CDA 3200 Digital Systems

Instructor: Dr. Janusz Zalewski Developed by: Dr. Dahai Guo Spring 2012

Outline

- Combinational Logic Design Using a Truth Table
- Minterm and Maxterm Expansions
- General Minterm and Maxterm Expansions
- Incompletely Specified Functions
- Examples of Truth Table Construction
- Design of Binary Adders and Subtracters

Combinational Logic Design Using a Truth Table (1/5)

- Sometimes, it is easier to first construct a truth table before developing the logic expression and design the logic circuit.
- The logic expression can be written in form of sum-of-products or product-ofsums, depending on how to interpret the truth table.

Combinational Logic Design Using a Truth Table (2/5)

- Any combination of 011, 100, 101, 110 or 111 can make f=1
 - ABC are 011 → A'BC=1
 - ABC are 100 → AB'C'=1
 - ABC are 101 → AB'C=1
 - ABC are 110 → ABC'=1
 - ABC are 111 → ABC=1

A	В	С	dec	f	f
0	0	0	0	0	1
0	0	1	1	0	1
0	1	0	2	0	1
0	1	1	3	1	0
1	0	0	4	1	0
1	0	1	5	1	0
1	1	0	6	1	0
1	1	1	7	1	0

Combinational Logic Design Using a Truth Table (3/5)

- Therefore, the logic expression is
 - f=A'BC+AB'C'+AB'C+ABC'+ABC
 - -=A'BC+AB'+AB
 - -=A'BC+A
 - -=(A'+A)(A+BC)
 - -=A+BC

Combinational Logic Design Using a Truth Table (4/5)

- Any combination of 000, 001, or 010 can make f'=1
 - ABC are 000 → A'B'C'=1
 - ABC are 001 → A'B'C=1
 - ABC are 010 → A'BC'=1

1 and 1	A	В	С	dec	f	f'
	0	0	0	0	0	1
10 m m	0	0	1	1	0	1
- Sugar	0	1	0	2	0	1
-	0	1	1	3	1	0
111 Mar 111	1	0	0	4	1	0
Contract,	1	0	1	5	1	0
	1	1	0	6	1	0
	1	1	1	7	1	0

Combinational Logic Design Using a Truth Table (5/5)

- Therefore, the logic expression for f' is
 - -f'=A'B'C'+A'B'C+A'BC'
 - (f')'=(A'B'C'+A'B'C+A'BC')'
 - f=(A'B'C')'(A'B'C)'(A'BC')'
 - -=(A+B+C)(A+B+C')(A+B'+C)

Minterm and Maxterm Expansions (1/10)

- A literal is a variable or its complement.
- A minterm of *n* variables is a product of *n* literals in which each variable appears once in either true or complemented form, but not both.
 - For a system with 3 variables
 - ABC is a minterm
 - AB'C' is a minterm
 - A'C' is NOT a minterm

Minterm and Maxterm Expansions (2/10)

A minterm is designated *m_i*, where *i* is the decimal value of the binary string of the variables.

- ABC	m ₇
– A'B'C'	m ₀
– ABC'	m ₆

Minterm and Maxterm Expansions (3/10)

 The truth table of a logic function can be represented by a sum of minterms and in this case it is called a minterm expansion or a standard sum of products

Minterm and Maxterm Expansions (4/10)

- f=A'BC+AB'C'+AB'C+ABC'+ABC
- $f = m_3 + m_4 + m_5 + m_6 + m_7$
- $f(A,B,C) = \sum m(3,4,5,6,7)$

Α	В	С	dec	f	f'
0	0	0	0	0	1
0	0	1	1	0	1
0	1	0	2	0	1
0	1	1	3	1	0
1	0	0	4	1	0
1	0	1	5	1	0
1	1	0	6	1	0
1	1	1	7	1	0

Minterm and Maxterm Expansions (5/10)

 Given a truth table, if the output of a certain row is 1, the corresponding minterm must be present in the logic expression.

Minterm and Maxterm Expansions (6/10)

- A maxterm of *n* variables is a sum of *n* literals.
 - In a system with three variables
 - (A+B+C) is a maxterm
 - -(A'+B'+C) is a maxterm
 - (A'+B) is not maxterm
- A maxterm is designated M_i, where *i* is the decimal value of the <u>complement</u> of the binary string.

Minterm and Maxterm Expansions (7/10)

- f=(A+B+C)(A+B+C')(A+B'+C)
- $f=M_0M_1M_2$
- $f = \prod M(0,1,2)$

A	В	С	dec	f	f'
0	0	0	0	0	1
0	0	1	1	0	1
0	1	0	2	0	1
0	1	1	3	1	0
1	0	0	4	1	0
1	0	1	5	1	0
1	1	0	6	1	0
1	1	1	7	1	0

Minterm and Maxterm Expansions (8/10)

- Converting a general logic expression into a minterm expansion
 - Through repeatedly applying X+X'=1
 - -f=a'b'+a'd+acd'
 - -=a'b'(c+c')(d+d')+a'd(b+b')(c+c')+acd'(b+b')
 - -=a'b'c'd'+a'b'c'd+a'b'cd'+a'b'cd+a'bcd+a'bcd+ abcd'+ab'cd'
 - Note: a minterm expression is not necessary the simplest expression.

Minterm and Maxterm Expansions (9/10)

- Converting a general logic expression into a maxterm expression
 - Through repeatedly applying XX'=0

Minterm and Maxterm Expansions (10/10)

- When comparing two logic expressions, you can convert both into their minterm expressions and then compare.
 - Example:
 - -a'c+b'c'+ab and a'b'+bc+ac'

General Minterm and Maxterm Expansion (1/3)

- A minterm expansion for an n variable function can be represented as a 2ⁿ long vector
 - Example:

$$- F(A,B,C) = a_0 m_0 + a_1 m_1 \dots a_6 m_6 + a_7 m_7 = \sum_{i=0}^{n} a_i m_i$$

- If $a_i=1$, m_i is present in the expression.

General Minterm and Maxterm Expansion (2/3)

 Similarly, a maxterm expansion for an n variable function can also be represented as a 2ⁿ long vector

- F(A,B,C)=
$$(a_0 + M_0)(a_1 + M_1)...(a_6 + M_6)(a_7 + M_7) = \prod_{i=0}^{7} (a_i + M_i)$$

– If a_i is 0, M_i is present in the expression. Why?

General Minterm and Maxterm Expansion (3/3)

Given two different minterm expansions of n variables

$$f_{1} = \sum_{i=0}^{2^{n}-1} a_{i}m_{i}$$
$$f_{2} = \sum_{j=0}^{2^{n}-1} b_{j}m_{j}$$

$$f_1 f_2 = \left(\sum_{i=0}^{2^n - 1} a_i m_i\right) \left(\sum_{j=0}^{2^n - 1} b_j m_j\right) = \sum_{i=0}^{2^n - 1} \sum_{j=0}^{2^n - 1} a_i b_j m_i m_j = \sum_{i=0}^{2^n - 1} a_i b_i m_i$$

Incompletely Specified Functions (1/5)

- Sometimes, not all the combinations of the inputs are considered in the circuit.
- Unconsidered combinations are referred to as "do not care" terms.
- In the truth table, the outputs for "do not care" terms are designated 'X'

Incompletely Specified Functions (2/5)

- We could ignore the "do not care" terms, then the logic expression is
- F=A'B'C'+A'BC+ABC
- =A'B'C'+BC

	100		
A	В	С	F
0	0	0	1-1
0	0	1	X
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	X
1	1	1	1

Incompletely Specified Functions (3/5)

It does not matter, if we assign 1/0 to Xs

 F=A'B'C'+BC+A'B'C
 =A'B'+BC Simpler expression

Incompletely Specified Functions (4/5)

 Sometimes, assigning 1 to X's may contribute to simplifying the logic expression.

Incompletely Specified Functions (5/5)

 In a minterm expansion, the "do not care" terms are denoted d

$$F = \sum m(0,3,7) + \sum d(1,6)$$

 In a maxterm expansion, the "do not care" terms are denoted *D*

 $F = \prod M(2,4,5) + \prod D(1,6)$

Design of Binary Adders and Subtracters (1/7)

Full Adders

X	Y	Circ	Dec	C _{out}	Sum
0	0	0	0	0	0
0	0	1	1	0	1
0	1	0	2	0	1
0	1	1	3	1	0
1	0	0	4	0	1
1	0	1	5	1	0
1	1	0	6	1	0
1	1	1	7	1	1

 $C_{out} = m_3 + m_5 + m_6 + m_7$

 $Sum = m_1 + m_2 + m_4 + m_7$

Design of Binary Adders and Subtracters (2/7)

 Sum=m1+m2+m4+m7 - Sum=X'Y'C_{in}+X'YC_{in}'+XY'C_{in}'+XYC_{in} $-=X'(Y'C_{in}+YC_{in}')+X(Y'C_{in}'+YC_{in})$ $-=X'(Y \text{ xor } C_{in})+X(Y \text{ xor } C_{in})'$ $-=X \operatorname{xor} (Y \operatorname{xor} C_{in})=X \operatorname{xor} Y \operatorname{xor} C_{in}$ • C_{out}=m3+m5+m6+m7 $-C_{out} = X'YC_{in} + XY'C_{in} + XYC_{in}' + XYC_{in}$ $-=YC_{in}+XC_{in}+XY$

Full Adder

Sum=X xor Y xor C_{in}

 $C_{out} = YC_{in} + XC_{in} + XY$

Design of Binary Adders and Subtracters (4/7)

 Four full adders can be used to make a 4bit binary adder

Design of Binary Adders and Subtracters (5/7)

- When adding two signed number, overflow must be considered.
 - Adding two positive numbers gives a negative number: A₃B₃S₃'
 - Adding two negative numbers gives a positive number: A₃'B₃'S₃
 - V=A₃'B₃'S₃+A₃B₃S₃' can be used to reflect if overflow occurs

Design of Binary Adders and Subtracters (6/7)

- Binary subtracter using full adders
 - Remember two's complement
 - Reverse all the bits
 - Add 1

Design of Binary Adders and Subtracters (7/7)

