
CDA 3200 Digital Systems

Instructor: Dr. Janusz Zalewski
Developed by: Dr. Dahai Guo

Spring 2012

Outline

• Overview of VHDL
• VHDL Description of Combinational Circuits
• VHDL Models for Multiplexers
• VHDL Modules
• Signals and Constants
• Arrays
• VHDL Operators
• Packages and Libraries

Overview of VHDL (1/6)

• VHDL
– VHSIC Hardware Description Language
– VHSIC: Very High Speed Integrated Circuit
– Widely used in the industry

Overview of VHDL (2/6)

• Why VHDL?
– Detailed design of the systems at the gate

level has become very tedious and time
consuming.

– A hardware description language of top-down
methodology is desired.

Overview of VHDL (3/6)

• The program that designs a 3-bit adder
1. entity ADD is
2. port (A, B : in integer range 0 to 7;
3. Z : out integer range 0 to 15);
4. end ADD;

5. architecture ARITHMETIC of ADD is
6. begin
7. Z <= A + B;
8. end ARITHMETIC;

Overview of VHDL (4/6)

• It seems that Boolean algebra, Karnaugh-
Maps, and other techniqes (Quine-
McCluskey and Petrick’s methods) are
useless, if VHDL is so powerful.

Overview of VHDL (5/6)

Where Boolean algebra, Karnaugh maps and
other methods are integrated.

Overview of VHDL (6/6)

• Because the simplifying methods are
systematic, they can be programmed into
the synthesizer.

• Therefore, hardware designers can be
freed of detailed work at the gate level.

• But the designers still can work at the gate
level in VHDL.

VHDL Description of Combinational
Circuits (1/6)

• Signal assignment operator
1. C <= A and B after 5 ns;
2. E <= C or D after 5 ns;

• Logically equivalent?
1. E <= C or D after 5 ns;
2. C <= A and B after 5 ns;

VHDL Description of Combinational
Circuits (2/6)

• VHDL signal assignment statements are
concurrent statements.
– The VHDL simulator monitors the right side of

each concurrent statement;
– Any time a signal changes, the expression on

the right side is immediately re-evaluated;
– The new value is assigned to the signal on

the left side after the delay.
– The order of the concurrent statements does

not matter.

VHDL Description of Combinational
Circuits (3/6)

• The delay is optional in assignment
statements.
– E <= C or D;
– C <= A and B;
– When no delay is specified, the simulator will

assume an infinitesimal delay referred to as ∆
(delta).

VHDL Description of Combinational
Circuits (4/6)

• Clock
– CLK <= not CLK after 10 ns;

Can we remove the delay?

No, because a run-
time error during
simulation will be
caused.

VHDL Description of Combinational
Circuits (5/6)

• Bit vectors
– B <= “0110”;
– A <= “1100”;
– C <= A and B; C(3) <= A(3) and B(3);

C(2) <= A(2) and B(2);
C(1) <= A(1) and B(1);
C(0) <= A(0) and B(0);



VHDL Description of Combinational
Circuits (6/6)

• Comments are preceded by --
• An identifier, such as a variable, must start

with a letter, and it cannot end with an
underscore.

• Each statement is ended with a semicolon.
• NOT CASE SENSITIVE

VHDL Models for Multiplexers (1/6)

• 2-to-1 multiplexer
– F <= (not A and I0) or (A and I1);

VHDL Models for Multiplexers (2/6)

• 2-to-1 (cont)
1. -- conditional signal assignment statement
2. F <= I0 when A=‘0’ else I1;

VHDL Models for Multiplexers (3/6)

Design at the gate level.

Design at the logic level.

VHDL Models for Multiplexers (4/6)

• The general form of a conditional signal
assignment statement is

1. signal_name <= expression1 when condition1
2. else expression2 when condition2
3. ……
4. [else expressionN];
– This concurrent statement is executed whenever a

change occurs in a signal used in the selected
expression or its condition.

VHDL Models for Multiplexers (5/6)

• 4-to-1

F <= I0 when A&B=“00”
else I1 when A&B=“01”
else I2 when A&B=“10”
else I3;

VHDL Models for Multiplexers (6/6)

• 4-to-1

sel <= A&B;
with sel select

F <= I0 when “00”,
I1 when “01”,
I2 when “10”,
I3 when “11”;

VHDL Modules (1/17)

• Entities and architectures
– An entity declares the interface between a

module and its environment. What are the
input(s) and output(s)?

– The architecture contains the implementation
for an entity.

VHDL Modules (2/17)

• An entity does not deal with design details.
– Example:
– entity two_gates is
– port (A, B, D: in bit; E: out bit);
– end two_gates;

•Key words that are used to define an entity.
•The name of the entity.
•The input and output list. port is a key word that is used to declare input/output
•A, B, D are the input signals and E is the output signal.
•Be careful where you need semicolons, commas, and colons.

VHDL Modules (3/17)

• Associated with each entity is one or more
architecture declarations
– architecture gates of two_gates is
– signal C: bit;
– begin
– C <= A and B; -- concurrent
– E <= C or D; -- statements
– end gates;

•Key words used to define an
architecture.
•Every architecture must be
associated with an entity.
•The architecture’s name.
•Signal used within this
architecture.
•Design details

VHDL Modules (4/17)

• Full adder
– entity FullAdder is
– port(X, Y, Cin: in bit; -- inputs
– Cout, Sum: out bit); -- outputs
– end FullAdder;

VHDL Modules (5/17)

• Full adder
– architecture Equations of FullAdder is
– begin
– Sum <= X xor Y xor Cin after 10 ns;
– Cout <= (X and Y) or (X and Cin) or (Y and Cin) after 10 ns;
– end Equations;

VHDL does not specify an order of precedence
for the logic operators, therefore parentheses
are required.

VHDL Modules (6/17)

• 4-bit fuller adder

1. entity Adder4 is
2. port (A, B: in bit_vector(3 downto 0); Ci: in bit -- Inputs
3. S: out bit_vector(3 downto 0); Co: out bit) -- Outputs
4. Adder4
5. architecture Structure of adder4 is
6. begin

1. S(0) <= A(0) xor B(0) xor Ci(0) after 10 ns;
2. Co(0) <= (A(0) and B(0)) or (A(0) and Ci(0)) or (B(0) and Ci(0)) after 10 ns;

3. S(1) <= A(1) xor B(1) xor Ci(1) after 10 ns;
4. Co(1) <= (A(1) and B(1)) or (A(1) and Ci(1)) or (B(1) and Ci(1)) after 10 ns;

5. S(2) <= A(2) xor B(2) xor Ci(2) after 10 ns;
6. Co(2) <= (A(2) and B(2)) or (A(2) and Ci(2)) or (B(2) and Ci(2)) after 10 ns;

7. S(3) <= A(3) xor B(3) xor Ci(3) after 10 ns;
8. Co(3) <= (A(3) and B(3)) or (A(3) and Ci(3)) or (B(3) and Ci(3)) after 10 ns;

9. Structure

Find all the syntax errors in lines 1-6 and 15.

1. entity Adder4 is
2. port (A, B: in bit_vector(3 downto 0); Ci: in bit; -- Inputs
3. S: out bit_vector(3 downto 0); Co: out bit); -- Outputs
4. end Adder4;
5. architecture Structure of adder4 is
6. begin

7. S(0) <= A(0) xor B(0) xor Ci(0) after 10 ns;
8. Co(0) <= (A(0) and B(0)) or (A(0) and Ci(0)) or (B(0) and Ci(0)) after 10 ns;

9. S(1) <= A(1) xor B(1) xor Ci(1) after 10 ns;
10. Co(1) <= (A(1) and B(1)) or (A(1) and Ci(1)) or (B(1) and Ci(1)) after 10 ns;

11. S(2) <= A(2) xor B(2) xor Ci(2) after 10 ns;
12. Co(2) <= (A(2) and B(2)) or (A(2) and Ci(2)) or (B(2) and Ci(2)) after 10 ns;

13. S(3) <= A(3) xor B(3) xor Ci(3) after 10 ns;
14. Co(3) <= (A(3) and B(3)) or (A(3) and Ci(3)) or (B(3) and Ci(3)) after 10 ns;

15.end Structure;

Find all the syntax errors in lines 1-6 and 15.

1. entity Adder4 is
2. port (A, B: in bit_vector(3 downto 0); Ci: in bit; -- Inputs
3. S: out bit_vector(3 downto 0); Co: out bit); -- Outputs
4. end Adder4;
5. architecture Structure of adder4 is
6. begin

7. S(0) <= A(0) xor B(0) xor Ci(0) after 10 ns;
8. Co(0) <= (A(0) and B(0)) or (A(0) and Ci(0)) or (B(0) and Ci(0)) after 10 ns;

9. S(1) <= A(1) xor B(1) xor Ci(1) after 10 ns;
10. Co(1) <= (A(1) and B(1)) or (A(1) and Ci(1)) or (B(1) and Ci(1)) after 10 ns;

11. S(2) <= A(2) xor B(2) xor Ci(2) after 10 ns;
12. Co(2) <= (A(2) and B(2)) or (A(2) and Ci(2)) or (B(2) and Ci(2)) after 10 ns;

13. S(3) <= A(3) xor B(3) xor Ci(3) after 10 ns;
14. Co(3) <= (A(3) and B(3)) or (A(3) and Ci(3)) or (B(3) and Ci(3)) after 10 ns;

15.end Structure;

In this paragraph?

VHDL Modules (10/17)

• 4-bit full adder
1. S(0) <= A(0) xor B(0) xor Ci(0) after 10 ns;
2. Co(0) <= (A(0) and B(0)) or (A(0) and Ci(0)) or

(B(0) and Ci(0)) after 10 ns;
– Ci and Co are defined as bit signals and cannot

work with indices.

VHDL Modules (11/17)

• 4-bit full adder
– architecture Structure of Adder4 is
– signal C:bit_vector(2 downto 0);
– begin
– end Structure;

• S(0) <= A(0) xor B(0) xor Ci after 10 ns;
• C(0) <= (A(0) and B(0)) or (A(0) and Ci) or (B(0) and Ci) after 10 ns;

• S(1) <= A(1) xor B(1) xor C(0) after 10 ns;
• C(1) <= (A(1) and B(1)) or (A(1) and C(0)) or (B(1) and C(0)) after 10 ns;

• S(2) <= A(2) xor B(2) xor C(1) after 10 ns;
• C(2) <= (A(2) and B(2)) or (A(2) and C(1)) or (B(2) and C(1)) after 10 ns;

• S(3) <= A(3) xor B(3) xor C(2) after 10 ns;
• Co <= (A(3) and B(3)) or (A(3) and C(2)) or (B(3) and C(2)) after 10 ns;

VHDL Modules (12/17)

VHDL Modules (13/17)

• 4-bit full adder
– Simulation commands

• list A B Co C Ci S -- put these signals on the output list

• force A 1111 -- set the A inputs to 1111

• force B 0001 -- set the B inputs to 0001

• force Ci 1 -- set Ci to 1

• run 50 ns -- run the simulation for 50 ns

VHDL Modules (14/17)

• 4-bit full adder
– Simulation output

VHDL Modules (15/17)
• Since a 4-bit full adder is a sequence of 1-bit full

adders, why do not we build the 4-bit adder
based on 1-bit adders in VHDL?
– -- specify the FullAdder as a component
– -- within the architecture of Adder4
– architecture Structure of Adder4 is
– component FullAdder
– port (X, Y, Cin: in bit; -- Inputs
– Cout, Sum: out bit); -- Outputs
– end component;
– -- other code
– end Structure;

VHDL Modules (16/17)
• -- other code
• signal C: bit_vector(3 downto 1);
• begin --instantiate four copies of the FullAdder
• FA0: FullAdder port map (A(0), B(0), Ci, C(0), S(0));
• FA1: FullAdder port map (A(1), B(1), C(0), C(1), S(1));
• FA2: FullAdder port map (A(2), B(2), C(1), C(2), S(2));
• FA3: FullAdder port map (A(3), B(3), C(2), Co, S(3));

VHDL Modules (17/17)

• Component instantiation statements
– label: component-name port map (list-of-actual-

signals)

4-bit Full Adder Simulation (1/7)

Full Adder

0

00
A B

S

Co Ci
00

Full Adder

1

00
A B

S

Co Ci
10

Full Adder

1

10
A B

S

Co Ci
00

Full Adder

0

10
A B

S

Co Ci
11

4-bit Full Adder Simulation (2/7)

Full Adder

1

01
A B

S

Co Ci
00

Full Adder

0

01
A B

S

Co Ci
11

Full Adder

0

11
A B

S

Co Ci
01

Full Adder

1

11
A B

S

Co Ci
11

Full Adder
3

0

01
A3 B3

S3

Co C2
00

Full Adder
2

0

01
A2 B2

S2

C1
0

Full Adder
1

0

01
A1 B1

S1

C0
0

Full Adder
0

0

11
A0 B0

S0

Ci
1

0ns

C2 C1 C0 S3 S2 S1 S0 Co

0 0 0 0 0 0 0 0
10ns 0 0 1 1 1 1 1 0

1 1 1

1

1

(1) (F)

4-bit Full Adder
Simulation (3/8)

Full Adder
3

01
A3 B3

S3

Co C2
00

Full Adder
2

01
A2 B2

S2

C1
0

Full Adder
1

01
A1 B1

S1

C0 Full Adder
0

11
A0 B0

S0

Ci
1

0ns

C2 C1 C0 S3 S2 S1 S0 Co

0 0 0 0 0 0 0 0
10ns 0 0 1 1 1 1 1 0

1 1 1

1

1

(1) (F)
20ns Nothing changes to

the inputs of Full
Adders 0,2,3.
Only need to look at
Full Adder 1.

1

0

0 1 1 1 1 0 1 0(3) (D)

4-bit Full Adder
Simulation (4/8)

Full Adder
3

01
A3 B3

S3

Co C2
00

Full Adder
2

01
A2 B2

S2

C1
0

Full Adder
1

01
A1 B1

S1

C0 Full Adder
0

11
A0 B0

S0

Ci
1

0ns

C2 C1 C0 S3 S2 S1 S0 Co

0 0 0 0 0 0 0 0
10ns 0 0 1 1 1 1 1 0

1 1 1

1

1

(1) (F)
20ns Nothing changes to

the inputs of Full
Adders 0,1,3.
Only need to look at
Full Adder 2.

1

0

0 1 1 1 1 0 1 0(3) (D)

1

0

30ns 1 1 1 1 0 0 1 0(7) (9)

4-bit Full Adder
Simulation (5/8)

Full Adder
3

01
A3 B3

S3

Co C2
00

Full Adder
2

01
A2 B2

S2

C1
0

Full Adder
1

01
A1 B1

S1

C0 Full Adder
0

11
A0 B0

S0

Ci
1

0ns

C2 C1 C0 S3 S2 S1 S0 Co

0 0 0 0 0 0 0 0
10ns 0 0 1 1 1 1 1 0

1 1 1

1

1

(1) (F)
20ns Nothing changes to

the inputs of Full
Adders 0,1,2.
Only need to look at
Full Adder 3

1

0

0 1 1 1 1 0 1 0(3) (D)

1

0

30ns 1 1 1 1 0 0 1 0(7) (9)

1

0

40ns 1 1 1 0 0 0 1 1(7) (1)

4-bit Full Adder
Simulation (6/8)

Full Adder
3

01
A3 B3

S3

Co C2
00

Full Adder
2

01
A2 B2

S2

C1
0

Full Adder
1

01
A1 B1

S1

C0 Full Adder
0

11
A0 B0

S0

Ci
1

0ns

C2 C1 C0 S3 S2 S1 S0 Co

0 0 0 0 0 0 0 0
10ns 0 0 1 1 1 1 1 0

1 1 1

1

1

(1) (F)
20ns The circuit is steady.

Nothing changes
from 40-50 ns.

1

0

0 1 1 1 1 0 1 0(3) (D)

1

0

30ns 1 1 1 1 0 0 1 0(7) (9)

1

0

40ns 1 1 1 0 0 0 1 1(7) (1)
50ns 1 1 1 0 0 0 1 1(7) (1)

4-bit Full Adder
Simulation (7/8)

Signals and Constants (1/5)
• Signals

– Interface: input/output
• entity FullAdder is
• port(X, Y, Cin: in bit; -- inputs
• Cout, Sum: out bit); -- outputs
• end FullAdder;

– Internal signals
• architecture gates of two_gates is
• signal C: bit;
• begin
• C <= A and B; -- concurrent
• E <= C or D; -- statements
• end gates;

Signals and Constants (2/5)

• The predefined VHDL types
– bit: ‘0’ or ‘1’
– boolean: FALSE or TRUE
– integer
– positive
– natural
– real
– character
– time

Signals and Constants (2/5) (cont)

– Types default value
– bit ‘0’
– Boolean false
– integer not defined
– positive 1
– natural 0
– Real 0.000
– character not defined
– Time 0

Signals and Constants (3/5)

• Signal initialization
– signal A: bit := ‘1’; -- A <= ‘1’
– signal A:bit; -- A<=‘0’. ‘0’ is the default value
– signal A,B,C:bit = ‘1’; -- anything wrong?
– signal A,B,C:bit := ‘1’; -- what are A and B?
– -- all A, B, and C will be
– -- initialized to ‘1’

Signals and Constants (4/5)

• Constants:
– constant limit:integer := 17;
– constant delay1:time := 5 ns;
– A <= B after delay1;

Signals and Constants (5/5)

• Enumeration data type
– Defined by users
– type state_type is (S0,S1,S2,S3,S4,S5);
– signal state : state_type := S1;
– state <= s3;

Arrays (1/11)

• Differences with arrays in Java/C++
– Index values can be customized.
– Must create an array type before declaring an

array object.

Arrays (2/11)

• Differences with arrays in Java/C++ (cont)
– Correct declaration

• type SHORT_WORD is array (15 downto 0) of bit;
• signal DATA_WORD : SHORT_WORD;

– Wrong declaration
• signal DATA_WORD : array (15 downto 0) of bit;

Arrays (3/11)

• Differences with arrays in Java/C++ (cont)
– type SHORT_WORD is array (15 downto 0) of bit;
– signal DATA_WORD : SHORT_WORD;
– signal ALT_WORD : SHORT_WORD:=“0101010101010101”;

“0101010101010101” •The initializer for an array of
bits must be double quoted.

ALT_WORD(15) ALT_WORD(0)

-- default value “00…0”

Arrays (4/11)

• Differences with arrays in Java/C++ (cont)
– A portion of the array can accessed in one

statement
– ALT_WORD(5 downto 0) <= “111111”;

Arrays (5/11)

• Differences with arrays in Java/C++ (cont)
– The slice direction must be consistent.

• downto
• to

• type SHORT_WORD is array (0 to 15) of bit;
• signal DATA_WORD : SHORT_WORD;
• DATA_WORD (5 downto 0) < = “111111”;

Wrong slice direction.

Arrays (6/11)

• Differences with arrays in Java/C++ (cont)
– Unconstrained array types
– type intvec is array (natural range <>) of integer;
– type matrix is array (natural range <>
– , natural range <>) of integer;

Arrays (7/11)

• Predefined unconstrained array types in
VHDL
– type bit_vector is array (natural range<>) of bit;
– type String is array (positive range <>) of character;

Arrays (8/11)

• Predefined unconstrained array types in
VHDL
– When declaring an array signal, the range

must be specified
– signal A: bit_vector(0 to 5) := “101011”;
– constant string1:string(1 to 29)=“……”;

Arrays (9/11)

• Example 1: design a ROM as illustrated in
Figure 9-17.

Arrays (10/11)
• entity ROM9_17
• port (A,B,C: in bit; F: out bit_vector(0 to 3));
• end entity;

• or

• entity ROM9_17
• port (A: in bit_vector(0 to 2); F: out bit_vector(0 to 3));
• end entity;

Arrays (11/11)
• architecture ROM of ROM9_17 is
• type ROM8X4 is array (0 to 7) of bit_vector (0 to 3);
• constant ROM1:ROM8X4 := (“1010”, “1010”, “0111”, 0101”,
• “1100”, “0001”, “1111”, “0101”);
• signal index: integer range 0 to 7;
• begin
• index <= vec2int(A&B&C); --A&B&C is a 3-bit vector
• -- vec2int is a function that converts this vector to integer
• F<=ROM1(index);
• end ROM;

VHDL Operators (1/2)

• Predefined VHDL operators
1. and or nand nor xor xnor
2. = /= < <= > >=
3. sll srl sla sra rol ror
4. + - &
5. * / mod rem
6. not abs **

Precedence

low

high

VHDL Operators (2/2)

• Predefined VHDL operators
1. and or nand nor xor xnor
2. = /= < <= > >=
3. sll srl sla sra rol ror
4. + - &
5. * / mod rem
6. not abs **

Packages and Libraries (1/2)

• Packages and libraries provide a
convenient way of referencing frequently
used functions and components

• In this class, some of your programs may
need package bit_pack in library BITLIB.

Packages and Libraries (2/2)

• The syntax is
– library BITLIB;
– use BITLIB.bit_pack.all;

• They are needed before each entity that
uses library functions.

