CDA 3200 Digital Systems

Instructor: Dr. Janusz Zalewski
Developed by: Dr. Dahai Guo
Spring 2012

Outline

Overview of VHDL

VHDL Description of Combinational Circuits
VHDL Models for Multiplexers

VHDL Modules

Signals and Constants

Arrays

VHDL Operators

Packages and Libraries

Overview of VHDL (1/6)

 VHDL

— VHSIC Hardware Description Language
— VHSIC: Very High Speed Integrated Circuit
— Widely used in the industry

Overview of VHDL (2/6)

+ Why VHDL?

— Detailed design of the systems at the gate
level has become very tedious and time
consuming.

— A hardware description language of top-down
methodology Is desired.

Overview of VHDL (3/6)

 The program that designs a 3-bit adder

1.
2
3.
4. end ADD;

G0 et A

entity ADD is
port (A, B :ininteger range 0 to 7;
Z . out integer range 0 to 15);

architecture ARITHMETIC of ADD is
begin

Z<=A+B;
end ARITHMETIC;

Overview of VHDL (4/6)

* |t seems that Boolean algebra, Karnaugh-
Maps, and other techniges (Quine-
McCluskey and Petrick’s methods) are
useless, if VHDL is so powerful.

Overview of VHDL (5/6)

l) l

b

Where Boolean algebra, Karnaugh maps and
other methods are integrated.

Overview of VHDL (6/6)

* Because the simplifying methods are

systematic, they can be programmed into
the synthesizer.

* Therefore, hardware designers can be
freed of detailed work at the gate level.

* But the designers still can work at the gate
level in VHDL.

VHDL Description of Combinational
Circuits (1/6)

e Signal assignment operator
1. C <= A and B after 5 ns;
2. E <=CorD after 5 ns;

LT

« Logically equivalent?
1. E <=C or D after 5 ns;
2. C <= A and B after 5 ns;

VHDL Description of Combinational
Circuits (2/6)

* VHDL signal assignment statements are
concurrent statements.

— The VHDL simulator monitors the right side of
each concurrent statement;

— Any time a signal changes, the expression on
the right side is immediately re-evaluated,;

— The new value is assigned to the signal on
the left side after the delay.

— The order of the concurrent statements does
not matter.

VHDL Description of Combinational
Circuits (3/6)

* The delay is optional in assignment
statements.
—E<=CorD;
— C <=A andB;
— When no delay is specified, the simulator will

assume an infinitesimal delay referred to as A
(delta).

VHDL Description of Combinational
Circuits (4/6)

 Clock
— CLK <= not CLK after 10 ns;

_I>07

No, because a run-
time error during
simulation will be
caused.

—
10 20 30 40 50 60

Can we remove the delay?

VHDL Description of Combinational
Circuits (5/6)

* Bit vectors

— B <=“0110";

— A <=“1100";

—C<=AandB:€=> C(3)<=A(3) and B(3);
C(2) <= A(2) and B(2);
C(1) <= A(1) and B(1);
C(0) <= A(0) and B(0);

VHDL Description of Combinational
Circuits (6/6)

 Comments are preceded by --

* An identifier, such as a variable, must start
with a letter, and it cannot end with an
underscore.

« Each statement is ended with a semicolon.
« NOT CASE SENSITIVE

VHDL Models for Multiplexers (1/6)

e 2-to-1 multiplexer
— F <= (not A and 10) or (A and |1);

A —‘DO_
10|

U

BE

\

IT —

VHDL Models for Multiplexers (2/6)

e 2-to-1 (cont)
1. -- conditional signal assignment statement
2. F <=10when A=0’ else I1;

i

VHDL Models for Multiplexers (3/6)
A _—[>>I0—_ }
] —

—0
— 1 Design at the logic level.

@f Design at the gate level.

VHDL Models for Multiplexers (4/6)

The general form of a conditional signal
assignment statement is
signhal name <= expression1 when condition
else expression2 when condition2

1.
2.
T Y | MY
4 [else expressionN];

— This concurrent statement is executed whenever a
change occurs in a signal used in the selected
expression or its condition.

VHDL Models for Multiplexers (5/6)

e 4-to-1

_\ F <= |10 when A&B=00"

e else |1 when A&B="“01"
MUX —— else 12 when A&B=10"

else 13;

VHDL Models for Multiplexers (6/6)

e 4-to-1

_\ sel <= A&B:

T— with sel select
MUX — F <= 10 when “00”,
11 when “017,

— 12 when “107,
|13 when “117:

VHDL Modules (1/17)

 Entities and architectures

— An entity declares the interface between a
module and its environment. What are the
input(s) and output(s)?

— The architecture contains the implementation
for an entity.

VHDL Modules (2/17)

* An entity does not deal with design details.
— Example:
— entity two_gates is
— port (A, B, D:|in|bit; E: out|bit);
—end two_gates;

port

VHDL Modules (3/17)

* Associated with each entity is one or more
architecture declarations

— architecture gates of two_gates is
— signal C: bit;

— begin

— C <= A and B; -- concurrent

— E<=CorD; --statements

— end gates;

VHDL Modules (4/17)

* Full adder
— entity FullAdder is
— port(X, Y, Cin: in bit; -- Inputs
— Cout, Sum: out bit); -- outputs
— end FullAdder;

VHDL Modules (5/17)

 Full adder

— architecture Equations of FullAdder is

— begin

— Sum <= X xor Y xor Cin after 10 ns;

— Cout <= (X and Y) or (X and Cin) or (Y and Cin) after 10 ns;
— end Equations;

VHDL does not specify an order of precedence
for the logic operators, therefore parentheses
are required.

VHDL Modules (6/17)

o 4-bit fuller adder

T T 71 T

1. entity Adder4 is

2. port (A, B:in bit_vector(3 downto 0); Ci: in bit -- Inputs
<} S: out bit_vector(3 downto 0); Co: out bit) -- Outputs
4. Adder4

5. architecture Structure of adder4 is

6. begin

1. S(0) <= A(0) xor B(0) xor Ci(0) after 10 ns;

Co(0) <= (A(0) and B(0)) or (A(0) and Ci(0)) or (B(0) and Ci(0)) after 10 ns;
Find all the syntax errors in lines 1-6 and 15.

S(1) <= A(1) xor B(1) xor Ci(1) after 10 ns;

Co(1) <= (A(1) and B(1)) or (A(1) and Ci(1)) or (B(1) and Ci(1)) after 10 ns;

I

S~ W

S(2) <= A(2) xor B(2) xor Ci(2) after 10 ns;
Co(2) <= (A(2) and B(2)) or (A(2) and Ci(2)) or (B(2) and Ci(2)) after 10 ns;

Op Cn

o

S(3) <= A(3) xor B(3) xor Ci(3) after 10 ns;
Co(3) <= (A(3) and B(3)) or (A(3) and Ci(3)) or (B(3) and Ci(3)) after 10 ns;

@

9. Structure

entity Adder4 is
port (A, B: in bit_vector(3 downto 0); Ci: in bit; -- Inputs
S: out bit_vector(3 downto 0); Co: out bit); -- Outputs
end Adder4,
architecture Structure of adder4 is
begin

S Ophp, 75

N

S(0) <= A(0) xor B(0) xor Ci(0) after 10 ns;

Co(0) <= (A(0) and B(0)) or (A(0) and Ci(0)) or (B(0) and Ci(0)) after 10 ns;
Find all the syntax errors in lines 1-6 and 15.

9. S(1)<=A(1) xor B(1) xor Ci(1) after 10 ns;

10. Co(1) <= (A(1) and B(1)) or (A(1) and Ci(1)) or (B(1) and Ci(1)) after 10 ns;

o0

11. S(2) <= A(2) xor B(2) xor Ci(2) after 10 ns;
12. Co(2) <= (A(2) and B(2)) or (A(2) and Ci(2)) or (B(2) and Ci(2)) after 10 ns;

13. S(3) <= A(3) xor B(3) xor Ci(3) after 10 ns;
14. Co(3) <= (A(3) and B(3)) or (A(3) and Ci(3)) or (B(3) and Ci(3)) after 10 ns;

15.end Structure:

SR WOk, =

11.
12.

13.
14.

entity Adder4 is
port (A, B: in bit_vector(3 downto 0); Ci: in bit; -- Inputs
S: out bit_vector(3 downto 0); Co: out bit); -- Outputs
end Adder4;
architecture Structure of adder4 is
begin
In this paragraph?
S(0) <= A(0) xor B(0) xor Ci(0) after 10 ns;
Co(0) <= (A(0) and B(0)) or (A(0) and Ci(0)) or (B(0) and Ci(0)) after 10 ns;

S(1) <= A(1) xor B(1) xor Ci(1) after 10 ns;
Co(1) <= (A(1) and B(1)) or (A(1) and Ci(1)) or (B(1) and Ci(1)) after 10 ns;

S(2) <= A(2) xor B(2) xor Ci(2) after 10 ns;
Co(2) <= (A(2) and B(2)) or (A(2) and Ci(2)) or (B(2) and Ci(2)) after 10 ns;

S(3) <= A(3) xor B(3) xor Ci(3) after 10 ns;
Co(3) <= (A(3) and B(3)) or (A(3) and Ci(3)) or (B(3) and Ci(3)) after 10 ns;

VHDL Modules (10/17)

« 4-bit full adder
1. S(0) <= A(0) xor B(0) xor Ci(0) after 10 ns;
2. Co(0) <= (A(0) and B(0)) or (A(0) and Ci(0)) or
(B(0) and Ci(0)) after 10 ns;

— Ci and Co are defined as bit signals and cannot
work with indices.

VHDL Modules (11/17)

e 4-bit full adder

— architecture Structure of Adder4 is
— signal C:bit vector(2 downto 0);

— begin

— end Structure;

VHDL Modules (12/17)

« S(0) <= A(0) xor B(0) xor Ci after 10 ns;
« C(0)<=(A(0) and B(0)) or (A(0) and Ci) or (B(0) and Ci) after 10 ns;

« S(1) <= A(1) xor B(1) xor C(0) after 10 ns;
« C(1)<=(A(1)and B(1)) or (A(1) and C(0)) or (B(1) and C(0)) after 10 ns;

« S(2) <= A(2) xor B(2) xor C(1) after 10 ns;
¢ C(2)<=(A(2)and B(2)) or (A(2) and C(1)) or (B(2) and C(1)) after 10 ns;

« S(3) <= A(3) xor B(3) xor C(2) after 10 ns;
« Co <= (A(3) and B(3)) or (A(3) and C(2)) or (B(3) and C(2)) after 10 ns;

VHDL Modules (13/17)

e 4-bit full adder

— Simulation commands

* iIsStABCoCCiS -
e force A 1111
» force B 0001
e force Ci 1
e run 50 ns

put these signals on the output list

-- setthe Ainputsto 1111
-- set the B inputs to 0001
--setCito 1

-- run the simulation for 50 ns

VHDL Modules (14/17)

» 4-bit full adder
— Simulation output

current |Ons | 10ns |20ns | 30ns |40ns | SOns
A r o o e | F
B 0001 |
Ci ' 1"
S | 0001 0 AF 1D }E) {1
Co & R
C | 111 0 J§! ¥3 X7

VHDL Modules (15/17)

« Since a 4-bit full adder is a sequence of 1-bit full
adders, why do not we build the 4-bit adder
based on 1-bit adders in VHDL?

— -- specify the FullAdder as a component
— -- within the architecture of Adder4

— architecture Structure of Adder4 is

— component FullAdder

— port (X, Y, Cin:in bit; --Inputs

— Cout, Sum: out bit); -- Outputs
— end component;

— end Structure;

VHDL Modules (16/17)

* signal C: bit_vector(3 downto 1);

 begin --instantiate four copies of the FullAdder
FAO: FullAdder port map (A(0), B(0), Ci, C(0), S(0)),
FAL: FullAdder port map (A(1), B(1), C(0), C(1), S(1));
FA2: FullAdder port map (A(2), B(2), C(1), C(2), S(2));
FA3: FullAdder port map (A(3), B(3), C(2), Co, S(3));

VHDL Modules (17/17)

 Component instantiation statements

— label: component-name port map (list-of-actual-
signals)

4-bit Full Adder Simulation (1/7)

°To 2
Co Ci Co Ci
<— Full Adder[* s Full Adder[*
0 1
0 0
A B A B
0 0 0 0
S % S TO
Co Ci Co Ci
<— Full Adder* . Full Adder[*
0 1
0 1
A B A B
0 1 0 1

4-bit Full Adder Simulation (2/7)

S I" S IO
Co Ci Co Ci
<— Full Adder[* s Full Adder[*
0 1
0 1
A B A B
1 0 1 0
°To Sk
Co Ci Co Ci
<— Full Adder* . Full Adder[*
1 0 1 1
A B A B
1 1 1 1

-y =y " m

Co | FullAdder|. €2 |FullAdderl. €1 |FunAdder|. €9 |FunAdder|, Ci

. 3 | 0 2 | o 1 [0 | 1

d
<«

B A2 B2 A1 B1 A B

Bl B Bl e,
C2C1CO S3S2 S1S0 Co

Mne 0 0 O 0O 0 0O 0

ons 0 0 1(1) 1 1 1 1(F) 0

current I |Ons | 10ns |20ns |30ns | 40ns | S0Ons

A | 1111 F
B | o001 1
ci |'1
e S | 1111
S co | 10 4-bit Full Adder

—) | 001 0 f1 Simulation (3/8)

B

F

S3T1 SZT1 SW. SOT1
. C0 |Full Adder|, ©2 |FullAdder|, ©1 |FullAdder|, ©O |Full Adder|, ©
0 | 3 0 2 [1 1 0 1
A3 B3 A2 B2 A1 B1 AOQ BO
B A e A |
C2 C1 CO S3 52 S1 S0 Co
Ons 0 0 O 0O 00O 0
1ns 0 O 1?1; s D 1§F) 0
20ns 0O 1 1(3 B P 0 D) 0 Nothing changes to
the inputs of Full
Adders 0,2,3.
Only need to look at
Full Adder 1.
current | |Ons | 10ns |20ns |30ns | 40ns | 50ns |
s ; 1101 0 {F D

—) CO g

S C | o011 0 11

13

4-bit Full Adder
Simulation (4/8)

S3I1 SZI. Swo SOI1

CO | Full Adder|, _©2 |FullAdder|, €1 |FullAdder|, ©O |Full Adder|, C

i ——

0 3 0 2 1 1 1 0 1

A

A3 B3 A2 B2 A1 B1 AQ BO
oo el e wif el sl e
C2C1CO S3S2 S1 S0 Co
Ons 0 0 O 0O 00O 0
e gy 113im
20Nnc :
Nothing changes to
3ns 1 1.1 10019 0 the inputs of Ful
Adders 0,1, 3.
Only need to look at
Full Adder 2.

current | |Ons |10ns |20ns |30ns | 40ns | SOns |

A |1111 F
B | 0001 1
ci |*1

—) | 1001 0 IF D {9

SR e | o 4-bit Full Adder

— C | 111 0 11 3 X7 Simulation (5/8)

S3I. SZI . SW 0 SOI 1
. C0 |Full Adder|, ©2 |FullAdder|, ©1 |FullAdder|, ©O |Full Adder|, ©
. 3 1 2 1 1 1 0 1
A3 B3 A2 B2 A1 B1 A0 BO
T T e s A
C2C1CO S3S2 S1 S0 Co
Ons 0 0 O O 00O 0
100ns 0 O 1?1; P D 1§F) 0
20ns 0O 1 1(3 B P 0 D) 0 Nothing changes to
A T A O 0 R S e
(7) (1) Adders 0,1,2.
Only need to look at
Full Adder 3
current |0Ons |10ns |20ns |30ns |40ns | 50ns
 — c: E']T-Dl } . 5 . }i{l 4-bit Full Adder
— | 111 0 1 13 7 Simulation (6/8)

S3I 0 SZI . SW 0 SOI 1
. C0 |Full Adder|, ©2 |FullAdder|, ©1 |FullAdder|, ©O |Full Adder|, ©
1 3 1 2 1 1 1 0 1
A3| B3 A2| B2 Al| B AO| BO
A A Al A S A
C2 C1CO S3S2S1S0 Co
Ons 0 0 O O 00O 0
gy 11
20ns The circuit is steady.
3ns 1 1 17) 1 00 19 0 N
4ns 1 1 17) 0 0 0 1(1) 1 g chang
50ns 1 1 1(7) 0. 0 0 1(1) i from 40-50 ns.
current [|0ns |10ns |20ns |30ns | 40ns | S0Ons
— ; ;;Iol 0 IF D €] £1 :
S Co | '1 | 4-bit Full Adder

— 111 0 {1 13 X7 Simulation (7/8)

Signals and Constants (1/5)

Signals

— Interface: input/output
 entity FullAdder is
« port(X,Y, Cin: in bit; -- inputs
. Cout, Sum: out bit); -- outputs
 end FullAdder;

— Internal signals
« architecture gates of two_gates is
« signal C: bit;
begin
C <= A and B; -- concurrent
E<=CorD; --statements
end gates;

Signals and Constants (2/5)

* The predefined VHDL types
— bit: 'O’ or ‘1’
— boolean: FALSE or TRUE
— integer
— positive
— natural
— real
— character
— time

Signals and Constants (2/5) (cont)

— Types default value
— bit 0

— Boolean false

— integer not defined
— positive 1

— natural 0

— Real 0.000

— character not defined
— Time 0

Signals and Constants (3/5)

 Signal initialization
—signal A: bit =1, --A<="1
— signal A:bit; -- A<=°0". ‘0’ is the default value
—signal A,B,C:bit = *1’; -- anything wrong?
—signal A,B,C:bit :='1’"; -- what are A and B?
— --all A, B, and C will be
— -- Initialized to ‘1’

Signhals and Constants (4/5)

» Constants:
— constant limit:integer := 17,
— constant delay1:time := 5 ns;
— A <= B after delay1;

Signals and Constants (5/5)

 Enumeration data type
— Defined by users
—type state type is (S0,51,52,53,54,55);
— signal state : state type := S1;
— state <= s3;

Arrays (1/11)

» Differences with arrays in Java/C++
— |Index values can be customized.

— Must create an array type before declaring an
array object.

Arrays (2/11)

« Differences with arrays in Java/C++ (cont)

— Correct declaration
 type SHORT WORD is array (15 downto 0) of bit;
» signal DATA WORD : SHORT WORD;

— Wrong declaration
» signal DATA WORD : array (15 downto 0) of bit;

Arrays (3/11)

 Differences with arrays in Java/C++ (cont)
— type SHORT_WORD is array (15 downto 0) of bit;
— signal DATA_WORD : SHORT WORD; -- default value “00...0”
— signal ALT_WORD : SHORT _WORD:=“0101010101010101";

“0101010101010101” *The initializer for an array of

bits must be double quoted.

ALT_WORD(15) ALT_WORD(0)

Arrays (4/11)

« Differences with arrays in Java/C++ (cont)

— A portion of the array can accessed in one
statement

— ALT_WORD(5 downto 0) <= "1111117,

Arrays (5/11)

« Differences with arrays in Java/C++ (cont)

— The slice direction must be consistent.
 downto
e tO

« type SHORT_WORD is array (0 to 15) of bit;
 signal DATA WORD : SHORT_WORD;
« DATA WORD (5 downto 0) < = “1111117;

A

Wrong slice direction.

Arrays (6/11)

 Differences with arrays in Java/C++ (cont)
— Unconstrained array types
— type intvec is array (natural range <>) of integer;
— type matrix is array (natural range <>
— , hatural range <>) of integer;

Arrays (7/11)

* Predefined unconstrained array types in
VHDL

— type bit_vector is array (natural range<>) of bit;
— type String is array (positive range <>) of character;

Arrays (8/11)

* Predefined unconstrained array types in
VHDL

— When declaring an array signal, the range
must be specified
— signal A: bit_vector(0 to 5) := 1010117,

— constant string1:string(1 to 29)="...... :

Arrays (9/11)

 Example 1: design a ROM as illustrated in
Figure 9-17.

. A B C|F0 Fl F2 F3
t | ROM 0 0 0|1 0 1 0
e 0 0 1|1 0 1 0
-~ —»| XA4Bits 0 1 0]0 1 1 1
0 1 1]0 1 0 1

g | ———

| 1 0 1]0 0 0 1

. y J T 1 01 1 1 1

1 1 1]0 1 0 1

Arrays (10/11)

entity ROM9 17
port (A,B,C: in bit; F: out bit_vector(0 to 3));
end entity;

or

entity ROM9 17
port (A: in bit_vector(0 to 2); F: out bit_vector(0 to 3));
end entity;

Arrays (11/11)

architecture ROM of ROM9 17 is
type ROM8X4 is array (0 to 7) of bit_vector (0 to 3);
constant ROM1:ROM8X4 = (“1010”, “10107, “0111”, 01017,
“11007, “00017, “11117, “0101™);
signal index: integer range 0 to 7;
begin
index <= vec2int(A&B&C); --A&B&C is a 3-bit vector
-- vec2int is a function that converts this vector to integer
F<=ROM1(index);
end ROM;

VHDL Operators (1/2)

 Predefined VHDL operators
and or nand nor xor xnor T low
== Ca= S o=

sll srl sla sra rol ror
+ - &

*/ mod rem

not abs **

gl oSy . Ol

high
Precedence

1.

s

VHDL Operators (2/2)

Predefined VHDL operators

and or nand nor xor xnor
== Ca= S o=

+ - &
Rl
not

Packages and Libraries (1/2)

« Packages and libraries provide a
convenient way of referencing frequently
used functions and components

* In this class, some of your programs may
need package bit_pack in library BITLIB.

Packages and Libraries (2/2)

 The syntax is
— library BITLIB;
—use BITLIB.bit _pack.all;

* They are needed before each entity that
uses library functions.

