation

There are generally two approaches in generating the abstract topology: Top-down and bottom-up. In the top-down approach,
theideaisto perform bipartitioning of sinks. A set Sof sinksis bipartitionedinto two sets S; and S, where each set (S, S; and
S) corresponds to anode in the abstract topology and Sisthe parent of S; and S; in the topol ogy. On the other hand, the basic
idea in the bottom-up approach isto perform clustering, i.e. merging two sets S; and S, into S. The recursive clustering also
defines an abstract topology. Many methods actually generate the abstract topology and embed the topology in one pass. But,
we separate abstract topology generation from embedding since once the abstract topology is given, embedding can be done
optimally (under the pathlength delay model) or near-optimally using the algorithmsto be described in Section 5.2.
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5.1.1 Top-Down Topology Generation

In an H-tree topology [FiKu82, KuGa82, WaFr83, DhFW84, BaWM86], the basi ¢ buildingblock isaregular H-structure. ™ All
four corners of the H-structure are equi-distant from the center of the structure. The H-tree algorithm minimizes clock skew by
repeating the H-structure recursively top-down as shown in Figure 26. In the figure, al pointslabeled 4 are pathlength equi-
distant from the origin labeled 0.

2 2

; ....... 3. .3.......; ....... 3 3 ........
4 4 4 4

0

_ ................... 1 . 1 ....................
4 4 4 4

g ....... 3. 2;%.3"..."5 ....... 3 2 3 ........
4 4 a4 4

Figure 26: H-clock tree. Nodes labeled 4 are equi-distant from the origin labeled 0.

H-Trees, while effective in equalizing path lengths from a driver to a set of sinks, have serious limitations. These trees are
best suited for regular systoliclayouts, and are not easily adapted to irregular placements with varying sink capacitances, which
are common for cell-based designs. Moreover, tree lengths can be excessively high for large clock nets, impacting circuit area,
power consumption, and clock rates for large circuits.

The Method of Means and Medians (MMM) algorithm proposed by Jackson, Srinivasan, and Kuh [JaSK 90] generalizesthe
H-treea gorithm; theideaisto perform partitioningalong x and y directionsalternatively. Givenaset of SinksS= {s1,, -+, S}
to be partitioned, the MMM method first computesthe center of mass of S, denoted c(S), by cal culating the means of the x- and

y-coordinates of sinksin S

_2X% _ oY
X9 = I Y9 = “n

1 Another scheme that yields equal-length interconnectionsis the X-clock tree, where the basic building block is an X-structure [Ba90]. It can be verified
easily that for the simple case of four sinksat the corners of aunit square, an X-tree connection can be embedded on arectilinear plane using a cost of 4 units,
whereas an H-tree connection requires only a cost of 3 units. An X-tree is more costly due to overlapping routing when it is realized on a rectilinear plane
[KaTs944].
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The set of sinksare then ordered by their x- and y-coordinates. If Sisto be partitionedinthe x (y) direction, then sinksin thefirst
half of the ordered sink set are grouped in the Seft (Soattom) Partition and the rest of thesinksbelong to the Siigre (Sop) partition.
The agorithm then routes from the center of mass ¢(S) to centers of mass of partitions, ¢(Sieft) and c(Siig ) (Or, ¢(Sportom) and
¢(Sop))- Then, it routes on the subsets Ses¢ and Siigr (OF, Syortom @A Sop) recursively until a partition has only onesink. Instead
of routing aternatively between the horizontal and vertica directions, the MMM method is aso extended to allow one level of
“look-ahead” to determine the more favorable direction.

Chao, Hsu, and Ho [ChHH924] presented another top-down topol ogy generation approach called the Balanced Bipartition
(BB) method. The heuristic dividesthe sink set recursively into two partitionswith nearly equal total loading capacitance. Itis
more genera than the MMM method which uses only horizontal and vertical cuts. Given a set Sof sinks, the BB method first
computes the smallest octagon that bounds S and obtains the octagon set of S, Oct(S), which is defined to be the set of sinks
in Sthat lie on the boundary of the smallest boundary octagon. The sinksin Oct(S) are sorted in circular order based on their
locations on the boundary of the smallest boundary octagon.

The BB method computes abal anced bipartitionby considering |Oct(S)| /2 reference sets, denoted REF; for 1 < i < |Oct(9)|/2,
where each REF; contains|Oct(S)|/2 consecutivesinksin Oct(S). For each REF;, thesinksare sorted in ascending order of their
weights, where theweight of sink p with respect to REF; isdefined to be min,crer, d(p, r) + max;crer d(p, r). Each sink isthen
added to apartition S; according to the sorted order until the difference between the sum of capacitancesin S; and one half theto-
tal capacitanceisminimized. Therest of thesinksare placed in S, and REF, hasapartitioncost of diameter(S;) + diameter(S,).
The reference set REF; (and its bipartitions) with the least partition cost are selected. Asinthe MMM agorithm, recursion then
continuesonthesubsets S; and S,. Notethat BB isapurely topol ogy generation algorithm. It relies on the embedding al gorithm
to be presented in Section 5.2 to embed the abstract topol ogy generated.

5.1.2 Bottom-Up Topology Generation

In contrast to thetop-down approaches of [JaSK 90, ChHH92b], the KCR geometric matching a gorithmwas proposed by Kahng,
Cong, and Robins[KaCR91, CoK R93] asthefirst bottom-up approach for clock tree abstract topol ogy generation. It constructsa
routingtree by iteratively joining pairsof subtreeswhich are“close,” and can handle cell-based design with asymmetric distribu-
tionsof clock pinsand general-cell design [CoKR91, CoKR93]. The KCR agorithm startswith aset Sof trees, each containing
asinglesink of the clock net. At each iteration, a minimum-weight maximum matching is performed on the set of roots of the
current subtrees, where the weight of a matched edgeis equa to the distance between the two vertices (or tree roots) connected
by the edge. The matching operation selects |S|/2 edges that pair up the rootsof all trees such that no root appears in two edges
in the matching.

For each edge in the matching, the pair of subtrees are connected by the edge and a balance point on the edge is computed
to minimize pathlength skew to the leaves of its two subtrees, i.e. the maximum difference in the pathlength delays from the
balance point to the sinksin the two subtreesisminimized. Thisbal ance point aso servesastheroot of atreeinthenext iteration.
An exampletoillustratethe KCR algorithmis shown in Figure 27.

Notethat it ispossiblethat no balance point a ong the edge can be found to achieve zero skew. A further optimization, called
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Figure 27: Geometric matching on a set of 16 terminals.
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Figure 28: Example of flipping an H to minimize clock skew: the tree on the left has no zero-skew balance point aong the

middle segment of the “H”, while the tree on the right does.

H-flippingis used to minimize clock skew when two trees are merged in the matching iteration (See Figure 28).12

Since the number of treesisreduced by half at each iteration of the matching, the complete clock tree topol ogy can be com-
puted after logn matching iterations. Thetimecomplexity of theKCR agorithmis O(M logn) where M isthetime complexity of
the matching algorithm. To solve problems of practical interest, efficient matching al gorithmsare chosen over optimal matching
algorithm. Severa efficient heuristic matching agorithms that were recommended by [CoKR93]. However, heuristic match-
ing algorithms may produce a matching with crossing edges. 1n the KCR algorithm, intersecting edges in such a matching are
uncrossed to reduce routing cost.

The authorsalso generalized theidea of bottom-up iterative matching to route clock netsin building block layouts, in which
acircuit is partitioned into a set of arbitrarily-sized rectangular blocks. After the blocks are placed by a placement algorithm, a
floorplan and the corresponding channel intersection graph is obtained. Routing is carried out in the channel s between blocks.

In afloorplan, a vertical channel and a horizontal channel may intersect. These intersection points are vertices in the channel

12 An H-structure in the KCR algorithm is not aregular H-structure in H-tree algorithm.
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intersection graph. In the channel intersection graph, vertices u and v are connected by an edge if and only if thereisa channel
from u to v not containing any other vertex. An augmented channel intersection graph (ACIG) is used to capture the location
of clock pins (or clock entry points) of functional elements. Each entry point isalso avertex inthe ACIG. The entry point & so
introduces an auxiliary vertex on the channel, and an edge is created between the block entry point and the auxiliary vertex in
order to compl ete the routing.

For the KCR agorithm to work in an ACIG, instead of using the geometric distance as the cost of the edge between two
subtrees, the shortest distance on the channel graphisused asthe cost of the edge connecting two points. Therefore, an additional
component inthe KCR algorithmfor general cell design isthe shortest path algorithmto compute the shortest paths between all
pairs of verticesin each iteration. For each pair of matched vertices, a balance point a ong the shortest path connecting the two
vertices is computed, and the balance point then serves as a vertex to be matched in the next iteration.

In general, the KCR a gorithm performs better thanthe MMM a gorithm, interms of both routing cost and clock skew (under
the pathlengthdelay model). The algorithmswere eval uated using random point sets. Moreover, two MCNC benchmark circuits,
named Primary1 and Primary?2, reported in [JaSK 90] were also used in the experiment. No datafor the BB method isavailable
since BB produces only an unembedded binary tree topology. Note that both the MMM and KCR algorithms cannot guarantee
zero-skew routing, although the routing sol utions constructed by the KCR algorithm have skews very close to zero.

The two benchmark circuits Primary1 and Primary 2, together with the other five benchmark circuits rl to r5 reported in
[Ts91], would later become the most commonly used benchmark circuits to evaluate the quality of routing solutions generated
by various clock routing algorithms. Otherwise specified, the experimental resultsreported by various papers will be presented

with respect to these benchmark circuits.

5.2 Embedding of Abstract Topology

Given a prescribed abstract topology, the Deferred-Merge Embedding (DME) algorithm, proposed independently by Edahiro
[Ed91], Chao, Hsu, and Ho [ChHH924d], and Boese and Kahng [BoKa92], achieves exact zero skew for both pathlength and
Elmore delay models. The enabling concept is that of a merging segment. The problem of bounded-skew embedding was
first addressed independently by Cong and Koh [CoK095], and Huang, Kahng, and Tsao [HUKT95] under the pathlength delay
model. Cong et al. [CoKK95] later extended theworksto handle bounded-skew embedding under the Elmore delay model. The
BST/DME algorithms proposed by [CoK 095, HUKT95, CoK K95] generalize the merging segment concept and introduce merg-
ing region for bounded-skew embedding. These embedding a gorithms (both zero-skew and bounded-skew) can also be com-
bined with bottom-up topol ogy generation to produce clock trees with less routing costs [Ed92, CoK 095, HUKT95, CoKK95].

521 Zero-Skew Embedding

The key idea of the DME agorithm is the delayed embedding of internal nodes of the abstract topology [Ed91, ChHH92a,
BoKa92]. In generd, given two zero-skew trees, there can be anumber of locationsat which two zero-skew trees can be joined
with the minimum wirelength such that zero skew is achieved at the higher level. For example, in Figure 29(b), any point | (x)
on theline segment ms(x) is equi-distant from sinks s; and s, i.e., we obtain a zero-skew sub-tree rooted at |(x) with sinks sy

and s,. This contrasts with the KCR a gorithm where thereis only a single balance point when two sub-trees are connected by
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amatching edge.
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(a) Topology (b) Bottom-Up Merging Phase (c) Top-Down Embedding Phase

Figure 29: A walk-through of the DME agorithm: (&) Topology of aclock source sy and 4 sinkss; 4, (b) Merging segments of

internal nodes x, y and sy, and (c) Zero-Skew clock tree with atotal wirelength of 17 units.

Given aset of sinks Sand an abstract topology G, the DME algorithm expl oits this flexibility and embeds internal nodes of
G viaatwo-phase approach: (i) a bottom-up phase that constructs a tree of merging segments which represent loci of possible
placements of internal nodesin azero-skew tree (ZST) T; and (ii) atop-down embedding phase that determines exact | ocations
for theinternal nodesin T. Notethat the embedding can actually be done in asingle-phase process. We will present the single-
phase DME agorithmin Section 5.3.2.

In the bottom-up phase, each node v € G is associated with a merging segment, denoted ms(v), which represents a set of
possible placements of v in aminimum-cost ZST. The segment ms(v) isalways aManhattanarc, i.e., a segment (with possibly
zero length) that has slope +1 or —1. Let a and b be the children of node v in G. The construction of ms(v), placements of v,
depends on ms(a) and ms(b), hence the bottom-up processing order. We seek placements of v which allow a and b to be merged
with minimum added wire |e;] + |&,| while preserving zero skew in Ty,

Wefirst illustratethe computation of |e,| and |&,| under the pathlength delay model [Ed91, BoKa92]. Givent(a) andt(b), the
delaysfrom a and b to their respective sinksin T, and Ty, it requiresthat |es| +t(a) = || +t(b) to ensurethat thedeays fromv
tosinksin T, and T, areequal. Let | denotethe distance between ms(a) and ms(b), i.e., d(ms(a), ms(b)) = 1. If |t(a) —t(b)| <,
then thereisno detour, i.e, |es| + || = 1. Let ms(v) bex- | unitsof distance from ms(a) where x is between 0 and 1. Then,
_1, tb)-t@)

2 2.1
Suppose [t(a) — t(b)| > |. Without loss of generaity, let t(a) > t(b). Then, the merging cost is minimized by setting |es| = 0
and || = t(a) —t(b). Inthiscase, detour occurs, i.e., |€a] + |&y]| > I.
Under the EImore delay model, We can compute X as follows[Ts91]:

_t(b)—t(a)+r-1-(Cap(b)+c-1/2)
~ r-l-(c-1+Cap(a)+Cap(b))
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whereCap(a) and Cap(b) arethetotal capacitances of sub-trees T, and Ty, respectively, and r and c are the unit length resistance
and capacitance, respectively. If 0 < x < 1, we havefound |e;| = x-1 and |&| = | — |es|. Otherwise, detour occurs, i.e. |es| +
|en| > 1. Again, without loss of generality, let t(a) > t(b). Then, |ea| = 0, and |&,| is obtained by solving the following equation
[Ts91]:

t(a) =t(b)+r-|e|- (Cap(b) +c- |ey|/2).

Notethat the above computation assumes both edges e; and g, have unit wirewidth. A simpleextension can be madeto achieve
zero-skew merging even when e, and g, have different widths [Ed93b].

Given |e;| and ms(a), the DME method computes the largest tilted rectangular region (arectangle rotated by 45°) such that
al pointsin thetilted rectangular region, referred to astrr(a), is of adistance of a most |es| from ms(a). Similarly, trr(b) is
computed. Then, ms(v) is obtained by taking the intersection of trr(a) and trr(b) as shown in Figure 30. At the end of the
bottom-up merging process, atree of merging segments is computed. We call such atree a merging tree. Also, the edgelength

|ey| is known for each node v in the merging tree.

length(e,) =0
ms(a) = trr(a)
length(ey) length(ey)

length(e,)

ms(v)

ms(v)— ¢ ms(b) ms(b)

trr(b)

(a) no detour (b) with detour

Figure 30: Intersection of trr(a) and trr(b) to obtain ms(v).

Given the merging tree, the top-down phase embeds each interna nodev of G asfollows: (i) if vistheroot node, then DME
selects any point in ms(v) to be I(v); or (ii) if visan interna node other than the root, DME chooses | (v) to be any point on
ms(v) that is of distance |e,| or less from the embedding location of v's parent.

Figure 29 gives an example of the DME algorithm under the pathlength delay model for a clock source sp and sinks s;-s4
with atopology shown in Figure29(a). Figure29(b) givesthe merging segments ms(x), ms(y), and ms(sp) of theinternal nodes
X, Y, and 59, respectively. Each interna node isthen embedded at a point on its merging segment that is closest to its parent as
shown in Figure 29(c). For pathlength delay, DME returns the optimal solution, i.e., a tree with minimum cost and minimum
source-sink pathlength for any input sink set Sand topology G. DME is not optimal under the Elmore Delay model [BoKa92].

Using the topol ogiesgenerated by the KCR algorithm, the DME a gorithm averages more than 9% and 15% cost reductions
over the clock routing trees constructed by the KCR and MMM agorithmsonly, respectively. The results are marginally better
than those produced by combining BB with DME. Aswe shall see in Section 5.2.3, further cost reduction can be obtai ned when

we interleave topology generation with embedding.

61



5.2.2 Bounded-Skew Embedding

While the DME agorithm considers only zero-skew, the BST/DME algorithms proposed by [CoK 095, HUKT95, CoKK95]
consider bounded-skew clock routing. Similar to the DME algorithm for zero-skew tree, the BST/DME algorithms compute
abounded-skew routing tree (BST) for a prescribed topology in two phases: bottom-up and top-down. The enabling concept is
that of amerging region, which generalizes the concept of merging segment in [BoKa92, ChHH92a, Ed91] for zero-skew clock
trees. Figure 31 highlightsthe difference between the DME algorithm for zero-skew routing and the BST/DME agorithmsfor
bounded-skew routing. In the BST/DME algorithms, the bottom-up process constructs a tree of merging regions (in contrast to
merging segments for zero-skew tree) which contains possiblelocations of the interna nodesinthe BST. The top-down process

then determines the exact locations of al internal nodes.
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Figure31: Comparison of DME zero-skew routingin (b) and BST/DM E bounded-skew routingin (c) for the prescribed topol ogy
Gin(a). BST/DME lowerstheroutingcost by allowing non-zero skew bound. Notethat in (b) themerging segmentsare depicted
by dashed lines, and in (c) the merging regions are depicted by shaded polygons.

Two approaches were proposed to construct the merging regions: (i) the Boundary Merging and Embedding (BME) method

[CoK 095, HUKT95] and (ii) the Interior Merging and Embedding (IME) method [ CoKK95]. We consider only the pathlength
delay formulation asin [CoK 095, HUKT95]. Extension to the Elmore delay model can be found in [ CoKK 95].
Boundary Merging and Embedding (BME). The BME method utilizes only the boundaries of merging regionsto construct
new regions: Given merging regions mr(a) and mr(b) of v's children, the merging region mr(Vv) is constructed by merging the
nearest boundary segments of mr(a) and mr(b). The nearest boundary segments are called joining segments. A point p in the
joining segment of mr(a), denoted JS(a), can merge with apoint q in thejoining segment of mr(b), denoted JS(b), if d(p, q) =
d(mr(a), mr(b)).

There are severa interesting properties of a merging region under bounded-skew routing which alow it to be computed in
congtant time. Note that each point p in the merging region has two delay functions: max-delay and min-delay which givesthe
maximum and minimum delays from p to sinks in subtree Ty, rooted at p, i.e., the maximum and minimum sink delaysin Tp.

A merging region under pathlength delay is convex and is bounded by at most 8 well-behaved segments, which are Manhattan
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arcs (+45° lines) and rectilinear line segments (horizontal or vertical line segments) with the foll owing properties:

(i) All pointsa ong aboundary Manhattan arc has constant max-del ay and constant min-del ay and thus, the skew value along
aboundary Manhattan arc is constant.

(if) The max-delay along a boundary rectilinear line segment is strictly decreasing with a lope of —1 and then increasing
with adope of +1. On the other hand, the min-delay along aboundary rectilinear line segment isincreasing and then decreas-
ing. Therefore, the skew values along a boundary rectilinear line segment are linearly decreasing, then constant, then linearly

increasing (Figure 32(b)). Locations which define the interval of constant skew region are called skew turning points.

k. ‘ma>:<-dejlayi” o

La(1,1) max-delay = max(x+1, -x+9
min-delay = min(x+1, -x+7)
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Figure 32: Merging mr(a) with mr(b) using Manhattan arcs L, and Ly, respectively. Each pair of coordinates associated with a
Manhattan arc (or point) represent (max-del ay, min-delay) of theline segment (or point). (a) showsthemax-delay and min-delay
of any point p along a shortest path connecting two pointson L, and Ly with length = d(La, Ly). (b) Properties of pathlength
delaysand skew over aline segment | connecting two pointsa € L, and b € Ly,. Thefirst and second coordinate pairs associ ated

with pointsa and b represent (max-delay, min-delay) before and after merging, respectively.

Therefore, thejoining segmentsfrom mr(a) and mr(b) are either parallel Manhattan arcs or parallel rectilinear line segments.
Let J§(a) and JS(b) be the two joining segments, and T;g5) and Tygp, be subtrees rooted under JS(a) and JS(b), respectively.
To merge two parallel Manhattan joining segments JS(a) and JS(b), mr(v) is computed as follows (Figure 33):

(i) Given the constant max-delay of T;g4), and the constant max-delay of T;gy,), use the delay balancing method in Section
5.2.1 for zero-skew merging to find aManhattan arc | such that the max-delay from | to sinksin T4 and Ty are the same,

ie,
max{t(p,x)|pel,x€ sink(Tyga))} = max{t(p,x)|pel,x e sink(Tygp))}-
Similarly, find I such that the min-defay from I’ to sinksin Ty, and Tygp, arethesame. | and |’ bound aregion as shown in

Figure 33(a).
(i) Expand the region bounded by | and |’ towards JS(a) and JS(b) by
bound (Figure 33(b)). The expanded region is ms(v).

Bfmax(g(ew(TJ%a))’SkeW(THb))), where B is the skew
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To mergetwo parallel rectilinear joining segments, for p either a skew turning point or an end point of thejoining segments,
merge p with the point directly opposite it on the other joining segment by the two step computation given above. A set of
merging regionsistherefore produced. Subsequently, awalk isperformed to jointheverticesof these merging regionsto produce

the new merging region as shown in Figure 34.
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JS(a) Balance min-delay, I / 3
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Figure 33: Merging of two Manhattan joining segments JS(a) and JS(b): (a) Balance the max- and min-delays (given in the
pair of coordinates) of T, and Ty, and (b) Expand the region bounded by | and I” towards JS(a) and JS(b) by 1 unit for a skew
bound of 6.

Interior Merging and Embedding (IME). IME uses aset of sampling segments (possibly with pointsinterior to the merging
regions) from each child merging region, instead of only one joining segment from a merging region as in the BME method.
Merging interior points has the advantage of better utilizing the skew budget throughout the bottom up merging process, which
may result in alarger merging region at a parent node and possibly reduce the total merging cost (Figure 35).

Only well-behaved line segments are used to sample amerging region. Merging of two regionsinvol vestwo sets of sampling
segments and generates a set of merging regionsfor the parent node (Figure 35). For efficient and practical implementation, the
IME method limitsthe number of regionsassociated with a node by a constant, say k. Each regionisin turn sasmpled by exactly
ssampling segments when the region is being merged with other regionsof the siblingnode. A key step in the IME method lies
in choosing, viadynamic programming, a set of “best” merging regions (no more than k of them) among the set ®_of (at most)
k2s? regions generated for the parent node.

A merging region Re R isassociated withthree values: (i) Cap(R), thetotal capacitance rooted at region Rwhichisacon-
stant for al pointin R, (ii) min_skew(R), the minimum possible skew among all pointsin R, and (iii) max_skew(R), the maximum
skew possible within the merging region. A merging region R of vissaid to be* redundant” if there exists another merging re-
gion R of v such that min_skew(R') < min_skew(R) and Cap(R) < Cap(R) (See Figure 36(a)). Let IMR(v) = {Ry, Ry, - - -Rm}
denote the set of irredundant merging regions of v with R;’s arranged in descending order of Cap(R;), then min_skew(R;) <
min_skew(R; ;1) foral i with1<i<m.

The set of irredundant merging regions forms a staircase with m— 1 steps as shown in Figure 36(b). The area of the stair-

case of a set of merging regions of node v, denoted area(V), is defined to be the area under the staircase between the skews
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Figure 34: Merging of two rectilinear joining segments: (a) For each skew turning point and each segment endpoint, compute
the merging regions of the point with the point oppositeit on the other segment, and (b) Perform awalk to join the vertices of

these merging regions.

min_skew(Ry) and min_skew(Ry):
area(v) = r_rg{mi n_skew(Ri+1) — min_skew(R;)} x Cap(R;)

In order to retain a good spectrum of no more than k merging regions from IMR, the IME method solves the following (m, k)-
Sampling problem optimally using a dynamic programming approach: Given aset of mirredundant merging regions, IMR, find
asubset of k (2 < k < m) merging regions such that after removing each of the m— k intermediate merging regions, the remaining
regions IMR has minima error, i.e, area(IMR) — area(IMR) isminimal .

In summary, to compute the merging regions for a node, IME first computes k?s> merging regions due to merging of its
children. Redundant merging regions are then removed and a dynamic programming agorithm is applied to select among the
mirredundant merging regions, k “best” merging regionsto be associated with the node.

The IME method requires alonger run-time than the BM E method due to the (m, k)-Sampling algorithm. The run-time can
beimproved if we use other faster sel ection heuristics such as choosing k merging regions with the smallest total capacitances.
However, the impact on the quality of the routing solutionsis not clear. On the other hand, the advantage of the IME method
isthat it considers interior merging pointsand might generate larger merging regions and therefore reduce merging cost at the
next level. Although the IME method is expected to produce routing solutions with smaller costs when compared to solutions
congtructed by the BME method, thisis not always the case as shown in the experimental results of [CoKK95]. However, this
could bedueto theuse of small sampling sets (k= 5and s= 7) with only Manhattan arcs as sampling segmentsin the experiment.
IME performs marginally better than BME for fixed topology. However, in the case of combining topology generation with
embedding (Section 5.2.3), both methods have comparabl e results, with IME produces better resultsfor larger circuitswhen the
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Figure 35: Interior merging for a skew bound of 2 units between mr(x) and sink s3: (8) The merging region mr(x) (due to
merging of s; and ) is sampled by three Manhattan arcs {ss], ss;, ss3}. (b) Merging these sampling segments with sink s3
produces three merging regionswhere R; is produced by merging sz with ss‘. Ry is aso the merging region obtained by BME

when mr(x) merges with s;. Notethat it issmaller than Rs.

skew boundislarge.

A very recent work by Oh, Pyo, and Pedram [OhPP96] can construct an optimal minimum-cost bounded delay routing for a
given topology using linear programming under the pathlength delay model. The bounded delay routing tree satisfies the upper
and lower bound delay constraints imposed by the designer. Clearly, the bounded delay routing tree is also a bounded-skew
tree. However, for a skew bound B, there are many combinations of the upper and lower bound delays. It is difficult to choose
a“good” combination of upper and lower bounds for a specific allowed skew bound. The authors & so noted that the approach

cannot be extended to handle EImore delay easily [OhPP9g].

5.2.3 Topology Generation with Embedding

Since DME requires an input topology, several works [BoKa92, ChHH92a, Ed92] have thus studied topology constructions
that lead to low-cost routing solutionswhen DME is applied. These methods interleave topology construction with merging
segment computation using DME. The works by [ CoK 095, HUKT95, CoKK 95] adopt a similar approach to construct BSTs by
interl eaving topol ogy construction with merging region computation using BME or IME.
Greedy-DME. Themost successful method inthisclass isthe Greedy-DME method of Edahiro [Ed92], which determinesthe
topol ogy of the merging tree in a greedy bottom-up fashion. Let K denote a set of merging segments which initially consists of
al thesink locations, i.e, K = {ms(s;)}. Greedy-DME iteratively finds the nearest pair of neighborsin K, that is, ms(a) and
ms(b) such that d(ms(a), ms(b)) isminimum. A new parent merging segment ms(v) is computed for node v from a zero-skew
merge of ms(a) and ms(b); K is updated by adding ms(v) and deleting both ms(a) and ms(b). After n— 1 operations, K consists
of the merging segment for the root of the topol ogy.

In [Ed934], O(nlogn) time complexity was achieved by finding several nearest-neighbor pairs at once, i.e., the algorithm
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Figure 36: (a) Set of merging regions. (b) Set of irredundant merging regions form a staircase. (¢) Removing an intermediate

step resultsin anew staircase with an error depicted by the shaded region.

first constructs a“ nearest-neighbor graph” which maintainsthe nearest neighbor of each merging segment in K. Viazero-skew
merges, |K|/k nearest-neighbor pairsaretaken from thegraph in non-decreasing order of distance, wherek isaconstant typically
between 2 and 4. In some respects, this approach is similar to the KCR algorithm in which a matching is computed in each
iteration [COKR93]. The solutionis further improved by a post-processing local search that adjusts the resulting topology (cf.
“CL+I6" in [Ed934d]). Greedy-DME achieves 20% reduction in wiring cost compared with the results which were obtained by
using BB followed by DME [ChHH924].

Chou and Cheng [ChCh93] proposed a simulated annealing approach to construct a zero-skew tree. A “tree grafting pertur-
bation” operation isused to swap two subtrees during the annealing process. The algorithm has been applied to both Manhattan
and Euclidean geometries. For the Manhattan distance metric, the heuristic produces tree lengths which are about 2% worse
than those generated by CL+16 [Ed933].

Greedy-BST/DME. Similar to the Greedy-DME agorithm, [HUKT95] proposed a Greedy-BST/DME agorithm to construct
a bounded-skew tree. A key difference between the Greedy-BST/DME algorithm and the Greedy-DME algorithm is that the
former agorithm allows merging a non-root nodes whereas Greedy-DME always merges two subtrees at their roots.

In DME, two merging subtreesare alwaysmerged at their rootsso asto maintain zero skew. However, the shortest connection
between two bounded-skew trees may not be between their roots. Indeed, subtrees may be merged at non-root nodes as long as
theresulting skew is < B. Thisflexibility allows reduced merging cost and isthe key merit of the Greedy-BST/DME approach.
Consider the example in Figure 37(a), where the eight sinks are equally spaced on a horizontal line. When B is near zero, the

minimum tree cost can be obtained by merging subtrees T; and T, at their roots as shown in the top example. However, this
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Figure 37: (a) An example showing that given skew bound B >> 0, changing the subtree topol ogy before merging will reduce
the merging cost. (b) Repositioningthe root in changing the topol ogy.

topology isbad when B islarge, even if the costs of the two subtrees can be minimum. When the skew bound islarge, ideally
one should adjust the subtree topology so that the roots of subtrees become closer while the subtree costs remain the same or
increase dightly. Thisis shown in the bottom example in Figure 37(a). Effectively, T, and T, are merged at hon-root nodes.

Figure 37(b) illustratesin more details how the tree topology is adjusted. First, the root is moved down to some tree edge,
say e, = wv, so that the root becomes the parent of nodes u and v. Then the tree topology is adjusted accordingly by adding,
deleting, and redirecting some edges. The costs of the two subtrees may increase but the overall cost of the tree after merging
may be better.

Merging with non-root nodes is a powerful topology generation method. The work by [CoK095] is a simple extension of
Greedy-DME, i.e, it considers merging of root nodes only. The wirelength reduction averages 19% when the allowed skew
increases from O to «. The Greedy-BST/DME agorithm by [HUKT95] can achieve an average of 42% wirelength reduction
when varying the skew bound from 0 to «. In fact, it very closely matches the performance of the best-known heuristics for
both the zero-skew [Ed93a, Ed94] and infinite-skew limiting cases, i.e. Steiner routing (Section 3.1.2).

For realistic skew bounds in the range of Ops to 150ps, the Greedy-BST/DME agorithmsin [CoKK95] averages 26.6%
wirel ength reduction when compared to the best reported zero-skew solutionsby the CL+16 agorithmin [Ed93g].

5.3 Planar Clock Routing

It is preferable to route clock nets on the metal layer with the smallest RC delay since this avoids the use of viasin the clock
net and makes the layout more tolerant of process-variations. This motivates the following papers on planar clock routing. In
these papers, they assumes Euclidean planarity, i.e. all edges in the tree do not cross when an edge is represented by a straight
line segment (instead of rectilinear line segments for the Manhattan geometry) on a Euclidean plane. Nevertheless, the cost of
an edgeis till in the Manhattan distance metric. It isnot difficult to see that given a routing solution with Euclidean planarity,

we can always embed a straight Euclidean segment by arectilinear staircase to get a planar rectilinear routing solution.
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531 Max-Min Planar Clock Routing

The planar clock routing problem was first studied by Zhu and Dai [ZhDa92]. They proposed the Max-Min agorithm which
assumes a given source location. At the start of the algorithm, the source forms a single-node tree T. At each iteration, the
algorithm grows T by selecting a sink s; not attached to T and connecting s to T. The algorithm stops with a planar clock
routing tree after all sinksare attachedto T, i.e., after n iterations.

One of thetwo key components of the Max-Min agorithmisthe order in which an unattached sink is connected to T, which
is akin to topology construction. The other key step of the algorithm isto connect the selected sink to the tree such that zero
pathlength skew ismaintained. A branching point on T such that the selected sink can be connected to while satisfying the zero-
skew congtraint is called a balance point. A balance point is feasibleif it does not violate the planarity constraint. There are
many feasible balance pointsfor an unattached sink. The feasible balance point with the minimum Manhattan distance to the
sink isthe minimal balance point and the Manhattan distance between the sink and the minimal balance point is the minimal
balance distance.

The two key components of the Max-Min agorithm are governed by the Max-rule and the Min-rul e, respectively. The two
rulesaregiven asfollows: (i) Max-rule: a each iteration, aways choose the unattached sink whose minimal balance distanceis
themaximumamong al unattached sinks, and (ii) Min-rule: an unattached sink isalwaysconnected to theminimal balance point.
The Max-rule ensures planarity of the routing tree and the Min-rule aims to reduce the routing cost. The two rules guarantee

that the tree produces by the algorithmis planar and has zero pathlength skew and the pathlength delay is minimal.

5.3.2 Planar-DME Clock Routing

The key to the Planar-DME algorithm proposed by Kahng and Tsao [KaTls94a, KaTs94b] is that a single top-down pass can
produce the same output as the two-phase DM E a gorithm at the expense of computation time under the pathlength delay model.
This stems from the following facts [BoKa92]:

(i) Given aset of sinks Swith diameter diameter (S), if oneconstructsfor each sink s; in Satilted rectangular region TRR(s;)
centered at 5 such that al pointsin TRR(s;) is of adistance of diameter(S)/2 from s;, then theintersection of all TRRs of sinks
gives the merging segment of the root node for any topology of S

(i) For any internal node a of a topology, if a’'s parent is v, then the edge e, connecting v to a has length = radius(S,) —
radius(S;) where radius(S) = diameter(S)/2 for set S and S, (S,) isthe set of sinks under a (v).

Therefore, given atopology, it is possible to determine the merging segment ms(v) (from (i)) and the edgelength |ey| (from
(i1)) of an internal node v without going through the bottom-up process. In other words, in a single top-down pass, one can
compute ms(v) and |e,| and then perform embedding for any node v in the topology.

The basic idea of Planar-DME is that the topology is determined based on the existing routing (such that future routing will
not interferewith the existing routing) using the concept of (Euclidean) convex polygon. At each iteration, Planar-DME isgiven
thelocation|(p) of aparent node p, S C Sand aconvex polygon Pg containing S and | ( p) such that the existing routing occurs
outside or on the boundary of Pg. We want to compute a planar tree of S rooted at node v, with parent p. Notethat |(p) has
already been determined earlier in the top-down process.

Based on fact (i), ms(v) iscomputed and then v is embedded on ms(v) according to the embedding rules given in Figure 38.
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The embedding rules ensure that v is embedded within Pg and so the routing from p to v is within Pg and does not interfere
with the existing routing. Based on therélative locationsof p and v, asplittinglineisthen defined according to the partitioning
rulesgivenin Figure 38. The splittingline divides Pg intotwo convex polygons Pgl and sz and therefore, partitions S into two
non-empty subsets S, and S,. Notethat the splitting allows the routing from p to v to be on the boundary between Psl and Pg2
and therefore, all existing routing is outside Psl and Pg?. The agorithm then recursively operateson S; and S,.

The Embedding Rules
Location of p Embedding point of v

Region| or 111 c(ms(v))

V.2 V.3

Regionlil.1lor V.1 | intersection of pyp; with horizon-
tal linethroughI(p)

Region1l.3 orIV.3 | intersection of pyp, with vertical
line through I (p)

Region 1.2 (1V.2) p2 (p1)
The Partitioning Rules

Location of p, v Splitting line

I(p) #1(v) Line through I (p)l(v)
I(p) =1(v) # c(ms(v)) | Linethrough pipz

I(p) =1(v) = c(ms(v)) | Vertical linethroughl(p)

Figure 38: Rulesto choose the embedding point of v on ms(v) = pipz and the splitting lineto partition asink set.

Kahng and Tsao [KaTso4b] later extended the Planar-DME a gorithm from the pathlength delay model in [KaTs944] to the
Elmore delay model. The Elmore-Planar-DME algorithm uses the topol ogy generated by the Planar-DME a gorithm under the
pathlength delay model, and then reconstructsthe ZST in abottom-upfashion: Planar embedding isappliedto al planar subtrees
at the same level in the topology; given a pair of sibling planar subtrees, their parent node is embedded to ensure planarity by
(i) finding the shortest planar path between itstwo children and (ii) embedding the parent node at some point along the planar
path. The DME algorithm for ElImore delay mode! is then applied to ancestors of the parent nodes. In other words, a tree of
merging segments isre-constructed to embed the ancestors of the parent nodes. Another iteration of planar embedding followed
by DME is then applied at the next higher level. This continues until the entire ZST is planar. For atopology of height h, the
Elmore-Planar-DME algorithm uses h iterations of planar embedding followed by DME.

The Max-Min and Planar-DME algorithms achieve planarity through higher routing costs. It isinteresting to note that the
Max-Min agorithm produces X-tree-like solutions, whereas the Planar-DME algorithms produce H-tree-like structures. As
mentioned, X-trees tend to be more costly than H-trees. The Planar-DME agorithms incur only an average penalty of 9.9%
additional routing cost to achieve planarity whilethe planar clock trees generated by the Max-Min agorithm have an average

of 35% higher routing cost when compared to the best (non-planar) zero-skew solutionsin [Ed934].

5.4 Buffer and Wire Sizing for Clock Nets

In this section, we deal with buffer and wire sizing, which consider sizing of wires, and insertion and sizing of buffersin clock

routing to minimize clock skew, clock delay, and the sensitivity of the clock tree to process variations, which may cause the
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width of awireltransistor on a chip to differ from the specified width and/or device parameters such as carrier mobilities and
threshold voltagesto vary from dieto die. Process variationsintroduce process skew since resistances and capacitances of wires
and active devices are changed.

Consider aRC tree. From Section 2.1, the EImore delay from theclock driver at thesource sy tosink s ist; = Ry - Cap(so) +

Y evePah(sy,s) &1 T/ We, - ( + Cap(v)). For smplicity, we ignore the fringing effect but it can be added easily into our

formulation. Taking the partia differential a&—;’ for any edge e, along the sp—s path,

ot e/ -r-Cap(v el r-caley
al :Rd~%~|@|—| | ¢ ) leul lev| (32)
We, We\/ e eAns(ey) We,

If e, isnot dong Path(sp, s),
O = Ry-cor o] + ] T Carjod @)
We, acAns(@jiPan(ss) Ve

The partid differential captures the delay sensitivity with respect to awire. A positive value of sensitivity indicates a case
where widening the wireincreases the delay while a negative value of sensitivity indicatesthat the delay decreases. If we com-
pute the optimal wirewidth to minimize sink delay (for example, by setting a&—; = Ofor Egn. (32)), we see that wires closer to
the root should have wider wire width, since they drivelarger capacitance (Cap(v)). Notethat theterm Ry - 4 - || in the equa-
tion preventsthe wire e, from getting too wide. In practice, we can awaysimpose an upper bound constraint on the maximum
wirewidth.

Also observe that the larger the downstream capacitance (Cap(V)), the larger the delay sensitivity (Eqn. (32)). Buffer inser-
tion can de-sensitize the clock nets by reducing downstream capacitance of wires closer to the root. In other words, sink delay
can be minimized by appropriatewiresizing and buffer insertion. Similarly, we can also define the delay sensitivity dueto buffer
by writing the sink delay in terms of the buffer sizesand taking the partial differential of the delay with respect to thebuffer sizes.
It is obviousthat appropriate buffer/driver sizing can aso reduce delay sensitivity.

We are a so interested in skew sensitivity, which measures how a change in wire/transistor width can affect the clock skew.
In particular, skew sensitivity due to process variations can be used to measure how reliable aclock treeis. However, dueto the
definition of clock skew as max; j |t —t;|, it is very difficult and costly to compute skew sensitivity exactly; the exact approach
would have to compute the worst case clock skew due to process variations. The following approach may be used to estimate
skew sengitivity [XiDa95]. To compute the estimated worst case clock skew, the algorithm computes for each sink s;, the best
possible and worst possible delay due to process variations. For simplicity, the a gorithm computes the worst (best) delay for
sink s by decreasing (increasing) thewire widthsfor edges on Path(sg, 5) by Awnmax and increasing (decreasing) thewirewidths
of all edges off the path by Awyax, Where Awgx iSsthe maximum width variations. Theworst case skew under process variations
is obtained by taking the difference between the worst case delay of one sink and the best case delay of another sink. The dif-
ference between the skew of the clock tree (without process variations) and the worst case skew under process variations gives
areasonable estimate of the skew sensitivity. Note that we can use a similar approach to estimate the skew sensitivity due to
deviations of transistor widths and device parameters caused by process variations.

In this section, we discuss variouswire sizing, buffer insertion and buffer sizing techniques which make use of delay sensi-
tivity and skew sensitivity to guide the optimization. These methods not only reduce the delay and skew sensitivities, but also

have significant effect on reductions of wirelength, rise/fall times, and power dissi pation.
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54.1 Wiresizingin Clock Routing

Inthefollowing, wediscussthreeresultson wiresizing. Thefirst algorithm achieves minimal skew by making slower pathsfaster
by wiresizing [ZhDX93] (instead of making the faster paths dower by snaking in the DME approach). The second approach
considers wiresizing to minimize clock delay and uses the DME approach to ensure zero skew [Ed93b]. The third heuristic
considers not only the nominal skew due to sink delays but also the process skew. At the same time, it tries to meet a specified
target delay [PUMP93].

Both [ZhDX 93, PuMP93] assume discrete wire sizes, whereas [ Ed93b] assumes continuouswire width although it can also
bemodified to consider discretewirewidths. Sinceitisnot possibleto achievearbitrary precisionduringfabrication, itisbetter to
have alayout with discretewire widthsand transistor sizesin order to eliminate skew dueto mapping of continuouswidths/sizes
to discrete widthg/sizes. [ZhDX93] can handle constraint on the maximum wire width whereas [Ed93b, PUMP93] can be ex-
tended easily to consider maximum wire width constraint. Note that the constraint on the maximum wire width isimposed by
the avail ablerouting resource. On the other hand, the constraint on the minimum wirewidthisdueto the fabrication technol ogy.
M oreover, the maximum alowable current density through the wire also provides alower bound for the wire width, so that the
wire can withstand the wear-out phenomenon called electromigration. Notethat different segments of wires may have different
upper and lower bounds.

The Optimal Szing Method (OSM) proposed by Zhu, Dai, and Xi [ZhDX93] considersdistributed RC and | ossy transmission
line models using a generalized delay macromodel which is based on scattering-parameters of interconnect [LiDW93]. Also, it
can handle general clock network which may includes loops. The skew minimization problem isformulated as a | east-squares
estimation problem: theerror of asink s; isdefined to be g; = tj —ts wheret; istheleast delay among all source-to-sink delays.
The least-squares estimation problem aims to assign widthsto the mwires in the general network such that the sum of squares
of error (wy, Wo, ..., Wm) = ST, g2 isminimized.

The OSM uses the Gauss-Marquardt’s method [Ma63] to solve the optimization problem. The Gauss-Marquardt’s method
takes an initia wire width assignment, W and compute a new wire width assignment Wi 1 based on a n x mdelay sensitivity
meatrix for aclock treefmesh of nsinksand medges. The (i, j)-th entry of the sensitivity matrix messures thedelay sensitivity of
sink s withrespect to edgeej, i.e, a&—'ej In the next iteration, Wi 1 isused to update the error @ and delay sensitivity matrix for
the computation of W_.,. The procedure continues until the skew is reduced to a required value. The key to fast convergence
isagood starting point Wy. The following rules are applied to guide theinitia wire width assignment: (i) the edgesin the tree
are sized inthe breadth first search order, (ii) at each level, the ancestor edges of the dowest terminal issized first, and (iii) each
edge is assighed with the feasible width that resultsin the smallest skew. The three rules can be generalized to handle buffered
clock tree.

A clock mesh and two clock trees were used to evaluate the OSM agorithm under both RC model and lossy transmission
linemodel. [ZhDX93] reported smaller skews for optimized circuits when compared to the original circuits. The authors noted
that the skew reduction should be more significant for clock trees than for clock meshes since stronger interaction among clock
sinksin clock meshesresultsinless skew sensitivity with respect to wirewidths. The skew reduction isachieved at the expense
of an average of 200% additional wiring area. The clock delay may get worse in some cases.

Edahiro [Ed93b] proposed a wiresizing a gorithm which performs wiresizing based on delay sensitivity due towireto min-
imize clock delay. The algorithm constructs a clock treein two phases. In the first phase, the algorithm applies Greedy-DME
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[Ed92] to construct a pathlength balanced clock topol ogy with edgel ength information. Using the topol ogy computed in thefirst
phase, the second phase of the algorithm applies a modified version of DME under Elmore delay to construct awiresized clock
routing tree.

Themodified DME a gorithmworksasfollows. Consider merging of two zero-skew subtrees T, and Ty,. The optimal width of
thetwo edges e, and g, merging T, and Ty, isfirst computed using an approach similar to setting Eqgn. (32) to zero and then solving
it. Note that the optimal width assignment should actually depend on both upstream resi stance and downstream capacitance as
in Egn. (32). Since the wirewidths at the upstream are unknowns in the bottom process, they are approximated. For example,
nominal wire widths may be used for the upstream edges. Then, with consideration of we, and we,, the minimum merging cost
|€a| + |&p| iscomputed using asimilar approach by [Ts91] (see Section 5.2.1). At the end of the bottom-up merging, the top-down
embedding of the original DME approach is applied to obtain a wiresized clock tree.

The wiresized clock trees constructed by [Ed93b] satisfy the zero skew constraint while achieving 10%-50% shorter total
delay time than the un-sized clock treesin [Ed93a]. However, no result on the increase in wiring area is reported. Although
the a gorithm does not place a upper-bound constraint on the wire width, the computed wire widths are not expected to get too
large sincethe algorithm consider the clock driver strength. Since the computed edgel engthsdiffer from the origina pathlength
balanced tree and the wire widths may be far from optimal due to the approximation, it is recommended that the second phase
(i.e., the modified DME agorithm) be repeated for afew iterations. However, it is not clear if the process will converge (i.e.,
edgel engths and wire widths do not change in two successive applicationsof the modified DME a gorithm). Notethat sincewire
widthsare sel ected based on del ay sensitivity, delay sensitivity of theclock tree dueto process variationsis minimizedindirectly.

In [PuMPO3], Pullela, Menezes, and Pillage optimized the wire widths in three steps to achieve a reliable non-zero skew
clock tree under the ElImore delay model:

(i) Thefirst step selectsthe suitable wiresto widen in order to bring the average delay of the tree to a specified target delay,
denoted t;y. Each edge e, is assigned a cost Dy = 31! o

=1m(ti —tigt). Notethat if tj > t;g and a&—;’ < 0, Dy decreases. At

each iteration, the wire with the least cost is widened by a constant amount Aw, which is the minimum grid size based on the
fabrication technology. The process continues until the target delay tig is achieved.

(i) The second step tries to minimize the process skew by de-sensitizing al sink delays. The algorithm uses a single-defect
model where the width of asinglewire e, changes due to asingle process variation. If Awpgy isthe maximum change in width
due to process variations, the maximum change in delay is AWy - a&—;’. To ensure the change in skew is within the maximum
alowable changein skew AB, thewidth wg, iswidened such that Awipgy - a&—;{ < AB/I wherel isthedepth of thetree. Therefore,
if all edges along a source-to-sink path change their widths, the total changein delay is still less than AB.

(iii) Thefinal step aims to reduce the nominal skew, or ssimply, the skew. Let At;, denote the change in the delay of sink s
when the width of wire we, is changed by Aw. At;, is estimated by Awaﬁ—;. Zero skew is achieved when Atj, = tae—ti for al
sinks § in the tree, where tave is the average delay. Each edge we, isassigned acost Dy = S, (|ti + Atiy — tave|). If thereisa
wire with zero cost, zero skew is achieved. Otherwise, awire with the least cost is chosen to be widened by Aw since the goal
isto find awire with zero cost quickly.

However, step i may undo what step i — 1 has accomplished. To prevent step (iii) from undoing the de-sensitization process
in step (ii), [PUMP93] suggested tracing back from the widened edge in step (iii) to the root, and widening wires on theway up

to ensure AWy - a&—;’ < AB/I holds. However, it isnot clear how we can prevent steps (ii) and (iii) from messing up the work
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donein step (i).

Applying the algorithmto clock trees routed by the MMM method [JaSK 90], [PUMP93] reported an average of 7.5X reduc-
tionin the skews, reducing the original skews fromthe order of 1nsto skewsinthe order of 0.1ns. Simulation resultsalso verify
that the optimized clock trees have worst case skews (under process variations) which are in the range of 37% to 74% smaller
than theorigina skews. It would be an interesting study to find out the worst case skew of zero-skew routing trees such asthose
reported in [Ed934] and evaluate how the algorithm proposed by [PuMP93] can impact the skew and reliability (in terms of
worst case skew). Whiletheintentionisto improve skew and reliability of clock tree, [PuMP93] also reported improvement in
terms of an average of 1.8X clock delay reduction after applying the algorithm. Again, the paper did not report the amount of
additional wiring area incurred.

A very recent work by Desai, Cvijetic, and Jensen [DeCJ96] considered wiresizing of clock distribution networks (not nec-
essary atree) using a network flow-based approach. The algorithm may even remove an edge from the networks as long as
the performance and connectivity is not adversely affected. Experimental results on high performance microprocessors such as
Digital’s275Mz Alpha 21164A and 300M Hz Alpha 21164 showed up to 16% and 9.6% reductionsin interconnect capacitance
from the origina distribution networks, respectively [DeCJ96].

5.4.2 Buffer Insertion in Clock Routing

It isacommon practice to use cascaded tapered drivers with exponentially increasing sizes at the root of aclock tree. In some
cases, it ispossible to satisfy all design constraints by using drivers at the root only. However, as clock trees get larger, it can
become prohibitively expensive to use huge drivers due to chip size and power constraints. Buffers can be inserted in a clock
tree to decoupl e capacitances of theinterconnects and reduce clock delay and total power dissipation of the clock net. Moreover,
sinceitisdesirableto keep the clock waveform clean and sharp, it iseasier to satisfy therise/fal time constraintsusing abuffered
clock tree than by a clock tree driven at the root only. In addition, it is possible to reduce total wirelength by buffer insertion.
For example, instead of introducing detour wirelength to balance delays, a buffer can be inserted. As the feature size becomes
smaller, this approach has become more attractive and less expensive in terms of chip area.

Theearlier worksby [ DhFW84, WuSh92] considered insertionof uniform-sizebuffersin aH-tree structure. The morerecent
works by [ViMa95, ChWo96] perform buffer insertion simultaneously with clock routing. The work on buffer insertion and
sizing will be presented in Section 5.4.3. The work on buffer insertion and wiresizing will be presented in Section 5.4.4.

The agorithm proposed by Dhar, Franklin, and Wann [DhFW84] inserts buffersinto a full H-tree distributing clock signal
to a symmetric N-by-N modulesin three steps: (i) Folding the H-tree into asingle ling, (ii) inserting the buffersinto the single
ling, and (iii) unfolding the buffered single line. Due to the symmetrica structure of a H-tree, a H-tree with a height of m can
be folded into a single line with m sections, where starting from the source, the unit resistance of the next section decreases by
afactor of 2 and the unit capacitance increases by afactor of 2. The process isshown in Figure 39(a). The next step isto insert
buffersinto the non-uniformsingle line (folded H-tree). To determine the optima number of buffers, say b, to be inserted, the
algorithm performsalinear search for b. For each b, acontinuousfunctiont isused to approximatethe line delay. To determine
the optimal buffer locations, aset of equationsisobtained by setting the partia derivativeof thedelay with respect to theposition
of each buffer to zero. The resulting set of equations can be solved to obtain the optimal locations of the buffersin the single

line. The buffered singlelineisthen unfolded to generate the buffered H-tree (Figure 39(b)).
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(b) Placement of buffersin folded and unfolded clock tree

Figure 39: Insertion of buffersto a H-tree by (&) folding the H-tree into a single line, (b) inserting buffers to the folded single

line and unfolding the clock tree.

Wu and Sherwani [WuSh92] used adifferent schemetoinsert buffersto aH-tree. In abottom-up order, the number of buffers
needed for awire segment from a branching point to the parent branching point is computed. Either minimum-size buffers or
blocksof cascaded buffers are inserted to spread out theload. While [ DhFW84] does not require buffersto belocated at Steiner
point, [WuSh92] alwaysinserts abuffer at the parent branching point when buffersare inserted. Moreover, [DhFW84] assumed
that the H-tree uses only one meta layer for routing, whereas [WuSh92] assumed a meta routing layer and crossunders, which
are short polysilicon or diffusion segments used to route the H-tree under the power or ground wires. [WuSh92] reported a 60-
90% reduction in clock delay and [DhFW84] reported an order of magnitude reduction in the delay. Since [DhFW84] inserts
buffersat the same hierarchy of the clock tree, the skew of theclock tree should remain intact. However, since buffersareinserted
at wire segments independently in [WuSh92], clock skew might be adversely affected.

A more recent work by Téllez and Sarrafzadeh [T€Sa94] also used a bottom-up approach similar to that of [WuSh92], i.e.
computation of the number of buffers to be inserted in a wire segment followed by buffer insertion at appropriate locations.
[TeSa94] considersrise/fall time constraintsto compute the number of buffers required. Again, since buffers areinserted inde-
pendently asin [WuSh92], clock skew might be affected.

The GReedy INternal buffer insertion (GRIN) algorithm proposed by Vittal and Marek-Sadowska [ViMa95] isan extension
of the DME agorithm to consider the possible locations of buffers. In each merging step, besides computing the merging seg-

ment as in the case of the DME a gorithm, the buffer insertion algorithm considers the possibility of inserting a buffer to drive
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one of the child subtrees. For example, consider two subtrees T, and Ty, rooted at a and b, respectively. Let v be the parent of a
and b. Then, ms(v) shownin Figure40(c) can be computed asin the DME algorithmand it corresponds to the feasiblelocations
of v when no buffer isinserted.

A buffer todrive T, alone may beinserted at the start of the edge from v to a as shown in Figure 40(a). The Manhattan arc V,
corresponds to the feasible locations of v for such a configuration. Note that V5 is nearer to ms(a) than ms(v) since the delay to
sinksunder aisnow longer. Alternatively, the buffer may beinserted a ms(a) as shown in Figure40(b) and the Manhattan arcV}
corresponds to the feasible locations of v for thisaternative arrangement. Clearly, Va and V captures the two extreme possible
locations of the buffer. The shaded region bounded by V, and V;, correspondsto other possiblelocations of the buffer (between
the start of edge e, and end of edge e,) with the minimum merging cost. Note that V; may be farther from ms(a) depending on
the total capacitance rooted at a and the buffer parasitics (resistance and input capacitance). Similarly, abuffer may be inserted
to drive T, alone. The shaded region between ms(b) and ms(v) shows the feasible locations of v when a buffer isinserted to

drive T,.

a OIZ b
@
a 0\ Va / ms(v)

v

Figure40: Insertion of a buffer at different locations aong the edge e, to drive T, aone.

The GRIN agorithm followsthe flow of the Greedy-DME a gorithm of [Ed93a] with the following modifications. Instead
of using just wirelength to define merging cost, the cost of merging is defined to reflect both total wirelength and total buffer
size. Also, instead of storing only a merging segment in the DME approach, a merging segment and two polygons are stored
to reflect the possibilitiesof buffer insertion. At the next level of merging, the merging segment or polygon that yieldslocally
minimum zero skew merging cost will be used for merging with that of sibling node. On top of considering buffer insertion
during merging, buffer maybe inserted to drive the merged subtreeif the rise/fall time constraint is very stringent.

Compared to clock trees driven by cascaded drivers at the root only, the buffered clock trees constructed by the GRIN algo-
rithm have significantly better rise/fall times. The buffer/driver area required by the GRIN agorithm is more than 6X smaller
and the algorithm averages 2X reduction in power dissipation. Compared to the zero-skew solutions reported in [Ed934], the

clock delay reduction is aso very significant. The results aso showed shorter clock delays when compared to the wiresized
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zero-skew solutionsin [Ed93b].

A shortcoming of inserting buffers to balance clock signal delay is that buffers, being active devices, potentialy heighten
the sensitivity of signal delay (and hence skew) to process variations. |n most works on buffered clock tree, (for example, those
to be discussed below), buffers are inserted at the same levels of the clock tree. Therefore, all source-to-sink paths have equal
number of buffersinserted along the path. Moreover, buffers at the same level have the same size. These restrictionsmay affect
the optimality in terms of signal delay and total wirelength. However, they help to reduce skew sensitivity to process variations.

Chen and Wong [ ChWo096] al so considered buffer insertion and topol ogy generation simultaneously. Instead of considering
buffer insertion at each merging step as in the GRIN algorithm, [ChWo96] considersinserting buffers at the rootsof all subtrees.
Starting with a set Sof subtrees, the algorithm performs severa iterations of DME-based zero-skew merging [Ed91, ChHH92a,
BoKa92] until the size of Sis reduced by 2 for some k (which is dependent on the strength of buffer). Note that thisis akin
to clustering of nodes, followed by buffer insertion to drive each cluster. An inserted buffer may not be connected to the root
directly. Instead, a wire may be used to connect from the buffer output to the root of the subtree such that all subtreesin S
have equal sink delay. Note that thisapproach isless sensitiveto process variationssince al source-to-sink paths have the same
number of buffers. Experimental resultsal so showed that both signal delay and total wirelength are reduced when buffer insertion
is considered [ ChWo096].

Related worksin the area of buffered clock tree synthesis a so include [ChSa93, Rash89]. Assuming that al internal nodes
of aclock routing tree will be inserted with buffers, Cho and Sarrafzadeh [ChSa93] considered distributing the buffers over the
routing plane at the expense of minimum increasein routing cost toreducelocal buffer congestion. The chipisfirst decomposed
into several square subregions, say r of them. Subregion R; is represented by the center of mass § of thesink set B inR,. A
cluster spanning graph (CSG) is constructed such that the nodes in the CSG are sinks s;.., and centers S;..,. Unlessthey are
sinks, two nodes u, v are connected if d(u, v) iswithin a user-specified vicinity parameter.

The authors want to construct a degree-distributed spanning tree (DDST) such that: (i) Each sink is connected to a unique
center. Let the degree of a center be the number of sinks connected toit. Then, (ii) the DDST should have the smallest standard
deviation in terms of the degrees of centers. Moreover, they want a minimum-length DDST, i.e., a DDST whose tree length is
the smallest among all DDST of CSG. An approximation algorithm is used to solve this NP-complete problem. Note that the
minimum-length DDST partitionsthe sinks into clusters, with each cluster of sinksrooted by a center. Finally, the KCR ago-
rithmsis applied to generate the buffered clock tree, with the consideration that sinksin the same cluster are matched. [ChSa93]
reported that buffer congestion is reduced by 20% at the cost of 10% increase in wirelength. However, with abuffer inserted at
every interna node of the clock tree, thisisavery expensive (in terms of power and delay) buffer distribution scheme.

Ramanathan and Shin [RaSh89] considered clock routing in an augmented channel intersection graph (ACIG). Given an
abstract (buffered) topol ogy, the algorithm first finds the best location aong the periphera of the ACIG for the clock source in
order to minimize the clock delay. Next, with consideration of pathlength delay balancing, optimal routing at each level of the
buffered tree is carried out using a branch-and-bound approach. Note that this approach is only applicable to small problem

instances sinceit is computationally very expensive.
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5.4.3 Buffer Insertion and Sizing in Clock Routing

While GRIN [ViMa95] considers construction of clock topology with buffer insertion, the bal anced Buffer Insertion and Szing
(BIS) dgorithm proposed by Xi and Dai [XiDa95] assumes a given unbuffered clock tree and insert buffers of multiple sizes
to meet wire skew constraint due to asymmetric loads and wire width variations. Since the inserted buffers may have delay
variations due to variations of process parameters such as carrier mobilities and threshold voltages which may vary in awide
range from die to die due to difference in process conditions, the second step of the BIS algorithmis to size the PMOS and
NMOS devices in the buffers separately to minimize power dissipation subject to tolerable skew constraint dueto buffers. Note
that the BI'S algorithm uses minimum width wire throughout the entire design in order to minimize wire capacitance and power
dissipation.

The BIS algorithm takes as input a pathlength balanced clock tree (possibly obtained by DME agorithm under pathlength
formulation) and partitionsthe clock tree into subtrees such that every subtree is a pathlength balanced subtree and al sourceto
sink paths go through equal number of levels of buffers. If L isthe pathlength of the original clock tree and there are b number
of buffer levels, then the pathlength between the pathlength between two adjacent levels of buffersisL/(b+ 1). To determine
the optimal b*, the BIS a gorithm considers minimization of the worst case skew due to process variationsin wire widths. The
algorithm performs alinear search for b* from 1,2, - - - until the worst case skew isless than a user-specified skew bound.

In the buffer sizing step, BIS considers CMOS inverters, each implemented by a PMOS and an NMOS device with size dip
and d", respectively. A PMOS device may have anominal risetimet;, afast riseti met,f =t,/fp, oradowrisetimet? =t - fp,
with fp > 1. Similarly, we can define the nominal, fast and slow fall times of aNMOS device. Considering the pull-up devices
and pull-down devices dong apath separately, let tip (t") denote thetotal pull-up (pull-down) path delay dueto PMOS (NMOS)
devices of even (odd) invertersaong the sp—s path, thenthedelay to sink s dueto buffersist; = tip +t". Both power dissipation
(see [WeES93]) and phaseddlay (under amodel similar tothe simple switch-level RC model) dueto buffersare convex functions
of dP and d".

The key to the BIS agorithm is to transform the skew constraint to a convex function as follows: If the devices are sized
such that

B
tik—t'j‘gskzz—:k, (34)

for any two sinks s and s, and k = P, N, then the skew constraint By, for buffers can always be satisfied. The skew constraint
can be rewritten as a convex function as max(t¥) < ek +tX,  wheret¥; isthesmallest pull-up path or pull-down path delays for
k = P,N among al source-to-sink paths. Given adevice sizing solution, one can identify the fastest pull-up and pull-down path
and calculatetr’?1in andt]);, easily. BISthen useﬁtr’?in and tf};, in Eqn. (36) of the following posynomia program and applies the

posynomia programming technique to solve the problem:

Minimize: Total Power Dissipation
subject to: max(t;) < tig (35)
max(t) < e<+t&,, fork=P,N (36)

If the computed device sizing sol ution satisfies the target delay tyg constraint Eqn. (35) and the skew constraints Egn. (36), then
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BlSterminates. Otherwise, tr‘;n andt};,, of the current device sizing solution are cal culated and another iteration of posynomial
programming is invoked. However, note that sizing of buffer will render the buffer insertion step inaccurate since the buffer
insertion step assumes implicitly buffers of certain sizes to compute the worst case skew.

Experimenta results show that BIS can achieve up to 326% reduction in power dissipation when compared to the wiresized
clock trees constructed by [ZhDX93]. However, thereisno improvement in terms of clock skew and clock delay. Althoughthe
clock skews are reasonably small, the clock delay can be as high as 10ns [XiDa95], even for arelatively small clock net such
as benchmark circuit Primary2. An explanation for the high clock delay isthe use of minimum wire width for the clock tree.
Moreover, the buffer sizing step does not consider delay sensitivity dueto buffer size, whereas minimization of delay sensitivity
is an important element of most of other works on wire/buffer sizing. Aswe will see in the following discussion, when delay
sengitivity is considered, buffer insertion/sizing with wiresizing can reduce power and clock delay without an adverse impact

on clock skew and reliability.

5.4.4 Buffer Insertion and Wire Sizing in Clock Routing

The Skew Sensitivity Minimization (SSM) a gorithm proposed by Chung and Cheng [ChCh94] considers buffer insertion and
wire sizing to minimize skew sensitivity due to process variations. Since SSM considers alibrary of buffers of different sizes,
it iscapable of discrete buffer sizing.

Similar to the Bl S algorithm, the algorithm assumes afull binary clock tree (all sinksat level max_level), and that buffersare
inserted at the same levels of the clock tree. Buffers at the same level have the same size, but buffersat different levels may have
difference sizes. The SSM algorithm finds the optimal levels of buffers with proper sizes and wire widths that minimizes skew
sengitivity through a bottom-up dynamic programming approach. Clearly, the maximum number of buffer levelsis max|evel
aswell. Let B[b, |, 5| denote the minimum skew sensitivity for b buffer levels, with the highest level bufferslocated at level |
withsizes. Assumethat B[b',1’,s]isknownfor b’ < b,| < |’ < maxlevel and al possiblebuffer sizess' inthelibrary, then one
can compute

Blb,l,9 = Id,srpé)r(]_level{MSI .51, 8)+Bb-1,1"¢]}
whereMSS(1,s,I’, ') istheminimum skew sensitivity fromlevel | tolevel I’ withbuffer sizesat level | and buffer sizes' a level
I’. Therefore, assuming that the root node is at level 0, the algorithm constructs a 3-dimensional table for 0 < b < maxlevel,
0< | < maxlevel and al possible buffer sizes sin abottom-up fashion.

To computeMSS(1, s,1",s) for I’ > |, thea gorithmfirst wiresizes all pathsfromlevel | tolevel I’ to minimizedelay sensitivity
by setting the partid differential of thel-to-I’ path delay with respect to wire width to zero and solving it. The algorithm then
selects two paths from level | to level I”. Similar to the approach in the BIS a gorithm, wire widths and buffer sizes along two
paths are then changed according to the worst case process variationsand the skew sensitivity fromlevel | tolevel |’ iscomputed
using the worst case skew under wire and device process variations.

As noted in the GRIN algorithm, buffer can be inserted at non-Steiner point to avoid excessive detour. After the buffer
insertion and wiresizing algorithm, the SSM algorithm repositionsthe buffers to possibly reduce total wirelength.

The paper compared the worst case skews under process variations for clock trees before and after applying SSM. The re-

ductionintheworst case skewsisintherange of 87X to 144X [ChCh94]. The SSM algorithmalso achieves 2X to 11X reduction
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in clock delay.

Pulldlaet al. [PUMO93] also proposed a buffer insertion/sizing and wire sizing algorithm for a tree of | levels. Based on
the most critical resources to be optimized, the agorithm first estimate the number of buffer levels, denoted b. For b stages of
buffer, theagorithmtry al possiblelevel combinationsto find the optimal levelsin which buffers should be inserted. The skew
resource B is equally distributed among the clock tree such that thetol erable skew constraint of buffer, denoted By, and tolerable
skew constraint for interconnect, denoted By, dueto process variationsare B, = B,y = B/(l + b) for each subtree. Asinthe SSM
algorithm, subtrees at the same level are driven by buffers of the same size. The algorithm aims to achieve thefollowings: (i)
each subtree isnominally zero-skew by wiresizing and possibly introducing detour wire, (ii) each subtree have equal delay and
equal effective capacitance by assigning appropriate size and length to the stub of interconnect connecting a buffer to the root
of the subtree, and (iii) each subtreeis driven by the smallest buffer that achieve the required skew constraints.

To achieve (i), the agorithm computes in a bottom-up fashion, the wire and length of each edge in the subtree such that
zero skew is achieved. Based on the wire skew constraint B,, and computing the maximum change in delay Aty, induced by a
change in the width of an edge due to process variations, the minimum width of the edge required such that At,, < By/2 can be
estimated.’® By applying an approach similar to [Ts91] with the lengths and widths as variables, the widths and lengths of the
two edges are computed to satisfy the estimated minimum width constraints and some prespecified maximum width constraint.
Detour is avoided when absolutely possible.

In (ii), by introducing a stub of interconnect from the buffer to the root of the subtree, it is always possibleto achieve equa
interconnect delay for al subtrees at the same level. To match the effective capacitance (so that each subtree can be driven by
buffers of the same size), the length and width of the stub is chosen such that theratio of the first two moments given in the T+
model are matched. To achieve objective (iii), we note that given abuffer size, theworst case skew Askewy, induced by changes
in buffer sizes dueto process variations can be computed easily (sinceall buffersat the same level have equal size and they drive
equal load). The smallest buffer size that satisfies the constraint Askew, < By, is chosen.

Simulation results show that delay reduction is achieved, with up to 25X reduction for large circuits when compared to the
wiresized clock trees constructed in [PuMP93]. By buffer insertion, [PuM 093] a so reduces the maximum wire width required
for reliability (compared to [PUMPI3]). Thistrandatesto reduction in total wiring area and therefore power dissipation. It was
observed that for delay (and power-delay product) minimization, the optimal number of buffer levelsis closeto half the number
of levelsin the tree [PuMQ93].

We note that buffer insertion algorithms such as those in [DhFW84, WuSh92, TeSa94, ViMagd5, ChWo96, XiDad5] do not
restrict buffersto belocated at branching points only, whereas the algorithms by [ChCh94, PuM 093] consider buffer insertion
at branching pointsonly.

Chen, Chang, and Wong [ChCW964] very recently proposed a simultaneous buffer and wire sizing algorithm based on La
grangian relaxation. The agorithm minimizes clock skew by iteratively assigning appropriate weights (or Lagrangian multipli-
ers) to sinks and performing device and wire sizing based on aweighted-sum formul ation similar to thosein [ CoL €95, CoK 094,

BoKR93]. Please refer to Section 4.2.2 for more details.

13The actual value cannot be computed since the upstream resistanceis not known a priori and the length of the edgeis only an estimate.

80



5.5 Non-Tree Clock Routing

So far, we have considered only tree topology for the clock net. In the following, we discuss a heuristic proposed by Lin and
Wong [LiWo094] to construct a non-tree clock net. In [LiWo094], instead of binary-merging as in the DME approach, multiple-
merge is considered to merge multiplepins at one timeto form arooted zero skew non-tree subrouting. Recursively, at a higher
level of hierarchy, multiple-mergeis applied to the roots of subroutings constructed at one level below until the resulting sub-
routing covers all the sinks. Let NT, denote the non-tree subrouting rooted at v and t(v) be the v-to-sink delay for sinksin NTy.

The multiple-mergeoperationiscarried out in two steps. Consider aset of root nodes (typically 15 or 16 nodes) to be merged,
In the first step, called the center tree routing, the nodes is connected to a center trunk via a branching point (Figure 41(a)).
Without | oss of generality, assume that the bounding box of the nodes hasalarger dimension in the x direction. The center trunk
isrouted inthex direction. Let u and v be thetwo farthest nodesin they direction. The location of thetrunk is determined such
that the delayst(u) and t(v) are balanced (see zero-skew merging in Section 5.2.1). The remaining nodes are also connected to
the center trunk, possibly with snaking of wires such that all sink delays from the respective branching points are equal. The
branching pointsare placed on the trunks such that they are maximally spread out. The center trunk isalso sized to reduce skew
sengitivity.

In the second step, a pathlength balanced binary tree is routed to connect to N driving points along the trunk, with N being
a power of two (Figure41(b). N is determined exhaustively (typically, N = 4, 8, or 16) so as to reduce the RC delay. The N
driving pointsare placed on the trunk such that the cumulative capacitive load from one end of thetrunk to thei-th driving point
is %CL fori = 1..N, where C_ isthetotal load of the center tree. A buffer isthen inserted at the root of the balanced length
binary tree and isthen treated as aroot node to be merged in the next iteration of the algorithm.

Note that the binary tree and the trunk forms a non-tree routing that is constructed to minimize the sensitivity of the clock
skew to process-variation. Theideaisthat the buffer drivesthe center trunk through the balanced length binary treeat N driving
points and thus shortening the signal propagation latency since there are now multiple paths to the center trunk. Compared to
the routing solution [Ts91] for aindustry floating point unit, the non-tree routing a gorithm by [LiWo094] reported better worst

case skew under process variations.

5.6 Clock Schedule Optimization

So far, we have presented research works that addressed the problem of constructing aclock routingtree T such that skew(T) =
max; ; |ti —t;| < B. Inmost of the studies, B is set to be zero. Even if we allow non-zero skew bound B, we shall see that this
congtraint is overly conservative.

Consider a synchronous VL SI circuits using positive edge-triggered D-flip-flops as registers under a single-phase clocking
scheme. A pair of registers are sequentially adjacent if only combinational logic exists between the two registers. Notethat the
order of theregisters(i.e.,, whether it isaninitia or final register) depends on the direction of flow of thedata. The differencein
thearrival timesof clock signal at theclock pinss; of initial register R; and s; of fina register R, where R, and R; are sequentially
adjacent, isthe (local) clock skew skew(i, j) =t —t;.

Local clock skew places upper bound on the performance of the circuit. The minimum allowable clock period Cp between
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positions.

two sequentially adjacent registers R, and R; satisfies the following inequality [WeEs93]:
Cp > t(Lij) + skew(i, j) +tau +tas, (37)

wheret(L;;) isthedelay for thedatato travel through combinational logicL;j from R, to R}, ts, isthe setup time of the registers,
and tys isthe propagation delay withintheregister. Notethat for the datato belatched into thefinal register correctly, it must be
ready tg, units of time before the triggering clock edge. Also note that thetermt(L;;) can be further decomposed intot(L;;) =
tirterconnect(Lij) + tgate(Lij), Where tintercomect(Li j) iS the interconnect delay and tgqe(Lij) is the gate delay. We use tmax(Lij) to
denote the longest path delay through L;j and tyin(Lij) to denote the shortest path delay through L;;.

If clock signal isnot properly scheduled, clock hazards may occur. For example, datamay reach thefinal register at too late a
time, or the data may race through the fast path and destroy the correct data at thefinal register before the correct dataislatched.

To eliminate clock hazards, we impose the following constraints [ Fro5]:

skew(i, J) < Cp — (tsu+tas + tmax(Lij)),
—skew(i, J) < tmin(Lij) + tds — thld; (38)

where thg g IS the amount of time the input data signal must remain stable once the clock signal changes state. Therefore, if
skew(i, j) is positive, it always decreases the maximum attainable clock frequency. However, if we examine the inequality re-
garding clock periodin Egn. (37), negative clock skew, i.e., skew(i, j) < 0, actually increases the effective clock period. In other
words, we can actually improve the performance of the system by introducing negative clock skew as long as Eqgn. (38) is not
violated.

We can concludethat the clock skew isonly relevant for sequentially adjacent registers and the clock skew between registers
on different data paths does not affect the performance and reliability of the synchronous system. Therefore, it is not necessary
to construct a zero-skew routing tree. In fact, it may be desirable to have (negative) clock skew. Moreover, different pairs of

sequentially adjacent registers may have different skew constraints (since the delays dueto different combinational logic blocks
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are likely to be different).

There are several works on clock schedul e optimization. However, these works did not consider clock routing. For example,
Fishburn [Fi90] used linear programming to compute the optimal clock arrival timesat the sinks such that either the clock period
Cp isminimized or the safety margin for clock error given a prescribed clock period is maximized while constraints similar to
thosein Egn. (38) are satisfied. Whilethe gate sizes in the logic block remain unchanged throughout the optimization process
in [Fi90], [ChSH93a, SaSF95] removed this restriction and considered gate sizing in the clock schedule optimization process
in order to achieve faster clock rate. While[Fi90, ChSH93a, SaSF95] assumed afixed network of registers, in [Fro2b, SoFro4,
SoFM95], the authors consi dered retiming using skew informationto optimizethecircuit. Registersmay beremoved or inserted
aslong the circuit still operates correctly.

A related problem on clock schedul e optimizationisto construct aclock tree that satisfies the clock schedule. Givenaclock
schedule, Neves and Friedman [NeFr93, NeFr94, NeFr95] construct an (abstract) topol ogy of the clock distribution network and
determinethedelay valuesat each branch of the clock network. Their worksare mainly targeted for hierarchical datapath design
[NeFro3, NeFro4, NeFr95]. However, they did not give a specific routing algorithm to embed the abstract topology. Seki et al.
[SelK94] proposed a clock router that can accomplish specified delay using multiplerouting layers. Very similar to the center
tree routing step in the non-tree clock routing a gorithm proposed by [LiW094], it uses a center trunk and routes from branching
point on the trunk to sinks with snaking where necessary.

A more recent work by Xi and Dai [XiDa96] considers clock schedule optimization with clock tree construction and gate
sizing. The proposed useful skew tree (UST) agorithm first generates an abstract topology using a top-down bipartitioning ap-
proach. The bipartitioning process is guided by the objective of producing useful negative skew. Sinks should be partitioned
into groupsthat have loose skew constraints. Sequentially adjacent registers across two groups should have the same logic path
direction. A useful skew tree (UST) is then constructed using bottom-up merging and top-down embedding from the abstract
topology. Sinceit is anon-zero skew merging, bottom-up merging produces merging regions. Similar to IME, it uses a set of
merging segments to sample a merging region. However, it uses only a merging segment from the set to generate the merg-
ing region of the parent. After theinitial UST is constructed, the UST algorithm uses a simulated annealing process to explore
the solution space. A merging segment perturbation operation is used to select a different merging segment for the merging
operation. Note that this changes the clock routing tree configuration, and therefore, the clock schedule and skews. After each
merging segment perturbation operation, the UST & gorithm performs gate sizing of combinational logic blocksto reduce power
dissipation.

The UST heuristichas been evaluated using three | SCA S89 benchmark circuits[BrBK89] and twoindustry circuits. Inall but
one case, the UST agorithm uses |ess wirelength when compared to the Greedy-BST/DME [ CoK 095, HUK T95] and BB+DME
algorithms [ChHH92b]. For each circuit, the skew bound for BST construction [CoK095, HUKT95] is set to be the smallest
skew bound of all sink pairs. To compare the impact of a UST on power dissipation, [ XiDa96] aso performed gate sizing with
bounded (zero) skew after aBST (ZST) was constructed. The power reductions achieved by the UST approach vary from 11%
to 22% over the BST and ZST approaches.
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6 Conclusion and Future Work

In this paper, we presented an up-to-date survey of the design and optimizationtechniques for VLSI interconnect layout. These
results show convincingly that interconnect optimization has a significant impact on circuit performance in deep submicron
VLSl design. In thissection, we would like to offer a brief summary with our assessment of variousinterconnect optimization
techniques presented in this paper, and suggest directionsfor future research.

1. Interconnect topology optimization: We fedl that geometric based Steiner tree algorithms such as the A-tree [CoLZ93],
Alphabetic Tree [ViMa94], P-Tree [LiCL96b] algorithmsusually provideagood initia routing topol ogy. These algorithms use
the right level of abstraction and can be incorporated in a globa router efficiently. Further delay reduction can be achieved
by refining the initia topology, for example, using the techniques presented in [BoOI194, BoKR93, ViMad4, XuKu95b]. Most
effective topology optimization for delay reduction is achieved by considering routing tree construction with buffer insertion
as discussed in [OkCo96a, OkCo96b, LiCL96a]. However, more studies need to be done on how to extend various routing
tree construction agorithmsto take into consideration of multiple-layer routing with different RC characteristics in each layer,
presence of routing obstacles, and routability optimization.

2. Device and interconnect sizing: The optimization problemsin thisarea usually have well defined mathematical program-
ming formulations. We fedl that the sensitivity based heuristics, such as those used in [FiDu85, Sa94], and the loca refine-
ment technique based on the dominance property (and the bundled refinement property) used in [CoLe95, CoK 094, CoHed5,
CoHe96¢] are most efficient, produce good quality solutions, and scale up well with the rapid increasing of design complex-
ity. Theinitial device and interconnect sizing solutionscan be computed using a simple switch-level driver model and Elmore
delay model as in [FiDu85, ColL €95, CoK094] and then more accurate driver and interconnect models, such as those used in
[MePP95, MeBP95] can be applied to further refine the solution for performance and area optimization.

3. Clock routing: Variousinterconnect optimization techniques presented in this paper have most significant impact on clock
routing due to the extremely large size of clock nets. Extensive studies of the clock routing problem in the past few years have
made much advance on automating high-performance clock net synthesis. The bottom-up construction methods using the DME
technique (e.g., [Ed91, ChHH92a, BoKa92, CoKK 95, ViMad5]) are most promising in terms of efficiency, flexibility, and the
solution quality. Most existing approaches first produce a balanced routing topology and then perform buffer insertion, buffer
and wire sizing. More studies need to be done on how to generate a clock tree topol ogy together with buffer insertion, buffer
sizing, and wire sizing to meet the skew, delay, power dissipation, and other constraints.

In addition to theinterconnect optimization techniquesin the areas presented in this paper, we think that the foll owing topics
are also very important to the development of next generation interconnect-driven layout systems, but have not received full
attention from the VL SI CAD research community. We would liketo suggest them as future research directions.

1. More accurate and efficient delay model s for i nterconnect optimization: Most of existing works on interconnect optimiza-
tion are based on the Elmore delay model due to its simplicity, explicit representation of signal delay in terms of interconnect
design parameters, and fairly high fidelity under the current fabrication technology [BoKM 93, CoHe96a, CoKK95]. However,
limitations of the Elmore delay model are well recognized as it cannot be used to characterize the signal waveform, handlein-
terconnect inductance, and model frequency-dependent effects. Although more accurate delay models are available, they were

mainly devel oped for circuit simulation and do not provide an explicit causal relationship between signal responses and design
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parameters for optimization. Therefore, there is a strong need to bridge the gap between the timing models used for circuit
simulation and circuit and interconnect optimization. The recent work on efficient moment computation [ YuKu954], low-order
moment matching [Ho84, ZhTG93, Gazh93, ZhST93, ZhST94, KaMu96b, KaMM 96, TuDP96], and central moment formula-
tion [KrGW95] have made very good progressin thisdirection. But much more work need to be donein thisarea.

2. Performance-driven global routing: Most of existing studies on interconnect design and optimization deal with only a
single net for topol ogy and wiresizing optimization. In reality, many timing critical nets need to be considered simultaneously
and they often compete for various kind of routing resources such as routing tracks in preferred regions or layers, availability
of feedthroughs over the cell/blocks, etc.. Also, timing requirements are usualy given in terms of path delay constraints. One
needs to either devel op efficient algorithmsto all ocate the timing budget to each net along a path or be able to optimize multiple
nets on a path smultaneoudy. Most well-known global routers, such as [LeSe88, CoPr88, CaCh91], did not consider timing
optimization during global routing. Existing methods on delay budgeting, such as [NaBH89, Fr92a, TeK S96], were mainly
developed for circuit placement and their applicability to global routing is yet to be demonstrated. Therefore, it isimportant to
develop an efficient global router which can incorporate the variousinterconnect optimizati on techni ques discussed in this paper
and be able to produce a high-quality routing solutionwith careful consideration of the trade-off between routability, efficiency,
and timing optimization.

3. Crosstalk minimization: Asthe VLS technology further scales, the coupling capacitance is becoming a very important
component in the total interconnect capacitance and affect the interconnect delay significantly. Again, in order to consider the
coupling effect (i.e. crosstalk), oneneedsto consider theinteraction of multiplenetssimultaneoudy. Existingworkson crosstalk
reduction, includingthose presented in[ ChOK 93, GalLi93, Gal 194, KiSa94, XuKW96], focusmainly on proper spacingand wire
segment ordering. It isnot yet clear how crosstalk will be affected by buffer insertion, device and wire sizing, etc.. Therefore,
it is of both theoretical and practical interest to generalize the optimization techniques presented in this paper to take crosstalk
mi nimi zation into account.

4. Multi-layer genera-area gridless detailed routing: Wiresizing optimization may require the wire width to change from
net to net or even from segment to segment within the same net. Also, crosstalk minimization may result in variable spacing
between different nets or different wire segments. Therefore, the detailed router needs to be able to perform variable-width
variable-spacing gridless routing very efficiently. Moreover, the advance of VLS technology makes multiple metal routing
layers possible and affordable. The traditional routing technology developed for two routing layers based on channel routersis
becoming obsol ete, and multi-layer genera area routers are needed to handle over-the-cell routing efficiently. Most of existing
workson general arearouting, such asthosein [LiHT89, KaSS90, DaK J90, KhCa95], were devel oped for thetwo-layer routing
technology, and they cannot handle gridless routing. Therefore, in order to support the interconnect optimization techniques
presented in this paper, one needs to devel op efficient algorithms for multi-layer general-area gridless routing.

Finally, given the increasing importance of interconnects, we would like to propose a new design methodol ogy, named
interconnect-driven design. Inthe conventional VL SI design, much emphasi s has been given on design and optimization of logic
and devices. The interconnection was done by either layout designers or automatic Place-& -Route tools as an after-thought. In
the interconnect-driven design, we suggest that interconnect design and optimization be considered and emphasi zed throughout
the design process (see Figure 42). Such a paradigm shift is analogous to the one happened in the software design domain. In

the early days of computer science, much emphasis was placed on agorithm design and optimization while data organization
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was considered to be a secondary issue. It was recognized later on, however, that the data complexity is the dominating fac-
tor in many applications. This fact gradually led to a data-centered software design methodol ogy, including the devel opment
of database systems and the recent object-oriented design methodology (see Figure 43). We believe that the devel opment of
interconnect-driven design techniques and methodol ogy will impact the VLS| system design in a similar way as the database

design and object-oriented design methodol ogy has benefited the software devel opment.
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