
CDA 3200 Digital Systems

Instructor: Dr. Janusz Zalewski
Developed by: Dr. Dahai Guo

Spring 2012

Outline

• Combinational Logic Design Using a Truth
Table

• Minterm and Maxterm Expansions
• General Minterm and Maxterm

Expansions
• Incompletely Specified Functions
• Examples of Truth Table Construction
• Design of Binary Adders and Subtracters

Combinational Logic Design Using
a Truth Table (1/5)

• Sometimes, it is easier to first construct a
truth table before developing the logic
expression and design the logic circuit.

• The logic expression can be written in
form of sum-of-products or product-of-
sums, depending on how to interpret the
truth table.

Combinational Logic Design Using
a Truth Table (2/5)

• Any combination of 011, 100,
101, 110 or 111 can make
f=1

• ABC are 011  A’BC=1

• ABC are 100 AB’C’=1

• ABC are 101 AB’C=1

• ABC are 110 ABC’=1

• ABC are 111 ABC=1

A B C dec f f’
0 0 0 0 0 1
0 0 1 1 0 1
0 1 0 2 0 1
0 1 1 3 1 0
1 0 0 4 1 0
1 0 1 5 1 0
1 1 0 6 1 0
1 1 1 7 1 0

Combinational Logic Design Using
a Truth Table (3/5)

• Therefore, the logic expression is
– f=A’BC+AB’C’+AB’C+ABC’+ABC
– =A’BC+AB’+AB
– =A’BC+A
– =(A’+A)(A+BC)
– =A+BC

Combinational Logic Design Using
a Truth Table (4/5)

• Any combination of 000, 001,
or 010 can make f’=1

• ABC are 000  A’B’C’=1

• ABC are 001 A’B’C=1

• ABC are 010 A’BC’=1

A B C dec f f’
0 0 0 0 0 1
0 0 1 1 0 1
0 1 0 2 0 1
0 1 1 3 1 0
1 0 0 4 1 0
1 0 1 5 1 0
1 1 0 6 1 0
1 1 1 7 1 0

Combinational Logic Design Using
a Truth Table (5/5)

• Therefore, the logic expression for f’ is
– f’=A’B’C’+A’B’C+A’BC’
– (f’)’=(A’B’C’+A’B’C+A’BC’)’
– f=(A’B’C’)’(A’B’C)’(A’BC’)’
– =(A+B+C)(A+B+C’)(A+B’+C)

Minterm and Maxterm Expansions
(1/10)

• A literal is a variable or its complement.
• A minterm of n variables is a product of n

literals in which each variable appears
once in either true or complemented form,
but not both.
– For a system with 3 variables
– ABC is a minterm
– AB’C’ is a minterm
– A’C’ is NOT a minterm

Minterm and Maxterm Expansions
(2/10)

• A minterm is designated mi, where i is the
decimal value of the binary string of the
variables.
– ABC m7

– A’B’C’ m0

– ABC’ m6

Minterm and Maxterm Expansions
(3/10)

• The truth table of a logic function can be
represented by a sum of minterms and in
this case it is called a minterm expansion
or a standard sum of products

Minterm and Maxterm Expansions
(4/10)

A B C dec f f’
0 0 0 0 0 1
0 0 1 1 0 1
0 1 0 2 0 1
0 1 1 3 1 0
1 0 0 4 1 0
1 0 1 5 1 0
1 1 0 6 1 0
1 1 1 7 1 0

• f=A’BC+AB’C’+AB’C+ABC’+ABC

• f=m3+m4+m5+m6+m7

• f(A,B,C)= )7,6,5,4,3(m

Minterm and Maxterm Expansions
(5/10)

• Given a truth table, if the output of a
certain row is 1, the corresponding
minterm must be present in the logic
expression.

Minterm and Maxterm Expansions
(6/10)

• A maxterm of n variables is a sum of n
literals.
– In a system with three variables
– (A+B+C) is a maxterm
– (A’+B’+C) is a maxterm
– (A’+B) is not maxterm

• A maxterm is designated Mi, where i is the
decimal value of the complement of the
binary string.

Minterm and Maxterm Expansions
(7/10)

A B C dec f f’
0 0 0 0 0 1
0 0 1 1 0 1
0 1 0 2 0 1
0 1 1 3 1 0
1 0 0 4 1 0
1 0 1 5 1 0
1 1 0 6 1 0
1 1 1 7 1 0

• f=(A+B+C)(A+B+C’)(A+B’+C)

• f=M0M1M2

• f= )2,1,0(M

Minterm and Maxterm Expansions
(8/10)

• Converting a general logic expression into
a minterm expansion
– Through repeatedly applying X+X’=1
– f=a’b’+a’d+acd’
– =a’b’(c+c’)(d+d’)+a’d(b+b’)(c+c’)+acd’(b+b’)
– =a’b’c’d’+a’b’c’d+a’b’cd’+a’b’cd+a’bcd+a’bcd+

abcd’+ab’cd’
– Note: a minterm expression is not necessary

the simplest expression.

Minterm and Maxterm Expansions
(9/10)

• Converting a general logic expression into
a maxterm expression
– Through repeatedly applying XX’=0

Minterm and Maxterm Expansions
(10/10)

• When comparing two logic expressions,
you can convert both into their minterm
expressions and then compare.
– Example:
– a’c+b’c’+ab and a’b’+bc+ac’

General Minterm and Maxterm
Expansion (1/3)

• A minterm expansion for an n variable function
can be represented as a 2n long vector
– Example:
– F(A,B,C)=

– If ai=1, mi is present in the expression.





7

0
77661100 ...

i
iimamamamama

General Minterm and Maxterm
Expansion (2/3)

• Similarly, a maxterm expansion for an n variable
function can also be represented as a 2n long
vector
– F(A,B,C)=

– If ai is 0, Mi is present in the expression. Why?





7

0
77661100)())()...()((

i
ii MaMaMaMaMa

General Minterm and Maxterm
Expansion (3/3)

• Given two different minterm expansions of n
variables

 























































12

0

12

0

12

0

12

0

12

0
21

12

0
2

12

0
1

n n nnn

n

n

i j i
iiijiji

j
jj

i
ii

j
jj

i
ii

mbammbambmaff

mbf

maf

Incompletely Specified Functions
(1/5)

• Sometimes, not all the combinations of the
inputs are considered in the circuit.

• Unconsidered combinations are referred to
as “do not care” terms.

• In the truth table, the outputs for “do not
care” terms are designated ‘X’

Incompletely Specified Functions
(2/5)

• We could ignore the
“do not care” terms,
then the logic
expression is

• F=A’B’C’+A’BC+ABC
• =A’B’C’+BC

A B C F
0 0 0 1
0 0 1 X
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 X
1 1 1 1

Incompletely Specified Functions
(3/5)

• It does not matter, if we
assign 1/0 to Xs
– F=A’B’C’+BC+A’B’C
– =A’B’+BC

A B C F
0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

Simpler expression

Incompletely Specified Functions
(4/5)

• Sometimes, assigning 1 to X’s may
contribute to simplifying the logic
expression.

Incompletely Specified Functions
(5/5)

• In a minterm expansion, the “do not care” terms
are denoted d

• In a maxterm expansion, the “do not care” terms
are denoted D

 )6,1()7,3,0(dmF

 )6,1()5,4,2(DMF

Design of Binary Adders and
Subtracters (1/7)

• Full Adders
X Y Cin Dec Cout Sum

0 0 0 0 0 0
0 0 1 1 0 1
0 1 0 2 0 1
0 1 1 3 1 0
1 0 0 4 0 1
1 0 1 5 1 0
1 1 0 6 1 0
1 1 1 7 1 1

Cout=m3+m5+m6+m7

Sum=m1+m2+m4+m7

Design of Binary Adders and
Subtracters (2/7)

• Sum=m1+m2+m4+m7
– Sum=X’Y’Cin+X’YCin’+XY’Cin’+XYCin

– =X’(Y’Cin+YCin’)+X(Y’Cin’+YCin)
– =X’(Y xor Cin)+X(Y xor Cin)’
– =X xor (Y xor Cin)=X xor Y xor Cin

• Cout=m3+m5+m6+m7
– Cout=X’YCin+XY’Cin+XYCin’+XYCin

– =YCin+XCin+XY

Design of Binary Adders and
Subtracters (3/7)

Sum=X xor Y xor Cin

Cout=YCin+XCin+XY

Full Adder

Design of Binary Adders and
Subtracters (4/7)

• Four full adders can be used to make a 4-
bit binary adder

Design of Binary Adders and
Subtracters (5/7)

• When adding two signed number, overflow
must be considered.
– Adding two positive numbers gives a negative

number: A3B3S3’
– Adding two negative numbers gives a positive

number: A3’B3’S3

– V=A3’B3’S3+A3B3S3’ can be used to reflect if
overflow occurs

Design of Binary Adders and
Subtracters (6/7)

• Binary subtracter using full adders
– Remember two’s complement

• Reverse all the bits
• Add 1

Design of Binary Adders and
Subtracters (7/7)

