
CDA 3200 Digital Systems

Instructor: Dr. Janusz Zalewski
Developed by: Dr. Dahai Guo

Spring 2012



Outline

• Combinational Logic Design Using a Truth 
Table

• Minterm and Maxterm Expansions
• General Minterm and Maxterm 

Expansions
• Incompletely Specified Functions
• Examples of Truth Table Construction
• Design of Binary Adders and Subtracters



Combinational Logic Design Using 
a Truth Table (1/5)

• Sometimes, it is easier to first construct a 
truth table before developing the logic 
expression and design the logic circuit.

• The logic expression can be written in 
form of sum-of-products or product-of-
sums, depending on how to interpret the 
truth table.



Combinational Logic Design Using 
a Truth Table (2/5)

• Any combination of 011, 100, 
101, 110 or 111 can make 
f=1

• ABC are 011  A’BC=1 

• ABC are 100 AB’C’=1

• ABC are 101 AB’C=1

• ABC are 110 ABC’=1

• ABC are 111 ABC=1

A  B  C   dec f f’
0  0  0       0 0 1
0  0  1       1 0 1
0  1  0       2 0 1
0  1  1       3 1 0
1  0  0       4 1 0
1  0  1       5 1 0
1  1  0       6 1 0
1  1  1      7 1 0



Combinational Logic Design Using 
a Truth Table (3/5)

• Therefore, the logic expression is 
– f=A’BC+AB’C’+AB’C+ABC’+ABC
– =A’BC+AB’+AB
– =A’BC+A
– =(A’+A)(A+BC)
– =A+BC



Combinational Logic Design Using 
a Truth Table (4/5)

• Any combination of 000, 001, 
or 010 can make f’=1

• ABC are 000  A’B’C’=1 

• ABC are 001 A’B’C=1

• ABC are 010 A’BC’=1

A  B  C   dec f f’
0  0  0       0 0 1
0  0  1       1 0 1
0  1  0       2 0 1
0  1  1       3 1 0
1  0  0       4 1 0
1  0  1       5 1 0
1  1  0       6 1 0
1  1  1      7 1 0



Combinational Logic Design Using 
a Truth Table (5/5)

• Therefore, the logic expression for f’ is 
– f’=A’B’C’+A’B’C+A’BC’
– (f’)’=(A’B’C’+A’B’C+A’BC’)’
– f=(A’B’C’)’(A’B’C)’(A’BC’)’
– =(A+B+C)(A+B+C’)(A+B’+C)



Minterm and Maxterm Expansions 
(1/10)

• A literal is a variable or its complement.
• A minterm of n variables is a product of n

literals in which each variable appears 
once in either true or complemented form, 
but not both.
– For a system with 3 variables
– ABC is a minterm
– AB’C’ is a minterm
– A’C’ is NOT a minterm



Minterm and Maxterm Expansions 
(2/10)

• A minterm is designated mi, where i is the 
decimal value of the binary string of the 
variables.
– ABC m7

– A’B’C’ m0

– ABC’ m6



Minterm and Maxterm Expansions 
(3/10)

• The truth table of a logic function can be 
represented by a sum of minterms and in 
this case it is called a minterm expansion 
or a standard sum of products



Minterm and Maxterm Expansions 
(4/10)

A  B  C   dec f f’
0  0  0       0 0 1
0  0  1       1 0 1
0  1  0       2 0 1
0  1  1       3 1 0
1  0  0       4 1 0
1  0  1       5 1 0
1  1  0       6 1 0
1  1  1      7 1 0

• f=A’BC+AB’C’+AB’C+ABC’+ABC

• f=m3+m4+m5+m6+m7

• f(A,B,C)=  )7,6,5,4,3(m



Minterm and Maxterm Expansions 
(5/10)

• Given a truth table, if the output of a 
certain row is 1, the corresponding 
minterm must be present in the logic 
expression.



Minterm and Maxterm Expansions 
(6/10)

• A maxterm of n variables is a sum of n
literals.
– In a system with three variables
– (A+B+C) is a maxterm
– (A’+B’+C) is a maxterm 
– (A’+B) is not maxterm

• A maxterm is designated Mi, where i is the 
decimal value of the complement of the 
binary string.



Minterm and Maxterm Expansions 
(7/10)

A  B  C   dec f f’
0  0  0       0 0 1
0  0  1       1 0 1
0  1  0       2 0 1
0  1  1       3 1 0
1  0  0       4 1 0
1  0  1       5 1 0
1  1  0       6 1 0
1  1  1      7 1 0

• f=(A+B+C)(A+B+C’)(A+B’+C)

• f=M0M1M2

• f=  )2,1,0(M



Minterm and Maxterm Expansions 
(8/10)

• Converting a general logic expression into 
a minterm expansion
– Through repeatedly applying X+X’=1
– f=a’b’+a’d+acd’
– =a’b’(c+c’)(d+d’)+a’d(b+b’)(c+c’)+acd’(b+b’)
– =a’b’c’d’+a’b’c’d+a’b’cd’+a’b’cd+a’bcd+a’bcd+

abcd’+ab’cd’
– Note: a minterm expression is not necessary 

the simplest expression.



Minterm and Maxterm Expansions 
(9/10)

• Converting a general logic expression into 
a maxterm expression
– Through repeatedly applying XX’=0



Minterm and Maxterm Expansions 
(10/10)

• When comparing two logic expressions, 
you can convert both into their minterm 
expressions and then compare.
– Example:
– a’c+b’c’+ab   and    a’b’+bc+ac’



General Minterm and Maxterm 
Expansion (1/3)

• A minterm expansion for an n variable function 
can be represented as a 2n long vector
– Example:
– F(A,B,C)=

– If ai=1, mi is present in the expression.
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General Minterm and Maxterm 
Expansion (2/3)

• Similarly, a maxterm expansion for an n variable 
function can also be represented as a 2n long 
vector 
– F(A,B,C)=

– If ai is 0, Mi is present in the expression. Why?
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General Minterm and Maxterm 
Expansion (3/3)

• Given two different minterm expansions of n 
variables
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Incompletely Specified Functions 
(1/5)

• Sometimes, not all the combinations of the 
inputs are considered in the circuit.

• Unconsidered combinations are referred to 
as “do not care” terms.

• In the truth table, the outputs for “do not 
care” terms are designated ‘X’



Incompletely Specified Functions 
(2/5)

• We could ignore the 
“do not care” terms, 
then the logic 
expression is

• F=A’B’C’+A’BC+ABC
• =A’B’C’+BC

A    B   C F
0    0    0 1
0    0    1 X
0    1    0 0
0    1    1 1
1    0    0 0
1    0    1 0
1    1    0 X
1    1    1 1



Incompletely Specified Functions 
(3/5)

• It does not matter, if we 
assign 1/0 to Xs
– F=A’B’C’+BC+A’B’C
– =A’B’+BC

A    B   C F
0    0    0 1
0    0    1 1
0    1    0 0
0    1    1 1
1    0    0 0
1    0    1 0
1    1    0 0
1    1    1 1

Simpler expression



Incompletely Specified Functions 
(4/5)

• Sometimes, assigning 1 to X’s may 
contribute to simplifying the logic 
expression.



Incompletely Specified Functions 
(5/5)

• In a minterm expansion, the “do not care” terms 
are denoted d

• In a maxterm expansion, the “do not care” terms 
are denoted D

  )6,1()7,3,0( dmF

  )6,1()5,4,2( DMF



Design of Binary Adders and 
Subtracters (1/7)

• Full Adders
X  Y  Cin   Dec Cout Sum

0   0   0     0 0        0
0   0   1     1 0        1
0   1   0     2 0        1
0   1   1     3 1 0
1   0   0     4 0        1
1   0   1     5 1        0
1   1   0     6 1 0
1   1   1     7 1 1

Cout=m3+m5+m6+m7

Sum=m1+m2+m4+m7



Design of Binary Adders and 
Subtracters (2/7)

• Sum=m1+m2+m4+m7
– Sum=X’Y’Cin+X’YCin’+XY’Cin’+XYCin

– =X’(Y’Cin+YCin’)+X(Y’Cin’+YCin)
– =X’(Y xor Cin)+X(Y xor Cin)’
– =X xor (Y xor Cin)=X xor Y xor Cin

• Cout=m3+m5+m6+m7
– Cout=X’YCin+XY’Cin+XYCin’+XYCin

– =YCin+XCin+XY



Design of Binary Adders and 
Subtracters (3/7)

Sum=X xor Y xor Cin

Cout=YCin+XCin+XY

Full Adder



Design of Binary Adders and 
Subtracters (4/7)

• Four full adders can be used to make a 4-
bit binary adder



Design of Binary Adders and 
Subtracters (5/7)

• When adding two signed number, overflow 
must be considered.
– Adding two positive numbers gives a negative 

number: A3B3S3’
– Adding two negative numbers gives a positive 

number: A3’B3’S3

– V=A3’B3’S3+A3B3S3’ can be used to reflect if 
overflow occurs



Design of Binary Adders and 
Subtracters (6/7)

• Binary subtracter using full adders
– Remember two’s complement

• Reverse all the bits
• Add 1



Design of Binary Adders and 
Subtracters (7/7)


