CDA 3200 Digital Systems

Instructor: Dr. Janusz ZalewskKi
Developed by: Dr. Dahail Guo
Spring 2012

Outline

Combinational Logic Design Using a Truth
Table

Minterm and Maxterm Expansions

General Minterm and Maxterm
Expansions

Incompletely Specified Functions
Examples of Truth Table Construction
Design of Binary Adders and Subtracters

Combinational Logic Design Using
a Truth Table (1/5)

e Sometimes, It Is easier to first construct a
truth table before developing the logic
expression and design the logic circuit.

* The logic expression can be written in
form of sum-of-products or product-of-
sums, depending on how to interpret the
truth table.

Combinational Logic Design Using
a Truth Table (2/5)

e Any combination of 011, 100, A B C dec |f f’
1}:011’ 110 or 111 can make 00 0 0 |0 1
« ABC are 011 - ABC=1 Sl Lol A
010 2 |0 1

e ABC are 100 >AB'C’=1

e ABC are 101 > AB'C=1
 ABC are 110 > ABC'=1
e ABC are 111 > ABC=1

Combinational Logic Design Using
a Truth Table (3/5)

 Therefore, the logic expression Is
— f=A'BC+AB'C'+AB'C+ABC'+ABC
— =A'BC+AB’+AB
— =A'BC+A
— =(A’+A)(A+BC)
— =A+BC

Combinational Logic Design Using
a Truth Table (4/5)

e Any combination of 000, 001, A B C dec |f f
or 010 can make f'=1 000 0 |0 1

« ABC are 000 > AB'C'=1 00 1 1 10 1

« ABC are 001 DAB'C=1 010 2 0o |1

« ABC are 010 >ABC’=1

Combinational Logic Design Using
a Truth Table (5/5)

* Therefore, the logic expression for f' Is
— =A'B'C'+A'B'C+A'BC’
— (fY=(A’'B'’C’'+A’'B'C+A'BC’)’
— f=(A’'B'C’)’(A’'B'C)'(A’'BC’)’
— =(A+B+C)(A+B+C’)(A+B'+C)

Minterm and Maxterm Expansions
(1/10)

e A literal is a variable or its complement.

A minterm of n variables is a product of n
literals in which each variable appears
once In either true or complemented form,
but not both.

— For a system with 3 variables
— ABC is a minterm

— AB’C’ Is a minterm

— A’C’ 1s NOT a minterm

Minterm and Maxterm Expansions
(2/10)

* A minterm Is designated m;, where 1 Is the
decimal value of the binary string of the
variables.

— ABC m-,
- A'BC’ My
— ABC’ M

Minterm and Maxterm Expansions
(3/10)

e The truth table of a logic function can be
represented by a sum of minterms and in
this case it Iis called a minterm expansion
or a standard sum of products

Minterm and Maxterm Expansions

(4/10)

« f=ABC+AB'C'+AB'C+ABC'+ABC |A B C dec |f f

e f=mg+m,+m.+mg+m, 00O 0O |0 1

- f(A,B,C)= > m(3,456,7) 04081 il 200 kil
010 2 |0 1

Minterm and Maxterm Expansions
(5/10)

e Gliven a truth table, If the output of a
certain row Is 1, the corresponding
minterm must be present in the logic
expression.

Minterm and Maxterm Expansions
(6/10)

e A maxterm of n variables is a sum of n
literals.

— In a system with three variables
— (A+B+C) Is a maxterm

— (A’+B’+C) Is a maxterm

— (A’+B) Is not maxterm

* A maxterm iIs designhated M,, where i Is the
decimal value of the complement of the
binary string.

Minterm and Maxterm Expansions
(7/10)

« f=(A+B+C)(A+B+C’)(A+B’+C) A B C dec |f f
. F=MgM,M, 04Q:0°7 00 71
. =] [M(0L2) 001 de g0 il

010 2 |0 1

Minterm and Maxterm Expansions
(8/10)

e Converting a general logic expression into
a minterm expansion
— Through repeatedly applying X+X'=1
— f=a’b’+a’d+acd’
—=a’b’(c+c’)(d+d’)+a’d(b+b’)(c+c’)+acd’(b+b’)
— =a'b'c’d’+a’b’'c’d+a’b’cd’+a’b’cd+a’bcd+a’bcd+
abcd’+ab’cd’

— Note: a minterm expression IS not necessary
the simplest expression.

Minterm and Maxterm Expansions
(9/10)

e Converting a general logic expression into
a maxterm expression

— Through repeatedly applying XX'=0

Minterm and Maxterm Expansions
(10/10)

 \When comparing two logic expressions,
you can convert both into their minterm
expressions and then compare.
— Example:
—a'ctb’c’'+tab and a’b’+bc+ac’

General Minterm and Maxterm
Expansion (1/3)

A minterm expansion for an n variable function
can be represented as a 2" long vector

— Example:]
— F(A,B,C)= am,+am,..am;+a,m, => am
i=0

— If a=1, m, is present in the expression.

General Minterm and Maxterm
Expansion (2/3)

e Similarly, a maxterm expansion for an n variable
function can also be represented as a 2" long
vector

A F(A,B’C): (a0+Mo)(a1+M1)...(a6+M6)(a7+M7):1ilO[(ai+Mi)

— If a,1s 0, M. Is present in the expression. Why?

General Minterm and Maxterm
Expansion (3/3)

o Given two different minterm expansions of n
variables

2" 1
f1 T Zaimi
i=0

LA |
f, = ijmj
=0
2=

fle:[Zaimij[ijmjjz abmm, =>» abm,

1=0

Incompletely Specified Functions
(1/5)
e Sometimes, not all the combinations of the
Inputs are considered in the circulit.

e Unconsidered combinations are referred to
as “do not care” terms.

 In the truth table, the outputs for “do not
care” terms are designated ‘X’

Incompletely Specified Functions
(2/5)

We could ignhore the
“do not care” terms,

then the logic

expression Is

F=A'B'C'+A'BC+ABC

=A’B'C'+BC

RlRr|RIRPOOCIO|O|>
R IR OO || O|O|wm
R O|lRrR| ORI OO
R [IX| OO/, |O|X|F|Tm

Incompletely Specified Functions
(3/5)

e |t does not matter, If we

assign 1/0 to Xs

— F=A'B'C'+BC+A'B'C

— =A'B’'+BC Simpler expression

RlRr|RIRPOOCIO|O|>
R R |OO|FR |, IO|O|wm
R|OlRr|O|FR| OO0
R O|O|O|FR|O(FR|F,|T

Incompletely Specified Functions
(4/5)
e Sometimes, assigning 1 to X's may

contribute to simplifying the logic
expression.

Incompletely Specified Functions
(5/5)

e |In a minterm expansion, the “do not care” terms
are denoted d

F=> m(037)+) d(16)

e |In a maxterm expansion, the “do not care” terms
are denoted D

F=][M(245)+] [D@6)

Design of Binary Adders and
Subtracters (1/7)

e Full Adders

X Y C,, Dec|Cy; Sum
O 00 O |0 0
O 01 1 |0 1
010 2 |0 1
0 B ' g SO R 0
1 00 4 (0 1
1:408 T=-"5adel 0
1R PR BT SR | 0
4 e s o o B 1

Full 5
Adder

Cou=Mgtmg+mg+m,

Sum=mj;+m,+m,+m,

Design of Binary Adders and
Subtracters (2/7)

e SUM=M1+m2+m4+m7
= Sum:X’Y’Cin+X’YCin’+XY’Cin’+XYCin
—=X'(Y'C,+YC,)+X(Y'C/+YC;)
— =X'(Y xor C,))+X(Y xor C..)’
— =X xor (Y xor C,;,)=X xor Y xor C;,

¢ C,,~m3+m5+m6+m7
— Cou=X'YC #XY'C;, +XYC,'+XYC;,
—=YC, +XC, +XY

Design of Binary Adders and
Subtracters (3/7)

Full Adder

Sum=X xor Y xor C,,

C

out

HD_

=YC, +XC; +XY

B
D>

-

Design of Binary Adders and
Subtracters (4/7)

 Four full adders can be used to make a 4-
bit binary adder

Design of Binary Adders and
Subtracters (5/7)

 \When adding two signed number, overflow
must be considered.

— Adding two positive numbers gives a negative
number: A;B;S;’

— Adding two negative numbers gives a positive
number: A;'B;'S;

— V=A,'B;'S;+A;B;S;’ can be used to reflect if
overflow occurs

Design of Binary Adders and
Subtracters (6/7)

e Binary subtracter using full adders

— Remember two’s complement

 Reverse all the bits
e Add 1

Design of Binary Adders and
Subtracters (7/7)

AR S SRS
._ ~— A B*— _ :_ e B<— i :—@
D |® P &

