CDA 3200 Digital Systems

Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012

Outline

- A Sequential Parity Checker
- "01" Detector
- Analysis by Signal Tracing and Timing Charts

A Sequential Parity Checker (1/13)

- Parity bit is used to detect errors.
 - Example:
 - 7 data bits parity bits
 - 0000000
 - 0000001
 - 0110110 0
 - 1010101
 - 0111000

0

1

1

A Sequential Parity Checker (2/13)

- Parity checker
 - A group of bits is applied to X
 - Z indicates the parity.

A Sequential Parity Checker (3/13)

Goals

- Decide how many flip-flops (FFs) are needed
- Decide the expressions for flip-flop (FF) inputs
- Decide the expression for the final output
- Tools
 - Time waveform
 - State graph
 - State table

A Sequential Parity Checker (4/13)

Time waveform

- Can help us understand the problem.
- But cannot help in developing logic expressions.

A Sequential Parity Checker (5/13)

State graph

- States are independent of circuit realization.
- They reflect what've happened and maybe also indicate the output.

State zero, where the output is zero.

A Sequential Parity Checker (6/13)

- In a parity checker, only two states are needed.
 - $-S_0$: even number of 1's have been received.
 - $-S_1$: odd number of 1's have been received.

All possible transitions have been considered.

A Sequential Parity Checker (7/13)

State table

- Can be realization-free.

Present State	Next State X=0 X= 1		Present Output (Z)		
S ₀	S ₀	S ₁	0		
S ₁	S ₁	S ₀	1		

A Sequential Parity Checker (8/13)

State table (cont)

- Two states can be represented by 1 bit.

Present State	Next State X=0 X= 1		Present Output (Z)
S ₀ 0	S ₀ 0	S ₁ 1	0
S ₁ 1	S ₁ 1	S ₀ 0	1

A Sequential Parity Checker (9/13)

- State table (cont)
 - Say we are using a T flip-flop (FF) (Q⁺=Q xor T)

A Sequential Parity Checker (10/13)

- State table (cont)
 - Say we are using a T flip-flop (FF) (Q⁺=Q xor T)

Q	Q ⁻ X=0	+ / T X= 1	Present Output (Z)
0	0/0	1/1	0
1	1/0	0/1	1

A Sequential Parity Checker (11/13)

- State table (cont)
 - What is the expression for T? T=X

A Sequential Parity Checker (12/13)

Z=Q

- State table (cont)
 - What is the expression for Z?

A Sequential Parity Checker (13/13)

Parity check

"01" Detector (1/10)

Detects bit pattern "01" in a serial input
 Input: 0111110100
 Output: 0100000100

"01" Detector (2/10)

- State graph
 - We do not necessarily know how many states are needed ahead of time.
 - We can assume an initial state which is before any input.
 - Then there will be two transitions from the initial state and they are triggered by 0 and 1.
 - A transition may introduce a new state.

"01" Detector (3/10)

"01" Detector (4/10)

- S₀: nothing has been received to make a "01".
- S₁ : "0" has been received.
- S2: "01" has been received.

How many bits are needed to represent S_{0-2} ?

"01" Detector (5/10)

• State table

Present State	Next S X=0	State X= 1	Present Output (Z)
S ₀	S ₁	S ₀	0
S ₁	S ₁	S ₂	0
S ₂	S ₁	S ₀	1

"01" Detector (6/10)

- State table (cont)
 - Encode states
 - $-S_0:00$
 - S₁ : 01
 - S₂ : 10

"01" Detector (7/10)

State table (cont)

00

Q ₁ Q ₀ Present State	Next Stat X=0	te $Q_1^+ Q_0^+$ X= 1	Present Output (Z)
S ₀ 00	S ₁ 01	S ₀ 00	0
S ₁ 01	S ₁ 01	S ₂ 10	0
S ₂ 10	S ₁ 01	S ₀ 00	1

"01" Detector (8/10)

State table (cont): <u>T flip-flops (FFs) are used</u>

Q ₁ Q ₀	$Q_1^+ Q_0^-$ X=0	X = 1	Prese Outpu	
00	01/01	00/00	0	Note: variables
01	01/00	10/ 11	0	are Q_1 , Q_0 , and X?
10	01/ 11	00/ 10	1	∧ ſ

"01" Detector (9/10)

• What are the expressions for T_1 , T_0 , & Z?

Q ₁ Q ₀	$\begin{array}{c} Q_1^+ Q \\ X=0 \end{array}$	$A_{0}^{+} / T_{1}T_{0} X = 1$	Prese Outpu	
00	01/01	00/00	0	Note: variables
01	01/00	10/ 11	0	are Q_1 , Q_0 , and X ?
10	01/ 11	00/ 10	1	A :

"01" Detector (10/10)

- $Q_1 \quad Q_0 \quad X \quad T_1 \quad T_0 \quad Z$
- 0 0 0 0 1 0
- 0 0 1 0 0 0
- 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0<
- 1 0 0 1 1 1
- 1 0 1 1 0 1
- 1 1 0 X X X
- 1 1 1 X X X

Minterms -> expressions!!

Analysis by Signal Tracing and Timing Charts (1/6)

- Moore machine
 - The output depends only on the present state of the flip-flops (FFs).
 - $-Z=F(Q_n, Q_{n-1}, ..., Q_1, Q_0)$
- Mealy machine
 - The output depends not only on the present state, but also the value of the circuit inputs.
 - $-Z = F(Q_n, Q_{n-1}, ..., Q_1, Q_0, X_m, X_{m-1}, ..., X_1, X_0)$

Analysis by Signal Tracing and Timing Charts (2/6)

 Because flip-flops (FFs) only respond to input at rising/falling edges, the output of a <u>Moore</u> machine only changes at rising/falling edges.

Analysis by Signal Tracing and Timing Charts (4/6)

- In a Mealy machine, outputs changes when flip-flops (FFs) and/or circuit input change.
- Therefore, when the circuit output changes is independent of rising/falling edges.

Analysis by Signal Tracing and Timing Charts (6/6)

• In a Mealy machine, the output is read immediately before the rising/falling edge.

