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Overview of VHDL (1/6)

 VHDL

— VHSIC Hardware Description Language
— VHSIC: Very High Speed Integrated Circuit
— Widely used in the industry



Overview of VHDL (2/6)

+ Why VHDL?

— Detailed design of the systems at the gate
level has become very tedious and time
consuming.

— A hardware description language of top-down
methodology Is desired.



Overview of VHDL (3/6)

 The program that designs a 3-bit adder

1.
2
3.
4. end ADD;

G0 et A

entity ADD is
port (A, B :ininteger range 0 to 7;
Z . out integer range 0 to 15);

architecture ARITHMETIC of ADD is
begin

Z<=A+B;
end ARITHMETIC;



Overview of VHDL (4/6)

* |t seems that Boolean algebra, Karnaugh-
Maps, and other techniges (Quine-
McCluskey and Petrick’s methods) are
useless, if VHDL is so powerful.



Overview of VHDL (5/6)

l ) l

b

Where Boolean algebra, Karnaugh maps and
other methods are integrated.



Overview of VHDL (6/6)

* Because the simplifying methods are

systematic, they can be programmed into
the synthesizer.

* Therefore, hardware designers can be
freed of detailed work at the gate level.

* But the designers still can work at the gate
level in VHDL.



VHDL Description of Combinational
Circuits (1/6)

e Signal assignment operator
1. C <= A and B after 5 ns;
2. E <=CorD after 5 ns;

LT

« Logically equivalent?
1. E <=C or D after 5 ns;
2. C <= A and B after 5 ns;




VHDL Description of Combinational
Circuits (2/6)

* VHDL signal assignment statements are
concurrent statements.

— The VHDL simulator monitors the right side of
each concurrent statement;

— Any time a signal changes, the expression on
the right side is immediately re-evaluated,;

— The new value is assigned to the signal on
the left side after the delay.

— The order of the concurrent statements does
not matter.



VHDL Description of Combinational
Circuits (3/6)

* The delay is optional in assignment
statements.
—E<=CorD;
— C <=A andB;
— When no delay is specified, the simulator will

assume an infinitesimal delay referred to as A
(delta).



VHDL Description of Combinational
Circuits (4/6)

 Clock
— CLK <= not CLK after 10 ns;

_I>07

No, because a run-
time error during
simulation will be
caused.

—
10 20 30 40 50 60

Can we remove the delay?



VHDL Description of Combinational
Circuits (5/6)

* Bit vectors

— B <=“0110";

— A <=“1100";

—C<=AandB:€=> C(3)<=A(3) and B(3);
C(2) <= A(2) and B(2);
C(1) <= A(1) and B(1);
C(0) <= A(0) and B(0);



VHDL Description of Combinational
Circuits (6/6)

 Comments are preceded by --

* An identifier, such as a variable, must start
with a letter, and it cannot end with an
underscore.

« Each statement is ended with a semicolon.
« NOT CASE SENSITIVE



VHDL Models for Multiplexers (1/6)

e 2-to-1 multiplexer
— F <= (not A and 10) or (A and |1);

A —‘DO_
10|

U

BE

\

IT —



VHDL Models for Multiplexers (2/6)

e 2-to-1 (cont)
1. -- conditional signal assignment statement
2. F <=10when A=0’ else I1;

i




VHDL Models for Multiplexers (3/6)
A _—[>>I0—_ }
] —

—0
— 1 Design at the logic level.

@f Design at the gate level.




VHDL Models for Multiplexers (4/6)

The general form of a conditional signal
assignment statement is
signhal name <= expression1 when condition
else expression2 when condition2

1.
2.
T Y | MY
4 [else expressionN];

— This concurrent statement is executed whenever a
change occurs in a signal used in the selected
expression or its condition.



VHDL Models for Multiplexers (5/6)

e 4-to-1

_\ F <= |10 when A&B=00"

e else |1 when A&B="“01"
MUX —— else 12 when A&B=10"

else 13;




VHDL Models for Multiplexers (6/6)

e 4-to-1

_\ sel <= A&B:

T— with sel select
MUX — F <= 10 when “00”,
11 when “017,

— 12 when “107,
|13 when “117:




VHDL Modules (1/17)

 Entities and architectures

— An entity declares the interface between a
module and its environment. What are the
input(s) and output(s)?

— The architecture contains the implementation
for an entity.



VHDL Modules (2/17)

* An entity does not deal with design details.
— Example:
— entity two_gates is
—  port (A, B, D:|in|bit; E: out|bit);
—end two_gates;

port



VHDL Modules (3/17)

* Associated with each entity is one or more
architecture declarations

— architecture gates of two_gates is
— signal C: bit;

— begin

— C <= A and B; -- concurrent

— E<=CorD; --statements

— end gates;




VHDL Modules (4/17)

* Full adder
— entity FullAdder is
—  port(X, Y, Cin: in bit; -- Inputs
— Cout, Sum: out bit); -- outputs
— end FullAdder;



VHDL Modules (5/17)

 Full adder

— architecture Equations of FullAdder is

— begin

— Sum <= X xor Y xor Cin after 10 ns;

— Cout <= (X and Y) or (X and Cin) or (Y and Cin) after 10 ns;
— end Equations;

VHDL does not specify an order of precedence
for the logic operators, therefore parentheses
are required.



VHDL Modules (6/17)

o 4-bit fuller adder

T T 71 T



1. entity Adder4 is

2. port (A, B:in bit_vector(3 downto 0); Ci: in bit -- Inputs
<} S: out bit_vector(3 downto 0); Co: out bit) -- Outputs
4. Adder4

5. architecture Structure of adder4 is

6. begin

1. S(0) <= A(0) xor B(0) xor Ci(0) after 10 ns;

Co(0) <= (A(0) and B(0)) or (A(0) and Ci(0)) or (B(0) and Ci(0)) after 10 ns;
Find all the syntax errors in lines 1-6 and 15.

S(1) <= A(1) xor B(1) xor Ci(1) after 10 ns;

Co(1) <= (A(1) and B(1)) or (A(1) and Ci(1)) or (B(1) and Ci(1)) after 10 ns;

I

S~ W

S(2) <= A(2) xor B(2) xor Ci(2) after 10 ns;
Co(2) <= (A(2) and B(2)) or (A(2) and Ci(2)) or (B(2) and Ci(2)) after 10 ns;

Op Cn

o

S(3) <= A(3) xor B(3) xor Ci(3) after 10 ns;
Co(3) <= (A(3) and B(3)) or (A(3) and Ci(3)) or (B(3) and Ci(3)) after 10 ns;

@

9. Structure



entity Adder4 is
port (A, B: in bit_vector(3 downto 0); Ci: in bit; -- Inputs
S: out bit_vector(3 downto 0); Co: out bit); -- Outputs
end Adder4,
architecture Structure of adder4 is
begin

S Ophp, 75

N

S(0) <= A(0) xor B(0) xor Ci(0) after 10 ns;

Co(0) <= (A(0) and B(0)) or (A(0) and Ci(0)) or (B(0) and Ci(0)) after 10 ns;
Find all the syntax errors in lines 1-6 and 15.

9. S(1)<=A(1) xor B(1) xor Ci(1) after 10 ns;

10. Co(1) <= (A(1) and B(1)) or (A(1) and Ci(1)) or (B(1) and Ci(1)) after 10 ns;

o0

11. S(2) <= A(2) xor B(2) xor Ci(2) after 10 ns;
12. Co(2) <= (A(2) and B(2)) or (A(2) and Ci(2)) or (B(2) and Ci(2)) after 10 ns;

13. S(3) <= A(3) xor B(3) xor Ci(3) after 10 ns;
14. Co(3) <= (A(3) and B(3)) or (A(3) and Ci(3)) or (B(3) and Ci(3)) after 10 ns;

15.end Structure:



SR WOk, =

11.
12.

13.
14.

entity Adder4 is
port (A, B: in bit_vector(3 downto 0); Ci: in bit; -- Inputs
S: out bit_vector(3 downto 0); Co: out bit); -- Outputs
end Adder4;
architecture Structure of adder4 is
begin
In this paragraph?
S(0) <= A(0) xor B(0) xor Ci(0) after 10 ns;
Co(0) <= (A(0) and B(0)) or (A(0) and Ci(0)) or (B(0) and Ci(0)) after 10 ns;

S(1) <= A(1) xor B(1) xor Ci(1) after 10 ns;
Co(1) <= (A(1) and B(1)) or (A(1) and Ci(1)) or (B(1) and Ci(1)) after 10 ns;

S(2) <= A(2) xor B(2) xor Ci(2) after 10 ns;
Co(2) <= (A(2) and B(2)) or (A(2) and Ci(2)) or (B(2) and Ci(2)) after 10 ns;

S(3) <= A(3) xor B(3) xor Ci(3) after 10 ns;
Co(3) <= (A(3) and B(3)) or (A(3) and Ci(3)) or (B(3) and Ci(3)) after 10 ns;



VHDL Modules (10/17)

« 4-bit full adder
1. S(0) <= A(0) xor B(0) xor Ci(0) after 10 ns;
2. Co(0) <= (A(0) and B(0)) or (A(0) and Ci(0)) or
(B(0) and Ci(0)) after 10 ns;

— Ci and Co are defined as bit signals and cannot
work with indices.



VHDL Modules (11/17)

e 4-bit full adder

— architecture Structure of Adder4 is
— signal C:bit vector(2 downto 0);

— begin

— end Structure;




VHDL Modules (12/17)

« S(0) <= A(0) xor B(0) xor Ci after 10 ns;
« C(0)<=(A(0) and B(0)) or (A(0) and Ci) or (B(0) and Ci) after 10 ns;

« S(1) <= A(1) xor B(1) xor C(0) after 10 ns;
« C(1)<=(A(1)and B(1)) or (A(1) and C(0)) or (B(1) and C(0)) after 10 ns;

« S(2) <= A(2) xor B(2) xor C(1) after 10 ns;
¢ C(2)<=(A(2)and B(2)) or (A(2) and C(1)) or (B(2) and C(1)) after 10 ns;

« S(3) <= A(3) xor B(3) xor C(2) after 10 ns;
« Co <= (A(3) and B(3)) or (A(3) and C(2)) or (B(3) and C(2)) after 10 ns;



VHDL Modules (13/17)

e 4-bit full adder

— Simulation commands

* iIsStABCoCCiS -
e force A 1111
» force B 0001
e force Ci 1
e run 50 ns

put these signals on the output list

-- setthe Ainputsto 1111
-- set the B inputs to 0001
--setCito 1

-- run the simulation for 50 ns



VHDL Modules (14/17)

» 4-bit full adder
— Simulation output

current |Ons | 10ns |20ns | 30ns |40ns | SOns
A r o o e | F
B 0001 |
Ci ' 1"
S | 0001 0 AF 1D }E) {1
Co & R
C | 111 0 J§! ¥3 X7




VHDL Modules (15/17)

« Since a 4-bit full adder is a sequence of 1-bit full
adders, why do not we build the 4-bit adder
based on 1-bit adders in VHDL?

— -- specify the FullAdder as a component
— -- within the architecture of Adder4

— architecture Structure of Adder4 is

— component FullAdder

— port (X, Y, Cin:in bit; --Inputs

— Cout, Sum: out bit); -- Outputs
— end component;

— end Structure;



VHDL Modules (16/17)

* signal C: bit_vector(3 downto 1);

 begin --instantiate four copies of the FullAdder
FAO: FullAdder port map (A(0), B(0), Ci, C(0), S(0)),
FAL: FullAdder port map (A(1), B(1), C(0), C(1), S(1));
FA2: FullAdder port map (A(2), B(2), C(1), C(2), S(2));
FA3: FullAdder port map (A(3), B(3), C(2), Co, S(3));




VHDL Modules (17/17)

 Component instantiation statements

— label: component-name port map (list-of-actual-
signals)



4-bit Full Adder Simulation (1/7)

°To 2
Co Ci Co Ci
<— Full Adder[* s Full Adder[*
0 1
0 0
A B A B
0 0 0 0
S % S TO
Co Ci Co Ci
<— Full Adder* . Full Adder[*
0 1
0 1
A B A B
0 1 0 1




4-bit Full Adder Simulation (2/7)

S I" S IO
Co Ci Co Ci
<— Full Adder[* s Full Adder[*
0 1
0 1
A B A B
1 0 1 0
°To Sk
Co Ci Co Ci
<— Full Adder* . Full Adder[*
1 0 1 1
A B A B
1 1 1 1




-y =y " m

Co | FullAdder|. €2 |FullAdderl. €1  |FunAdder|. €9 |FunAdder|, Ci

. 3 | 0 2 | o 1 [ 0 | 1

d
<«

B A2 B2 A1 B1 A B

Bl B Bl e,
C2C1CO S3S2 S1S0 Co

Mne 0 0 O 0O 0 0O 0

ons 0 0 1(1) 1 1 1 1(F) 0

current I |Ons | 10ns |20ns |30ns | 40ns | S0Ons

A | 1111 F
B | o001 1
ci |'1
e S | 1111
S co | 10 4-bit Full Adder

—) | 001 0 f1 Simulation (3/8)

B

F




S3T1 SZT1 SW. SOT1
. C0 |Full Adder|, ©2 |FullAdder|, ©1 |FullAdder|, ©O |Full Adder|, ©
0 | 3 0 2 [ 1 1 0 1
A3 B3 A2 B2 A1 B1 AOQ BO
B A e A |
C2 C1 CO S3 52 S1 S0 Co
Ons 0 0 O 0O 00O 0
1ns 0 O 1?1; s D 1§F) 0
20ns 0O 1 1(3 B P 0 D) 0 Nothing changes to
the inputs of Full
Adders 0,2,3.
Only need to look at
Full Adder 1.
current | |Ons | 10ns |20ns |30ns | 40ns | 50ns |
s ; 1101 0 {F D

—)  CO g

S C | o011 0 11

13

4-bit Full Adder
Simulation (4/8)



S3I1 SZI. Swo SOI1

CO | Full Adder|, _©2 |FullAdder|, €1 |FullAdder|, ©O |Full Adder|, C

i ——

0 3 0 2 1 1 1 0 1

A

A3 B3 A2 B2 A1 B1 AQ BO
oo el e wif el sl e
C2C1CO S3S2 S1 S0 Co
Ons 0 0 O 0O 00O 0
e gy 113im
20Nnc :
Nothing changes to
3ns 1 1.1 10019 0 the inputs of Ful
Adders 0,1, 3.
Only need to look at
Full Adder 2.

current | |Ons |10ns |20ns |30ns | 40ns | SOns |

A |1111 F
B | 0001 1
ci |*1

—) | 1001 0 IF D {9

SR e | o 4-bit Full Adder

— C | 111 0 11 3 X7 Simulation (5/8)




S3I. SZI . SW 0 SOI 1
. C0 |Full Adder|, ©2 |FullAdder|, ©1 |FullAdder|, ©O |Full Adder|, ©
. 3 1 2 1 1 1 0 1
A3 B3 A2 B2 A1 B1 A0 BO
T T e s A
C2C1CO S3S2 S1 S0 Co
Ons 0 0 O O 00O 0
100ns 0 O 1?1; P D 1§F) 0
20ns 0O 1 1(3 B P 0 D) 0 Nothing changes to
A T A O 0 R S e
(7) (1) Adders 0,1,2.
Only need to look at
Full Adder 3
current |0Ons |10ns |20ns |30ns |40ns | 50ns
 — c: E']T-Dl } . 5 . }i{l 4-bit Full Adder
— | 111 0 1 13 7 Simulation (6/8)




S3I 0 SZI . SW 0 SOI 1
. C0 |Full Adder|, ©2 |FullAdder|, ©1 |FullAdder|, ©O |Full Adder|, ©
1 3 1 2 1 1 1 0 1
A3| B3 A2| B2 Al| B AO| BO
A A Al A S A
C2 C1CO S3S2S1S0 Co
Ons 0 0 O O 00O 0
gy 11
20ns The circuit is steady.
3ns 1 1 17) 1 00 19 0 N
4ns 1 1 17) 0 0 0 1(1) 1 g chang
50ns 1 1 1(7) 0. 0 0 1(1) i from 40-50 ns.
current [ |0ns |10ns |20ns |30ns | 40ns | S0Ons
— ; ;;Iol 0 IF D €]  £1 :
S Co | '1 | 4-bit Full Adder

— 111 0 {1 13 X7 Simulation (7/8)




Signals and Constants (1/5)

Signals

— Interface: input/output
 entity FullAdder is
« port(X,Y, Cin: in bit; -- inputs
. Cout, Sum: out bit); -- outputs
 end FullAdder;

— Internal signals
« architecture gates of two_gates is
« signal C: bit;
begin
C <= A and B; -- concurrent
E<=CorD; --statements
end gates;



Signals and Constants (2/5)

* The predefined VHDL types
— bit: 'O’ or ‘1’
— boolean: FALSE or TRUE
— integer
— positive
— natural
— real
— character
— time



Signals and Constants (2/5) (cont)

— Types default value
— bit 0

— Boolean false

— integer not defined
— positive 1

— natural 0

— Real 0.000

— character not defined
— Time 0



Signals and Constants (3/5)

 Signal initialization
—signal A: bit =1, --A<="1
— signal A:bit; -- A<=°0". ‘0’ is the default value
—signal A,B,C:bit = *1’; -- anything wrong?
—signal A,B,C:bit :='1’"; -- what are A and B?
— --all A, B, and C will be
— -- Initialized to ‘1’




Signhals and Constants (4/5)

» Constants:
— constant limit:integer := 17,
— constant delay1:time := 5 ns;
— A <= B after delay1;



Signals and Constants (5/5)

 Enumeration data type
— Defined by users
—type state type is (S0,51,52,53,54,55);
— signal state : state type := S1;
— state <= s3;



Arrays (1/11)

» Differences with arrays in Java/C++
— |Index values can be customized.

— Must create an array type before declaring an
array object.



Arrays (2/11)

« Differences with arrays in Java/C++ (cont)

— Correct declaration
 type SHORT WORD is array (15 downto 0) of bit;
» signal DATA WORD : SHORT WORD;

— Wrong declaration
» signal DATA WORD : array (15 downto 0) of bit;



Arrays (3/11)

 Differences with arrays in Java/C++ (cont)
— type SHORT_WORD is array (15 downto 0) of bit;
— signal DATA_WORD : SHORT WORD; -- default value “00...0”
— signal ALT_WORD : SHORT _WORD:=“0101010101010101";

“0101010101010101” *The initializer for an array of

bits must be double quoted.

ALT_WORD(15) ALT_WORD(0)



Arrays (4/11)

« Differences with arrays in Java/C++ (cont)

— A portion of the array can accessed in one
statement

— ALT_WORD(5 downto 0) <= "1111117,



Arrays (5/11)

« Differences with arrays in Java/C++ (cont)

— The slice direction must be consistent.
 downto
e tO

« type SHORT_WORD is array (0 to 15) of bit;
 signal DATA WORD : SHORT_WORD;
« DATA WORD (5 downto 0) < = “1111117;

A

Wrong slice direction.




Arrays (6/11)

 Differences with arrays in Java/C++ (cont)
— Unconstrained array types
— type intvec is array (natural range <>) of integer;
— type matrix is array (natural range <>
— , hatural range <>) of integer;




Arrays (7/11)

* Predefined unconstrained array types in
VHDL

— type bit_vector is array (natural range<>) of bit;
— type String is array (positive range <>) of character;



Arrays (8/11)

* Predefined unconstrained array types in
VHDL

— When declaring an array signal, the range
must be specified
— signal A: bit_vector(0 to 5) := 1010117,

— constant string1:string(1 to 29)="...... :



Arrays (9/11)

 Example 1: design a ROM as illustrated in
Figure 9-17.

. A B C|F0 Fl F2 F3
t | ROM 0 0 0|1 0 1 0
e 0 0 1|1 0 1 0
-~ —»| XA4Bits 0 1 0]0 1 1 1
0 1 1]0 1 0 1

g | ———

| 1 0 1]0 0 0 1

. y J T 1 01 1 1 1

1 1 1]0 1 0 1




Arrays (10/11)

entity ROM9 17
port (A,B,C: in bit; F: out bit_vector(0 to 3));
end entity;

or

entity ROM9 17
port (A: in bit_vector(0 to 2); F: out bit_vector(0 to 3));
end entity;



Arrays (11/11)

architecture ROM of ROM9 17 is
type ROM8X4 is array (0 to 7) of bit_vector (0 to 3);
constant ROM1:ROM8X4 = (“1010”, “10107, “0111”, 01017,
“11007, “00017, “11117, “0101™);
signal index: integer range 0 to 7;
begin
index <= vec2int(A&B&C); --A&B&C is a 3-bit vector
-- vec2int is a function that converts this vector to integer
F<=ROM1(index);
end ROM;



VHDL Operators (1/2)

 Predefined VHDL operators
and or nand nor xor xnor T low
== Ca= S o=

sll srl sla sra rol ror
+ - &

*/ mod rem

not abs **

gl oSy . Ol

high
Precedence



1.

s

VHDL Operators (2/2)

Predefined VHDL operators

and or nand nor xor xnor
== Ca= S o=

+ - &
Rl
not



Packages and Libraries (1/2)

« Packages and libraries provide a
convenient way of referencing frequently
used functions and components

* In this class, some of your programs may
need package bit_pack in library BITLIB.



Packages and Libraries (2/2)

 The syntax is
— library BITLIB;
—use BITLIB.bit _pack.all;

* They are needed before each entity that
uses library functions.



